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Abstract  12 

Micro- and nanoplastics are globally important environmental pollutants. Although research in this 13 

field is continuously improving, there are a number of uncertainties, inconsistencies and 14 

methodological challenges in the effect assessment of micro-nanoparticles in freshwater systems.  The 15 

current understanding of adverse effects is partly biased by the use of non-relevant particle types, 16 

unsuitable test setups and environmentally unrealistic dose metrics, which does not take into account 17 

realistic processes in particle uptake and consequent effects. Here we summarize the current state of 18 

the art by compiling the most recent research with the aim to highlight research gaps and further 19 

necessary steps towards more harmonized testing systems. In particular, ecotoxicological scenarios 20 

need to mirror environmentally realistic particle diversity and bioavailability. Harmonized test setups 21 

should include different uptake pathways, exposure and comparisons with natural reference particles. 22 

Effect assessments need to differentiate direct physical particle effects, such as lesions and toxicity 23 

caused by the polymer, from indirect effects, such as alterations of ambient environmental conditions 24 

by leaching, change of turbidity, food dilution and organisms’ behavior. Implementation of these 25 

suggestions can contribute to harmonization and more effective, evidence-based assessments of the 26 

ecotoxicological effects of micro- and nanoplastics.  27 

 28 
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1. Introduction 32 

Plastic pollution in the environment is recognized a major irreversible global threat (Anbumani and 33 

Kakkar, 2018; MacLeod et al., 2021; Weis and Alava, 2023). Different types and amounts of plastics are 34 

found in all environmental compartments, including the atmosphere, arctic ice, soils, rivers, lakes and 35 

oceans as well as in biota, including humans (Allen et al., 2019; Azfaralariff et al., 2023; Bergmann et 36 

al., 2022; Koelmans et al., 2019; Kvale et al., 2020; Triebskorn et al., 2019). Reported plastic particle 37 

numbers in freshwater systems range from 10-2 to 105 particles per m3 (Triebskorn et al., 2019). 38 

Physical and chemical processes in the environment enable the fragmentation and transformation of 39 

plastics, which alters the transport and bioavailability (Su et al., 2022). These small-sized micro- and 40 

nanoplastics (MNPs) pose a risk to environmental and human health (Azfaralariff et al., 2023; Bucci et 41 

al., 2020; Strokal et al., 2023; Zolotova et al., 2022).  42 

The scientific focus on MNPs has increased over the past 20 years (Klingelhöfer et al., 2020), which 43 

resulted in a better understanding of MNP emissions, transportation and risk assessment (Thompson 44 

et al., 2024). Improved sampling, separation techniques and analytical procedures resulted in a better 45 

characterization of dispersal, occurrence and quantification of MNPs. For example, whereas food and 46 

food packaging seemed to be the main source of MNPs in human intake, kitchen equipment used to 47 

prepare food turned out to be major source of MNPs as well (Snekkevik et al., 2024). However, 48 

environmental risk assessment still highly depends on harmonized or standardized procedures in 49 

detection and quantification as well as in determining effects, which is not yet achieved (Bao et al. 50 

2024; Ivleva, 2021; Koelmans et al., 2022; SAPEA, 2019).  51 

There is a substantial body of literature reporting effects of MNPs based on laboratory studies, which 52 

cover several taxonomic groups, investigate effects on lethal and sublethal endpoints and effects from 53 

molecular to food web level. However, it remains questionable if this contributes to a realistic effect 54 

and risk assessment, since many studies designs lack comparability, and there are uncertainties in 55 

environmental concentrations (Burns and Boxall, 2018; De Ruijter et al., 2020; Gouin et al., 2019; 56 

Latchere et al., 2021; Thornton Hampton et al., 2022). Although test systems play a significant role in 57 

the evaluation of chemicals, there are currently no established ecotoxicological standard protocols 58 

available for non-soluble particulate substances like MNPs. In contrast to soluble substances, the 59 

behavior and uptake of particulate substances in water depends on size, density, shape and particle 60 

type (Khan et al., 2017). In addition, there are deficits in scientifically based standardization and 61 

harmonization of detection procedures within an ecotoxicologically relevant size range in the low µm 62 

and nm range (Anger et al., 2018; Dris et al., 2018; Triebskorn et al., 2019; Ivleva et al., 2017; Wang et 63 

al., 2023b). A promising first step towards harmonization had been made in a protocol by Monikh et 64 
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al (2023), who used OECD guidelines as a starting point for ecotoxicological testing. They focus on 65 

agglomeration and sedimentation rates, and this information is essential when a future protocol 66 

includes sediment layers, co-contamination, aging and biofouling. 67 

MNPs of different polymer composition and aging disperse differently in the environment (Bergmann 68 

et al., 2022; Strokal et al., 2023; Su et al., 2022). Therefore, organisms inhabiting the affected habitats 69 

are exposed to a complex matrix of natural and plastic particles with diverse physical and chemical 70 

characteristics like size, shape, polymer type, additives, adsorbed chemicals or on-growing biofilm 71 

(Koelmans et al., 2022; Kooi and Koelmans, 2019; Rochman et al., 2019). Potential negative effects of 72 

MNPs and its additives on organisms, populations and biocenoses, as well as fluxes within food chains 73 

are not yet sufficiently characterized and understood, which is partly attributed to a lack of 74 

standardization and harmonization of testing systems (Weber et al., 2021). 75 

In contrast to previous reviews, that focus on specific aspects within the field of MNP research 76 

(analytical procedures, QA/QC criteria, effect data and risk assessment (Anbumani and Kakkar, 2018; 77 

Bucci et al., 2020; Jacob et al., 2023; Kotta et al., 2022)), we present a conceptual framework of the 78 

key elements in MNP research. We therefore (1) highlight the existing challenges associated with MNP 79 

test systems, particularly those related to exposure scenarios, test systems and effect assessment (2) 80 

exemplarily discuss steps for harmonization and (3) recommend relevant methodological approaches 81 

for a more effective, mechanistic and evidence-based assessments of the ecotoxicological effects of 82 

MNP as an outlook.  83 

 84 

2. Key elements of MNP testing  85 

Testing strategies for ecotoxicological effect and risk assessment need to consider a range of key 86 

variables, as summarized in Figure 1. It is important to consider the interface between the test setup 87 

and the reaction of the receptor organism, which is mostly determined by organism specific traits 88 

(behavior, feeding type), bioavailability and uptake mechanisms, internal turnover and accumulation. 89 

2.1 Exposure characteristics 90 

2.1.1 Particle characteristics and reference particles 91 

To link MNP properties to toxicity, a detailed characterization of the particles and their behavior in the 92 

test system is needed (Brehm et al., 2023). Challenges are mostly related to different polymer types, 93 

particle shapes that vary from spheres to fibers, and the use of appropriate reference particles. 94 
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The current analytical capacities allow the a priori and the posteriori determination of particle 95 

characteristics (Anger et al., 2018; Ivleva et al., 2023; Primpke et al., 2020). Suggestions on reporting 96 

and quality criteria are also available, but not substantially considered, e.g. (Connors et al., 2017; De 97 

Ruijter et al., 2020; Koelmans et al., 2019; Kögel et al., 2020; Monikh et al. 2023; Zink and Pyle, 2023). 98 

Certain polymer types are under-represented in laboratory studies, e.g. polypropylene (PP), polyester 99 

and polyamide (PA) particles, despite their widespread detection in field-based studies (Botterell et 100 

al., 2019; De Sá et al., 2018). Consequently, there is a mismatch between MNPs in the environment 101 

and those in laboratory experiments (Anbumani and Kakkar, 2018; Burns and Boxall, 2018; Kukkola et 102 

al., 2021). This results in a mismatch between the investigated mechanisms of action and 103 

ecotoxicological effects (Heinrich et al., 2020; Samadi et al., 2022). Laboratory studies most commonly 104 

used polystyrene (PS) and polyethylene (PE) (Haegerbaeumer et al., 2019; Lusher, 2015) (Table 1 for 105 

examples), whereas for sediments, high proportions of polyvinylchloride (PVC), PA  and polyesters 106 

have been reported (Browne et al., 2013; Claessens et al., 2011; Lee et al., 2013). Most common shapes 107 

in the environment are beads, fragments and fibers, whereas spherical particles are the most 108 

investigated in aqueous studies (Haegerbaeumer et al., 2019; Lusher, 2015). Using commercially 109 

manufactured beads in effect studies has the additional disadvantage that often solvents, surfactants 110 

or biocides are used as stabilizers and to avoid fouling, which can highly influence the outcome 111 

(Heinlaan et al., 2020). Additionally, the majority of ecotoxicological assessments has been conducted 112 

with only one type of polymer and only one shape of particle, whereas in nature, the plastic items 113 

represent a broad spectrum of polymers and shapes or even heteroaggregates. No ideal reference 114 

particle has been agreed upon since the characteristics of inorganic natural particles like kaolin, clay 115 

minerals, quartz sand, or glass beads are not in accordance with the various characteristics of MNPs 116 

(Heinrich et al., 2020). Reference materials need to reflect the diversity of shapes, and sizes of MNPs 117 

found in the environment, as well as changes in porosity during the weathering process (Kefer et al., 118 

2021).  119 

Laboratory-based experiments using plastic particles collected in the environment are scarce (Latchere 120 

et al., 2021), presumably due to the high effort in collection and separation of the particles and 121 

therefore and therefore the impracticability of this approach (Su et al., 2022). It is furthermore 122 

problematic as effects on extraction and separation methods on particle characteristics need to be 123 

considered (Enders et al., 2020; Li et al., 2020). Alternatively, custom-made reference particle mixtures 124 

could be used, but the availability of suitable material which mimic real MNPs is limited (Ivleva, 2021). 125 

However, De Ruijter et al. (2023) developed processed environmentally relevant microplastic (ERMP) 126 

standard material that adheres to high-quality requirements (Table 1). Their ERMP was made from 127 

plastic items collected from natural sources and cryogenically milled to represent the diversity of 128 
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microplastics. A stepwise protocol on the technical steps needed to produce MNPs is summarized in 129 

Monikh et al. (2023), which includes grinding and milling procedures and summarizes subsequent 130 

particle characterization methods. Parolini et al. (2024) describe a method including extrusion at 131 

elevated temperatures, which could be a promising approach to generate additivated and non-132 

additivated particles from the same source material. Other approaches using ultrasonication and 133 

precipitation also generate a suite of more realistic reference particles (Alimi et al., 2022; Boettcher et 134 

al., 2023; De Ruijter et al., 2023; Kefer et al., 2022; Von der Esch et al., 2020). (Kefer et al., 2022) tested 135 

different methods to produce microplastics, which have been used in research on the toxicity of 136 

phenanthrene combined with MNPs on a freshwater amphipod species (Bartonitz et al., 2020), and in 137 

a study examining sample preparation methods for reproducibility and sensitivity in wastewater 138 

treatment effluent (Al-Azzawi et al., 2020).  139 

2.1.2 Aging, weathering and biofouling of the MNPs 140 

In the environment, MNPs weather via mechanical action, (photo)oxidative processes, biological 141 

degradation, and biological fouling (Browne et al., 2007; Cole et al., 2011; Kaiser et al., 2017; Ventura 142 

et al., 2024), which results in the modification of the surface and density (Duan et al., 2021; Lv et al., 143 

2022; Ter Halle et al., 2017). Mechanical weathering will decrease particle size and increase roughness, 144 

whereas oxidative processes will make a plastic more brittle, due to changes in functional groups. 145 

Enzymes can hydrolyse plastics and biofouling influences their buoyancy. These processes lead to 146 

smaller particles, leaching, altered environmental transport and interaction with environmental 147 

chemicals (Al Harraq et al., 2022). Changes of surface structure and charge can lead to agglomerations 148 

with food, changing both particle and food uptake (Hanna et al., 2018) and influence the 149 

adsorption/desorption capacity of contaminants or additives (Bandow et al., 2017) and consequently 150 

uptake (Bråte et al., 2018; Fabra et al., 2021) and ecotoxicological effects (Moyal et al., 2023). This 151 

hampers the transferability of laboratory data to realistic field situations (Alimi et al., 2022). 152 

During ageing, MNPs can be covered in a biofilm, providing a substrate for food (Figure 2) that attracts 153 

shredders (Qi et al., 2021). In that case, MNPs can cause negative effects through food dilution (Al-154 

Azzawi et al., 2020), but can also act positively as a vector of nutritious biofilms. For instance, Daphnia 155 

magna preferentially ingests biofouled plastic, with consequent higher growth rates (Mazurais et al., 156 

2015), compared to clean plastic (Polhill et al., 2022).  157 

In addition to biological interaction effects, ageing also directly influences particle characteristics in 158 

terms of density (Kaiser et al., 2017), surface (Ji et al., 2024) and hydrophobicity (Ji et al., 2024; Kaiser 159 

et al., 2017; Kiki et al., 2022; Reineccius et al., 2023). Differences in surface roughness, crystallinity, 160 

surface functional groups and biofilm biomass affect the adsorption of organic molecules and heavy 161 
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metals (Hu et al., 2024; Ji et al., 2024; Town et al., 2023), e.g. by enhancing the adsorption capacity for 162 

metal ions on the MNPs’ surface (Qi et al., 2021). Oxidative degradation increases the water solubility 163 

of metabolites and alters their bioavailability (Lukas et al., 2024). Therefore, ageing and weathering of 164 

particles influences particle biotic interaction and toxicity, which needs to be considered in test 165 

strategies (Figure 2). 166 

 167 

2.1.3 Exposure conditions in the test setup 168 

Although the standard toxicity testing framework used for soluble chemicals enables to assess a large 169 

number of effects, it is not fully transferrable to particulate contaminants like MNPs (Khan et al., 2017). 170 

Test systems can be static, when the initial test condition is maintained over the test duration, semi-171 

static, when the test solution is renewed partially during the test, or continuous, when the test solution 172 

is constantly renewed in a flow through setup. Each of these setups have advantages and 173 

disadvantages, mainly with respect to the homogeneity of particle distribution in the exposure 174 

medium and therefore bioavailability to the test organisms (Bour et al. 2021; Monikh et al. 2023). 175 

Testing of MNP requires adapting testing frameworks, using specific exposure designs and 176 

investigating alternative endpoints (Bour et al., 2021). A variety of exposure setups can be used, 177 

ranging from cell cultures to mesocosms, but it needs to be considered which parameters in the 178 

exposure system can be effectively controlled, such as flotation, settling or mixing of particles (Heinrich 179 

et al., 2020). This control depends on whether one wants to study mechanistic effects, by artificially 180 

enhancing MNP availability to the test organism, or higher-level community effects, by allowing 181 

environmentally realistic particle behavior in the test compartments (Figure 2), and it includes the 182 

adjustment of water chemistry, pH, temperature, and particle dosimetry and their respective 183 

verification (Figure 3). 184 

The effect of different water matrices on the test substance, such as different media used for different 185 

test species, is often neglected. For instance, salinity of the test medium influences degradation rates 186 

of plastics (Reineccius et al., 2023) and consequently the physical and chemical properties of MNPs. In 187 

addition, ionic strength and pH influence the adsorption of metals (Qi et al., 2021) and the adsorption 188 

of organic pollutants (Junaid et al., 2023). As the salinity increases, the adsorption capacity of MNPs 189 

for organic molecules, such as norfloxacin (NOR), decreases (He et al., 2023). Therefore, the ionic 190 

composition should always be considered and reported for MNP exposure experiments. 191 

The media pH can alter the zeta potential of MNP and the precipitation of metals. It consequently 192 

modifies the adsorption of metals (Sizochenko et al., 2021) and the adsorption of organic compounds 193 

on biofilms on MNP (Xu et al., 2018).  194 
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Exposure duration is particularly important for MNP weathering and MNP fluxes and needs to be 195 

adapted to the specific assessment goal. If acute responses are expected, the exposure duration 196 

typically ≤96 hours. Chronic exposures cover the life-span or reproductive cycle of a test organism. For 197 

MNP effect assessment, single-species tests are commonly used in an acute toxicity setup. Long-term 198 

effects on complex biotic communities in more realistic exposure scenarios are less common (Bour et 199 

al., 2021), but are of high interest to examine effects with higher ecological relevance (Haegerbaeumer 200 

et al., 2019). They bridge between standard laboratory tests and outdoor studies (Haegerbaeumer et 201 

al., 2016) and provide essential data for estimates of diversity loss in ecosystems, e.g. by using a 202 

Threshold Indicator Taxa Analysis (TITAN) (Li et al., 2023).  203 

To test ecotoxicological effects of MNPs and additives, both short-term and long-term experiments are 204 

needed with knowledge on fluxes and retention times of MNPs is crucial determining exposure 205 

scenarios. One promising approach to assess the fate of MNPs is by performing mass balances in the 206 

water column and the sediment as suggested by Martínez-Pérez et al. (2024). The majority of MNP will 207 

cycle through organisms before reaching the sediment, increasing the likelihood of negative ecological 208 

effects and transfer in the food web (Gilfedder et al., 2023). MNPs >100 μm are found on the surface 209 

of sediment consisting of coarse silt and fine sand, while the smaller particles might infiltrate >10 cm 210 

into sediment. Therefore, the texture of sediment should always be reported along with values of MNP 211 

concentrations (Waldschläger and Schüttrumpf, 2020). In addition, particle size will decrease in long-212 

term exposure due to weathering, which will increase their bioavailability, and should ideally be 213 

monitored. 214 

 215 

2.1.4 Dosimetry 216 

It is often difficult to directly compare the reported MNP concentrations/quantities of different studies 217 

(Haegerbaeumer et al., 2019; Karami, 2017; Van Cauwenberghe et al., 2015). The methodology and 218 

the reporting of effects after MNP exposure are often flawed by presenting only the nominal exposure 219 

concentration, without analytical validation (Figure 3). There is a striking discrepancy between high 220 

concentrations of smaller particles tested for toxicity and low concentrations of larger particles 221 

analyzed in the environment (Triebskorn et al., 2019). Field concentrations of MNPs are influenced by 222 

sampling techniques and thus does not accurately represent the actual concentrations in the field 223 

(Connors et al., 2017; Su et al., 2022). Bucci et al. (2020) determined that only 17% of the 224 

concentrations used in experimental studies have been found in nature, and that 80% of particle sizes 225 

used in experiments fall below the size range of the dominant fractions in environmental sampling. 226 

Even though the detection limits for small-scale plastic particles (<10 μm) have substantially improved 227 

in recent years, there is still a lack of a comprehensive view on the actual global distribution and 228 

concentration range (Ivleva et al., 2023). However, MNPs have been tested in concentrations several 229 
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orders of magnitude higher than current known environmental concentrations, e.g. (Karami et al., 230 

2017; Phuong et al., 2016). With respect to the assessment goals, testing of such high concentrations 231 

enables the determination of effect thresholds, but can only aid environmental risk assessment if low 232 

concentration ranges are covered as well.   233 

The production of homogeneous aqueous suspensions of MNPs is challenging since material density 234 

and polarity of the surface greatly vary (Heinrich et al. 2020). Particles of sparingly soluble substances 235 

can form aggregates, resulting in inhomogeneous distribution and unpredictable exposure scenarios 236 

(Götz et al., 2021) (Figure 3). Moreover, guidance documents by the OECD on nanomaterial testing 237 

mentions particle adhesion to container walls as an additional problem to maintain exposure 238 

concentrations and therefore similar processes can be assumed for larger sized particles (OECD, 2022). 239 

Surfactants can partially solve this problem (Monikh et al., 2023), but using them will also include an 240 

extra toxicity parameter. Even though most often concentrations of MNPs are given (e.g. in mg/L or 241 

number of particles per liter), the poorly reported surface-to-volume ratio is at least equally important. 242 

Most commonly, particles of beads per liter is used but also g/L or mass % and even volume % is 243 

reported (Botterell et al., 2019). If sediment is included, the concentration is often expressed as mg 244 

particles per kg sediment (Table 1). Weathering will increase the number of particles per liter, but not 245 

change the mass. Adding a sediment layer will lead to a lower concentration of particles in the water 246 

phase, depending on their hydrophobicity. Round robins with and without sediment layers can 247 

increase the reliability of published concentrations. Further development of analytical methodologies 248 

and quality assurance will improve standard laboratory and higher‐tier procedures (Gouin et al., 2019). 249 

 250 

2.1.5 Bioavailability 251 

The adjusted dose in the testing system is not necessarily the bioavailable fraction (Drago et al., 2020; 252 

Redondo-Hasselerharm et al., 2018) (Figure 3). The bioavailability of MNPs depends mainly on the 253 

particle behavior in the testing system, the behavior of the test organism, e.g. active or passive feeding, 254 

and the barrier function of interface epithelia. Particle shape determines the surface to volume ratio 255 

of the particles that influences both its uptake by organisms and the adsorption of chemicals or 256 

biofilms at the particle surface. For example, in marine zooplankton, C. helgolandicus ingests mostly 257 

fragments, A. tonsa mostly fibers and H. gammarus larvae mostly beads (Kooi and Koelmans, 2019). 258 

The feeding mechanism is the main interface between the external particle diversity and the organism, 259 

which is further influenced by the feeding strategy (McNeish et al., 2018; Porter et al., 2023; Scherer 260 

et al., 2017). Filter feeders, deposit feeders and planktonic suspension organisms are therefore 261 

considered the most susceptible to particle ingestion (GESAMP, 2015; Porter et al., 2023). Several key 262 
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processes are important in influencing the bioavailability of particles in the testing system (Gouin et 263 

al., 2019), mostly particle–particle interactions, such as aggregation and agglomeration, biofouling as 264 

well as floatation and sedimentation. Due to their hydrophobic nature and often higher densities, more 265 

MNPs are associated with the sediment layer compared to a free floatation in the water column 266 

(Koelmans et al., 2019). 267 

The current approaches are based on standard procedures to test chemicals that are dissolved in the 268 

exposure medium, the so-called test or external concentration. The internal exposure concentration 269 

that actually causes toxicity (e.g. by receptor inhibition at the target site) is determined by uptake 270 

route, which is mostly driven by species-specific behavior, barrier functions of interface epithelia and 271 

internal toxicokinetics of the test substance. Observed effects can only be related to exposure when 272 

internal concentrations are correctly estimated. In this context, the quantification of uptake and 273 

excretion kinetics becomes mandatory. Since the determination of the relative influence of the various 274 

routes of uptake in these multiphase systems is difficult, the approach to estimate bioavailability by 275 

measuring organism body burdens seems to be most promising. Consequently, more systematic 276 

assessments are necessary to understand the relationship of encounter probability and uptake, as well 277 

as the internal kinetics to define the real inner exposure (Koelmans et al., 2016; Rafa et al., 2024). 278 

2.1.9 Leaching additives and interactions with other contaminants 279 

Polymer particles are known to be a source of additives and to interact with environmental chemicals. 280 

This increases the complexity in test setups, as mixture effects and particle-chemical-biota interactions 281 

need to be considered (Koelmans et al., 2016; Rafa et al., 2024) (Figure 2). Often the chemical 282 

speciation in the exposure medium is not characterized and thus the extent to which the organic 283 

pollutants are associated with the plastic particles remains unknown. Presumably due to analytical 284 

constraints it is often not evident whether the eventual body burden of organic pollutants corresponds 285 

to that which has been released from ingested plastic particles or rather represents the sum of the 286 

released and remaining particle-bound compounds (Town and Van Leeuwen, 2020; Town et al., 2018).  287 

The effects of additives and associated compounds are not always straightforward. Mixture effects 288 

depend on the chemical speciation and consequent bioavailability of metals and plastics. For example, 289 

a combination of MNPs and metals can cause antagonistic or synergistic toxicity. MNPs promoted 290 

metal uptake in the shoot (Chen et al., 2024), which shows they can enhance MNP toxicity. However, 291 

in a different study, polystyrene microplastic reduced Cadmium availability to Dandelion plants (Li et 292 

al., 2024). MNPs also interact with pesticides through adsorption and desorption processes, which 293 

require additional consideration due to the role this plays in changing the environmental 294 

transportation, fate, bioavailability, and ecotoxicity of both plastic particles and organic chemicals 295 

(Junaid et al., 2023). 296 
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Plastics contain a wide variety of additives, like plasticizers, salts, pigments, stabilizers and flame-297 

retardants, which can be toxic for aquatic organisms (Beggel et al., 2024). As aging promotes the 298 

internal chain breaking of MNPs and the increase of specific surface area, it stimulates the release of 299 

additives that can disrupt a variety of biological processes in organisms (Luo et al., 2022). No studies 300 

are known that examine the extent to which plastics additives in sediments are adsorbed to MNPs as 301 

opposed to the sediment itself (Onoja et al., 2022), which has potentially implications for the 302 

bioavailability of such additives.  303 

 304 

The leaching of additives in plastic may induce relevant hazards. These additives may either be 305 

associated with the plastic from the production process (e.g. intentionally added compounds, such as 306 

UV stabilizers or non-intentionally added substances and byproducts), or sorb to the particles once in 307 

the environment (e.g. persistent organic pollutants (POPs), via the vector effect) (Mitrano and 308 

Wohlleben, 2020; Gandara e Silva et al., 2016; Schrank et al., 2019). However, De Ruijter et al. (2020) 309 

concluded that 73% of published studies did not mention the potential of chemical additives to 310 

influence the observed adverse effects, which makes it difficult to distinguish the toxicity of the 311 

particles from the toxicity of the released additives (Brehm et al., 2023). To approach this challenge, it 312 

would be necessary to identify all compounds in the used plastics or compare the effects between 313 

specifically designed particles with and without additives.  314 

 315 

2.2 Effect assessment 316 

2.2.1 Uptake 317 

A broad variety of aquatic organisms is used to test for ecotoxicological effects of MNP (Table 1). The 318 

main focus is often set on small planktonic crustaceans such as Daphnia, whereas key organisms such 319 

as aquatic primary producers (Samadi et al., 2022) and riverine species (Feiner et al., 2016) are 320 

underrepresented. MNP uptake depends on the type of feeding, so a variety of different species need 321 

to be tested, such as filter feeders (mussels), scrapers (insects, snails) and shredders (amphipods) 322 

(Figure 3). In aquatic ecosystems, filter feeders such as mussels, are directly exposed to the 323 

surrounding medium during food uptake and are therefore particularly vulnerable to MNPs (Kuehr et 324 

al., 2022). They typically do not distinguish between natural and MNP particles, and therefore do not 325 

cease their filtration during exposure (Ferreira-Rodríguez et al., 2023; Hartmann et al., 2016; Lummer 326 

et al., 2016). Since they do not activate their defensive behavior, they ingest particulate contaminants 327 

regardless of their chemical composition (Brehm et al., 2022). For other feeding types, oral uptake, 328 

dermal adsorption and diffusion uptake can act simultaneously for solutes, whereas the uptake of 329 

particulates is more limited to oral uptake only (Kuehr et al., 2022, 2020). Current knowledge about 330 
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absorption, distribution, metabolism, and excretion of MNPs by organisms is limited by the methods 331 

and experimental designs that do not allow distinguish uptakes routes (MacLeod et al., 2021), 332 

especially for MNPs that carry other pollutants (Liu et al., 2023). Uptake can take place orally, via 333 

contact (dermal, or when water flushes through the gills) or injected into the animal for research 334 

purpose. The uptake pathways of particles and sparingly soluble substances must be considered in 335 

ecotoxicological research because exposure from the water column is negligible for non-filter-feeding 336 

organisms, and guidelines must be updated accordingly (Götz et al., 2021).  337 

Part of the (eco)toxicological effects of MNPs may be anticipated as a direct consequence of the 338 

ingestion by filter feeders and predators, thereby competing with food. This likely results in a reduction 339 

of the fraction of digestible matter within the gastrointestinal tract and will possibly impair the 340 

nutritional status of organisms (Heinrich et al., 2020). In addition, particularly for filter-feeders, metals 341 

released from ingested plastic particles may be higher than metal uptake via the water phase (Town 342 

et al., 2018). There are indications of non-digested effects as well, such as bioadhesion of MNP to 343 

aquatic animals and macrophytes and blockage of gills in fish (Kalčíková, 2023). 344 

Internalized MNPs are able to cross the gut barrier in fish, which has been shown using palladium-345 

labelled NMPs (Clark et al., 2022, 2023), which is a promising methodology to study vector effects. 346 

Whereas the MNPs accumulated will possibly be transferred to the predators while feeding, the fate 347 

of that transferred MNPs cannot be determined from the available information to date as it is not 348 

possible to analyze whether the particle inside the body of an organism occurred by trophic transfer. 349 

Therefore, Castro-Castellon et al. (2022) call for more studies on trophic transfers across organisms 350 

with differing time scales of life histories and metabolic rate.  351 

Bioaccumulation of MNPs for a possible vehicle effect should be interpreted in relation to 352 

ingestion/egestion rates in the animal, as well as the extent of chemicals adsorbed to the MNPs and 353 

the possible leaching of chemicals in the plastics. Animals have different feeding habits, so the extent 354 

of ingestion can vary greatly. Consequently, the time MNPs are retained inside an animal can 355 

influence the extent of desorption/adsorption processes. Especially when uptake rates are higher 356 

than elimination rates, assessing these two processes will give more insight into bioaccumulation 357 

(Bao et al. 2024). MNP fibers for example, can be retained longer in the digestive tract because they 358 

can entangle and get stuck to the walls of the digestive tract more easily than beads (Eder et al., 359 

2021).   360 

 361 

2.2.2 Toxicological endpoints & mode of action 362 

Adverse effects of MNP have been reported for a wide variety of species and ecotoxicological 363 

endpoints (Table 1), which has been systematically summarized elsewhere (Ahmed et al., 2023; 364 

Anbumani and Kakkar, 2018; De Sá et al., 2018; Gaylarde et al., 2021; Haegerbaeumer et al., 2019; 365 
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Koelmans et al., 2022; Pelegrini et al., 2023; Pisani et al., 2022; Prokić et al., 2019; Weis and Alava, 366 

2023). The majority of the studies used laboratory-based single-species tests, applying whole organism 367 

endpoints such as mortality, feeding rates, behavior and growth as well as toxicological endpoints. 368 

Ideally, effect assessment integrates multiple levels of biological organization, from mechanistic 369 

studies using “omics” techniques (Beggel et al. 2011; Connon et al. 2012; Eliso et al., 2024) to effects 370 

on communities and food webs (De Sá et al., 2018). The four most relevant effect mechanisms are: 371 

food dilution, internal physical damage, external physical damage and oxidative stress (Koelmans et 372 

al., 2022). MNP can induce both physical effects and chemical toxicity, which needs to be distinguished 373 

in terms of mode of action and overall adverse outcome. Physical effects typically occur when particles 374 

attach to outer or inner epithelia and cause physical injuries by abrasion or inflammation in the 375 

digestive tract (Mbugani et al., 2022a, 2022b). Negative effects can also be associated with a blockage 376 

or internalization at adsorptive surfaces such as gills and gut epithelia. PS particles found in the gills, 377 

intestines, and livers of fish can promote fatty acid degeneration, alter the composition of the intestinal 378 

microbiome, interfere with metabolism, and induce changes in gene expression (Zolotova et al., 2022), 379 

which could all be labelled as either direct or indirect effects.  380 

 381 

Distinguishing between direct, or chemical, intrinsic particle toxicity (caused by the polymer itself and 382 

the respective monomers) and physical effects of the particle and associated yet non-intrinsic toxicity 383 

(e.g. by leaching of additives or desorption of surface chemicals) is challenging, as chemical toxicity 384 

and physical effects often act simultaneously (Zolotova et al., 2022). They enter in the organism’s tissue 385 

and can simultaneously have tissue breaking and biochemical effects. Usually, the mode of toxicity of 386 

chemicals relates to chemical reaction between the (dissolved) molecule and a sub-organismic 387 

receptor in cells or membranes. However, for plastic particles other forms of adverse effects (i.e. 388 

physical or mechanical effects) may prevail, that are related to non-chemical properties, such as size, 389 

shape, material density and surface quantity and quality (ECETOC, 2018). 390 

Although a direct toxicity of the plastic’s polymers is often not proven in exposure studies, the 391 

interaction effect with environmental pollutants (vector effect), in which mixture effects depend on 392 

the chemical speciation and consequent bioavailability of pollutants (e.g. metals) and plastics, seems 393 

to be more prevalent. To study interaction effects of MNPs and environmental chemicals requires an 394 

adequate experimental design to resemble realistic underlying ad- and desorption processes in order 395 

to avoid over- or underestimation of toxicity caused by the particle-associated chemical (Heinrich et 396 

al., 2020). This is reflected in the literature, where reported results are often controversial, ranging 397 

from synergistic to antagonistic effects. MNPs can be more toxic with co-contaminants (plasticizers, 398 

metals, organic pollutants) (Avazzadeh Samani and Meunier, 2023), and interact with pesticides 399 

through adsorption and desorption processes, which require additional consideration due to the role 400 
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this plays in changing the environmental transportation, fate, bioavailability, and ecotoxicity of both 401 

plastic particles and pesticides (Junaid et al., 2023). Especially for hydrophobic, persistent 402 

contaminants, like per- and polyfluoroalkyl substances (PFAS), synergistic effects in food webs are 403 

expected (Soltanighias et al., 2024). MNPs found in natural conditions absorb large amounts of PFAS 404 

(Scott et al., 2021), but the interaction of MNPs with PFAS depends strongly on ionic strength, 405 

temperature, pH and functional groups (Salawu et al., 2024).  406 

 407 

3. Outlook 408 

Risk assessment related to MNP is improving and promising approaches have been made to deal with 409 

the existing effect data situation (Adam et al., 2019; Redondo-Hasselerharm et al., 2023). Testing 410 

protocols, validity and reporting quality assessment criteria are continuously improved and 411 

implemented. However, there are still key elements that are either understudied, not considered, or 412 

technically challenging. To address the existing problems, the following key aspects points are 413 

recommended to overcome the existing lack of harmonized test methods applicable to MNP particles 414 

(Bour et al., 2021; De Ruijter et al., 2020; Haegerbaeumer et al., 2019; Koelmans et al., 2022; Kotta et 415 

al., 2022; Monikh et al. 2023). In particular, particle realism, realistic exposure scenarios, dose-metrics, 416 

particle-chemical interaction, choice of test species and mode of action require specific attention. 417 

Furthermore, we recommend first defining the assessment goal of the study to adjust the experimental 418 

design accordingly (Figure 2). Test setups can thereby differ depending substantially, depending if 419 

fundamental mechanistic processes are of interest or complex interaction processes that reflect more 420 

natural conditions.  421 

3.1 Particle realism  422 

Analogously to solvent controls in exposures of soluble substances, the use of appropriate and diverse 423 

reference materials is also key for MNP particle testing. The following approaches can be 424 

recommended. First, the use of different mixes reflecting natural “fingerprints” of particles. Within this 425 

scenario, the availability and selectivity is taken into account by providing a standard predefined mix 426 

with known descriptor parameters, which can be adjusted to the testing system. This should cover the 427 

different shapes, sizes and chemical identities to resemble the variety of natural occurring particle 428 

characteristics. Such a reference mix could be combined with non-polymer particles with similar size 429 

distribution. Koelmans et al. (2022) introduced the continuum concept, which acknowledges the 430 

multidimensional nature of MNP particles, encompassing various sizes, shapes, densities, and chemical 431 

compositions which could serve as a basis. Second, a pre-defined ageing and weathering protocol could 432 

be implemented to systematically compare the differences between pristine and weathered particles 433 

(Table 2). The production of such reference materials has been suggested previously and can 434 
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technically be implemented (De Ruijter et al., 2023; Kefer et al., 2021; Monikh et al. 2023; Von der Esch 435 

et al., 2020), but a harmonized approach needs to be agreed upon. One practical recommendation is 436 

to base these reference mixes on known environmental sizes, concentrations and polymer identities 437 

to cover a spectrum of different scenarios (Table 2). The use of such scenarios will allow to 438 

systematically assess the uptake, internalization and excretion by the test organisms, the internal 439 

residual times and the effects based on the descriptor metric of the real internalized particle 440 

characteristics suite and duration, which should be one focus in future MNP research.  441 

3.2 Realistic exposure scenarios 442 

The distribution of MNPs in an aqueous suspension is not homogeneous, which impacts their 443 

bioavailability. A recommendation for more harmonized testing could include the documentation and 444 

control of the processes the particulates undergo. This includes the distribution, aggregation, chemical 445 

interaction and weathering (Figure 2, 3). Static systems, overhead stirring, and rotational setups have 446 

been compared for maintaining MNPs in suspension, with rotational methods proving most effective 447 

(Salaberria et al., 2020; Sun and Wu, 2023). Possible setups for static systems without sediment are 448 

outlined in Monikh et al. (2023). However, water-sediment exposure setups are recommended in case 449 

of high hydrophobicity and when benthic target species are studied (Table 2). 450 

Test durations need to be adjusted to the assessment goals. Short-term experiments might thereby be 451 

suitable if mechanistic relationships are of interest or the study is intended to be a proof of principle. 452 

However, this often comes along with the need to apply rather high or environmentally unrealistic 453 

concentration ranges. Long-term experiments will become necessary if interaction effects and kinetics 454 

are in the focus of interest, and when environmental complexity (e.g. community effects) needs to be 455 

included.  456 

A variety of conditions (pH, oxygen content, redox potential, salinity) can be applied and one can 457 

choose to use long-term exposure to organisms or communities or to take samples over weathering 458 

time and exposure organisms for a short term. Due to their potentially different ageing, both 459 

petroleum-based and biodegradable plastics should be considered. By adding a nutrient medium, 460 

varying inocula and day/light regime, one can induce biofouling as an extra component in weathering 461 

(Table 2). Systematic aging can be incorporated in testing frameworks, for example in procedures that 462 

are already under OECD norms. As a standardized weathering one can consistently include 2 or 3 463 

standardized media (from fresh to salt water) during a fixed period (Amariei et al., 2022) (Table 2). 464 

Exposure time should take not only uptake speed of organisms, but also adsorption and desorption of 465 

co-contaminants and leachates into account. Hydrophobic leachates, like plasticizers, can leach out of 466 
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plastic particles for up to hundreds of years (Henkel et al., 2022), and are therefore less relevant in 467 

short-term exposures. 468 

Gut retention times are relevant for defining duration of internal exposure, and for digestive 469 

fragmentation, which has been shown for a planktonic species (Dawson et al., 2018) but may occur for 470 

others as well. To quantify the MNP uptake, biological samples can be enzymatically digested to 471 

determine particle body burdens (Silva et al., 2019). Alternatively, one can quantify the concentration 472 

in the medium before and after exposure. However, when a sediment layer is used, MNPs must be 473 

extracted from the sediment first. More research is needed to improve and validate extraction and 474 

purification of MNPs from complex matrices.  475 

 476 

3.3 Dose-metrics 477 

The metrics reported in effect assessment are often insufficient to relate the effects to the exposure 478 

scenario. Particle size and counts or mass concentrations can lead to wrong interpretations in effect 479 

assessment, especially when surface charge is insufficiently taken into account (Kögel et al., 2020). 480 

Besides dose in both mass and particle number, surface to volume ratios, densities and hydrophobicity 481 

(using log Kow) should be reported in future scientific publications.  482 

 483 

3.4 Particle-chemical interaction 484 

For environmental risk assessment, a deeper integration of the potential effects of MNP interactions 485 

with co-contaminants, such as metals and organic pollutants needs to be considered. Effects of 486 

weathering on adsorption and leaching of chemicals are often neglected when pristine polymers are 487 

used. Hence, the number of studies examining effects of co-contaminations is not representing 488 

environmental relevant circumstances (De Sá et al., 2018). Partitioning kinetics, including equilibrium 489 

of chemical additives in the polymer, the aqueous phase, inorganic particles and biota, need to be 490 

determined to enable the design of test scenarios for particle-chemical interaction (Figure 2). Leaching 491 

of chemicals from MNPs should be compared to a particle free exposure of the leachate (Table 2). 492 

The development of standard reference materials for MNPs in sediment would significantly increase 493 

the understanding of the role of MNPs as conduits of chemical pollutants, partitioning of chemical 494 

plastics additives in sediments between sediment particles and MNPs and the impact on bioavailability 495 

of additives. 496 

Plastic particle size highly influences the release kinetics of associated organic compounds (Town and 497 

Van Leeuwen, 2020). Therefore, detailed descriptions of the physicochemical features of plastic 498 
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particles are to be provided in experimental studies on MNPs in different types of aquatic 499 

environments (Table 2). 500 

 Zink and Pyle (2023) proposed a framework of reporting requirements to better understand the 501 

interaction between metals and microplastics including their bioavailability. To be reported are 502 

environmental parameters, particularly factors known to influence metal behavior (pH, water 503 

hardness, organic matter, temperature) and microplastic surface characteristics that affect adsorption 504 

capacity. As future research direction, relevant tissue-specific uptake, accumulation, and toxicity 505 

should be assessed, to develop an understanding of tissue-specific accumulation and migration across 506 

biological membranes.  507 

 508 

3.5 Mode of action 509 

The majority of experimental evidence is at the organismal or sub-organismal level and there is limited 510 

evidence about how to scale up to higher levels of organization (populations, assemblages). Effects of 511 

biochemical biomarkers involved in antioxidant pathways, oxidative damage and neurotoxicity are 512 

often evident at high concentrations, generally several fold greater than those found in the 513 

environment (Connors et al., 2017). Therefore, these effects only reflect worst-case scenarios and do 514 

not take into account more subtle and long-term exposure. 515 

MNP effect studies often do not use adequate particle controls, which would allow to distinguish 516 

physical from biochemical effects (based on key parameters shape, size, and porosity). Many 517 

properties, such as shape and size, are particle-specific, and influence the interaction with organisms, 518 

independent of their composition. It is recommended that MNP or leachate properties that govern 519 

adverse effects on organisms are defined. In this context, knowledge obtained on nano-materials or 520 

natural sediment and soil-particles can be transferred to MNP effect assessment (Table 2).  521 

 522 

4. Conclusions 523 

As identified in this review, the main challenges in ecotoxicological effect assessment of MNPs are (1) 524 

providing stable, continuous exposure scenarios (even if the particles settle down in sediment), (2) 525 

using test species that represent exposure‐relevant organisms with respect to their ecology and 526 

physiology, (3) providing a suitable analytical method for external and internal MNP exposure,  (4) 527 

defining useful endpoints for both physical and biochemical effects, and (5) testing the influence of 528 

environmental conditions on speciation and bioavailability of MNPs, leachates and co-contaminants.  529 

In order to address these, we recommend: (1) the use of appropriate and diverse reference materials, 530 

(2) the documentation and control of the processes the MNPs undergo before and during exposure, 531 
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(3) reporting metrics and hydrophobicity, (4) studying partitioning kinetics, (5) the use of ecologically 532 

relevant key species. 533 

These proposed steps in future research will lead towards more effective, mechanistic and evidence-534 

based assessments of the ecotoxicological effects of MNPs. 535 
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Table 1. Examples of chosen characteristics of micro-nanoplastics, test organisms, exposure time and 1136 

toxicological endpoints. 1137 

MP material MP 

Concentrations 

MP Sizes MP shapes Exposure 

time 

Test organisms Toxicological 

endpoints 

PE (Mazurais et 

al., 2015) 

 

10, 25, 50, 100, 

or 200 mg/L of 

pristine and 

biofouled 

microplastic 

(Amariei et al., 

2022) 

10 – 45 µm 

polyethylene 

microbeads 

(Mazurais et al., 

2015) 

PE 

Microbeads 

(Mazurais et 

al., 2015) 

96 hours 

(Tamayo-

Belda et 

al., 2023) 

Danio rerio 

embryo (Bashirova 

et al., 2023; 

Tamayo-Belda et 

al., 2023) 

• Mortality 

• Morphological 

changes 

• Regeneration 

 (Tamayo-Belda et al., 

2023) 

PLA, HDPE and 

PVC (Green et 

al., 2016) 

500 µg/L 

polyamide 

(Bartonitz et al., 

2020) 

1.4 - 707 µm for 

PLA, 2.5 - 316 

µm for HDPE 

and 8.7 - 478 

µm for PVC 

(Green et al., 

2016) 

PET 

Nanoparticles 

(Bashirova et 

al., 2023) 

170 days 

(Parker et 

al., 2023) 

 

Chlorella vulgaris 

(& Chlorella 

reinhardti  (Pencik 

et al., 2023; Rani-

Borges et al., 

2023; Wang et al., 

2023a) 

• Feeding behavior 

• Regeneration of 

the head 

• Locomotion test 

 (Cesarini et al., 2023) 

PET (Bashirova 

et al., 2023) 

0, 5, 10, 50, 100 

and 200 ppm 

PET NPs 

(Bashirova et 

al., 2023) 

9 - 5386 μm 

ERMP (De 

Ruijter et al., 

2023) 

PP powder 

(Beckingham 

and Ghosh, 

2017) 

28 days  

(Jia et al., 

2023) 

Hydro cnidara & 

Hydro viridissima  

(Tamayo-Belda et 

al., 2023) 

 

• Photosynthetic 

activity 

• Morphology 

 (Jia et al., 2023) 

 

PET, PA, PS and 

PLA (Brehm et 

al., 2022) 

0.5, 1, 2.5, 5, 10, 

50 mg/L PS NPs) 

(Bellingeri et al., 

2019) 

0.5 μm and 15 

μm PS 

microplastics 

(Hao et al., 

2023) 

 

PL fibers 

(Schell et al., 

2022) 

10 days 

(Cesarini et 

al., 2023) 

Gammarus 

duebeni and 

Gammarus pulex 

(Griffith et al., 

2023) 

 

• Feeding rate 

• Swimming 

behavior 

• Mortality 

• Energy 

assimilation 

 (Bartonitz et al., 

2020; Götz et al., 

2022) 

PMMA 

(Cesarini et al., 

2023) 

8, 40, 200, 1000 

μg/mL), 

corresponding 

to 70,000 - 

620,000 

particles/mL 

(Boháčková et 

al., 2023) 

3 – 7 µm PET 

microplastics 

(Pencik et al., 

2023) 

Fluorescent 

PS bead 

(Sussarellu et 

al., 2016) 

12 hours 

(Weber et 

al., 2021) 

Chironomidae    

(Prata et al., 2023; 

Stanković et al., 

2022) 

 

• Oxidative stress 

(enzyme activity) 

• Particle size 

reduction 

• Mortality 

 (Queiroz et al., 2023; 

Rani-Borges et al., 

2023) 
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PP 

(Beckingham 

and Ghosh, 

2017) 

0.06 g 

microplastics /L 

(Zink et al., 

2023) 

100 nm PS 

nanoparticles 

(Jia et al., 2023) 

Metal-doped 

spherical 

polystyrene 

nanoplastics 

(Heinze et al., 

2021) 

6 hrs  

(Griffith et 

al., 2023) 

Rainbow trout 

Oncorhynchus 

mykiss cell lines  

(Boháčková et al., 

2023) 

• Growth 

performance 

• Antioxidant 

responses 

• Changes in the 

composition of 

intestinal 

microbiota 

communities 

 (Hao et al., 2023) 

PS (Rani-Borges 

et al., 2023) 

6.4, 160, 4000, 

100,000 

particles mL–1 PS 

fragments 

(Weber et al., 

2021) 

PL fibers (26–

5761 μm) and 

car tire particles 

(25–75 μm) 

(Schell et al., 

2022) 

Irregular PE 

fragments 

(Amariei et 

al., 2022) 

24 hours  

(Boháčková 

et al., 

2023) 

Daphnia magna (& 

Daphnia pulex  

(Hoffschröer et al., 

2021; Lee et al., 

2023) 

• Specific growth 

rate 

• Prey 

consumption 

 (Parker et al., 

2023) 

 

PL (Schell et al., 

2022) 

100,500,1000, 

2000 and 4000 

mg MP/kg dw 

sediment  

(Romero-Blanco 

et al., 2021) 

 

1 - 10,10 - 100, 

and 100 - 500 

μm PS and PVC 

(Zhao et al., 

2023) 

Crystal 

spherical 

primary PS 

(Rani-Borges 

et al., 2023) 

 

100 days 

(Stanković 

et al., 

2022) 

Aquatic plant 

Eichhornia 

crassipes  (Jia et 

al., 2023) 

 

• Cell growth 

• Colony size 

• Chlorophyll 

content 

• Photosynthetic 

efficiency 

• Pigment analysis 

 (Pencik et al., 2023; 

Rani-Borges et al., 

2023; Wang et al., 

2023a) 

LDPE (Muñiz-

González et al., 

2021) 

0, 0.1, 1, 5, 10, 

20, 30 and 40% 

plastic weight in 

the total 

sediment 

mixture 

(Redondo-

Hasselerharm et 

al., 2018) 

5.0–7.0 μm 

HDPE (Zink et 

al., 2023) 

Fibers, 

pellets, 

spheres, and 

fragments 

(Waldschläger 

and 

Schüttrumpf, 

2020) 

2 weeks  

(Bartonitz 

et al., 

2020; Götz 

et al., 

2022) 

Gammarus roeseli 

(Bartonitz et al., 

2020; Götz et al., 

2022) 

• MP ingestion 

• Damage to gut 

epithelium 

• Reactive oxygen 

species 

• Larval body 

length 

 (Prata et al., 2023) 

ERMP test 

mixture (De 

Ruijter et al., 

2023) 

 

0.1, 1; and 10 g 

MPs/ kg 

sediment (Silva 

et al., 2022) 

~426 ± 175 nm 

PMMA 

nanoparticles 

(Cesarini et al., 

2023) 

Nylon 6 

powder (PA) 

(Palacio-

Cortés et al., 

2022) 

18 days 

(Brehm et 

al., 2022) 

 

Freshwater 

mussels Dreissena 

polymorpha 

(Weber et al., 

2021) and 

Dreissena bugensis 

(Brehm et al., 

2022) 

• Embryo 

development 

• Hatching rate  

• Survival rate 

• Morphological 

deformities, e.g. 

tail detachment 
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 • Heart beat 

analysis 

 (Bashirova et al., 

2023; Tamayo-Belda 

et al., 2023) 

List of abbreviations: 1138 

PE  Polyethylene 1139 
PLA Polylactic acid 1140 
HDPE High density polyethylene 1141 
PVC Polyvinylchloride 1142 
PET Polyethylene terephthalate 1143 
PA Polyamide 1144 
PS Polystyrene 1145 
PMMA polymethyl methacrylate 1146 
PP Polypropylene 1147 
PL  Polyester 1148 
LDPE High density polyethylene 1149 
ERMP  Environmentally relevant microplastic 1150 
  1151 
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Table 2. Representation of challenges and recommendations for different MNP test scenarios.  1152 

Exposure 

 

Scenario Challenges Recommendations 

Weathering 
tests 

 

Varying weathering 
conditions 

 

Two standardised media (fresh and 
salt) at fixed exposure time 

 

Biofouling 
tests 

 

Varying algae 
composition 

 

Standardised medium, light intensity 
and algae inocculation 

 

Leaching tests 

 

Leaching time, 
unknown 
compositions 

 

Standardised leaching time, full 
analysis of unknown compounds, 
determination of partitioning kinetics  

 

Bioavailability 
tests 

 

Speciation and 
kinetics 

 

Flux analyses and modelling 

 

Effects 

 

 

In vitro test 

 

Particle realism 

 

Standard mix that includes ranges of 
age, weathering and sizes 

 

 

 

 

Bioassays 

 

Homogeneity, 
hydrophobicity 

 

Include sediment layer and/or 
rotational methods 

 

Mode of action 

 

Use knowledge on nano-materials 
and compare 

 

Dose metrics 

 

Publish mass particle number, surface 
to volume ratios, densities and 
hydrophobicity 

 

 

Mesocosms 

 

 

Choice of test 
organisms 

 

Riverine species 

 

Short pelagic food chain 

 

 1153 

 1154 

  1155 
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Figure captions: 1156 

Figure 1: Conceptual framework and key variables in ecotoxicological risk assessment of 1157 

microparticles. 1158 

Figure 2: Illustration of different levels of complexity in test designs, depending on the assessment 1159 

goal.  1160 

Figure 3: Relevant factors and processes to consider during particle exposure to target organisms. 1161 

 1162 

 1163 
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Floatation

Sedimentation

Aggregation

Mixing

Particle
processes

Exposure Scenario
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Target Organism

Adhesion

- : ded
(characteristics of suspension
medium)

State  Dry or suspen

- article : Sieving,P suspension
vortexing, mixing, pre-wetting,
surfactants  solvents, sonication,

- Behavior in suspension

- Preconditioning (aging)

- Test duration

- Dose metrics including verification

- Water matrix (pH, salinity, temperature)

- Exposure medium:

water, sediment, soil, food

- Static, semi-static, flow-through

- Control for settling/floating of particles

- Contact probability during exposure

- Species autecology

- /

- Uptake route

- Internalisation vs. external adhesion

Feeding mechanism  Food selectivity

- Habitat
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Highlights: 

• Ecotoxicological assessment of micro-nanoplastics depends on appropriate methodologies 

• Inconsistencies and methodological challenges hamper sound risk assessment 

• Realistic particle choice, dose-metrics, test-duration and environmental conditions are key 

• Control treatments with reference particles help distinguish physical from toxic effects 

• Consideration of this framework contributes to realistic effect assessment and harmonization  
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