
Autonomous Offroad Mobility using the
F1TENTH-Platform

Scientific thesis for obtaining the academic degree

Bachelor of Science (B.Sc.)

at Department Mobility Systems Engineering

of TUM School of Engineering and Design

of Technical University of Munich

Supervised by

Submitted by

Submitted on

Prof. Dr.-Ing. Johannes Betz

Felix Jahncke, M.Sc.

Chair of Automotive Technology

Moritz Wagner

30.04.2024

I

Table of Contents

List of Abbreviations .. V

List of Symbols .. IX

1 Introduction .. 1

1.1 The Place of this Work in the Field of Autonomous Vehicle Systems 1

1.2 Structure of this work ... 2

2 State of the Art .. 5

2.1 Mechatronics and Chassis .. 5

2.1.1 Laying the Groundwork: DARPA and ELROB .. 6

2.1.2 Small-Scale Dedicated AOVs ... 6

2.1.3 The Challenges of extreme off-road driving on fully unknown Terrain................... 7

2.1.4 The F1TENTH Platform .. 9

2.2 Sensorics ... 10

2.2.1 Exteroceptive Sensors .. 10

2.2.2 Proprioceptive Sensors ... 13

2.2.3 Sensor configurations overview .. 15

2.3 Perception .. 15

2.3.1 Environmental Perception ... 16

2.3.2 Localization .. 19

2.3.3 Perception Hardware and Software Basis .. 20

2.4 Pathfinding and Navigation ... 22

2.4.1 Local Pathfinding ... 23

2.4.2 Distributed, Multi-Layer and SLAM Navigation Approaches 25

3 Method ... 27

3.1 Initial Analysis of existing Solutions .. 27

3.1.1 Decisions for the Chassis and Platform .. 27

3.1.2 Sensor Selection ... 28

3.1.3 Goals for Perception and Navigation .. 29

3.1.4 Considerations for Compute Hardware and Software .. 30

3.1.5 Summary of initial Analysis ... 30

3.2 Setup and first System Tests .. 31

Table of Contents

II

3.2.1 Chassis modifications and Sensors .. 31

3.2.2 Sensor Capabilities and Software Architecture .. 32

3.2.3 Lessons from first Drives ... 33

3.3 Perception Software Development ... 34

3.3.1 2D Perception: OFFSEG Semantic Segmentation Code and ROS Integration .. 35

3.3.2 3D Integration: Depth Data Processing and Top-Down Image Generation 36

3.4 GPS Integration on a Small Vehicle .. 39

3.4.1 Initial GPS Testing ... 40

3.4.2 Analysis of GPS Electromagnetic Interference Effects .. 40

3.4.3 Modifications to Hardware and Software .. 41

3.5 Navigation System .. 41

3.5.1 Concept and Prospective Paths.. 43

3.5.2 Magnetometer Calibration and Heading Data Fusion .. 44

3.5.3 Path Evaluation, Selection, and Robot Control .. 46

3.6 Late-stage Modifications and final Developments ... 47

3.6.1 Suspension Upgrade ... 48

3.6.2 Power Delivery and Battery problems .. 48

3.6.3 Performance Improvements .. 48

3.6.4 Navigational System Modifications ... 50

4 Results ... 51

4.1 Completed System Overview .. 51

4.1.1 Hardware Overview ... 52

4.1.2 Sensor Configuration and Software Overview ... 53

4.2 Compute and Sensor System .. 54

4.2.1 LiDAR FOV and Ground Interference ... 54

4.2.2 Stereo Camera Performance: FOV, FPS and Depth Quality 55

4.2.3 GPS Interference and Accuracy ... 57

4.2.4 Battery and Power System ... 57

4.3 Perception Performance .. 58

4.3.1 OFFSEG Semantic Segmentation .. 58

4.3.2 3D Processing and top-down Projection .. 60

4.4 Navigational Performance in the field .. 61

4.4.1 Perception Ramifications for the Navigational Map .. 61

4.4.2 Heading System .. 63

Table of Contents

III

4.4.3 In-the-field Performance .. 63

5 Discussion .. 65

5.1 Evaluation of the in-the-field Performance .. 65

5.1.1 Compute Cost and FPS .. 65

5.1.2 Assessment and Validity of the presented Results .. 66

5.1.3 Overarching System Performance as the sum of its Parts 67

5.2 Comparison with existing Systems .. 69

5.2.1 Full-size Systems .. 69

5.2.2 F1TENTH Platform .. 71

5.2.3 Final Verdict on this thesis’ goals .. 71

6 Conclusion .. 73

6.1 Contributions of this Work… ... 74

6.1.1 … to the Research on the F1TENTH-platform ... 74

6.1.2 … to the Field of Autonomous Offroad Driving ... 74

6.2 Possible Objectives for further Development ... 75

6.3 Closing remarks .. 75

List of Figures ... i

List of Tables .. vii

Bibliography .. ix

Appendix .. xix

IV

V

List of Abbreviations

2D 2-Dimensional

2WD Two-wheel drive

3D 3-Dimensional

4WD Four-wheel drive

ACFR Australian Centre for Field Robotics

AI Artificial Intelligence

AOV Autonomous Offroad Vehicle

ASIC Application specific integrated circuit

ATV All-Terrain Vehicle

AV Autonomous Vehicle

AVS Autonomous Vehicle Systems

CNN Convolutional Neural Networks

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

DC Direct Current

DGC DARPA Grand Challenge

DGPS Differential Global Positioning System

EDGAR Excellent Driving GARching

ELROB European Land-Robot Trial

EM Electromagnetic

EMI Electromagnetic Interference

FCN Fully Convolutional Network

FPGA Field Programmable Gate Array

List of Abbreviations

VI

FPS Frames per Second

GB Gigabyte

GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema

GPS Global Positioning System

GPU Graphics Processing Unit

HD High Definition

HSI Hue Saturation Intensity

IED Improvised Explosive Device

IMS Inertial Navigation System

IMU Inertial Measurement Unit

JPL Jet Propulsion Laboratory

LiDAR Light Detection and Ranging

LiPo Lithium Polymer

MCA Modular Controller Architecture

MEMS Micro-Electro-Mechanical Systems

MuCAR-3 Munich Cognitive Autonomous Robot car, 3rd generation

NASA National Aeronautics and Space Administration

NMEA National Marine Electronics Association

PC Personal Computer

Radar Radio Detection and Ranging

RASCAL Robust Autonomous Sensor Calibrated All-terrain Land-vehicle

RAVON Robust Autonomous Vehicle for Offroad Navigation

RC Remote Control

RGB Red Green Blue

RHex Hexapedal robot

ROI Region of Interest

List of Abbreviations

VII

ROS Robot Operating System

RSC Rockwell Scientific

RSPMP Real-time Semantic Perception and Motion Planning

RTK-GPS Real Time Kinematic Global Position System

SoC System on a chip

TOF Time-of-Flight

TTL Transistor-Transistor Logic

TUM Technical University of Munich

UniBw University of the Bundeswehr, Munich

USB Universal Serial Bus

VESC Vedder Electronic Speed Controller

VW Volkswagen

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

WSL Windows Subsystem for Linux

VIII

IX

List of Symbols

Symbol Unit Description

� - Sine measurement for LiDAR scan angle

�������� - Angle increment between LiDAR scan lines

�����	
� - Maximum LiDAR scan angle

�����	�� - Minimum LiDAR scan angle

��
 1/m Angle change per meter traveled when turning

� - Cosine measurement for LiDAR scan angle

��������� m Left boundary of the top-down map

��������� m Near boundary of the top-down map

������� pixel Center of the camera image in horizontal direction

������� pixel Center of the camera image in vertical direction

��������� 1/mm Focal length scaling factor in horizontal direction

��������� 1/mm Focal length scaling factor in vertical direction

depth(�, !) m Depth measurement at coordinates �, !

mm Camera focal length

#��$%& - GPS heading influence factor

#� mm Camera focal length in horizontal direction

#� mm Camera focal length in vertical direction

ℎ()*+, - Fused heading measurement

ℎ-.*_	
-_
0- - Averaged GPS and magnetometer heading

List of Symbols

X

ℎ	
- - Magnetic heading measurement

ℎ	
-_�)11+�2 - Current magnetometer heading reading

ℎ	
-_2�	+, - Magnetometer heading reading at GPS fix time

� m Length of a planning arm

�� m Minimum turning diameter of the vehicle

� T Magnetic field strength in vehicle forwards direction

� T Magnetic field strength in vehicle leftward direction

3* - Temporal low-pass filtered mean saturation value

� - Total number of LiDAR scan lines

��� - Number of segments in planning path

��� m/pixel Length-resolution scaling for image

�# - Steering factor modulating steering

�4((- Upper cut-off value for saturation normalization

�����	
� - Maximum possible steering angle

����� - Steering angle

s6(7, �) - Saturation value of a pixel at 7, � in HSI

� - Pixel coordinate in horizontal direction

8 - Vector of all horizontal pixel coordinates

! - Pixel coordinate in vertical direction

9 Vector of all horizontal pixel coordinates

!(m/s Vehicle forwards velocity

!6 pixel Vehicle width in planning

7 m Position coordinate in vehicle forward direction

�

m Position coordinate in vehicle left direction

List of Symbols

XI

: m Vector of position coordinates in left direction

; m Position coordinate in vehicle upwards direction

< m Vector of position coordinates in upwards direction

XII

1

1 Introduction

“It is anticipated that ordinary vehicles will one day be replaced with smart vehicles that are able

to make decisions and perform driving tasks on their own” [1, p. 1].

The field autonomous vehicles (AV) profits from an ever increasing body of research focusing

on on-road driving in urban or highway environments [2], where issues such as pedestrian safety

[3] or traffic sign detection [4] are possible topics. However, less research exists on the topic of

autonomous offroad vehicles (AOV), which nevertheless is an active and developing field [5] with

tremendous potential in defense, agriculture, nature conservation or search and rescue [6]. Pro-

jects in this area include dirt-road and path following [7], the autonomous operation of heavy off-

highway industrial equipment [8], mapping in cooperation with areal observers [9] or fully auton-

omous cartography on unknown terrain [10].

As an emerging field in the realm of modern automotive research, there are also approaches to

teach and test autonomous vehicle systems with hands-on equipment made from commercially

available hardware on a much smaller scale than full-size vehicles [11, 12]. Here, students and

researchers can test and experiment freely on inexpensive hardware, and learn firsthand from

scalable examples with real-world algorithms and hardware [13]. This is not only important to

prepare prospective engineers and researchers for the topics emerging in the field, but can also

further innovation necessary to improve transportation and logistics in the future [11].

These two subfields of autonomous vehicle systems research can lie on opposite ends of the

spectrum, and this thesis will try to answer the question of how to combine them. Is it possible

to achieve the same level of scalable, directly applicable research and development shown by

miniature platforms when set to the task of autonomous offroad navigation?

Can a small-scale remote-controlled vehicle achieve realistic autonomous offroad navigation?

1.1 The Place of this Work in the Field of Autono-

mous Vehicle Systems

Researchers already work on the problem of autonomous offroad driving, developing many dif-

ferent vehicles for the job. However, these vehicles are without fail large and complex, because

their creators build them on the basis of existing offroad vehicles or platforms [14, 15]. While this

allows them to incorporate large suites of different sensors, powerful computers as well as com-

plex actuation and control systems, the author of this thesis stipulates that this approach has the

following drawbacks:

Firstly, operating large vehicles poses a certain danger in operation. Errors and accidents are

potentially dangerous or fatal to bystanders, which necessitates strict, clear oversight and control

over any given project.

1 Introduction

2

Secondly, the development of such vehicles comes with an excessive cost. Full-scale research

vehicles are prohibitively expensive, because they not only encompass an entire base vehicle

or buggy, but must also provide sensors for multiple ranges, emergency systems and custom

actuators for control. This limits them to senior teams at financially strong, distinguished univer-

sities, which confines the amount and range of research possible in the realm of offroad robotics.

Alternatively, studies and concepts for autonomous vehicles in a non-offroad setting, which take

advantage of smaller platforms like remote control (RC) cars [13] are plentiful and have clear

advantages in comparison to larger solutions. The procurement of their platforms, sensors, and

hardware is much cheaper while the resulting vehicle is also less dangerous and complicated to

operate, which leads to faster progress and more rapid cycles of development and testing.

The aim of this thesis is now to combine the aspects these two approaches (Figure 1.1), creating

an inexpensive, small-scale, capable offroad vehicle testbed that utilizes full-scale algorithms

and sensor technology for the purpose of research into autonomous offroad robotics.

Figure 1.1: Intended characteristics of this thesis’ proposed vehicle compared to existing solutions.

1.2 Structure of this work

This thesis will open by assessing the state of the art in the field of autonomous offroad vehicles

in Chapter 2 ‘State of the Art’, with examples on multiple scales, with differing tasks and objec-

tives. This chapter will also include specific works relating to sensorics, algorithms used for

perception purposes and navigational methods or techniques used by researchers in the field

and in the laboratory.

Next, Chapter 3 ‘Method’ will detail the chronological development of the vehicle platform it set

out to create in the previous section, with first analyzing the state of the art to gain valuable

insight into the specific hard- and software suitable to this task. Next, the chapter presents initial

setups and tests, before moving on to the development of the perception software interfacing

with the vehicles sensorics systems. It will also include a chapter showing the special integration

of the GPS sensor, before moving on to the development and testing of the navigational system.

Lastly, Chapter 3 will close with the final modifications made to the setup based on insight gained

during the development and incremental testing.

After this, Chapter 4 ‘Results’ will present the findings of these tests conducted during and after

development. First, since the actual creation of the platform is an important part of the problem

statement of this thesis, the chapter will give an overview of the hard- and software of the vehicle.

1 Introduction

3

Next, it presents the results of hard- and software specific tests designed to give insight into the

workings of specific components or their interactions, as well as system tests in the laboratory

and in the field.

Then, the text will move onto Chapter 5 ‘Discussion’, which analyzes and interprets the results

of the previous tests. This will include assessments of the systems computational and overarch-

ing performance in the field, as well an evaluation of the presented results’ validity and

applicability. Finally, this section will deliver an in-depth comparison of the presented system with

its perceived ‘parents’, the full-scale AOV and small-scale research vehicle.

Finally, Chapter 6 ‘Conclusion’ will draw the thesis to a close with a comprehensive listing of its

contributions as well as possible further tasks for research on and with this platform. Figure 1.2

schematically presents the overarching structure of the work.

Figure 1.2: Schematic representation of the structure of this thesis.

4

5

2 State of the Art

The field of autonomous robotics is one of the most active research areas in modern technology.

Within it, the specialized subject of autonomous offroad vehicles is one of the fastest developing

subfields, with many different actors such as universities [10], private companies [16] and parts

of the military industrial complex hedging interests [17]. It is the aim of this Chapter to provide an

overview of the state of the art in this field, with a special focus on concepts applicable to wheeled,

offroad robots using a standard car-like platform.

Figure 2.1: Overview of the autonomous offroad driving process, adapted and simplified from [4].

Analogous to Figure 2.1, this chapter will group relevant preliminary, advanced, and alternative

works and their results into the subcategories of Mechatronics and Chassis, Sensorics, Percep-

tion as well as Navigation. These constitute the main building blocks for current, state of the art

autonomous offroad robotics, and indeed autonomous vehicles as a whole [2, 4, 18].

While a concise framework for this thesis may suggest a focus strictly on technology and tech-

niques applicable in off-road settings, this thesis deems the presentation of a limited number of

relevant on-road solutions beneficial. As such, the scope of this chapter slightly widens to include

a select number of road-based works from more ‘traditional’ autonomous vehicle concepts over

the range of the presented subtopics.

2.1 Mechatronics and Chassis

To facilitate effective integration of autonomous driving technologies, a project must first adopt a

suitable mechanical platform. Where standard on-road driving is a topic broad enough to have

entire books – such as [19] – detailing it, AOV are a relatively scarce topic in scientific literature.

So, it seems plausible to assess necessary modifications or novel approaches for a prospective

platform supporting a project in offroad robotics, as opposed to the established systems of on-

road vehicles.

2 State of the Art

6

2.1.1 Laying the Groundwork: DARPA and ELROB

One of the most influential events in the field of off-road autonomous driving and also for Auton-

omous Vehicles as a whole where the United States’ Defense Advanced Research Projects

Agency’s (DARPA) Grand Challenges (DGC), in 2004 and 2005 [17]. These proved to be a great

driver of innovation in the field and led to the creation of many forward-thinking Autonomous

Offroad Vehicles such as Stanley by Stanford University [14], or the entries of the SciAutonics

teams from Rockwell Scientific (RSC) and Auburn [15, 16] (Figure 2.2).

Figure 2.2: Different (and similar) approaches to Offroad Autonomous Driving. On the left, Stanley

of Stanford University [14], and on the right AVIDOR-2004 of Team SciAutonics [16].

Stanley is the winning prototype developed by Stanford University for the 2005 installment of the

DGC (Figure 2.2, left). The desert course provided in the DGC was demanding, because while

it technically had a road, said road was little more than a simple track of slightly compacted dirt

through the Nevada desert [17]. To combat these difficult driving conditions and avoid building

an entirely new vehicle, the Stanford researchers opted to instead modify an existing vehicular

platform: a Volkswagen (VW) Touareg R5. Their paper [14] states the reasons for this: “The

Touareg has four-wheel drive (4WD), variable height air suspension, and automatic electronic

locking differentials” [14, p. 664]. Additionally, they installed skid plates and a reinforced front

bumper.

RSC’s SciAutonics-Teams pursued an interesting alternative approach contrary to that of the

Stanford researchers. Instead of opting for a standard on-road, production vehicle, they utilized

modified All-Terrain-Vehicles (ATV) from two different manufacturers. The first team used a

Prowler vehicle from ATV Corporation, a 4WD buggy with a roll cage and manual differentials,

which they then modified to fit their sensory systems. Their second Team utilized a similar vehicle,

made by TOMCAR, which is only equipped with two wheel drive (2WD) (Figure 2.2, right) [15,

16]. Achieving an overall second place in the tournament, this second team’s vehicle failed after

10.8 km when it veered off course because of an GPS error. After leaving the planned route, the

vehicle dug into a sandy patch next to the track and became stuck, ending the trial [7].

Another important benchmark and competition in offroad AV is the European Land Robot Trial

(ELROB), which led to the creation of similar AOV systems, which Appendix A further presents.

2.1.2 Small-Scale Dedicated AOVs

Moving from existing platforms and vehicles which still fit human occupants to smaller, more

specialized offroad robots enables researchers to individually improve and specialize the design

of the chassis, mechatronics, and propulsion systems. Thus, they can implement yet entirely

 w

2 State of the Art

7

untried and unexplored approaches to offroad mobility in robotics, such as tracked or legged

robots, changes in the number of wheels and other modifications, examples of which the follow-

ing paragraphs will present.

The first example, Endeavor Robotics’ (formerly iRobot) PackBot, is an industry standard [20]. A

joint team from the Southwest Research Institute, the University of Texas at Austin, and Griffin

Technologies, Inc. developed a mobility test suite, and tested it on two small AOVs in [20]. Pack-

Bot, which contains a “combination of ‘standard’ tracks, front-mounted articulator arms, and a

dual-motor drive system” [20, p. 5] is capable of flipping itself right-side-up if the need arises. It

is a remarkably capable platform in comparison to the other tested robot, with a particular ad-

vantage in speed, slope climbing ability, resistance to stepped obstacles such as curbs, and

energy efficiency [20]. However, researchers in [21] have noted that its low build and center of

gravity together with poor odometry because of its tracked nature and low quality Inertial Meas-

urement Unit (IMU) limit its usefulness in applications that require Localization and/or Mapping.

The other robot analyzed in [20] is RHex (Hexapedal Robot) (Figure 2.3, left). A joint team from

Boston Dynamics, McGill University in Montreal and AutoVu Technologies developed the mobile

platform, with [22, 23] outlining the robot’s capabilities. In comparison to PackBot, RHex appears

to have better mobility and speed only in certain types of terrain, for example Rock Beds [20].

For its locomotion, the RHex robot utilizes six compliant (e.g., bendable) legs, each of which

rotates about its pivot with only one motor. The advantage of this system as compared to a robot

utilizing a wheeled approach is greater, more precise control over ground reaction forces (e.g.

traction) in terms of direction and magnitude. [23]. Several different versions of RHex exist, in-

troducing shock proofing, water ingress resistance and amphibious capabilities to the platform

[22].

Lastly, researchers at the University of Sydney’s Australian Centre for Field Robotics (ACFR)

have developed a wheeled mobile robot in their Swagbot (Figure 2.3, on the top left). It is an all-

wheel independently driven and steered, 4WD-capable electric ground vehicle, which can move

omnidirectionally, allowing it to excel in uneven terrain [24]. The wheel-strut assemblies connect

to a central rocker mechanism, allowing the Swagbot to traverse low lying obstacles and stay

level even in challenging terrain [25].

Figure 2.3: On the right, one example of the RHex platform [22] and on the left, ACFR’s Swagbot,

a wheeled robot for agricultural applications [25].

2.1.3 The Challenges of extreme off-road driving on fully unknown

Terrain

Development of most of the examples up until now relied on prior knowledge of the route through

the terrain or are designed to operate on preexisting paths formed by other vehicles or human

2 State of the Art

8

movement, e.g. Stanley and the other DGC vehicles on their desert track [17], or ACFR’s

Swagbot on relatively flat and traversable fields [25]. As such, researchers build these vehicles

specifically to excel on a given type of surface or route, and thus the precomputed route itself – or

the remote operator – can compensate for vehicle capabilities and shortcomings in the path

planning and driving. Researchers working on mobility in fully unknown, extreme terrain however

create AOV with different setups, shown with the following examples.

Figure 2.4: Robots for extreme off-road terrain: left ‘Tracked’, and right ‘Ackermann’, which [26]

tests and evaluates in tunnels and mines.

Researchers in [26] present tests of multiple AOV in several extremely challenging terrains such

as mines and tunnels. Of particular interest are ‘Tracked‘ and ‘Ackermann’ (Figure 2.4), the for-

mer using combining tracked and wheeled capabilities, while the latter utilizes a traditional four-

wheeled RC-car chassis. The researchers built the ‘Tracked’ Vehicle on the basis of a Faulhaber

Telemax PRO [26], which is a four-wheeled, four-tracked platform, capable of up to 10 km/h, 45°

ascend over both sloped surfaces and stairs and a 10h battery life [27]. This system was tested

in the Berkley Exhibition Coal Mine, traveling a total of 0.76km at 0.57m/s [26].

The Ackermann platform starts with a Traxxas X-Maxx RC monster truck platform [26], sporting

all-time full 4WD with oil filled differentials to limit slip between tires when one loses traction,

large tires and a high suspension for clearing obstacles combined with a low center of gravity

and a comparatively short wheelbase [28]. The researchers tested it in the DARPA ‘SubT’ Com-

petition, where it drove 0.39km at the second highest speed of the tested vehicles: 0.83 m/s [26].

Figure 2.5: The Perseverance Mars rover [29], which NASA’s JPL developed and built to explore

the Martian surface in search of water

No compendium of extreme off-road rovers can be complete without mentioning the achieve-

ments of the various extraplanetary Mars Rovers built by NASA’s Jet Propulsion

Laboratory (JPL), the latest active example of which is the Perseverance Mars rover (Figure 2.5).

Its creators envisioned it to combat the entirely unexplored and fully remote surface of Mars, so

2 State of the Art

9

they expressly designed its mobility system is to master this challenge without any human inter-

vention. Perseverance is a six-wheeled rover equipped with a suspension of the rocker-bogie-

type [30], six independent motors driving each wheel, and four additional motors above both

front and rear wheels provide steering. Each of these motors also features a brake to prevent

unwanted rotations. Featuring a maximum speed of 4.2 cm/s and the entirely passive suspen-

sion, which limits vehicle tilt and increases stability when traversing obstacles, it has traveled up

slopes as steep as 25° and more than 21 km total as of August 2012 [30].

2.1.4 The F1TENTH Platform

Figure 2.6: On the left, a stock Traxxas Slash 4x4 model driving in its intended environment [31],

on the right an example finished configuration of an F1TENTH vehicle based on the

Slash chassis and drivetrain [32].

The F1TENTH Platform – shown in Figure 2.6 on the right – is an AV development platform

which its creators designed to mimic real F1 racecars at ⅒ scale, in order to enable a scaled

approach to research and development on the AV front [11]. At the same time it sets up an

obvious path into competition, thus allowing for the comparison of developed algorithms and

solutions [12]. This enables both researchers and students alike to develop algorithms and hard-

ware for AVs rapidly, with fast access to real word testing, while negating risks, tribulations and

cost connected to testing on an actual one-to-one scale vehicle [12].

The basis for the platform is forms a Traxxas Rally ⅒ scale RC car, specifically a variant of the

Traxxas Slash 4WD Electric Short Course Truck [33], shown in Figure 2.6 on the left. In its base

configuration, it features Servo-powered Ackermann Steering, a brushless direct current (DC)

motor capable of propelling the car up to speeds of 100 km/h, and a 324mm wheelbase 4WD

drivetrain, with Limited-Slip-like silicone-filled differentials to reduce traction loss. It also utilizes

oil-filled shock absorbers with long travel and progressive springs, a modular chassis and a high

torque-capable Aluminum Driveshaft [31].

To reconfigure this platform for the task of autonomous driving, several modifications are univer-

sally necessary to transform it into an AV platform. To facilitate easy, reliable and accurate motor

control of both servo and brushless DC Motor, the platform uses an open source motor controller:

the Vedder Electronic Speed Controller (VESC) [13, 33]. Additionally, researchers added a

power distribution board to reliably power all onboard electronics off of the battery, as well as a

mounting plate to mount components, additional sensors and computer hardware to [11].

Researchers of the University of Pennsylvania created the F1TENTH platform in 2016 [34] and

first presented it in [13], where it is envisioned to be “an open-source evaluation framework with

2 State of the Art

10

virtual environments and a low-cost hardware counterpart which enables safe and rapid experi-

mentation suitable for laboratory research settings” [13, p. 85]. As such, universities extensively

use it to teach autonomous systems as shown in [11], where it is the basis for a full class. The

F1TENTH platform there operated full-scale AV code and algorithms seamlessly, proved reliable,

low-cost, and safe with access to a simulator to accelerate development.

Extending this concept, university research utilizing small-scale robots such as [33] and compe-

tition between different research institutes [12] is currently based on the F1TENTH platform,

describing it as convenient and efficient, without the risks and costs associated with full-scale

vehicles [12].

2.2 Sensorics

Figure 2.7: Overview of sensing systems on AV, on the basis of information from [2]

The second Pillar of AV are the sensorics systems which the vehicles employ to facilitate the

detection and perception of its position and orientation, surroundings, other actors, as well as

obstacle or signage detection (Figure 2.7). As there is a broad range of different sensor suites

and combinations available, this section presents a selection of the most common, useful, or

specialized to the task of offroad driving, along with several vehicle examples and studies using

said sensors.

“Sensors have to be able to create both a perceptive and locational view of the environment so

that the vehicle can make decisions in real-time” [35, p. 1]. Following this thinking, the following

paragraphs group sensors and sensor systems into exteroceptive sensors, which are used for

perceiving the environment, and proprioceptive sensors, which measure values within the sys-

tem, e.g. speeds or positions [3, 35].

2.2.1 Exteroceptive Sensors

Exteroceptive sensors are devices capturing the external state – e.g. the environment – of the

vehicle, for example distance measurements or light intensity from the system’s surroundings [3].

Sensors which fall into this category are LiDAR sensors, Cameras, Radar sensors and ultrasonic

2 State of the Art

11

sensors [3]. The following sections will present LiDAR and Cameras, with Appendix B detailing

radar and ultrasonic sensor capabilities and usage.

LiDAR Sensors

LiDAR – which stands for Light Detection and Ranging [3], sometimes called a laser range

finder – uses a laser to determine the distance between the sensor and a target. Most LiDAR

sensors use infrared light in the 900nm range, though longer wavelengths have been observed

to perform better in adverse conditions such as fog and rain [2, 3]. The distance measurement

works by sending out pulses of light, which then reflect off objects within the LiDAR’s field of

vision. Upon the return of the reflected light, a sensor detects the reflected light pulse, calculates

the time lapse between the sending and the receiving of the pulse – the time-of-

flight (TOF) [35] – and thus is able to calculate the distance between the sensor and the object.

Most LiDAR then return this data in a point cloud, which represents individual scan-points with

x-y-z coordinates, typically with the sensor in the origin of the coordinate system, and have a

range of up to 250m [35, 36].

There are two main types of LiDAR sensors: mechanical LiDAR and solid-state LiDAR [3]. In a

mechanical LiDAR, a spinning element – which spins around the vertical axis if produces a hor-

izontal scan – enables both the laser and the detector to scan continuously, achieving up to 360°

coverage around the sensor. Many of these sensors can scan on multiple lines at different

heights or inclinations, adding a third dimension to their measurements. Different amounts of

scan-lines and vertical Field-of-View (FOV) determine the spacing and vertical resolution of

these devices, while the imaging capabilities of the detectors limit the horizontal resolution, which

however is usually much higher than the vertical resolution [2, 3].

Solid State LiDAR come in three types. Flash-based means that they operate in part like a tra-

ditional photo camera, sending out a flash of light and recording an entire frame-array of

reflections at the same time. Optical phase array-based devices use integrated photonics tech-

nology with micro-structured waveguides to direct the laser, and MEMS (Micro-Electro-

Mechanical Systems) based systems use piezoelectric elements to vibrate a mirror to scan the

laser beam. All of these require no mechanically moving parts and provide a smaller horizontal

FOV, typically limited to 120° [3]. However, they provide an evenly spaced resolution in both

directions, a more rugged and reliable design, as well as lower cost and size [2, 3, 37].

Figure 2.8: Different sensor systems on early AOVs, on the left Stanford’s “Stanley” Robot’s roof

rack, with the SICK LiDAR sensors on top, a monocular camera below the middle sen-

sor, and two orange-colored Radar sensors on either side of the rack [38]. On the right

RAVON’s sensor suite [39].

Many of the vehicles presented here use LiDAR: some of the earliest ones such as Stanley [14],

the University of Kaiserslautern’s Robust Autonomous Vehicle for Offroad Navigation (RAVON)

2 State of the Art

12

[40] (Shown in Figure 2.8) as well as SciAutonics’ Robust Autonomous Sensor Calibrated All-

terrain Land-vehicle (RASCAL) [15]. All of these use one or more LiDAR units manufactured by

SICK in different configurations and setups. More current examples are the vehicles which [24]

tests and the example configuration of the F1TENTH platform in [13]. The SICK units used are

all of the rotating Line Scanner variety [41] and include both vertical and horizontal versions [15],

as is the horizontal Hokuyo UST-10LX unit of the F1TENTH platform [13, 42]. Stanley and the

F1TENTH platform use several planar two-dimensional (2D) scanners [14, 42] (which report only

one line), while RAVON uses both 2D and three dimensional (3D) units [40], where the 3D LiDAR

reports more than one line [41]. The University of the Bundeswehr’s (UniBw) Munich Cognitive

Autonomous Robot car, 3rd generation (MuCAR-3) also uses a 3D LiDAR [43].

Cameras

“Cameras are one of the most adopted technology for perceiving the surroundings [of autono-

mous Vehicles]” [3, p. 6]. By focusing reflected and scattered light from nearby surrounding

surfaces in through a lens and detecting it on an image sensor, a camera can visualize and

image an area of the environment. They provide a high definition, high refresh rate stream of

information, which has a variety of applications. Downsides of Cameras include susceptibility to

weather and environment conditions such as snow, light levels, sun glares or hazy weather,

reducing effective quality of the images, as well as the large computational power required to

analyze and process images. In addition, by increasing the FOV further and further into the range

of fish-eye cameras, or with cheaper, sub-par optics, distortions appear in the camera feed, re-

quiring computationally intensive intrinsic calibration to generate usable data. Common uses

include perception of obstacles and other actors in the environment, their position and velocity,

semantic segmentation (Section 2.3.1) and detection of barriers and signage. AV camera sys-

tems can employ either monocular or binocular camera systems, which could employ either color

or black-and-white sensors [2–4, 35].

Conventional red-green-blue (RGB) monocular cameras provide 2D information, which is useful

for classification and interpretation of terrain [2]. Due to the planar nature of the information re-

ceived, their applications are limited compared to stereo cameras, which possess an advantage

in areas such as position and velocity calculations [3]. One type of monocular cameras are fish-

eye cameras, which [44] employs for the task of near-field sensing, where researchers use their

particularly high FOV to create a “surround-view” system with only 4 cameras.

Stereo, or Binocular cameras mimic the depth perception mechanism found in animals, where

the stereoscopic difference between the left and right images formed in each eye provide a sense

of depth [3]. In these sensors, which separate the cameras by a specific distance, the disparity

information is then used to calculate a depth map, thus inferring 3D data from the two planar

camera sensors [3]. Some systems use ‘stereo’ camera systems employing more than two cam-

eras, such as the Bumblebee XB3 FireWire, a triple-camera system which [45] employs,

improving overall accuracy and range of the distance measurements.

Cameras are a ubiquitous technology [3] on AOV, with almost all of the examples in this thesis

utilizing them. Stanley uses a singular, monocular color camera for long-range road percep-

tion [14] – shown in Figure 2.8 on the left in the center of the array – whereas MuCAR-3 uses a

tri-camera system, but without a depth calculation [43]. The example F1tenth Platforms in [11]

and [13], as well as RASCAL and RAVON use stereo camera systems [15], the latter of which

uses two separate systems with different baselines for long and short range perception [40] (Fig-

ure 2.8 on the right). Additionally, Swagbot [25] and the vehicles in [26] use cameras in their

2 State of the Art

13

sensor arrays. The Mars rover ‘Perseverance’, currently on mission on the red planet [46], em-

ploys 23 cameras, which include stereo, monocular and fisheye cameras in both color and

monochrome [47] (Figure 2.9). Some platforms notably omit cameras, such as the vehicle of the

second SciAutonics team, AVIDOR 2004 [7], which instead uses a Global Positioning System

(GPS) receiver, IMU, as well as ultrasound, LiDAR, and mm-wave radar. One configuration of

the F1TENTH Platform [33] also opts to not utilize a camera.

Figure 2.9: On the left, the cameras mounted on the Remote Sensing Mast of the Perseverance

Rover, including the outer stereo Navcams, with another pair of stereo cameras in be-

tween them, and the SuperCam topping the Mast [47].

2.2.2 Proprioceptive Sensors

“Proprioceptive sensors, or internal state sensors, capture the dynamical state and measure[…]

the internal values of a dynamic system, e.g. force, angular rate, wheel load, battery voltage, et

cetera” [3, p. 5]. This section will present these, including encoders, IMU, magnetometers and

GPS [3, 35] because they provide robust positional information import for offroad navigation [5].

Encoders

Providing information on the status of a control system, e.g., an electric motor, encoders provide

odometer data via dead reckoning – which measures wheel rotations to account for distance

traveled – or provide information for the state of steering servos to gain information about a ve-

hicles rate of turn [35]. This is a cost-effective way to gain real-time information about the position

of a vehicle relative to a starting point [35], although measurement errors due to traction loss and

subsequent wheel slip can accumulate over the course of a journey, leading to large error in-

creasing over time [48]. Researchers in [49] however show that it is possible to reduce this error

with the use of neural networks.

The F1TENTH Platforms’ [11, 13, 33] VESC [50] uses encoders for odometry, as do the Wer-

rimbi robot [48], RAVON [40] and all of [26]’s vehicles. The MuCAR-3’s camera system [43]

explicitly mentions the use of an encoder to read an internal motor’s position, but other systems

using motors for steering or other applications likely also utilize them, especially on other full-

size vehicles requiring complex control mechanisms.

2 State of the Art

14

Inertial Measurement Units and Magnetometers

Inertial Measurement Units or IMU are electronic devices measuring a body’s force, acceleration,

angular rate of rotation and change thereof [35]. They accomplish this with accelerometers, gy-

roscopes and – if present – magnetometers arranged in an orthogonal configuration in order to

obtain relevant data in all three dimensions [35]. Excluding the magnetometer, some systems

combine the IMU’s data and wheel odometry to integrate it into an Inertial Navigation Sys-

tem (INS). With an IMU, the vehicle can gain information about its current orientation, position

and linear as well as rotational speed relative to a starting pose [35]. Since they operate on a

similar principle for providing odometry as compared to encoders, IMU suffer from similar issues,

such as drifting of the measurements due to accumulated errors [35].

Magnetometers are sensors which calculate a heading direction with reference to the magnetic

north pole [51]. When calculating heading from the magnetic field, the sensor system must ac-

count for the tilt of the vehicle, for example with the IMU’s accelerometers to determine the

direction of gravitational pull. In the absence of such a correction, or when the corrections are

inaccurate, a tilt out of the horizontal plane would reduce the measurement accuracy [51]. It is

also worth noting that local variations of the earth’s magnetic field and ferromagnetic materials

in the proximity of the sensor can significantly influence a magnetometer, necessitating calibra-

tion [51].

As one of the standard sensors for AOV [5], virtually all examples shown here use IMU systems,

especially the larger ones, while fewer ones employ magnetometers. RAVON [40] and RAS-

CAL [16] use IMU and magnetometers in conjunction, while MuCAR-3 only uses an IMU coupled

to a GPS [43], which can be effective at combating the drift issues by providing an absolute

reference [35]. F1TENTH platform’s [11, 13, 33] VESC unit provides IMU data only [50], similar

to the examples shown in [26].

GPS Receivers

“GPS is a satellite-based radio-navigation system that provides geolocation and time information

to a GPS receiver anywhere on Earth as long as there is an unobstructed line of sight to four or

more GPS satellites” [35, p. 2]. It does this by trilateration, a method with calculates the location

of a point relative to others using the distances between them, where these distances are ob-

tained by TOF of the signals [52]. The accuracies of these receivers lie between one to three

meters [35, 52], and other global navigation satellite systems such as GLONASS and Gali-

leo [53] can further increase this accuracy, with the drawback that such receivers are generally

more expensive [35]. Another way to increase GPS accuracy is with the use of a differential

GPS (DGPS) system whereby a base station relays corrections to the GPS data to a mobile unit,

enabling accuracies in the centimeters [54]; however these systems usually come at a high cost

[55]. The other main drawback of GPS systems is the quick degradation of their accuracy when

the line of sight to the satellites is obstructed, for example by trees, tall buildings or overhangs in

the surrounding terrain [35].

All of the larger vehicles in this work such as RAVON [40] and RASCAL [15] employ GPS Sys-

tems. Stanley uses a GPS compass system in addition to a normal GPS [14], which allows it to

receive high accuracy heading information without the use of an magnetometer; similar to Mu-

CAR-3 [43]. The AVIDOR-2004 vehicle of the second SciAutonics team relied on an early DGPS

System, however it encountered GPS difficulties, causing it to drift of course, and – without other

significant guiding systems such as cameras – get stuck, ending its race [7].

2 State of the Art

15

2.2.3 Sensor configurations overview

Considering this works’ many different sensor and AV examples, it is beneficial to gain an over-

view of the different configurations and sensor combinations. The intended tasks performed,

costs, ease of use and of course the target environment strongly influence sensor selection and

system design [2].

Table 2.1: Exteroceptive sensors usage percentage in this thesis’ examples, grouped by type, in

comparison to EDGAR’s sensor configuration, for which checkmarks and crosses denote

sensor presence and absence respectively. Expanded table in Appendix C.

To now compare the presented configurations to a newer AV system, this section will compara-

tively list the examples in addition to the sensor system used on EDGAR (Appendix C), an

Autonomous Driving Research Platform developed at the Technical University of Mu-

nich (TUM) [54].

As a current example AV research, its sensor suite is a valuable sample of current sensor tech-

nology, even though it is not purpose-build for offroad applications like the other, older examples

shown before. Table 2.1 shows a comparison of exteroceptive sensor configurations on this

thesis’ examples, with proprioceptive sensors compared in Table 2.2. For the purposes of these

tables, ‘Full-size’ vehicles encompass AVIDOR-2004 [16], Stanley [14], RASCAL [15], RAVON

[40] and MuCAR-3 [43].

Table 2.2: Proprioceptive sensors usage percentage in this thesis’ examples, grouped by type,

compared with EDGAR’s setup. Values in parentheses are assumptions with not explic-

itly stated sensors, which this thesis assumes to be present. Full table in Appendix C.

2.3 Perception

The ability to infer information and gain knowledge from the provided sensor data is the next

core element of Autonomous Vehicle systems [18, 56, 57] and this section will split it into envi-

ronmental perception and localization [56]. Designing a perception system is a uniquely

Vehicle Types

LiDAR Camera

Radar

Ultrasonic

Sensors 2D 3D mono stereo

Full-Size

[14–16, 40, 43]
80% 20% 40% 60% 60% 20%

F1TENTH

[11, 13, 33]
66% / / 66% / /

EDGAR [54] ✖ ✔ ✔ ✔ ✔ ✔

Vehicle Names

 IMS GPS

Encoders IMU Magnetometer position heading

Full-Size [14–16, 40, 43] 60% (100%) 80% (100%) 40% 100% 40%

F1TENTH [11, 13, 33] 100% 100% / / /

EDGAR [54] (✔) ✔ ✖ ✔ ✔

2 State of the Art

16

challenging task, with many different schemes available for different combinations and setups of

specific sensors, and fusion algorithms combining data and information from different sensors to

make the system more robust and reliable [18]. Figure 2.10 shows the general structure of per-

ception systems on AV. Additionally, it is worth analyzing the hard- and software platforms which

run and coordinate different algorithms and process their respective data [57].

Figure 2.10: Symbolic representation of perception systems on AV, based on [18]

The following sections will present these areas of research along with examples and a particular

focus on areas specifically relevant to offroad AV, as these face unique challenges compared to

on-road solutions [10, 58]. Equipment and algorithms not only have to be more rugged and deal

with adverse conditions, but also have to work with non-uniform geometries and non-rigid objects

like trees and grass [5].

2.3.1 Environmental Perception

Firstly, relying on exteroceptive sensors [18], “Environmental perception refers to developing a

contextual understanding of the environment, such as where obstacles are located, […] and

categorizing data by their semantic meaning” [56, p. 3]. This is one of the biggest challenges

especially for offroad AV owing to the non-uniform, complex nature of the environment, com-

pounded with the fact that geometric information alone is insufficient for assessing the

traversability of the terrain, for example with high grass [58, 59]. In offroad AVs, the main task of

environmental perception is semantic classification of the ground surface – at the highest level

into ‘drivable’ and ‘non-drivable’ – as well as the detection of obstacles [58, 60, 61].

To facilitate this, most AOV mainly use LiDAR, cameras, or a combination/fusion of these sen-

sors for the task of environmental perception [56] (Section 2.2.3, Table 2.1). Cameras specifically

require computationally expensive, dedicated algorithms to process their dense data stream [3],

which the next section will present, and following that, this thesis will introduce recent fusion

algorithms. Appendix D presents LiDAR perception strategies as well as older fusion approaches

not directly relevant to this thesis.

2D Camera Perception

Cameras on road vehicles can be used to detect and road signs and traffic lights, as well as the

borders of drivable or allowed road areas or obstacles [3, 4] (Section 2.2.1). Offroad vehicles

2 State of the Art

17

mainly use them for path or obstacle detection and classification [40, 43, 56, 58], which will be

this section’s focus.

Two separate ways to analyze camera data exist. Firstly, an algorithm can apply direct mathe-

matical calculation (Appendix D). Secondly, Artificial Intelligence (AI) in the forms of neural

networks and/or machine learning approaches can analyze camera feeds, which this section will

present, while Appendix D presents the preliminary knowledge for this.

This section’s first example of AI-based semantic segmentation in offroad AV comes from re-

searchers at Carnegie Mellon University and Yamaha Motor Corporation USA in [62], who use

custom-built Fully Convolutional Networks (FCN) to segment camera images. Both of their ar-

chitectures are modifications of exiting network architectures, the first of which, ‘cnns-fcn’

utilizes an input of 227 ? 227 pixels and produces an output of 109 ? 109 pixels, while the sec-

ond, called ‘dark-fcn’, bases itself on the Darknet architecture with an input and output of 300 ? 300 pixels. The researchers report that their architectures yield results comparable to

state-of-the-art networks, except for the detection of obstacles, where performance is signifi-

cantly worse. In real world, closed loop tests, their vehicle successfully traversed various trails

on which a previous AV had failed, with the camera perception system only struggling occasion-

ally with roadside grass and on one occasion with the detection of a bush as an obstacle [62].

Elander’s master’s thesis at the Royal Institute of Technology in Stockholm [63] similarly uses

FCN to facilitate the semantic segmentation of off-road scenery using a transfer learning ap-

proach. Here, a UNet architecture combines with a ResNet model as a backbone. Building on

top of a FCN, the UNet architecture provides up- and down-sampling to capture context and

precise location, combined with convolutions and skip layers to retain further detail, while the

ResNet model introduces functionality to combat degrading performance with increasing number

of layers. Starting with a model pretrained on Google’s open image dataset, Elander then trains

the models on a forestry dataset of the University of Freiburg. This provides comparable results

to other work on the same training data; however, it also shows that semantic segmentation

provides more accurate results with fewer classes. The work states that the usage of deeper

networks provides a less-then-linear increase in performance when measured against compute

time – a comparison between the different networks is shown in Figure 2.11 – as well as showing

that reducing color resolution to 8-bit improved performance with a negligible effect on segmen-

tation accuracy [63].

Figure 2.11: Comparison between results obtained in [63] from different FCN’s, with differing

amounts of layers. From left to right: Input image; provided annotation e.g. the desired

output; the segmentation results of a network with 18, 50, and 101 layers [63].

Researchers from Xiamen University present another approach to semantic segmentation in

conjunction with the University of Oxford in [59], developing a modification of the LedNet seg-

mentation architecture called MiniLedNet. LedNet is an efficient solution for the task of semantic

segmentation which builds on the ResNet model, and as such is FCN based. As this model lacks

Input Ground Truth ResNet18 ResNet50 ResNet101

2 State of the Art

18

performance for real-time applications, the researchers modified LedNet’s encoder structure to

reduce computation overhead and complexity, yielding a speed improvement of ca. 31% with

only a maximum of about 3% loss on accuracy, which the researchers state has negligible effect

on vehicle performance. Compared with the ‘dark-fcn’ model from the previous paragraph – al-

beit with at a lower input and output resolution – MiniLedNet yields a ca. 30% increase in

accuracy, although the work does not assess processing speed differences. While some seg-

mentation errors occur in the researchers’ real-word testing, their vehicle compensates for these

inconsistencies by way of information obtained from a LiDAR [59].

Lastly, researchers of the Indian Institute of Science Education and Research Bhopal and the

Texas A&M University propose a novel, two-stage approach in [61] called ‘OFFSEG’. This uses

a semantic segmentation transfer learning approach to extract a region of interest from the image,

after which a color segmentation algorithm identifies subclasses in the region of interest which

are then classified again; an example of this system can be seen in Figure 2.12. Firstly, the

classes in the offroad vehicle datasets ‘RUGD’ and ‘RELLIS-3D’ pool into four superclasses:

traversable, non-traversable, obstacle, and sky according to semantic contributions to the envi-

ronment the researchers identified. They do this to eliminate issues with class-balance, which

decrease model accuracy. They then perform training for two semantic segmentation architec-

tures on these simplified datasets, namely BiSeNetV2 and HRNETV2+OCR, which both are

FCN models capable of semantic segmentation [64, 65]. These architectures showed satisfac-

tory performance, but since the researchers did not compare them to other network architectures,

no relative statements are possible. Researchers however did state that BiSeNet-V2 is overall

faster, while HRNetV2+OCR proved to be slightly more accurate on one tested dataset. Figure

2.12 shows a result of the segmentation process in in the second image from the right. The

traversable class now contains several additional subclasses like dirt, mud, or gravel, which can

still play a key role in pathfinding, and as such, the researchers decided to provide them. For this

task, the traversable area found in the segmentation masks the input image. Then, on this subset

of the original image only containing the traversable area, a k-means algorithm runs to find color

clusters, which then run through a MobileNetV2 FCN to identify the specific subclass of terrain

(Figure 2.12, rightmost image). The researchers obtained the MobileNetV2 model pretrained on

an ‘ImageNet’ dataset, and subsequently modified it through transfer learning on the ‘RUGD’

and ‘RELLIS-3D’ offroad datasets, with results showing about 97% accuracy in the detection of

subclasses [61].

Figure 2.12: Example of the OFFSEG algorithm. From left to right: Input image, desired output from

first segmentation, segmentation result, final result after clustering and classification.

Recent Exteroceptive Sensor Fusion

Sensor fusion refers to the combination of data received from multiple sensor sources such that

the resulting information provides a more coherent image of the environment [2], with the goal

2 State of the Art

19

of creating more reliable, accurate and precise data. For Environmental perception, sensor fu-

sion algorithms mainly use camera and LiDAR/Camera information, in order to augment RGB

camera feeds with reliable 3D point cloud information [1, 2, 56].

Researchers of Xiamen University and the University of Oxford have developed a different ap-

proach of LiDAR-Camera fusion, called Real-time Semantic Perception and Motion Planning

(RSPMP). It fuses the result of semantic segmentation of a camera feed with 3D point cloud

information of a LiDAR, which it then translates into a 2D top-down map. Next, it associates the

segmentation class data of each pixel with a 3D coordinate by transforming camera pixel coor-

dinates into LiDAR coordinates, and then interpolating the LiDAR range data to calculate the 3D

coordinate of the pixel in space. By doing this the algorithm generates a point cloud containing

the semantic segmentation results as well as geometric LiDAR information, which it then trans-

lates into a voxel grid according to the current data, previous and predicted future occupancies

in the grid. RSPMP then calculates the 2D representation by merging the voxel grid down along

the ;-axis, where it ignores voxels over the height of the vehicle, and otherwise the highest voxel

determines the grid value at a specific position. Figure 2.13 shows an example of the complete

pipeline. In practice, this system proved capable – however it was not compared to other solu-

tions – where the vehicle managed to traverse terrain to reach a goal point, and additionally

could compensate for segmentation errors with the geometric information [59].

Figure 2.13: RSPMP perception pipeline, left, example RGB camera input, middle, semantic seg-

mentation results for that image, right, 2D-projected result map containing semantic

segmentation results.

2.3.2 Localization

The second type of perception is localization [18], which relies “only on on-board vehicle sensors

to find the global position of a vehicle in a specified coordinate system” [66, p. 832]. While mostly

relying on proprioceptive sensors like GPS and IMU [18], localization may use exteroceptive

sensors such as cameras or LiDAR to augment its algorithms [66]. Localization contains two

subtasks: global localization for high level navigation tasks to reach a target point, and local

localization, providing a position relative to obstacles and environmental limitations. Localization

can work via prior knowledge of a map, where the system then compares map elements with

perception data in order to locate itself, however, the required prior map knowledge [10, 18]

complicates the localization system. As such this work will neither present nor use this technique.

Instead, the following sections present, global localization tasks, while Appendix D explains local

localization techniques.

Global localization and localization sensor fusion

GPS is the most commonly used localization system for all types of autonomous vehicles – not

only in offroad applications – as it can offer an inexpensive and easily implementable source of

2 State of the Art

20

global positioning data [66]. Most of the full-size off-road AVs presented here utilize GPS sys-

tems [7, 10, 14, 15, 40]. However, because it suffers from poor reliability and accuracy, some

researchers augment it with other systems to increase its viability [1, 66].

Although DGPS and other methods can improve the reliability of GPS readings – which its cre-

ators initially designed to only be accurate to 15 m – such systems usually require base stations

that correct signals or provide an additional baseline, which may not always be feasible [1]. The

most common solution to this is to fuse the GPS system with an IMU. This is prone to drift-errors,

and as such is not suitable for global localization tasks, but in conjunction with an GPS can

provide drastically improved levels of precision and accuracy than either system. The fusion of

the information streams happens mostly over a Kalman filter, which itself is prone to assumptions

and limitations, but researchers regard it as a solid solution to the task of global localization.

More recently, researchers have shown that it is advantageous to use neural networks and ma-

chine learning approaches to fuse IMU and GPS data [1].

Early off-road AVs heavily rely on GPS to achieve accurate localization. However, especially for

the purposes of SLAM and situations of GPS outage, vehicles require accurate pose information,

which – in these early systems – IMU systems provide. Stanley uses an IMU system to both gain

information about the vehicles orientation to generate accurate maps and facilitate environmen-

tal perception, but also uses it to gain reliable position information during GPS outages of up to

2 minutes. Experiments showed that the vehicle state estimation only veered 1.7m off the actual

position after 1.3 km of driving [14]. Other full-size AOV examples such as MuCAR-3 [43] and

RAVON [40] utilize similar systems. They often combine GPS-loss and subsequent IMU opera-

tion with a reduction in speed, in order to slow down the degradation of the position information

as well as to give the system more time to react to changing conditions [14, 15].

Advancing from purely IMU/GPS coupling, studies have combined a GPS system with a LiDAR,

camera, or radar sensor instead of an IMU to offset the low precision of the GPS. Such a system

works in much the same way as local localization methods (Appendix D), however their useful-

ness is questionable when considering the prevalence of IMU systems [1, 66, 67].

2.3.3 Perception Hardware and Software Basis

Algorithm research and hardware development are crucial for the advancement of autonomous

vehicle technology, because every kind of data processing needs a platform to run on [57]. To

gain an overview of the components which enable the sensorics, mechatronics, perception and

navigation, the following sections will discuss the hard- and software used in autonomous vehi-

cles, with special focus on offroad applications.

Computation hardware and variants

“For autonomous driving, a powerful computing system is required to interpret a large amount of

sensing data and perform complex perception functions in real time” [57, p. 151]. Many different

approaches to this problem exist, encompassing multicore central processing unit (CPU) com-

puters, graphics processing unit (GPU) equipped systems, and distributed solutions.

Early examples such as Stanley [14] primarily use consumer computer platforms, where the

former combines six Pentium M personal computers (PCs) with a network switch. RASCAL [15],

RAVON [40] and MuCAR-3 [68] utilize a similar ‘computer cluster’ approach with multiple PCs

working in tandem. Researchers considered in RASCAL and implemented in MuCAR-3 what is

2 State of the Art

21

known as ‘Real-Time’ compute solutions, which run low-level controllers and access I/O in order

to provide more consistent and reliable timing and control [15, 68]. The image in Figure 2.14 on

the left shows an example of such a combined computer systems in AV.

Figure 2.14: Different compute solutions in autonomous vehicles, left, Stanleys trunk-mounted com-

pute network of multiple computers and batteries [69], Right, a partially completed

F1TENTH vehicle with the NVIDIA Jetson SoC circled in red [34].

With the advancement of technology came the usage GPUs [57]. For their demonstration of their

Semantic Mapping system, researchers in [62] utilized two commercial, off-the-shelf laptops,

linked by network switches, which use laptop-grade GPU hardware in order to facilitate real-time

capabilities with the computationally expensive neural network architecture. This is echoed in

state-of-the-art systems such as EDGAR [54], which also provides GPU capabilities to the plat-

form’s algorithms.

Further advancements make possible the utilization of CPU and GPU in [63], which uses an

NVIDIA Jetson Xavier, a system-on-a-chip (SoC) providing specialized tensor cores, high speed

memory for both GPU and CPU as well as hardware accelerated en-/decoding and deep learn-

ing [70]. These systems enable Neural Network, AI, and Machine Learning workloads in energy

efficient ways on small-scale, autonomous systems. Common in many recent AV projects and

testbeds, testing of semantic segmentation and mapping algorithms in [59] and [71] uses similar

Jetson Units, and Jetson SoC are standard equipment on two of the F1TENTH platforms [13],

(Figure 2.14 on the right). One of the F1TENTH platforms analyzed instead opts for a Raspberry

Pi microcomputer [33], which enables even lower power consumption and cost. However [72]

shows that it is largely incapable of running significant neural network-based analysis in a real

time setting.

Lastly, work has shown viability of Field Programmable Gate Arrays (FPGA) and Application

Specific Integrated Circuits (ASIC) to both increase performance and decrease power consump-

tion for neural network computations [57]. While FPGA are reconfigurable, they are slower, less

efficient, and larger compared to dedicated ASIC solutions, and they both suffer from exceed-

ingly high implementation costs, especially for ASIC.

Software frameworks, platforms, and architectures

All the sensors, algorithms and hardware need a software fabric to create a complete vehicle.

Researchers developed different solutions over time, and this section will present relevant ex-

amples. It is worth noting that many early prototypes do not explicitly mention specific software

frameworks and thus this section cannot present their data in a beneficial way.

Stanford’s Stanley vehicle uses a Linux operating system as a base layer for its software, as it

provides excellent networking and time sharing capabilities [14], which is an approach that RAS-

CAL [15] and RAVON [40] also take. Additionally, RAVON uses the Modular Controller

2 State of the Art

22

Architecture (MCA) C++ robot control framework, a system of the University of Kaiserslautern

researchers, who used it on other Robotic systems and research projects, and, as such, provides

many user libraries and additional features [40]. MuCAR-3 utilizes a Debian Linux operating sys-

tem modified with a special kernel for lower latency operations, and a KogniMobil real-time

database accomplishes interconnections between software and data sharing [43, 68].

Advancing further, researchers in [45] implement the Robot Operation System. “The Robot Op-

erating System (ROS) is a set of software libraries and tools that help […] build robot

applications” [73]. Because it introduces infrastructure, algorithms and developer tools, many

offroad AV implementations such as [3, 8, 11, 13, 26, 54, 59, 62, 74] use it to fully integrate

sensors, perception, navigation and control into a functioning system [3, 73]. It also provides

opportunities for developers to insert their own, custom software containers called packages,

has message-based interconnects between individual software packages as well as logging and

diagnostics, an online store of available software ready to download and embed into a solution,

and implementations for many commercially available sensors.

Notably, many – presumably all – of the smaller F1TENTH applications utilize the ROS meta-

operating system, such as [11, 13, 33]. Notable benefits of the system include easy interaction

of the driving and perception application layer with the low-level sensor and actuation interfaces,

as well as many reliable, pre-built packages with easy integration, adaption or change depending

on individual project needs. ROS also minimizes development time loss due to coding of infra-

structure and logistics and provides overall simplification of the software design process as well

as assistance with wireless development.

2.4 Pathfinding and Navigation

Figure 2.15: Schematic representation of AV navigation systems, based on [75]

“In order for a robot to navigate successfully, it must be capable of finding a path from its current

position to its goal position” [76, p. 12]. To accomplish this, a robot most be able to avoid obsta-

cles – both stationary or moving – and may need to optimize its path to reduce travel time and

power usage, using a navigation system (Figure 2.15). Following this, mobile robot pathfinding

splits into two subcategories, global (or offline) pathfinding and local (or online) pathfinding. In

2 State of the Art

23

the former the robot has complete prior knowledge about its environment including surface types,

terrain shapes and obstacle locations, whereas in the latter the robot has to make decisions

dynamically based on its perception of the environment [76], with Table 2.3 presenting a com-

parison. The following sections will present, local pathfinding – along with certain combined

techniques – as it burdens a vehicle with fewer constraints of prior knowledge, training data and

computational complexity. As such it is more suited to autonomous off-road navigation [71], while

global pathfinding is explained in Appendix E.

Table 2.3: Comparison of Global and Local Pathfinding [77]

2.4.1 Local Pathfinding

Local path planning assumes that the robot has little or no data about its current environment

and situation, which stands in contrast to global pathfinding (Appendix E). Instead, the vehicle

has to adapt to the current situation to plan its path based on its perception of the environ-

ment [76]. In comparison to global pathfinding – see Table 2.3 – it happens in real time, does

not require pre-processing and is based on exteroceptive sensors [77]. Local pathfinding can

work via either trajectory-based methods [5] which the following section will present, or via ge-

netic algorithms and artificial intelligence [76] (Appendix E).

Trajectory-based navigation systems

“Trajectory based navigation systems calculate a set of potential robot trajectories and then se-

lect the most suitable one for execution” [5, p. 111]. The three algorithms laying the groundwork

for trajectory-based methods are the Bug 1, Bug 2, and Vector Field Histogram algorithms [76],

and this thesis will quickly present them in the following.

The Bug 1 algorithm, upon detection of an obstacle on the path to the global goal will follow the

contour of said obstacle while constantly computing the further path to the goal point. Once it

finds the point on the contour with the shortest distance to the goal point, the robot again pro-

ceeds on the contour until it reaches that point, and then continues onward to the goal point from

there. As a modification of Bug 1, the Bug 2 algorithm aims to improve efficiency by constantly

monitoring the heading angle of the vehicle and comparing it to the initial heading for the unob-

structed path to the goal. Once – after starting the obstacle avoidance mode – the current

heading of the vehicle equals the precomputed one it will then switch back to normal path-to-

goal driving, having circumvented the obstacle enough to provide a clear path.

Lastly, the Vector Field Histogram method implements a 2D histogram grid, which accumulates

the obstacle data obtained by the onboard sensors. Then, the algorithm takes a fixed size and

distance subset of the 2D grid around the robot and filters it into a 1D polar histogram, which

represents obstacle density in a certain heading direction around the robot. Next, the algorithm

uses this data to select the sector containing the lowest concentration of obstacles, and the robot

then subsequently heads into that direction. Many other algorithms use these or similar concepts

Global Pathfinding Local Pathfinding

Offline Online/Real-time

Often needs a pre-processing stage Does not require any pre-processing

Relying on maps as input Based on sensors such as LiDAR

2 State of the Art

24

as a basis to facilitate obstacle avoidance in the field [76]. The following paragraphs will present

such derivative and contrasting algorithms.

First, as an early example, Stanley [14], the University of Stanford’s entry into the DGC, uses an

entirely separate algorithm. Here, the navigational algorithm maps obstacles using their distance

to the proposed path of the vehicle – which it precomputes using the checkpoints given by the

challenge – enabling the vehicle to execute obstacle avoidance by changing its lateral offset to

said precomputed trajectory in the event of obstacle detection [15].

Researchers present another approach to local pathfinding in [78], which is based on a map

containing obstacle boundaries and the boundaries of slopes too steep for the vehicle. First, if a

straight path from the current position to the goal position is drivable, the algorithm chooses that

path, otherwise, it computes a set of straight line fixed-length trajectories starting at the vehicles

position on the map. If such a line hits no obstacle, the algorithm considers it viable, and from all

viable paths, it chooses the one which ends closest to the goal. This provides a viable solution

for local navigation, however, if a global planner or generated waypoints include dead ends far-

ther away than the planner’s horizon, the vehicle might get stuck [78].

Figure 2.16: Tentacle configurations of MuCAR-3. (a) shows the total set of tentacles, colored ac-

cording to the current vehicle speed from green to orange to magenta. For the other

example subsets of tentacles (b) to (d), orange tentacles are feasible, yellow indicates

predicted stopping distance on a tentacle, a blue arrow denotes the current steering

angle, where purple shows an arbitrary target trajectory, and the selected path has a

red border in (b) and (d).

Expanding on a similar methodology, work done on the MuCAR-3 vehicle [43, 68, 79] also im-

plements the filtering of multiple possible trajectories. Called ‘tentacles’, the approach mimics

the usage of antennae in nature, which represent driving options of the vehicle, e.g. speed and

steering inputs, which the algorithm then assigns a value to for the drivability analysis of the

individual tentacles, based upon which it selects one trajectory for the vehicle to drive. The algo-

rithm constructs tentacles with respect to a maximum steering angle considering maximum

lateral acceleration and physical steering limitations. Using this maximum, the system constructs

a set of discretized tenacles between the maxima in increments of 0,001 ��� �D of change in the

steering angle. This generates tentacles which start in all directions between the maximum steer-

ing angles and then execute a specific amount of steering change over time, resulting in the total

space of possible tentacles shown in Figure 2.16 (a). For any given instant, the navigation algo-

rithm then selects a subset of feasible tentacles based on the current vehicle speed, steering

angle; drivability, clearness, flatness, distance and heading to target, and an additional visual

cue (Appendix D) of the tentacles (Figure 2.16 (b) to (d)). If no tentacle is feasible, the vehicle

will either drive backwards (where the algorithm implements a similar tentacle approach for back-

wards driving) or stop and expand its search to include other starting steering angles which the

(a) (b) (c) (d)

2 State of the Art

25

vehicle can then adopt before continuing driving operations. This approach proved viable, as it

allowed the vehicle to complete the 2009 European Land-Robot Trial (ELROB) in Finland as the

only competitor driving the entire distance.

Many offroad AV implement similar approaches. In [75], 625 possible trajectories are evaluated

for a potential driving time of 2 seconds, evaluating robot performance via a simulation, which

integrate the robot acceleration. The algorithm also evaluates tentacles using a cost function that

includes distance to obstacles, distance to the goal and to the optimal path as well as remaining

velocity after a maneuver to increase overall speed.

Researchers present a GPS-independent tentacle navigation method in [80]. Here, the naviga-

tion algorithm evaluates tentacles with respect to obstacles blocking the path, obstacles near the

path and obstacles near the path which have another obstacle opposite them on the same path.

In tests comparing their approach with a variant of the potential field method, the researchers

show that tentacles provide a useful look-ahead functionality combined with more stability ena-

bling higher overall speeds, as well as the tentacles based-navigation reaching the goal in more

scenarios than the potential field method.

In [62], researchers provide a navigation approach which samples 30 trajectories from -15°/s to

+15°/s at intervals of 1°/s and a constant velocity of 9 km/h . To evaluate tentacles, the naviga-

tional algorithm employs a reward function, which summarizes the movement cost based on

semantic segmentation perception (see chapter 2.1.3) over 20 m. To account for vehicle width,

the algorithm additionally evaluates multiple paths with an offset to the original to cover the ve-

hicle footprint. Researchers observed that this algorithm worked, however it veered from side to

side on larger trails on wider trails.

Most recently, researchers in [59] also implement a tentacle-based approach, where their algo-

rithm samples a given set of trajectories with different characteristics according to the current

speed of the vehicle, and in an additional step optimizes them according to the distance to the

goal and the estimated movement cost of the traversed terrain. The researchers proved that this

approach is viable in tests, where their system allowed the AOV to reach its goal consistently.

2.4.2 Distributed, Multi-Layer and SLAM Navigation Approaches

This section presents solutions for offroad AV which implement multi-layer planners for naviga-

tion purposes [40, 81] or employ a SLAM or other mapping approach to then use higher level,

global pathfinding in conjunction with local pathfinding solutions [9, 18].

Researchers in [81] present the first example for a robot utilizing both global and local planning.

Here, they employ a two-stage system with a local and a global planner. The former uses a local

map, which remains fixed relative to the vehicle position, delivering environment data relevant to

navigation to the local navigation algorithm. This then determines candidate waypoints for the

robot to follow to avoid obstacles and high movement costs to move toward the global goal. The

global planner utilizes a global map, into which it transfers data from the local map after each

processing step (see SLAM in Appendix D) to keep knowledge about already traversed areas in

the robot’s memory. It then extends the local pathfinding module with an A* algorithm to proceed

towards the goal [81].

The RAVON vehicle of the University of Kaiserslautern employs another example of a multi-layer

navigation system [40]. First, the short-range navigation provides local pathfinding, avoiding col-

lisions and reaching a goal point up to 3m away, which the mid-range navigation provides. This

2 State of the Art

26

attempts to detect ‘passages’ through obstacles, which allow the system to avoid dead-ends and

reduces the amount of backtracking and slow-speed driving needed with just the low range sys-

tem. Lastly, long range or global navigation starts at 10m ahead, using a D* algorithm and SLAM

type map knowledge generated from sensor data [40].

Lastly, the thesis in [9] uses aerial unmanned vehicles to first create a detailed, pre-classified

map of the terrain to be traversed, which it then uses to facilitate global navigation with the high-

quality mapping made available before.

27

3 Method

The previous sections of this thesis present the existing technology in the diverse and dynamic

field of autonomous navigation with a special focus on offroad technology. They show that a

variety of hardware, software and algorithms exist and that researchers with many diverse back-

grounds and subsequent focal points in their works tested them for the purpose of autonomous

offroad navigation. With Section 1.1 identifying a niche in current AOV development, which – in

short – applies to small scale offroad AV, this chapter will now focus on the development and

implementation of said vehicle.

It achieves this by first analyzing the state of the art (Chapter 2) to gain relevant knowledge. Said

knowledge will provide the foundation for the path this project takes toward the goal of this thesis,

a necessary inclusion before then presenting the step-by-step process developing a functional

miniature offroad AV. Figure 3.1 shows a schematic overview of this process.

Figure 3.1: Overview for the miniature AV development process in this thesis.

3.1 Initial Analysis of existing Solutions

This section performs detailed analysis on the work previously presented, identifying key ele-

ments and concepts used for the vehicle that this thesis aims to develop. Its contents include the

selection of a chassis, sensor suite and other hardware, as well as selecting specific concepts

for software as well perception and navigation algorithms, presented in the following.

3.1.1 Decisions for the Chassis and Platform

All the early, fully functional, and capable offroad AVs that competed in DARPA and ELROB are

based on full-size chassis, which the researchers have modified to suit their needs (Sec-

tion 2.1.1). While the setups of these challenges suggest an approach such as this, and the

resulting vehicles are capable, development of a vehicle on such a scale is fully outside of the

scope of a bachelor’s thesis. Reasoning for this is analogous to the drawbacks already presented

in Section 1.1, but to summarize, such vehicles are expensive, dangerous, and complex. So,

while this thesis will not move forward in the direction of full-size vehicles, it is nevertheless im-

portant and useful to analyze the findings of researchers that worked in this area alongside

smaller scale solutions.

3 Method

28

Stanford University’s Stanley vehicle as well as the MuCAR-3 team, who competed in the DGC

and ELROB respectively, both utilize a VW Touareg as the basis for their vehicles. The research-

ers state that among the reasons for this choice are 4WD, variable height air suspension and

locking differentials. That two independent, well performing teams choose this vehicle leads to

the assumption that these elements are vital for off-road performance of an AV. Furthermore,

the AVIDOOR-2004 vehicle by SciAutonics notably does not possess 4WD, and got stuck in

offroad environment, further cementing the relevance of 4WD. Both SciAutonics Teams utilize

preexisting ATV with locking differentials, which are thus important.

Alternatively, some researchers developing smaller scale vehicles chose to utilize non-wheeled

systems. This thesis’ examples for such systems either use tracks, or in one case compliant,

rotating arm-like structures for their locomotion (Section 2.1.2 and 2.1.3). While this provides

advantages over wheeled vehicles in offroad terrain, these vehicles present clear drawbacks.

Researchers note that tracked vehicles possess low quality IMU readings, which make autono-

mous navigation tasks difficult (Section 2.3.2). The presented platforms come as experimental

systems at high price points, further making their use in this project undesirable.

The observation that wheeled approaches are viable in offroad scenarios compounds this and

the University of Sydney’s swagbot (Section 2.1.2) as well as the Mars rovers and the ‘Acker-

mann’ vehicle (Section 2.1.3) prove this. However, both swagbot and the Mars rovers utilize

complicated suspension and wheel setups to further improve offroad capabilities. While

swagbot’s omnidirectionality may be useful in agriculture and the Mars rovers 6-wheel setup

performs exceptionally well in the sands of Mars and at slow speeds, both capabilities are less

relevant for the task of this thesis, and as such, a setup like the ‘Ackerman’ vehicle is most

practical. As it is based on a Traxxas scale model RC-Truck, it sports the following features

noticed in full-scale systems: 4WD and differentials which limit slip in the event of traction loss,

large offroad tires and a high suspension. Additionally, it has a notably low center of gravity,

making it difficult to roll on steep terrain.

This translates to the F1TENTH platform (Section 2.1.4), which is based on a Traxxas RC-truck.

While smaller than the ‘Ackermann’ vehicle, it is a proven system for AV operations that includes

all the advantages and requirements from the full-scale platforms because its creators based it

on an offroad-ready RC-car. Systems and methods to control the mechatronics for AV purposes

have proven themselves and this thesis directly reuses them for this project. With existing

knowledge and infrastructure already present in universities around the world, it further fits per-

fectly for the intended contributions of this thesis (Section 1.1). As such, it is the ideal choice as

a basis for this thesis, combining offroad capabilities with a proven AV-platform that is already at

home at many research institutions.

3.1.2 Sensor Selection

This thesis discusses sensor systems on AOV in detail (Section 2.2) and specifically recaps

them with summarizing tables (Section 2.2.3). For exteroceptive Sensors, 80% of full-size plat-

forms as well as 66% of the F1tenth platforms use 2D LiDAR, with only minor usage of 3D LiDAR.

Considering that 3D systems introduce more cost and increase computational load, and with

many older full-size AOV showing that autonomous offroad navigation is possible with the use

of 2D LiDAR only, a 2D sensor is sufficient for the purpose of this work. The overall necessity for

a LiDAR sensor stems from its lower computational load as well as the proven methods for

obstacle and surface detection (Section 2.3.1 and Appendix D). 2D LiDAR are also easy to inte-

grate and use, which is why this project may benefit from them especially.

3 Method

29

Analyzing Camera usage reveals that sensor’s frequent usage in AV, with 60% and 66% of

examples respectively using stereo cameras on full-size and F1TENTH platforms, where ED-

GAR utilizes multiple camera systems (Appendix C). While EDGAR and other full-size examples

utilize monocular cameras, they are overall less prevalent. Section 2.3.1 explains in detail what

information algorithms gain from a camera image using modern technology, making it a valuable

addition to an offroad AV despite the additional computational load. This is especially true in the

absence of 3D LiDAR capabilities for the purposes of perception as Appendix D shows. Addi-

tionally, even though 2D LiDAR are more prevalent as discussed in the previous paragraph,

many full-size AOV use multiple sets of them to provide a 3D point-cloud. This is impractical on

a small RC car and as it would introduce computational hurdles and calibration issues. Thus, a

point-cloud generated from a stereo camera seems a valuable substitute, although it likely lacks

enough precision for pure point cloud perception (Appendix D and Section 2.2.1). The point-

cloud may additionally be useful for sensor fusion (Section 2.3.1), introducing additional capabil-

ities. With all of that in mind, this project will use a stereo camera.

For additional exteroceptive sensors, some full-size examples use Radar and Ultrasonic sensors.

However, such sensors and systems provide contingency or emergency use (Appendix B) which

are difficult to integrate on a small RC car, leading to the decision to not integrate them on this

thesis’ vehicle.

Lastly, for proprioceptive sensors, the chosen F1TENTH platform (Section 3.1.1) already in-

cludes a motor controller, the VESC (Section 2.2.2), which provides encoder support and an

IMU, which are present on all platforms (Section 2.2.3). This is appreciated, since these are

capable sensors for the task of localization and can augment other sensing systems (Sec-

tions 2.2.2 and 2.3.2), which is vitally important for navigation (Section 2.4). When it comes to

other proprioceptive sensors, a large split emerges between full-size AOV and small-scale AV.

Here, we see all large AV utilize GPS for their offroad navigation requirements, with 80% of them

additionally employing either a magnetometer or heading information, while none of the

F1TENTH based vehicles include such capabilities. As global localization is critical for offroad

navigation, this project will include a GPS sensor on the vehicle, but without a GPS heading

system as those are more complicated, and thus expensive (Section 2.2.2), with this thesis’ ve-

hicle instead opting for a magnetometer.

3.1.3 Goals for Perception and Navigation

All of the prior considerations lead to the purpose of the vehicle, which is offroad navigation and

its perceptional requirements. Section 2.3.1 shows extensively that AI-based semantic segmen-

tation is highly capable and of significant use for the task of autonomous offroad navigation.

While Appendix E lists relevant alternative techniques, they rely on sensor technology which is

unavailable for this project, while the presented perception techniques simultaneously supply a

greater amount of information. As such, this project chooses the two-stage OFFSEG system as

the primary perception method, as it provides a large amount of offroad-relevant ground classes

as well as pretrained models ready to use. It is also open source, and as such poses less hurdles

for adaption in this project while still showing adequate results. Additionally, navigation requires

a 2D top-down map for the techniques of Section 2.4, and so the developed system will run a

2D-image and point cloud fusion algorithm (Section 2.3.1).

Next, for navigational purposes, while many advanced localization techniques and correspond-

ing hardware exist (Sections 2.2.2 and 2.3.2), the combination of IMU, encoder odometry and

GPS has proven itself as sufficient when combined with Section 2.3.2’s fusion techniques, as

3 Method

30

many full-size examples such as Stanley demonstrate. All advanced systems are too difficult to

calibrate, too large to set up or too expensive, making their use impractical.

For navigation, this project will focus on local pathfinding, as Section 2.4 describes the draw-

backs of utilizing global navigation without a prior, established map. For this task, the vehicle will

utilize a trajectory-based tentacle navigation system (Section 2.4.1), since it is a proven, effective,

and simple solution to short range navigation. This is especially true considering the limitations

of our sensing suite (Section 3.1.2), which would make mid-range navigation difficult without

more accurate point-cloud data supplied by unavailable 3D LiDAR sensors.

As to methods such as SLAM and subsequent multi-layer navigation (Section 2.4.2): SLAM is

too complicated and difficult to implement with the aforementioned limited sensors and without

a more accurate positioning system (Section 2.3.2). As such a system is outside of the scope of

this work, and without longer range sensing or local mapping, this project’s navigational system

has no use for longer range planners. This eliminates the need for complex multilevel navigation,

which this project will thus not use.

3.1.4 Considerations for Compute Hardware and Software

This thesis further decides on a compute hardware platform that is a proven, widely used system.

While early systems employ complex computer systems, the current state of the art are NVIDIA

Jetson SoC (Section 2.3.3). They are capable systems, used in both semantic segmentation

development and in actual, running AV. Researchers use them on two of the F1TENTH platform

examples shown before, further validating their capabilities on small-scale platforms. While one

of the F1TENTH platforms uses a Raspberry Pi, it has less compute power. With the computa-

tionally taxing AI-based semantic segmentation system needed for perception (Section 2.3.1),

this thesis’ vehicle will use the higher performance hardware proven in this field.

Lastly, deciding on a software framework is similarly straightforward. Section 2.3.3 states that,

while early examples use custom solutions or early real-time systems, almost all later implemen-

tations of AOV utilize the Robot Operating System or ROS combined with a Linux operating

system. As a comprehensive and capable suite of infrastructure, algorithms, and software sys-

tems for autonomous driving, the F1TENTH platform uses ROS by default on all presented

examples, further proving its capability and applicability.

3.1.5 Summary of initial Analysis

To finish this section, Table 3.1 displays a combined list of the hard- and software picks made

for the vehicle developed in this thesis, based on the state of the art in offroad driving.

Table 3.1: Intended Setup of this thesis’ platform based on prior work and analysis thereof.

Chassis/Electronics Sensorics Perception/Software Navigation

Traxxas Slash 4x4

Short course desert

truck

NVIDIA Jetson

2D LiDAR

Stereo Camera

GPS receiver

VESC

Magnetometer

AI-based semantic

segmentation

2D-image/point-cloud

fusion

Linux operating system

ROS

Local Pathfinding

Short range 2D top-

down map

Trajectory based tena-

cle methods

3 Method

31

3.2 Setup and first System Tests

Figure 3.2: State of the thesis at the start of the physical project, grouped by subsystems in order

of their development in this thesis. Black text signifies components already present,

green denotes elements developed in this section.

After the previous section’s analysis, this section will now begin documenting the construction of

the robot, with Figure 3.2 showing changes currently planned for this initial step. The Technical

University of Munich’s Autonomous Vehicle Systems (AVS) department, which oversees this

thesis, supplied a partly preconfigured F1TENTH platform for this project (Figure 3.3).

Figure 3.3: Initial configuration of the F1TENTH platform supplied by TUM’s AVS department.

This system builds on a Traxxas Slash 4x4 short course desert RC truck, similar to other

F1TENTH platforms (Section 2.1.4), which Section 3.1.1 declares a suitable basis. Like these

platforms, the vehicle receives a mounting plate, which contains an NVIDIA Jetson Nano, a Ho-

kuyo UST-10LX 2D LiDAR, the VESC 6 motor controller, dual WLAN antennas and a 12 V power

supply board to regulate battery voltage for the Jetson and the LiDAR. The vehicle powers off of

a Traxxas 5000 mAh 11.1 V 3-cell Lithium Polymer Battery. The Jetson has the Ubuntu 20.04

LTS distribution of Linux preinstalled, together with ROS 2 Foxy, which already integrates the

VESC and LiDAR via the installed f1tenth_stack ROS package [82]. This package also sets

up robot control via a Logitech F710 gamepad and facilitates LiDAR data access via ROS. This

setup is similar to other F1TENTH platforms in sensors (Section 2.2.3) and overall software setup

as documented on the official F1TENTH website [34].

3.2.1 Chassis modifications and Sensors

After receiving the initial F1TENTH depicted in Figure 3.3, it does not contain provisions for

mounting the ZED 2 stereo camera. This project utilizes this camera due to its availability at the

3 Method

32

TUM’s AVS department, and with 110 horizontal and 70° vertical FOV stereo vision, 3D point

cloud data via an integrated neural depth engine, plus IMU and magnetometer data, it more than

satisfies this project’s requirements (Section 3.1.2). A 3D-printed mounting stalk utilizes the ex-

isting LiDAR mounting provisions present on the mounting plate to attach the camera. This stalk

allows both the camera and LiDAR to function relatively unobstructed and without interference

from each other or other components, analyzed in detail in Sections 4.2.1 and 4.2.2.

A closer investigation of the provided F1TENTH platform shows that the mounting plate attaches

to the chassis only with hot-glued standoffs. This raises safety concerns for the hardware when

subjected to offroad driving, so specially designed, additional 3D-printed mounting brackets in-

crease structural integrity. These interface with the handle mounting holes on the chassis as well

as the mounting holes on the mounting plate used by the hot-glued standoffs. To allow access

to the battery compartment, the vehicle uses three brackets instead of four to hold the mounting

plate. A lateral offset between the mounting holes in the plate and the chassis necessitates the

integration of this offset in the brackets, thus the 3D printer prints the model of the third bracket

mirrored. Figure 3.4 shows these additional elements mounted on the vehicle.

Figure 3.4: Initial modifications to the provided F1TENTH platform, with annotations. The NVIDIA

Jetson Nano is easier to see in Figure 3.3, where it mounts at the same place.

3.2.2 Sensor Capabilities and Software Architecture

As Section 3.1.4 previously explains, ROS 2 forms the basis for the Software Architecture, with

Section 2.3.3 expanding on its capabilities. The initial platform includes a preconfigured version

of ROS 2 Foxy – which this project adopts – providing working integrations for the LiDAR and

VESC via the F1TENTH software package [82]. The Hokuyo UST-10LX LiDAR has a 270° hor-

izontal field of view and provides one scan line with an angular resolution of 0.25°, providing

1081 total scan points at 40Hz refresh rate. The VESC 6 controls both the brushless main motor

driving all four wheels as well as the steering servo. In addition, it features an additional IMU

providing odometry at 50 Hz.

However, the ZED 2 Camera still needs software integration, provided by the zed-ros-wrapper

package available on GitHub [83]. This package makes the full capability of the camera available

directly to ROS, including camera feeds, depth information, magnetometer data and camera

1. Dual Wi-Fi antennas

2. 12 Power distribution board

3. ZED 2 stereo camera

4. Camera stalk

5. Hokuyo LiDAR

6. Mounting plate

7. Mounting plate brackets

8. Jetson Nano (behind ZED 2)

9. VESC 6

3 Method

33

odometry readings. While the camera can provide its video streams at up to Full High Definition

(HD) which is 1920 by 1080 pixels while running at 30 Frames per Second (FPS), this project

and its hardware cannot handle such data density. Thus, the setup initially runs at HD720 (1280

by 720 pixels) and 15 FPS with ‘neural’ depth mode, while running the IMU at its max of 400 Hz.

Depth data ranges out to 20m, with resolution and refresh rate matching the main camera feed.

3.2.3 Lessons from first Drives

Initial test results are promising; however, several problems manifest. Firstly, data capture uti-

lizes the ROS bagging feature, which enables data capture and replay by interfacing with the

message-based data infrastructure to save time-stamped messages to a file. Due to the high

bandwidth of both the video and depth data (quantified in Section 4.2.2), the slow transfer speeds

of the internal Jetson micro-SD card compromise data bagging. To combat this, for future tests

a Samsung 970 EVO 1 TB internal NVMe solid state drive provides the necessary disk speeds

for high bandwidth data gathering on the Jetson SoC.

Next, the system responds slowly with occasional, up to second-long lags, which result in loss

of control for that timeframe. With data bagging still impacting the system, a further reduction of

camera capture framerate and resolution solves the lag issue. The resolution is now set at the

Video Graphics Array or ‘VGA’-option (672 by 376 pixels) with a 10 FPS refresh rate. However,

even after this further reduction, a test via the internal ROS message infrastructure shows

that the camera package only provides around 7 FPS continuously. Section 4.2.2 exten-

sively studies this effect, with quantified results for multiple configurations.

Modifications to the original Traxxas plastic outer shell for the vehicle such as holes for the Wire-

less Fidelity (Wi-Fi) antenna, camera, and LiDAR allow its continued use on the vehicle,

combating ingress of dirt, mud, or water into the sensible and unprotected electronics on the

mounting plate (Figure 3.5). With these modifications, the vehicle is ready for a first data gather-

ing run in an offroad environment, with Figure 3.5 showing a picture of said run. The system

records data for 30 minutes while driving without issues, bagging 150 GB of data.

Lastly, after witnessing the vehicle struggle in offroad environments due to its low ride height

caused by suspension sag under the high weight of the additional sensor and compute hardware,

the vehicle needs a suspension system upgrade. This however only arrives towards the end of

the project due to shipping issues and thus Section 3.6.1 will present it at the end of the chapter.

Figure 3.5: Modifications of the provided F1TENTH platform vehicle. Left, modifications with plastic

outer shell. Right, data gathering run in off-road environment.

3 Method

34

3.3 Perception Software Development

Figure 3.6: Progress of the project at the start of software development, black items signify current

implementations, green items are this section’s additions.

This chapter covers the perception elements of this thesis’ software development. The ROS

package into which all of the software elements – including navigation, presented in 3.5 – will be

integrated is called f1tenth_offroad, available on GitHub [84]. The perception system splits

into two different subsystems – shown as the middle two steps in Figure 3.6 – which are the 2D

perception and the 3D Integration, and this chapter splits into the same compartments. More

specifically, the 2D perception comprises the semantic segmentation algorithm and its integra-

tion into the ROS pipeline, while the 3D Integration handles depth data processing, top-down

projection, and LiDAR fusion. Figure 3.7 shows an overview of the perception system, with ex-

ternal input, data transfers and internal processing steps.

Figure 3.7: Schematic Overview of the f1tenth_offroad package’s perception system also con-

taining a placeholder for the navigational components.

The software development is largely conducted on a Windows platform, utilizing an NVIDIA GTX

2060 and the Windows Subsystem for Linux (WSL) with a Linux distribution corresponding to

the one used on the vehicle (Section 2.3). The reason for this is the slow software development

on the Jetson, where compilation and running code takes considerable amounts of time. It is

complicated to use Visual Studio Code to remotely connect over ssh, a process for which a Wi-

3 Method

35

Fi connection, hotspot and internet adapter bridging are necessary. Additionally, the Jetson

crashes without warning when the battery charge gets too low, a phenomenon which will later

cause problems in field tests (Section 3.6.2).

Software development with WSL also is not without problems. While it is much faster and easier

to develop software on a desktop computer – which allows the software development without

the presence of the physical vehicle – several problems exist with GPU integration. Since the

software stack requires the presence of an NVIDIA GPU, a custom kernel and integration for

WSL are needed [85]. WSL Software development requires installation of the ROS system in

precisely the same manner as on the physical platform, and matching the packages and infra-

structure during development poses a challenge. Once the setup is complete, most software

development happens on the desktop platform, while using the GitHub repository to share code

between the systems, which is highly effective.

3.3.1 2D Perception: OFFSEG Semantic Segmentation Code and

ROS Integration

This project uses the OFFSEG Semantic Segmentation project and neural network model (Sec-

tion 3.1.3). The official implementation, available on GitHub [86], provides said model, pre-

trained neural network weights, as well as utilities and code for performing the segmentation and

facilitating training of the models. OFFSEG is a multistage system, which utilizes two different

models for coarse and fine segmentation (Section 2.3.1). Additionally, OFFSEG provides two

different options for the coarse segmentation step, of which this project uses the faster BiSe-

NetV2 architecture.

To integrate this system into the perception pipeline testing ensues. Initial trials prove trouble-

some, as the provided implementation does not function right out of the box, with missing initial

requirements for the code to execute fully. After adapting the requirements.txt file to use

newer or different packages available for the selected Linux distribution and hardware (Section

3.1.4), the next problem is the second stage segmentation. This requires a pre-step of K-means

clustering, which is non-functional in the original GitHub code. Downloading the source code for

a GPU-based K-means algorithm from GitHub [87] proves effective, although modifications were

necessary to alleviate bugs and make the code run on the vehicle platform. After the implemen-

tation of the custom K-means package, further work fixes other, smaller bugs present in the

provided OFFSEG pipeline, enabling the OFFSEG algorithm to successfully work as demon-

strated in its paper.

Next, the Algorithm requires integration into the ROS pipeline, where it must operate on the

message-based image feed from the camera driver and push finished, segmented images back

into the message infrastructure. This is simple on a conceptual level, since the provided OFF-

SEG code iterates through a given folder of images, successively running the algorithm on each

found file. If this ‘inner’ algorithm cloud instead operates on an image feed from a camera – which

also provides subsequent images – integration would be effectively complete. The code

achieves this modification by setting up the ROS package called ‘f1tenth_offroad’, which pro-

vides a ‘node’ – a piece of code running within and interacting with the framework – facilitating

segmentation. The specific node running this OFFSEG segmentation is ‘perception.py’ and

consists of the initial OFFSEG pipeline code from the pipeline.py file and the modifications

together with required libraries from the ‘libs’ subdirectory. By subscribing to the camera feed via

the provided ROS node infrastructure, the algorithm receives images, extracts them, runs them

3 Method

36

through OFFSEG without any changes to the inner algorithms, and publishes received results –

instead of saving them to a file – back into a ROS message available to the system. This requires

modifying the package configuration to include the required libraries and configuration files in the

package compilation, after which the algorithm achieves a complete integration of the OFFSEG

pipeline into the ROS infrastructure.

This structure allows OFFSEG code to run on recorded data from the actual vehicle. In addition

to the segmented image, an ‘overlayed’ image, showing the segmentation results overlayed over

the camera input image is available. Figure 3.8 shows a side-by-side display of a camera image

and its first- and second-stage segmentations by OFFSEG. Note that all camera pictures – RGB

or depth – shown in this paper stem from the left camera of the stereo setup.

Figure 3.8: Results of the OFFSEG semantic segmentation pipeline.

However, the following issue appears during the initial testing of the 2D Perception system: a

large part of the computational cost lies in second stage algorithm. Section 4.3.1 further dis-

cusses the specifics and ramifications of this, but the implementation of the second stage is both

computationally unfeasible as well as unnecessary. Thus, the final integration of the OFFSEG

algorithm for this project only performs the four-class segmentation into the categories sky, tra-

versable, non-traversable and obstacle as shown in Figure 3.8 in the middle. Additionally, the

system uses a mask to block out occluded parts of the camera image (Section 4.2.2).

3.3.2 3D Integration: Depth Data Processing and Top-Down Image

Generation

Next, another node called transform.py subscribes to the ROS message stream containing

the segmentation results. This node contains the sensor fusion code, which merges the seg-

mentation results, the LiDAR scan, and the 3D stereo camera data into a 2D top-down map of

the terrain in front of the vehicle. This task necessitates the following steps:

1. Creating a point cloud from the stereo camera depth data.

2. Merging the point cloud with the segmentation results, creating a 3D segmentation.

3. Performing a birds-eye-view/top-down projection of the segmentation point cloud.

4. Overlay the laser scan results over the 2D top-down segmentation image.

Depth Data Processing and RGB Data Merging

The ZED 2 depth data required for step one is available in the form of an ROS image message,

where each pixel contains a distance measurement in the corresponding view direction as a

floating-point number instead of RGB data. The system initially implements the creation of the

required point cloud from this data with code taken from the official image_pipeline ROS

Camera Image First Stage Segmentation Second Stage Segmentation

3 Method

37

package, specifically the point_cloud_xyz.cpp file at [88]. Here, the code iterates over the

RGB and depth data pixel-by-pixel, while utilizing additional data from a camera_info message

published by the ZED 2 camera driver, which contains necessary information for 3D operations.

This camera_info message comprises of the coordinates of the optical image center in pixel

coordinates, ������� and �������, as well as focal length # dependent scaling factors:

��������� = 1
#�

��������� = 1
#�

 (3.1)

When the algorithm multiplies a pixel’s coordinate and distance measurement by the respective

factor, it gets the 3D point’s lateral offset from the ;-axis pointing into the image frame, from

which it can calculate the 7 or � coordinate in the camera reference frame. It does this as follows:

let �, ! be the coordinates a pixel in the horizontal and vertical direction respectively and let depth(�, !) be the distance measurement at this pixel coordinate, taken from the depth image.

Camera coordinates here do not align with vehicle coordinates, since for camera the camera, �

and ! denote directions in the image plane, with depth(�, !) denoting 3D depth ‘forward’ into the

image plane. The vehicle coordinate frame aligns the 7-axis into the driving direction, e.g., for-

ward (corresponding to the direction of the camera’s depth measurement) and the ;-axis to point

upwards. Thus, the algorithm calculates the coordinates of a point 7, �, ; in the vehicle coordinate

system from the depth data and scaling factors from (3.1) as follows:

7 = depth(�, !)
� = −H(� − �������) depth(�, !) ���������I
; = − JH! − �������I depth(�, !) ���������K (3.2)

After obtaining these coordinates, the algorithm assigns the corresponding segmentation image

RGB values to this point, generating a RGB point-cloud. Figure 3.9 shows an example of a re-

sulting point cloud together with its input segmentation and depth image.

Figure 3.9: Visualization of steps one and two of the 3D integration pipeline, with a OFFSEG se-

mantic segmentation result, corresponding depth image and the resulting point cloud.

For the depth image, brighter points are farther away, brightest being 5 m.

Segmentation Result

Point Cloud

Depth Image

3 Method

38

However, performance of this initial system is inadequate – further expanded upon in Sec-

tion 4.3.2 – leading to an alternative implementation. The existing code runs in python, where

the for-loops utilized for iterating over the pixel space are the main culprit for the lacking perfor-

mance as they are notoriously inefficient in python code. numpy usage solves this problem.

Specifically, utilizing numpy’s fromfunction and apply_along_axis methods, it is possible to

create vectors of offset factors in the � and ! image directions, which can then apply along the

axes of the depth data array. Specifically, a subsequent method adapts the functions from (3.3)

to provide the following vectors with 8 and 9 as vectors of all image coordinates:

: = −H(8 − �������) ���������I
< = − JH9 − �������I ���������K (3.3)

The algorithm then uses : and < (3.3) as lambdas to fill vectors spanning the dimensions of the

image in the � and ! directions, respectively. By multiplying these vectors with the depth data

either with each row for � or each column for 7 – using numpy’s apply_along_axis method and

another lambda – the algorithm calculates the � and ; coordinates, where 7 is already supplied

efficiently from the depth data in (3.2). This method improves performance (Section 4.3.2).

Top-Down Image Projection and LiDAR Fusion

With the segmentation point cloud now available, the next step is transforming it into a top-down

2D map. Code from [89] serves as a baseline, transforming a ROS 2 point cloud into a top-down

image by splitting the point cloud in the ; direction into slices of points, and then subsequently

iterating over them. Within these slices, it discards points which lie outside of predefined limits

for the top-down image, while translating the coordinates of all remaining points into pixel coor-

dinates. The limits for the 2D top-down image initially limited the map to ±7.5 m sideward and

15 m forward but are subsequently reduced to ±2.5 m sideward and 5 m forward due to the

navigation algorithm not requiring such a far map.

The algorithm achieves this by way of introducing a resolution value ���, which defines the length

in meters per pixel of the output image. Here, ��� is 0.025 m/p, resulting in a final top-down

image resolution of 200 by 200 pixels for the 5 m by 5 m input. Next the algorithm translates the

meter-based coordinates of the point cloud in the planar 7 and � direction into pixel coordinates:

Here, �, ! are again pixel coordinates corresponding to −� and −7 respectively, correctly orient-

ing the map vehicle’s forward 7-axis pointing upwards in the map. Then, the following formula

computes the pixel coordinates, where ��������� denotes the top-down images’ leftward extent

in meters and ��������� denoting the same for the minimum forward distance:

� = − �
��� − ������������

! = − 7
��� + ������������

 (3.4)

With these the pixel coordinates computed, the algorithm fills RGB color information into the

output image array at the specified location, overwriting anything that is already present, and by

iterating through the point cloud slices from the bottom to the top, it creates a top-down image.

Section 3.6.3 later refines this algorithm using GPU acceleration via torch, because of perfor-

mance concerns (Section 4.3.2).

3 Method

39

Lastly, the transform.py node overlays LiDAR Data into the map in the same way, starting with

the creation of a planar point cloud from the LiDAR data. A laser scan message, which the ROS

drivers for the LiDAR provide, contains a list of range measurements, together with minimum

and maximum angle �����	�� , �����	
�. The node creates an angular map by iterating over

the angles of the laser scan points with respect to the forward direction, recording the tuples (�, �) of sine and cosine measurements for these angles. It does this via the incremental change

of angle between two scanlines �������� and the scanline index N ranging from 0 to the total

number of scanlines �:

(�, �)O = (sin(�����	�� + N ��������) , cos(�����	�� + N ��������)) (3.5)

The node then multiplies this map elementwise with the corresponding LiDAR distance meas-

urements to obtain 7, � tuples denoting the measured point’s position around the lidar in meters.

It then applies (3.4) again with the 7, � coordinates received from the LiDAR data to generate

points in image coordinates, which it then connects with lines on the navigational map. Figure

3.10 depicts an example of the final output of this system together with an overlayed segmented

input, and an evaluation of the systems performance is available in Section 4.3.2.

Figure 3.10: Example of the resulting top-down map from the 3D integration pipeline, together with

the corresponding segmentation result overlayed over the camera input.

3.4 GPS Integration on a Small Vehicle

After the implementation of the perception system, the next step is the integration of the GPS

system needed to move on to navigation.

This vehicle uses a Whadda WPI430 GPS module, sporting a u-blox NEO-7M GPS chip. It can

make use of the global navigational satellite systems GPS, GLONASS, QZSS and Galileo (Sec-

tion 2.2.2) and connects directly via a 9600 baud micro-Universal Serial Bus (USB) serial

connection. While the module operates with its internal ceramic antenna in this project, it may

alternatively operate with an external antenna via an SMA connector. Using the serial connection,

the module will directly send National Marine Electronics Association (NMEA) messages con-

taining status information and positional data to the computer. This is advantageous, because

other modules require extra, complicated USB transistor-transistor logic (TTL) adapters.

3 Method

40

This section will cover the mounting solution for the GPS sensor and its integration into the ROS

infrastructure. In addition, it will present influences on GPS signal acquisition time and position

data accuracy, together with improvements to the GPS system. These include EMI shielding for

the plastic chassis components, standoffs, and other elements. Figure 3.11 presents these ele-

ments together with the initial GPS integration.

Figure 3.11: Thesis progress at the start of GPS development. Black text denotes items which the

system currently implements, this section implements green text items.

3.4.1 Initial GPS Testing

Initially, the GPS sensor mounts simply to a standoff on the main mounting plate, and after con-

necting the receiver to the Jetson SoC, the next task is ROS integration. To facilitate this, the

system integrates the nmea_navsat_driver ROS package into the software framework, which

provides a serial NMEA driver node. Said node translates serial NMEA messages from the GPS

module into ROS messages, publishing them into the system. These messages include velocity

data, a ‘fix’, e.g., positional data as well as a time reference from the satellite network, all pub-

lished to ROS at 1 Hz. In theory, these measurements should achieve the 1.5 m accuracy

expected of GPS (Section 2.2.2), enough for the purposes of this work (Section 3.1.3).

In initial tests the ROS node however did not appear to send data to the ROS system. Testing

inside, outside and with varying levels of building cover does not resolve the issue; no messages

present in ROS. Next, analysis of raw serial data shows status information, which is not present

in the ROS messages, providing grounds for the discovery that the GPS module has trouble

acquiring satellite signals. Section 4.2.3 presents exact, quantified information on this together

with the effects of improvements and modifications. Under the assumption that the module is in

working order and because of the close proximity of the hardware on the mounting plate, the

initial conclusion points to disruptive effects of Electromagnetic Interference (EMI) originating

from other hardware elements. Further tests reveal that the GPS module works well when con-

nected to another system – in this case a laptop – which further points towards an EMI issue

with other hardware on the platform.

3.4.2 Analysis of GPS Electromagnetic Interference Effects

Thus, testing assesses the effects of other hardware, with Section 4.2.3 presenting results. The

process of EMI analysis starts with selectively unplugging certain components from the System

to measure their effect on the GPS module. First, tests assess the effect of the ethernet based

3 Method

41

LiDAR by removing it, since quick research reveals occurrences of Ethernet-GPS interference.

This proves effective at first, with the module acquiring a signal, however when activating the

rest of the vehicle systems to record data, the signal accuracy and satellite acquisition is insuffi-

cient.

At this stage thinking turns towards electrical shielding, as it could possibly moderate the EMI

effects on the GPS system while also mounting the sensor on a standoff on the roof of the vehi-

cle – similar to sensors on full-size AV (Section 2.2) – to increase its distance to possible EMI

sources. The application of aluminum-foil shielding to the inside of the vehicles hull and the cus-

tom designed 3D-printed standoff – both shown in Figure 3.12 – however do not provide

conclusive results. Successive tests show that unplugging the camera dramatically improves

signal accuracy and the number of satellites acquired, while observing the same effect achieved

by unloading the camera driver during ROS initialization. Subsequent research again shows prior

occurrences of this interaction, specifically with the ZED cameras used in the project. Thus, the

tests conclude that the camera was the culprit for the GPS EMI effects.

Figure 3.12: On the left: aluminum shielding applied to the inside of the vehicle’s hull before installa-

tion of the grounding wire. On the right, the final mounting position of the GPS receiver

at the rear of the vehicle on its standoff (red circle).

3.4.3 Modifications to Hardware and Software

Subsequently, modifications move the GPS receiver to the rear of the vehicle to increase its

distance to the camera and reduce EMI influence. Other researchers, users and the manufac-

turer recommend stepping down the camera’s USB interface bandwidth from the more

capable 3.0 standard to 2.0 to further reduce EMI, so a USB 2.0 hub interfaces between the

camera and the Jetson. This improves the number of GPS satellite acquisitions and subse-

quently the accuracy of the measurements into ranges acceptable for autonomous navigation

purposes (Section 4.2.3). At the same time, it is limiting the camera to video capture at a maxi-

mum of VGA resolution and 12 FPS, which is inconsequential here since the camera runs at a

lower resolution and framerate anyway (Section 3.2.3). As a safety measure, a further reduction

of camera frame-frate to 7.5 FPS takes place. Figure 3.12 shows the final setup of the vehicle

on the right, where it retains the aluminum shielding on the inside of its hull.

3.5 Navigation System

Looking at the big picture, the goal of all the modifications, sensorics and software developments

which the sections up until present is true autonomous offroad navigation. With the chassis,

3 Method

42

hardware integration, software framework, perception, and positioning components now prelim-

inarily complete, this section will focus on the last element of autonomous offroad robots:

navigation. The navigation system here will solely comprise of local pathfinding, utilizing the ten-

tacle-based approach (Sections 2.4.1 and 3.1.3), with global positional information only having

directing influence on the planner.

Figure 3.13: Project state and modifications for the navigation system. Black items signify the cur-

rent state of the project, green items are modifications in this section.

This is nevertheless not a simple undertaking, with the navigation system utilizing not only data

from the perception stages of the software package, but also data from the magnetometer, the

GPS and VESC motor controller, leading to modifications of multiple systems (Figure 3.13). The

following sections present the specific setup of the tentacle-based navigation approach, before

explaining the challenge of acquiring reliable heading data and going over the path selection

metrics and vehicle control. Figure 3.14 shows an overview of the navigation system, highlighting

the multiple data sources from which the algorithm acquires data, with the previous perception

stage supplying the top-down map.

Figure 3.14: Schematic overview of the navigation side of the f1tenth_offroad ROS package.

3 Method

43

3.5.1 Concept and Prospective Paths

As stated before, the pathfinding system in this project bases itself on the tentacle navigation

approach (Section 2.4.1), and to use this method the algorithm must determine prospective

paths (the ‘tentacles’). Some researchers utilize a linear scaling approach for this, where they

evenly space paths in terms of rate of turn between two extrema, however, for this project said

approach is unsuitable. Due to the low vehicle speed – the maximum speed of the vehicle is only 1 m/s (Section 3.5.3) – the initial map range of 15 m is excessive (Section 3.3.2), justifying a

reduction of the map range to 5 m. This results in a top-down map with a size of 5 m by 5 m,

which the selection of prospective paths now needs to cover.

The specific path selection is the result of a development process, which implements many dif-

ferent numbers, angles, and rates of turn for the different paths. In the end, testing shows that

13 paths cover the image space adequately when additionally considering that the vehicle width !6 is 10 pixels during evaluation (Section 3.5.3). First, the path generation algorithm assigns

lengths to the prospective paths, since the 110° FOV and limited side range of the map prohibit

the computation of all paths from over the full 5 m range. From outermost to innermost, the

navigation software sets the lengths of the paths in meters according to Equation (3.6) to not

exceed the usable map space.

[1.45, 2.2, 3.2,4.2,4.8,4.8,4.8] (3.6)

Then, it computes the points of a path, utilizing the maximum steering angle �����Z[� and the

respective number of segments in each arm ���O, calculated with the values from (3.6) where

the length of the arm with index N is �O:

���O = �O ⋅ 1
��� !] (3.7)

Next, the algorithm needs the angle per meter ��
, which is the maximum rate of change of

angular direction in radian over 1 m, which it calculates using the minimum turning diameter
��

of 1.784 m. This is taken from the official F1TENTH documentation [34]. ��
 calculation then

proceeds as follows:

��
 = 1
0.5
�� ��� !] (3.8)

Lastly, to set the direction and curve of each path, the algorithm requires the factor of maximum

turn or scale factor �#, which determines the percentage of the maximum ��
 the vehicle will

pursue for a specific path. For an arm of index N, where this index runs from 0 at the outermost,

most curved path to 5 for least angled path – excluding the straight path – this factor is:

�# = 1
0.7N^._`Oab + 1 (3.9)

This equation yields the maximum turning angle �# = 1 for the outermost paths, and then scales

back the rate of turn for the ‘inner’ paths, achieving an ideal covering of the navigational map.

The last, straight path requires no curve, which the algorithm draws without any angling. Finally,

the algorithm can now generate the paths, which it represents by their points. It generates these

points for ���O segments – the value of which is taken from (3.7) – of 0.5!6 pixels each, which

3 Method

44

curve inward at the desired turn rate ����� at each step, the calculation of which utilizes (3.8)

and (3.9):

����� = ��
 ⋅ �# (3.10)

For each run, the algorithm creates two mirrored paths curving both left and right, before adding

the last, middle straight path to the prospective path list. This list is constant – with paths defined

by the collection of their waypoints in the image space of the navigational map – and as such

the algorithm reuses it in every computation step. Figure 3.15 shows the resulting paths forming

a palm-like figure on said navigation map.

Figure 3.15: Representation of the prospective paths evaluated by the navigation system in yellow

overlayed over a top-down navigational map showing traversable terrain in blue.

3.5.2 Magnetometer Calibration and Heading Data Fusion

With the creation of prospective paths finished, the next step is their evaluation, which however

is impossible without heading data. If the direction of vehicle travel is unknown, the algorithm

can make no decision over path suitability if it should drive towards a goal point.

Initially, the navigation algorithm attempts this solely via the integrated magnetometer of the

ZED 2 camera, with the camera driver publishing magnetometer messages containing the

strength of the magnetic field in all three dimensions. The software translates this into an angular

heading ℎZ[$ – where pointing straight north is heading 0 – by utilizing the magnetic field

strength in the 7 and � directions
� ,
� and the arctan2 function with Equation (3.11).

 ℎZ[$ = arctan2(
� ,
�) (3.11)

However, measurements prove to be inaccurate and unreliable. Said measurement responds

non-linearly to smooth, linear turning, further underlining the magnetometer heading’s inade-

quacy. Assumed cause for this behavior is the magnetic influence of other components such as

the main propulsion motor’s magnets, magnetic casings of sensors or fields generated by electric

currents in wires.

3 Method

45

Following these results, calibration of the magnetometer is paramount. The calibrations proce-

dure starts by rotating the entire assembly in constant, known steps while the full system is

running, spinning the wheels, and recording the readings from the magnetometer. Additionally,

tests determine a fixed offset relative to true magnetic north and the magnetic north recorded by

the sensor. Then, creation of a magnetic map follows, using the measurements taken in 10°

intervals to create a look-up table containing the actual magnetic heading for each magnetome-

ter reading in one-degree increments; the mag_map.py file contains code for this. Additionally,

the software buffers the 40 Hz magnetometer readings over 10 readings – equating to

0.25s – and subsequently averages them using the scipy libraries’ circmean function to reduce

jitter. This, however, still proves insufficient. Further error sources such as the vehicle not being

level when ascending or descending slopes – causing drifting of the magnetic heading meas-

urement – or when coming close to large metal objects – like parked cars or solid metal

fences – prove insurmountable even by repeated calibration attempts.

Thus, as an additional point of measurement, the software introduces the GPS position data into

the heading calculations. By calculating the heading between two subsequent GPS fixes using

the pyproj libraries’ geodesic system, it creates another heading measurement via the contin-

uous stream of GPS positioning data. As long as the GPS module can provide fixes, this

system – in theory – can provide accurate heading measurements. At first, the software simply

averages the two measurements, but that proves difficult since the GPS heading only updates

every second. This means that heading changes within that second would only show as half

their actual magnetometer measurement value to the navigation system, introducing erratic and

inaccurate behavior, especially once the GPS heading updates. To combat this, the software

only computes the average heading ℎ$%&_Z[$_[e$ once at the time of the GPS ping, while record-

ing the current magnetometer heading ℎZ[$_fOZgh. Using these values, the software calculates

the fused heading ℎij&gh at each magnetometer heading update ℎZ[$_kjllgmf using formula

(3.12), where all heading readings are in degrees and % is the modulo operation.

ℎij&gh = ℎ$%&_Z[$_[e$ + (ℎZ[$opqqrst − ℎZ[$_fOZgh) % 360 (3.12)

This results in a dynamic average, where subsequent changes in magnetometer reading after

the initial GPS heading average display at a one-to-one ratio in the fused heading – without 50%

dilution as before – until the next GPS fix, which starts the next averaging process.

While this system is effective, it is troublesome when the vehicle is at standstill. In this situation,

the GPS heading reading jumps unpredictably around the vehicle with the natural error of the

GPS data, throwing off the fused heading. The heading fusion system combats this by introduc-

ing wheel odometry readings from the motor controller, specifically measurements of current

forward speed !f averaged over one second. It uses this to calculate a GPS trust factor #��$%&,

calculated according to the following equation, the value of which it clamps between 0.0 and 1.0:

#��$%& = (!(− 0.2) ∗ 5 (3.13)

This results in a linearly scaling factor between the speeds of 0.2 m/s and 0.4 m/s, where it is at

0 for 0.2 m/s and at 1 for 0.4 m/s. The software then uses the value from Equation (3.12) to

modulate the average between GPS heading and magnetometer heading, where a factor of 1.0

would equate to an equal average, and a value of 0.0 would negate the influence of the GPS

heading. Said system allows the vehicle to switch to magnetic heading data at standstill and fuse

it with GPS data to determine the current heading more accurately while moving, with quantified

3 Method

46

results available in Section 4.4.2. Figure 3.16 shows an example of the algorithm in action, with

odometry readings at standstill and while moving.

Figure 3.16: Heading odometry provided by the fusion system at standstill and while the vehicle is

moving. Arrows indicate the heading reading of a specific sensor/system, with head-

ing 0 defined in the upwards direction. At standstill, the GPS heading has no influence,

and an average between GPS and magnetometer heading appears while moving.

3.5.3 Path Evaluation, Selection, and Robot Control

Now, the paths the algorithm generates (Section 3.5.1) require analysis to evaluate their viability.

For this, the navigation system analyzes the established path points with the navigational map

provided by the perception system. Since the map is an image, the algorithm establishes a color

dictionary to recognize the four colors of the segmentation image. Additionally, it assumes that

empty pixels are of the traversable class, while the red pixels of the LiDAR belong to the obstacle

class.

Then the algorithm performs evaluation along the points of the paths. It does this by sectioning

off square areas of the combined top-down segmentation and LiDAR map around the points of

the path with size !] + 1. It then analyzes the points in the following way: when a selected area

contains any pixels not of the traversable class (e.g., sky, LiDAR, obstacle or non-traversable),

it is impassable and the path evaluation ends, assigning the number of segments traversed until

the obstruction as the path’s evaluation result. It also regards the sky class as a not traversable

class, because sky pixels should always be outside of the 5 m range of the map, such that when

they fall inside the map, they are either reflections on glass or water, or mischaracterizations of

real obstacles. When the algorithm detects no untraversable terrain on a path, it assigns that

path the evaluation result ���, since the distance to an obstruction is larger than the visible path

length.

Finally, the software compares the angle into which the path points – which is by extension an

offset of the vehicle heading, hence its importance here (Section 3.5.2) – with the heading to-

wards the global goal of the robot, the location of which is hard-coded into the navigation

mechanism. If the algorithm finds one or more traversable paths with evaluation result ���, it

chooses the path that points closest towards the direction of the goal, even if the directional

difference is large. In this case, the algorithm discards all obstructed paths. If no unobstructed

path is available, the navigation algorithm choses the path with the longest possible travel dis-

tance until an obstruction, and if the path shares this distance with more than one path, the

algorithm chooses the one with the least amount of steering input, preferring straighter paths.

Vehicle at standstill Vehicle moving forwards

3 Method

47

This algorithm proves to be effective but flawed in field testing, and Section 4.4 presents quanti-

fied results. Figure 3.17 shows an example of the algorithm at work.

Figure 3.17: Result of the navigational algorithm (right) with the corresponding camera image (left).

The color of a path indicates its evaluation result, with better results indicated by more

intense yellow. The orange dot signifies the direction of the goal point.

The factor of maximum turn �# of this selected path steers the vehicle. First, if the distance to

the target is larger than 5 m, the navigation algorithm assigns a desired speed of 1m/s, otherwise

it is set to zero, halting the vehicle. Then, it multiplies the �# value with the maximum turn rate

for the steering servo, 0.34, and passes that on as the steering control value. Next, it packs this

information into a ‘drive’ message and publishes it into the ROS system, where the motor con-

troller driver picks it up to forward the inputs to the motors. Section 3.6.4 further improves this

control scheme.

3.6 Late-stage Modifications and final Developments

Figure 3.18: Project state at the end of if the initial development cycle. Final fixes, modifications, and

improvements to earlier systems in the later stages of testing and development are

green, with the existing state of the project in black.

During the development of the project and its incremental tests, problems appeared with some

of the previous systems or components. Since these issues (Figure 3.18) are not part of the

3 Method

48

initial development of the individual elements, they the previous sections detailing the initial de-

velopment process do not cover them. This chapter now explains the final modifications and

improvements to the current state of the project. These modifications mostly happened during

development and testing of the navigational system, since they were only detectable once the

entire system was running and ready for tests.

3.6.1 Suspension Upgrade

Firstly, an issue already detected during Section 3.2.3’s initial tests: the additional weight of the

sensing and compute equipment causes the vehicle to ride significantly lower than expected

from the Traxxas Slash 4x4 chassis, reducing its offroad performance. To combat this, aftermar-

ket, adjustable springs from Monster Hopups supplant the original springs and dampers, allowing

adjustment to a more adequate ride height (Figure 3.19). This proves effective, while also

allowing for the releveling of the car due to fix the uneven weight distribution.

Figure 3.19: Traxxas Slash 4x4 chassis with the custom suspension upgrade, new shock-and-

spring combo circled in red.

3.6.2 Power Delivery and Battery problems

During the active development of the software stack, the developing software proved trouble-

some on the live Jetson platform (Section 3.3). Among other problems, battery power loss is one

of the issues listed. During tests with the newly completed navigation system these battery issues

reappear when testing the autonomous navigation system in the field, where the vehicle would

consistently shut off after 10 to 15 minutes of driving.

Endurance tests utilize a bench setup to evaluate different combinations of shut off sensors and

software components until the system fails and noting the remaining battery charge afterwards.

Section 4.2.4 presents quantified results, however the tests show that overheating is not the

critical issue, even though cooling elongates the runtime time slightly. Reducing the internal

power setting of the Jetson from 20W to 10W however allows tests to continue for up to 1 hour

and 20 minutes while not impacting system performance, which is sufficient for outdoor operation.

3.6.3 Performance Improvements

Initial navigational testing showed that performance was a major concern, since the system could

barely produce one image a second, which is insufficient for navigation and control. Thus,

3 Method

49

performance improvements of the overall code are necessary, with the following subsections

documenting the improvement process.

Monolithic Software Approach

First, tests analyze the ROS infrastructure. The tests provide information on significant delays

and overhead introduced by the ROS message system, and thus the integration of a monolithic

stack minimizes ROS overhead. This monolithic stack is a singular node, combining the func-

tionality of all three existing nodes – 2D perception, 3D integration and navigation – into one. A

separate node no longer publishes segmentation results as messages – since testing shows

that large messages negatively affect the ROS system (Section 4.2.2) – because the monolithic

node simply saves them as local variables before directly progressing to the next step. Similarly,

the algorithm only locally saves the navigational map to avoid overhead.

The monolithic approach introduces several complications. First, different sensors supply data

at different rates, and since the Camera is the slowest of the used sensors, it is the trigger for

the combined process. All other sensors asynchronously deposit their readings into internal buff-

ers, which the node then accesses once the computation starts. To further reduce performance

issues, the system limits the pipeline to one instance running concurrently and drops all other

camera images supplied during the computation.

While this makes debugging and development more difficult, it shows promising results and is

thus the method of software execution used during in-the-field operation.

GPU-based Compute Acceleration

Analysis showed that the top-down image processing method (Section 3.3.2) took up a consid-

erable amount of processing time every cycle, up to 700ms, with Section 4.3.2 presenting further

quantified results. This section describes the process of moving the top-down transformation into

cuda – which can execute the iterative approach from before faster while utilizing the torch

libraries’ index_put_ function – since this fixes the problem.

Instead of filtering and assigning slices according to a vertical resolution, the new algorithm trans-

forms the entire space of 7 and � coordinates at once into pixel coordinates and puts them into

the top-down map. Since every pixel in the RGB input image has a corresponding pixel in the

depth image, it has a corresponding 3D location, yielding matching array lengths with perfect

index correlation. Given the transformed, image-space coordinates extracted from the 7, � coor-

dinates and the RGB segmentation data, torch’s index_put_ completes the entire operation of

putting the RGB data into the output top-down image array at the corresponding 7, � position in

one single, GPU optimized step.

This operation has one problem, however. If two datapoints fall into the same pixel – e.g., when

vegetation grows vertically upwards, occupying the same 7, � footprint in the point cloud – the

behavior is undefined. In this case the top-most point should naturally be the one which takes

precedence over all points below it. However, testing reveals that the opposite is the case when

utilizing the data in its given format. There, the camera driver lays out the image’s pixels – and

thus the 3D points – starting at the top left corner, before then stepping through the data row-by-

row, arriving at the bottom right corner last. Under the assumption that index_put_ iterates

through the array in the same way, the algorithm would give the lower points precedence, result-

ing in behavior opposite to the required variant.

3 Method

50

The improved algorithm solves this by reverting the direction of the data array prior to computa-

tion. Thus, it lays the data into internal memory from the bottom right to the top left, which results

in the correct behavior when encountering preoccupied cells in the map. Since this method is

not reliant on the orientation of the input image – since the 3D data entirely governs the output

orientation – this internal data layout has no further effect on the output image except the in-

tended one. Section 4.3.2 presents the final performance gains from this strategy.

3.6.4 Navigational System Modifications

During final system integration testing and autonomous driving evaluation, the vehicle would

occasionally continue driving straight into obstacles when it came to close to them. This is a

direct result of the navigation algorithm (Section 3.5), where, when obstacles or terrain blocks all

prospective paths, the vehicle will simply attempt to continue onwards on straight path.

An improved navigational algorithm solves this by – should the no path continue unobstructed

for 2 !6 or 25 cm – commanding the vehicle to drive backwards in a straight line at 0.5 m/s until

the next processing step. Thus, if the vehicle is facing an obstacle or terrain, the navigational

algorithm will now back away until it finds an unobstructed path continuing for more than 25 cm,

which will provide the vehicle with enough space to maneuver. Section 4.4.3 presents the precise

effects of this minute change but suffice it to say here that this provided the vehicle with a simple

and effective way to pilot itself out of previously unrecoverable situations, even if it requires mul-

tiple attempts.

Another problem the vehicle encounters in early tests is the following: when the vehicle attempts

to take the straight path to the obstacle, as it the navigation algorithm compels it to do, situations

can occur that cause it to take paths diverging from the intended route. This can result in the

vehicle getting stuck in dead end terrain geometries or necessitate the vehicle operator to inter-

rupt a test when the vehicle would otherwise drive into water. While a navigational algorithm

would ideally automatically circumvent such situations, this is not within the scope of hard-, soft-

ware and time available in this thesis. The algorithm thus implements an alternative solution: a

waypoint system. This system supplants the initial singular goal point with a set of waypoints.

The vehicle drives towards the first point on the list, and, upon reaching within 5 m of it, the

navigational algorithm swaps to the next point, prompting the vehicle to continue from point to

point until it reaches the final waypoint, e.g., the new goal. This allows for the customization of

routes, which, while slightly less capable than full autonomous start-to-goal navigation, compen-

sates for many of the systems issues and shortcomings, and as such the vehicle uses it going

forward.

Lastly, the system limits itself to a maximum of 1.5 executions of the f1tenth_offroad pipeline

to not overload the vehicle hardware and cause crashes, which appear during tests without such

a cap on processing pipeline execution frequency. This 666 ms delay between control inputs

however proved to be a major problem when turning tightly, as the vehicle’s orientation, FOV

and general situation can change significantly during this time, especially when navigating close

to obstacles. Thus, the last change to the control system is the implementation of adaptive speed

control. When executing the tightest turn with a diameter
�� = 1.784 m, the vehicle slows from

1 m/s to 0.5 m/s. Additionally, the vehicle drives the second tightest turn with a diameter of 2
��

at 0.75 m/s. Further testing and validation prove this to be highly effective (Section 4.4.3).

51

4 Results

The previous chapter finished the development of this thesis’ project: the creation of a small-

scale vehicle based on the F1TENTH platform fully capable of autonomous offroad navigation.

Following this, the current chapter will now focus on the performance of the developed hard- and

software by presenting the results of the research done on the platform.

While certain unified test tracks, autonomous offroad vehicle competitions and challenges ex-

ist – which would certainly add interesting datapoints to this work if it would test on them – this

thesis will perform no comparative evaluation. The reasoning for this is twofold: a peer compar-

ison of this system is outside the scope of a bachelor’s thesis, and even if this work would perform

such a comparison, the results would be of limited meaning, owing to the unique status of this

project in the field of autonomous offroad vehicles (Section 1.1).

The following sections comprise of the final evaluation of the vehicle’s autonomous offroad ca-

pabilities, and of the assessment of individual system components, intermediate system stages

as well as limitations and other problems derived from the workings of the platform. The following

sections will give an overview of the completed system, before evaluating the systems compute

and sensor system and moving to its performance for both the perception and the navigation

system.

4.1 Completed System Overview

Figure 4.1: Overview of hard- and software components of the finished vehicle platform.

Before analyzing the results and performance of the finished vehicle system, it is worthwhile to

gain a complete overview of the final setup, presented in short form Figure 4.1. This is relevant

when considering that this vehicle is currently unique in its configuration among AOV, combining

small size and low cost with full-size offroad capabilities. Thus, this work considers the vehicle

setup a relevant scientific result of the work done in this thesis.

4 Results

52

4.1.1 Hardware Overview

Figure 4.2: On the left, the final, completed vehicle hardware platform with its outer shell. On the

right, the main mounting platform with the compute and sensing hardware.

The vehicle developed in this thesis is a first of its kind small-scale fully functional offroad AOV,

depicted in Figure 4.2 on the left. It combines the functionality of a full size fully autonomous

offroad vehicle on the small footprint, low cost F1TENTH platform (Sections 2.1.4 and 3.1.1).

The base of the vehicle is the Traxxas Slash 4x4 short course desert truck, a capable offroad

RC car platform, modified with custom, adjustable height shock-and-spring combination units by

Monster Hopups (Section 3.6.1). Attached to its chassis with custom designed 3D-printed riser

brackets is a mounting platform – depicted in Figure 4.2 on the right – carrying the hardware

needed for autonomous offroad operations (Section 3.2.1).

This hardware consists of state-of-the-art sensors and compute solutions, enabling tests previ-

ously confined to much larger systems. This vehicle combines a ZED 2 stereo camera with a

Hokuyo UST-10LX LiDAR sensor for environmental perception (Sections 2.2.1 and Figure 4.2).

These sensors mount to the front of the vehicle on a combined, 3D-printed mounting stalk spe-

cially designed for this hardware combination. A Jetson Orin Nano 8GB SoC with a 1 TB

Samsung 970 EVO NVMe SSD (Sections 2.3.3 and 3.1.4) mounts to the platform and handles

perception and navigation operations, together with a 12V power board and dual WLAN anten-

nae. Lastly, on the outer shell at the back of the vehicle on its 3D printed standoff is the Whadda

WPI430 GPS module (Section 2.2.2 and 3.4). Attached to the inside of this plastic shell is Alu-

minum Foil EMI shielding to improve GPS accuracy (Section 3.4.3).

The VESC 6 motor controller also mounts to the platform and controls the main motor and steer-

ing servo while providing odometry (Section 2.1.4 and 2.2.2). The vehicle powers off of a Traxxas

5000 mAh 11.1 V lithium polymer (LiPo) battery. Table 4.1 shows a hardware overview.

Table 4.1: Final hardware setup of this thesis’ AOV platform

Chassis Mechatronics Systemic Hardware Sensorics

Traxxas Slash 4x4

Short course desert

truck

Monster Hopups cus-

tom adjustable height

suspension system

Aluminum Foil EMI

Shielding

VESC 6 motor control-

ler

Traxxas Velineon 3500

3-phase brushless

main motor

Traxxas 2075 water-

proof steering servo

Traxxas 5000 mAh

11.1V 3-cell Lithium

Polymer Battery

Battery to 12V onboard

Power converter

NVIDIA Jetson Orin

Nano with 8 GB RAM

Dual WLAN Antennae

Stereolabs ZED 2 ste-

reo camera with built in

odometry and magne-

tometer

Hokuyo UST-10LX 2D

LiDAR sensor

Whadda WPI430 u-

blox NEO-7M GPS

module

4 Results

53

4.1.2 Sensor Configuration and Software Overview

The physical hardware is operated by ROS 2 (Section 2.3.3), the f1tenth_system [82] ROS

package (Section 3.2.2) and the new f1tenth_offroad [84] ROS software package which this

thesis develops (Sections 3.3 and 3.5). The system runs on an Ubuntu 20.04 Linux distribution

installed on the Jetson SoC (Section 3.2.2). The platform’s sensors’ specifications are as follows:

• ZED 2 Camera: 110° horizontal and 70° vertical FOV stereo vision, 672 by 376

pixel resolution at 7.5 FPS nominal setting (see Section 4.2.2 for FPS performance)

• ZED 2 IMU and magnetometer: odometry and magnetic field data at 400 Hz.

• Hokuyo UST-10LX 2D LiDAR: 270° horizontal FOV with 1081 scan points at 40Hz.

• Whadda WPI430 GPS: satellite-based velocity and position information at 1 Hz

• VESC 6 motor controller: odometry data at 50 Hz

These data feeds are provided by either by drivers included with the f1tenth_system pack-

age (VESC, LiDAR), or by custom ROS driver packages for the ZED 2 stereo camera

(zed_ros_wrapper [83]) and the GPS (nmea_navsat_driver [90]). Then, they feed into the

f1tenth_offroad package (Sections 3.3, 3.5 and Figure 4.3).

Figure 4.3: Schematic overview of the complete f1tenth_offroad ROS package.

First, the system segments incoming camera RGB images into traversable, non-traversable, sky

and obstacle regions using the OFFSEG semantic segmentation system (Sections 2.3.1

and 3.3.1). It then uses the corresponding camera-provided depth image information to project

the segmentation result of into a top-down map showing the area in front of the vehicle (Sections

2.3.1 and 3.3.2). At this stage, the LiDAR data is overlayed as a red line signifying the detected

edges of surrounding objects. Simultaneously, data from the magnetometer, GPS and motor

controller fuse to create a reliable heading reading for the robot (Sections 2.3.2 and 3.5.2). The

software then uses the processed top-down map with the heading data to select a prospective

path for the vehicle. For this, it evaluates a selection of thirteen precomputed, prospective paths

– differing by their respective steering input – based on the map regions they pass through (Sec-

tions 2.4.1, 3.5.1 and 3.5.3). The algorithm always chooses unobstructed paths over obstructed

ones, and of these it chooses the one pointing closest to the robot’s global positional goal. Lastly,

it transmits the steering value of the selected path to the motor controller, which drives the wheels

at -0.5 to 1 m/s until the robot reaches within 5 m of his goal point, whereupon the algorithm

assumes that it arrived at the goal and forward motion stops.

4 Results

54

4.2 Compute and Sensor System

Before assessing the performance characteristics of the software this thesis implements and

evaluating the offroad navigation performance of the vehicle, it is worthwhile to assess the sensor

and sensor fusion performance individually. The current section provides insight into capabilities

of the sensors and sensor systems and the constraints the data processing is facing. Since this

project is the first of its kind in terms of offroad autonomous navigational capabilities at this scale,

the influences said scale has on the hardware performance and the system as a whole are rel-

evant research results.

This section will evaluate the LiDAR and Camera sensors’ performance, before moving to the

GPS module and analyzing the power system’s capabilities.

4.2.1 LiDAR FOV and Ground Interference

The 2D LiDAR sensors of the type used in this project are a common staple on the F1TENTH

vehicles (Section 2.2.3 and 3.2.1), and thus enjoy good ROS system integration, with data reli-

ably and constantly supplied at 40 Hz. However, over the course of this project, this thesis

identified two issues concerning LiDAR data: occluded FOV and an effect called ‘ground-strikes’

for the purposes of this work.

First, this paragraph assesses occluded FOV. Due to the role of the LiDAR sensor as an exter-

oceptive sensor, it naturally must interface with the environment of the vehicle, and thus requires

a through-hole in the outer shell of the vehicle. This mounting location (Figure 4.4 on the left)

however proves to be less than ideal. Figure 4.4 pictures LiDAR scan results with and without

the outer plastic vehicle chassis shell in the middle and right images. As can is evident from the

figure, attaching the shell produces additional data points on the scan, which the software must

filter out of the data before applying it to the navigational map. Since a significant amount of the

erroneous datapoints are located behind the origin point of the scan in 7-direction – red axis,

pointing forward in the vehicle frame of reference – they are not relevant to the navigational map.

The software however must remove points which are in front of the �-axis (green) from the re-

sults based on their distance to the origin, resulting in a minimum scan distance of 20 cm.

Sections 4.3.2 and 4.4.1 present the consequences of this.

Figure 4.4: Left, LiDAR and camera sensor mounting position, middle and right, LiDAR scan data

as white points with and without the outer plastic shell, with shell interference circled in

red. The intersection point of the axes signifies the scan center point or point of origin.

Secondly, ground-strikes are a product of either the vehicle pitching forward or ascending terrain

in front of the vehicle. Since the LiDAR mounts only ca. 15cm off the ground and perpendicular

Without Shell With Shell _

4 Results

55

to the plane of the vehicle, any forward tilt of the chassis exceeding 2° relative to the terrain will

cause a ground-strike, were the LiDAR laser rays impact the ground instead of an obstacle.

Similarly, any elevation features of the terrain exceeding 15cm in height relative to the vehicle’s

ground plane – e.g., an upwards slope – will show up on the navigation map. Figure 4.5 illustrates

this by showing a tilt-based ground-strike; and Section 4.4.1 analyzes the further consequences

of this effect.

Figure 4.5: Left, the minimum tilt forward to cause a ground strike (barely visible in the tires as the

suspension is drooping). Right, a top-down map (Section 3.3.2) with a ground-strike in

the LiDAR data, were the ground-strike-related data points in the green circle.

4.2.2 Stereo Camera Performance: FOV, FPS and Depth Quality

After Analyzing the LiDAR sensor’s performance, next, this section presents the ZED 2 stereo

camera’s FOV and occlusions thereof, FPS results in ROS and the f1tenth_offroad package

for different configurations and the camera’s depth quality.

Similar to the LiDAR, due to the camera’s mounting position depicted in Figure 4.4 on the left,

its FOV is partly occluded by the hood and front bumper of the vehicle as well as the edge of the

LiDAR sensor placed before the camera. Thus, a mask blocks out the areas of incoming images

occluded by these elements, resulting in blacked out areas that reduce unintended errors of the

perception system (Figure 4.6).

Figure 4.6: Masking pipeline for example incoming camera data, from left to right, with the two in-

put images on the left and in the middle and the resulting output on the right.

Next, this section will cover the camera’s framerate and resolution. As Section 4.1.2 pre-

sents – with reasons in Section 3.2.3 – the camera records its video feed at a ‘VGA’ resolution

and a target frame rate of 7.5 FPS. Recording at higher resolutions, as done in the beginning of

the project, increases data rate rapidly, generating gigabytes of data over continued test runs,

with the earliest, 40-minute test run producing 150 Gigabytes (GB) of data. This was unsustain-

able, and, as Section 4.3.1 shows, unnecessary. At the same time, the ROS system’s internal

message frequency diagnostic tool never quite reaches the target framerate set in the camera

Camera Image Mask Masked Camera Image

4 Results

56

driver. Table 4.2 shows the test results analyzing camera resolution, target framerate and actual

framerate measured in the package, measured over five hundred messages each.

Table 4.2: Test results of camera framerate in ROS and in the f1tenth_offroad package, as well as

the estimated data rate for the package FPS reading. VGA resolution is 672 by 376 pix-

els at 1.01 MB per message, HD720 is 1280 by 720 pixels at 3.69 MB per message.

The data shows that the ROS utility’s frequency measurements are unreliable – at least for large

messages – with message size and data rate corresponding to lower FPS readings of the ROS

utility. Assuming the package’s FPS reading is accurate, the camera does not reach the full

15 FPS for any setting and struggles with the larger messages at 10 FPS. Choosing 7.5 FPS at

VGA resolution both satisfies storage requirements (with only ca. 25 GB of data per run) as well

as providing enough FPS for the segmentation algorithm (Section 4.3.1 and 4.3.1).

Lastly, the ZED 2 stereo camera generates 3D point cloud data which the software uses to create

top-down maps (Sections 3.3.2 and 4.1.2). Its driver provides multiple options for this, under

them ‘Ultra’ and ‘Neural’. Initially, the driver utilizes the setting ‘Ultra’ to alleviate the FPS issues,

however it later swaps to ‘Neural’ because of the much higher quality depth data. Here, the

camera driver utilizes a GPU-based neural depth engine to optimize the 3D output, leading to

additional issues (Sections 3.6.2 and 4.2.4). Figure 4.7 shows the improved smoothness and

continuity of the depth images and subsequent top-down maps when using the ‘Neural’ setting,

which more accurately reflect the environmental circumstances. Generating better maps pro-

vides better navigational solutions, and thus the project uses ‘Neural’ depth.

Figure 4.7: Comparison between depth quality settings ‘Ultra’ and ‘Neural’, with depth images of

the same scene on top with corresponding top-down maps below (Section 3.3.2).

Setting of FPS

@ Resolution

7.5 FPS @

VGA

10 FPS @

VGA

15 FPS @

VGA

7.5 FPS @

HD720

10 FPS @

HD720

15 FPS @

HD720

ROS FPS 5.6 FPS 6.6 FPS 8.2 FPS 2.4 FPS 3.4 FPS 3.8 FPS

Package FPS 7.5 FPS 9.8 FPS 11.3 FPS 7.4 FPS 9.3 FPS 10.8 FPS

Data Rate 7.6 MB/s 9.9 MB/s 11.4 MB/s 27.3 MB/s 34.3 MB/s 39.9 MB/s

Depth quality setting ‘Ultra’ Depth quality setting ‘neural’

4 Results

57

4.2.3 GPS Interference and Accuracy

The integration of the vehicle’s GPS system proved uniquely difficult (Section 3.4). During this

integration, the vehicle ran through multiple different hardware configurations while trying to in-

crease GPS accuracy and satellite acquisition speed. Figure 4.8 shows data from tests

conducted to evaluate these configurations, where the vehicle is either stationary at a known

point or moving on a known path, while collecting data over the course of five minutes.

Figure 4.8: Visualization of Vehicle GPS data with multiple hardware configurations while the vehi-

cle is stationary as well as when moving. The vehicle traversed the path for the

‘Vehicle moving’ data in both directions.

Initially, the ZED 2 camera connects to the Jetson SoC via USB 3.0, and the data from this

configuration shows intense deviations from the real position of over 50 m, jumping multiple me-

ters in any direction between GPS fixes. This is insufficient for the purposes of this project, since

the navigational algorithm uses the GPS data to steer the vehicle via both heading information

and a distance to the target (Section 4.1.2), both of which are unreliable here. The vehicle intends

to reach within 5 m of the goal point, which is unattainable with over 50 m deviation, and it needs

to use the GPS position for heading data fusion, again unfeasible with jumps over multiple meters

in between measurements when moving at 1 m/s.

Next, tests show that disconnecting the ethernet-based LiDAR – while it leads to a small im-

provement in the data – is still insufficient for navigation. Static deviation is on the order of 20m,

while the large deviations in direction of the recorded path in Figure 4.8 show that heading data

remains unreliable.

Finally, modifications add shielding to the vehicle’s hull and downgrade the camera’s USB con-

nection to USB 2.0 while reconnecting the LiDAR sensor. The final measurements show

positional accuracies within 5 m and a high degree of the heading’s directional accuracy, which

improves the GPS system’s capabilities enough to facilitate navigation.

4.2.4 Battery and Power System

After discovering power problems (Section 3.6.2), testing analyzes the performance of the power

delivery system. In these tests, the system repeatedly runs until it crashes or reaches a runtime

Vehicle stationary Vehicle moving

4 Results

58

of 45 minutes. Meanwhile, individual test runs contain different modifications to parts of the sys-

tem to find the cause of the reduced runtime compared to the initial test, which ran for 40 minutes

without issues. In these tests (results in Table 4.3) each run repeats with two different batteries

to exclude their influence on the test results. In these tests the full f1tenth_system with the

ZED 2 drivers runs, while spinning the wheels at to simulate operating conditions.

Table 4.3: Power system tests: modified elements, resulting runtime and battery voltage at crash.

Test results indicate that the ZED 2 camera – specifically the ‘depth quality’ setting in its firm-

ware – impact the runtime and voltage after crash, and cooling has little to no effect on the

runtime. When reducing the depth quality from ‘Neural’ to another setting such as ‘Quality’ or

‘Ultra’, the system completes the full 45-minute test, and further research shows that the ‘Neural’

depth setting utilizes the system’s GPU, increasing power draw.

With the Jetson at its top performance setting, the system crashes at around 4.00 V on the

battery, because the 12V power distribution board can no longer supply enough power to the

Jetson when the battery drops below that voltage. Since the ‘Neural’ depth setting is highly fa-

vored (Section 4.2.2), further tests search for a solution that allows its continuous use. Reducing

the Jetson’s internal power setting called ‘NVPmodel’ from the 20W top setting to a lower 10W,

the test reaches 45 minutes with depth setting ‘Neural’ and 3.85V remaining battery voltage. A

subsequent endurance test shows the system can now run for over an hour without crashing.

4.3 Perception Performance

After covering the hardware, software, and sensors individually in an isolated manner, this chap-

ter will now concern itself with the combined perception system’s performance. Here, the

software processes the LiDAR and Camera data streams and combines them before advancing

to the navigation system. The perception system (Schematics in Figure 3.7) includes two stages,

the OFFSEG semantic segmentation suite and the 3D processing system, and the following

sections will analyze their performance.

4.3.1 OFFSEG Semantic Segmentation

This project utilizes the OFFSEG Semantic Segmentation system (Section 2.3.1). Said system

transforms the incoming camera feed into information helpful to the navigation algorithm by

Modification Runtime Remaining Voltage

‘Neural’ camera depth quality and 20W Jetson, cooled 16 min 4.03 V

Camera disconnected Stopped at 45 min 4.00 V

Camera framerate capped at 1.5 FPS 17.3 min 3.98 V

Camera Depth quality set to ‘Quality’ Stopped at 45 min 4.00 V

Camera Depth quality set to ‘Ultra’ Stopped at 45 min 4.01 V

Jetson Power Level reduced to 10W Stopped at 45 min 3.85 V

Final test, Jetson at 10W with depth quality ‘neural’ Stopped at 1:20 h 3.72 V

4 Results

59

segmenting image regions into the groups traversable (with certain subgroups), non-traversable,

sky and obstacle. Section 3.1.3 explains the reasoning for choosing this system while Section

3.3.1 covers its integration into the perception system, whereas the current section concerns

itself with the overall segmentation accuracy and the compute cost associated with OFFSEG.

Overall Accuracy

OFFSEG is a two-stage segmentation system, that first performs a more general segmentation

before moving on to a finer classification of the area detected as traversable. In the testing done

in this thesis, the second stage algorithm never seems to work quite right. The examples in

Figure 4.9 showcase this: the second stage algorithm provides blotchy results, which almost

unanimously either incorrectly or incompletely detect puddles, grass, or mud in the camera im-

age. The specific reasoning for this remains unknown, but it is safe to assume that the OFFSEG

algorithm does not favor the camera setup used in this project. With the second stage algorithm

in such an unreliable state, compounded with the fact that the algorithm ‘jumps’ between im-

ages – producing wildly different results for consecutive images sporting minimal

differences – the perception systems does not use the second stage segmentation. Additionally,

its high compute cost further prohibits its implementation, which the next section shows.

Figure 4.9: Examples of the two stages of the OFFSEG system for comparison. On the top, the

single- or first-stage segmentation, on the bottom the two-stage segmentation, both

overlayed over their respective camera input.

While the first stage algorithm also is inconsistent – detecting surrounding vegetation or bushes

as traversable terrain (Figure 4.9) – it has a much higher overall accuracy and usability compared

to the two-stage variant. Also, by restricting the segmentation to the four classes mentioned

above, the navigation algorithm simplifies, because it does not have to deal with the additional

task of operating on the different advanced ground types.

Additionally, it is worth mentioning that the camera resolution change from HD720 to VGA seems

to have no effect on the segmentation accuracy; however, it significantly impacts the perception

systems performance, which the following section presents.

Lastly, the masking (Section 4.2.2) positively affects the segmentation system. By blocking out

the part of the vehicle’s chassis visible in the camera image, the perception system reduces

artifacts previously present around the edges of the chassis and the corner of the LiDAR sensor,

which would throw off the navigation algorithm’s evaluation.

4 Results

60

Compute Cost

Table 4.4 shows the respective time required for processing and the resulting FPS – without the

1.5 FPS cap used in operation – for different configurations, where tests record data over

5 minutes. The analysis shows that the only viable option is VGA resolution with the single stage

algorithm since vehicle control requires at least 1 FPS to be effective. With this configuration, the

segmentation takes 183ms, resulting in an uncapped framerate of 2.25 FPS for the software.

Table 4.4: Segmentation System timing and FPS depending on resolution and stages used.

When using the two-stage system, segmentation time increases by a factor of ca. 16, which

results in a best-case refresh rate of ca. 0.5 FPS, which is unsuitable. Also, utilizing the resolution

used at the start of this thesis – HD720 – drastically decreases performance by a factor of more

than three, where a single segmentation step with the two-stage algorithm takes more than 14 s.

Thus, the system uses the single-stage OFFSEG algorithm at VGA resolution.

4.3.2 3D Processing and top-down Projection

The next step in the Perception pipeline is the generation of a 2D top-down map from the input

segmentation data, LiDAR scan and 3D depth information (Section 4.1.2). Table 4.5 details the

performance of different implementations of the top-down algorithm used during the develop-

ment of the final algorithm (Section 3.3.2). The data shows that the GPU-accelerated torch-

based version of the top-down algorithm increases performance by a factor of 24, enabling a

156% higher computation frequency for the entire software stack. Also evident from the data is

the 14-times increase in processing duration when the system uses the higher initial resolution

setting of HD720, further cementing the unviability of this configuration.

Table 4.5: 3D Processing algorithm processing time and resulting FPS depending on configuration.

The top-down 3D integration mechanism fuses the LiDAR data into the segmentation results,

which is vital. Because of the poor accuracy of the OFFSEG segmentation algorithm which the

previous section details, the LiDAR data is a critical fallback stopping the vehicle from colliding

with unsegmented obstacles such as bushes (Section 4.4). Here, the problem of LiDAR and

Camera data synchronization becomes apparent. When operating the fusion algorithm, there

are discrepancies between LiDAR and Camera timestamps of between 0.2 s and 1.85 s. The

Resolution Algorithm used Segmentation duration Resulting FPS

VGA (672 x 376) Single-Stage 183ms 2.25 FPS

VGA (672 x 376) Two-Stage 2988ms 0.30 FPS

HD720 (1280 x 720) Single-Stage 630ms 0.53 FPS

HD720 (1280 x 720) Two-Stage 14317ms 0.07 FPS

Configuration Processing duration Resulting FPS

For-loops (initial), VGA 682ms 0.88 FPS

torch-accelerated on GPU, VGA 28ms 2.25 FPS

torch-accelerated on GPU, HD720 389ms 0.52 FPS

4 Results

61

cause for this is as of the writing of this text unknown but leads to situations such as in the middle

of Figure 4.10, where the detected position of the fire hydrant by the camera (dark purple pixels)

does not match the LiDAR data (red ‘shadow’).

Figure 4.10: Examples of the resulting top-down maps from the 3D integration pipeline, together

with respective segmentation results overlayed over their camera inputs.

Figure 4.10 also shows the discrepancies between LiDAR and segmentation data, where the

inaccurate segmentation results significantly differ from the LiDAR readings in the top-down

maps, e.g., the edges of the impassable/obstacle area not matching the LiDAR scan.

4.4 Navigational Performance in the field

After analyzing the prerequisites and other systems providing data for the task of autonomous

offroad navigation, this section will now present the performance and test results from the navi-

gational system. This system is the nexus of this thesis’ project, combining all prior data

streams (Figure 4.3) to find the most optimal path through the environment which its sensor

systems perceive. The navigation system which this project uses bases itself on a trajectory

navigation approach where prospective paths are tentacles (Section 2.4.1) which this thesis de-

termines to be a suitable basis for offroad navigation in this project (Section 3.1.3).

This section will cover the evaluation of the navigational map, associated problems, and the

performance of the chosen systems, before moving on to the evaluation of the implemented

heading fusion algorithm and then giving examples and data of the actual in-the-field perfor-

mance of the vehicle.

4.4.1 Perception Ramifications for the Navigational Map

The navigation process presented in this thesis relies on the top-down map which the previous

stage of the software provides via the fusion of semantic segmentation and LiDAR data into a

classification of the terrain in front the vehicle (Section 3.3, evaluated in Section 4.3). This map

4 Results

62

contains data from the camera in the form of segmentation results which the perception trans-

forms into a top-down map, where the colors of different areas signify the respective detected

terrain type. Additionally, the algorithm overlays the LiDAR data on the map in the form of a red

line defining the outlines of detected obstacles or terrain. When performing evaluation (Section

3.5.3), the algorithm utilizes this data to decide which of the prospective paths (Section 3.5.1) to

follow. However, issues with the perception system (Sections 4.2.1 and 4.3.1) heavily influence

this decision, leading to unintended navigational complications.

Firstly, this paragraph covers the LiDAR sensor’s ground strikes and limited minimum sensing

distance. Section 4.2.1 describes these effects in detail, and the leftmost example in Figure 4.11

shows an example of the ground-strike effect together with its influence on the navigational sys-

tem. Even though the area ahead of the vehicle is clear of obstacles – and the segmentation

recognizes this – a ground-strike occurs, causing the navigation algorithm to steer to the right,

despite the goal laying straight ahead. Since a tilt of 2° – which is common when driving in offroad

terrain – is sufficient to cause a ground strike they are a significant issue for navigation.

Figure 4.11: Examples of navigational results with their corresponding camera images. The satura-

tion of the paths indicates their evaluation result, with better results indicated by

brighter yellow. The orange dot on the edge of the map is the direction to the goal.

Because of the inaccuracies in the segmentation algorithm (Section 4.3.1), mischaracterizations

as in Figure 4.11’s second from the left example can cause navigational inaccuracies. Here, the

segmentation marks a large, empty, traversable space of the map as an obstacle, which pre-

vents the navigation from making the left turn which would achieve the optimal target trajectory.

Another problem occurs with grass or small sticks tall enough to reach into the LiDAR’s scanning

plane, but which the vehicle would easily traverse. The example second from the right in Figure

4.11 shows this issue, where an empty, traversable space is occluded by noisy LiDAR data due

to grass and small sticks, again causing a deviation from the optimal navigation result.

The issues presented above however are mostly temporary, meaning that the algorithm corrects

itself in the next computation cycle after initiating a non-critical maneuver. In most other non-

edge cases, the algorithm works well, as Figure 4.11 shows in the right-most example.

Other errors are less recoverable. Since the LiDAR has an occlusion-mandated minimum sens-

ing distance of 20cm (Section 4.2.1), it cannot detect any obstacle closer than this. If such an

obstacle slips through the error-prone segmentation – thus escaping detection – it can cause a

collision. A similar issue presents in the form of bodies of water, which the algorithm can only

detect as reflections of the sky and classifying it as such. If this does not occur, the vehicle may

4 Results

63

classify water as traversable terrain, which would lead to the loss of the vehicle. This prompts

the operator to use extreme caution when operating the vehicle near bodies of water and can

necessitate interventions in the autonomous operation.

4.4.2 Heading System

This project introduced a heading data fusion system designed to combat the difficulties with the

ZED 2 stereo camera’s integrated magnetometer (Section 3.5.2). Here, the algorithm fuses ad-

ditional data from the GPS with the magnetometer readings to obtain more accurate heading

information, which enables the navigational system to more accurately determine the direction

of current travel, which is relevant to path selection (Section 4.1.2). Additionally, data from the

vehicle’s IMU provides a GPS influence factor, which negates said sensors influence on the

heading data at standstill, which proves highly effective at eliminating heading data corruption at

standstill since the GPS heading measurement there would jump around wildly (Figure 3.16).

Closer evaluation of the accuracy of this fusion algorithm would require a more accurate heading

system as a reference, which unfortunately is unavailable in the scope of this work (Sec-

tion 3.1.2). Close examination of the data recorded in the field leads to the suggestion that the

system is accurate to within ca. 15° of true heading while moving and taking full advantage of its

heading data fusion system; at standstill, this deviation is approximately 30°.

4.4.3 In-the-field Performance

Finally, this section presents the vehicle’s performance in the field, traversing offroad terrain au-

tonomously towards either a single or a series of GPS waypoints. For this evaluation – and all

in-the-field tests conducted in this thesis – this thesis utilizes a roughly 1km round-trip track of

public paths and overland driving near the TUM’s Garching campus’ physics building (Figure

4.12). The project chooses this track because it provides a representative mix of unmarked roads,

forest vehicle and foot paths, as well as traversable offroad terrain.

Figure 4.12: Offroad testing track used in this thesis with a round trip length of around 1km. The

track here represents GPS data from one of the final tests.

During the tests, the vehicle traverses the terrain autonomously with as few operator interven-

tions as possible, until it reaches the end point, where the vehicle stops, and either receives new

waypoints after a reboot or the test ends. While the vehicle completed a significant portion of the

4 Results

64

journeys autonomously while dodging obstacles and following established paths without colli-

sions, the tests reveal several issues.

Two remaining issues appear with the software stack, which this thesis only manages to partly

alleviate within the scope of this thesis. Firstly, the vehicle routinely steers too close to obstacles

and non-traversable terrain, despite obviously detecting it, hence why it steers at all. Said steer-

ing problem is a configuration issue within the navigational system, which Section 3.6.4 partly

fixes by slowing the vehicle for the tighter turns, thus producing a smaller turning radius which

increases the distance to obstacles slightly. While this reduces the number of collisions due to

obstacle proximity in turning, it does not entirely remedy the problem.

Secondly, the current iteration of the software limits itself to only 1.5 FPS to guarantee resource

availability to the rest of the software running on the vehicle. This, however, leads to a minimum

666 ms pause between individual steering commands – sometimes more due to segmentation

complexity – which is a non-issue if the issued steering angle is small, however, even while

moving at 1 m/s and later 0.5 m/s (Section 3.6.4), the vehicle can collide with previously unde-

tected terrain at maximum steering during this interval.

Finally, the lacking performance of the OFFSEG software stack (Section 4.3.1) and the 20cm

minimum detection distance of the LiDAR (Section 4.2.1) can lead to collisions when obstacles

are close to the vehicle and remain unsegmented. Section 4.4.1 additionally mentions the current

system’s problems with the detection of water. Together, these four issues account for a total

of eleven interventions in the autonomous driving algorithms needed during the initial 1 km test

where the operator temporarily suspends the system’s control during recovery. As the comple-

tion of the course took 43 minutes, this amounts to one intervention every 3.9 minutes, and Table

4.6 shows this initial test data grouped by the different failure types.

Table 4.6: Navigation system errors during the field tests grouped by type.

After additional modifications (Section 3.6.4), the vehicle produced a better test result in the final

test (Table 4.6). Here, the system achieves an overall reduction of ca. 25% in total navigation

system errors before recovery, notably in the classes of steering to close to obstacles and colli-

sions due to the compute pause. Next, the recovery mechanism (Section 3.6.4) manages to

recover five of the eight navigation system errors (Table 4.7), resulting in 62.5% of total errors

recovered, and 71.4% of attempted recoveries succeeding. In one case, the system does not

initiate recovery after a collision due to the LiDAR minimum sensing distance combined with a

segmentation failure causing the rammed obstacle to escape detection, while the vehicle did not

manage to resume operation after recovery initiation in two other cases. Thus, the recovery sys-

tem and improved navigation reduce the final failure count from 11 to 3, or by 72.8%, with Section

5.1.3 presenting evaluation of these results.

Table 4.7: Recovery attempts, failures, and successes during the final test.

Test
Steering obsta-

cle proximity

Collision during

666 ms pause

Segmentation

or LiDAR failure

Imminent water

contact
Total Errors

Initial 2 3 5 1 11

Final 1 1 6 0 8

Total Errors Recovery attempts Recovery success Recovery failure Final failures

8 7 5 2 3

65

5 Discussion

This thesis originally set out with the goal of developing a fully functional, autonomous offroad

vehicle, built on the F1TENTH platform and incorporating the knowledge from and capabilities

of full-size offroad AV. In the preceding chapters, this work first showed and analyzed said plat-

forms, knowledge and capabilities (Chapter 2), before the thesis described the developmental

process (Chapter 3) and presented the results of these efforts (Chapter 4). What remains now

is the evaluation and discussion of these final results, how they fit into the existing landscape of

autonomous offroad vehicles as well as a final verdict on the goal this thesis originally set out to

reach.

5.1 Evaluation of the in-the-field Performance

Before moving on to higher level comparisons and concluding analysis this section will first se-

lectively evaluate the results of Chapter 4, analyzing the influencing factors between the

individual systems, the overarching performance as well as the validity of the presented results.

This provides a more nuanced knowledge basis needed for functionally assessing this thesis in

front of the backdrop of other established systems and evaluating the goals given when initially

starting project.

5.1.1 Compute Cost and FPS

First, this section will provide an overarching discussion of the f1tenth_offroad ROS pack-

age’s computational performance during operation in the field (Figure 5.1), since this package is

the most significant result of this thesis.

Figure 5.1: Relative time taken by the respective steps in the f1tenth_offroad ROS package

developed for this project, with total computation cycle time and resulting FPS.

Total: 484ms 3289ms 1437ms 15133ms

Rate: 2.25 FPS 0.30 FPS 0.53 FPS 0.07 FPS

5%

38%

6%

51%

VGA single-stage

compute timing

1%

87%

1%

11%

VGA two-stage

compute timing

12%

44%27%

17%

HD720 single-stage

compute timing

1%

95%

2%
2%

HD720 two-stage

compute timing

5 Discussion

66

The presented diagrams reference data which Section 4.3 presents. Here, the left-most pie chart

represents the setup used during operation in the field, where it is evident that semantic seg-

mentation and the navigational evaluation represent the largest chunks of computational cost,

specifically with the latter consuming more than half of the time each cycle. The initial data ingest

and the highly optimized top-down projection (Sections 3.6.3 and 4.3.2) together account for ca.

10% of the computation time. As such, any further optimization, which Section 6.2 expands upon,

should first focus on the navigational evaluation, since the semantic segmentation is governed

by OFFSEG (Section 2.3.1), which already is optimized.

Moving towards the non-used two-stage algorithm, the picture changes dramatically. In Figure

5.1’s second from the left diagram, it is immediately obvious that the semantic segmentation

governs the computational time requirements. If the vehicle should use this system in the future,

it requires a reduction of computational cost (Section 6.2).

Lastly, the right two diagrams in Figure 5.1 reference data from tests which utilize the higher

HD720 resolution, which may find future use to further improve segmentation performance (Sec-

tion 6.2). In both cases, segmentation dominates the computational cost, although single-stage

segmentation much more evenly distributes the computational cost between the individual steps.

This leads to the conclusion that segmentation optimization might be insufficient here, and per-

formance instead hinges on the NVIDIA Jetson Nano.

5.1.2 Assessment and Validity of the presented Results

Finally, a validity assessment for the results presented in this thesis is in order. This project was

set up to bridge the gap between small-scale, inexpensive AV such as the F1TENTH platform

and large and expensive full-scale offroad AV such as Stanley (Section 1.1). It is a project gov-

erned by the spirit of rapid prototyping in both software and hardware, neglecting the steps of

precise optimization and in-depth analysis for all but a few elements.

As such, the results which this work presents are specific to this project, governed by the frame-

work of working in a solution space previously unoccupied. There are no examples available for

fine comparison of this system to another solution on the same scale, and comparisons with

other platforms, larger AOV or non-offroad small-scale vehicles – governed by different frame-

work conditions – can only ever by conditional. Most of the systems used on the vehicle are

either adapted – featuring custom modifications for this specific platform – or are developed from

scratch (Section 4.1), which lays the groundwork for the further analysis. This thesis assessed

many distinct aspects of a rapidly developed system which means that – considering the scope

of testing possible in a bachelor’s thesis – future research on this topic should consider the re-

sults of this work with caution concerning measurement accuracy or sample size.

Results detailing the LiDAR sensor’s FOV and ground-strike issues (Section 4.2.1) are heavily

dependent on the sensors specific integration on this project. Another choice of LiDAR sensor

or placement on the vehicle would skew or invalidate this work’s results, which shows their con-

ditional validity. Similarly, the camera system’s results (Section 4.2.2) also hinge on camera

placement, as well as on the chosen ROS infrastructure and hardware, which are conditional to

the presented data. Finally, the performance metrics introduced in this thesis lack broader testing,

which could provide information about root causes. As but one system of a larger project how-

ever, said testing is outside of the scope of this work.

The GPS system presents a major problem for this project, with many unique challenges again

specific to this very platform (Section 4.2.3), similar to the magnetometer problems and resulting

5 Discussion

67

fusion (Sections 3.5.2 and 4.4.2). With a different combination of sensors or other hardware, the

problems faced here may be nonexistent in other projects, which applies as well to the results of

the power system tests (Section 4.2.4).

Finally, the validity of the performance test results for the integrated software developed

here – the f1tenth_offroad ROS package – depends strongly on the validity of the results

which the preceding paragraphs present. Also, the creators of the OFFSEG segmentation suite

neither specifically developed nor did this work retrain their system for the application on a small-

scale vehicle, relativizing the results of Section 4.3.1.

It is then obvious that any analysis of the final navigation system not only depends on the quality

of the rapidly developed navigation system itself, which ran through few tests – again, the scope

of a bachelor’s thesis governs the amount of testing possible – but also on the validity of the

results of the prior systems feeding into it. Since the prior paragraphs detail the issues with said

validity, the navigation system’s results and performance rely on the myriad, specific, conditional,

and unique choices made in and for this project. Additionally, it is worth noting that the data which

Section 4.4.3’ Table 4.6 provides – and on which much of the further analysis of this thesis bases

itself – remains an approximation, since the exact cause of a collision or vehicle failure is some-

times difficult to evaluate.

5.1.3 Overarching System Performance as the sum of its Parts

This thesis’ vehicle platform is a complex system, which utilizes many different algorithms, sen-

sors, and methods to achieve the task of autonomous offroad navigation. The results of individual

system studies and tests are available in Sections 4.2, 4.3 and 4.4.2, and Sections 5.1.1 and

5.1.2 assesses the system’s computational performance and the ramifications and validity of the

prior results respectively. However, as previous section discusses, these results are difficult to

contextualize and evaluate outside of the framework of this project. As such, the true results and

contributions of this work lie in the completed system as the combination of its subsystems and

components, which this section will evaluate.

The capstone and ultimate metric of this hard- and software system is the navigational perfor-

mance, which is the part of the vehicle’s system where all the other data streams and

components culminate, analogous to Figure 5.2.

Figure 5.2: Hierarchical overview of the information flow in the f1tenth_offroad package.

Starting on the environmental perception side, Section 4.3 presents said system’s performance

in depth, with Section 4.4.1 additionally describing its effects on the navigational system. While

both the LiDAR and the semantic segmentation occasionally produce incorrect results, the

5 Discussion

68

navigational system utilizing their data compensates for this using a worst-case approach. Here,

the closest obstacle always takes precedence, providing a measure in which both sensors can

compensate and correct for non-detections of the other, preventing collisions. This however

means that any false positive obstacle detection effectively causes the vehicle to take a non-

optimal path, though when weighed against the possibility of a collision or getting the vehicle

stuck, the algorithm can much more easily compensate for an unnecessary course change.

While both systems complement each other well in this case, Section 4.4.1 presents issues

causing failures which indeed result in collisions or the vehicle getting stuck. These perception

failures are the greatest remaining problem for the perception system (Section 6.2) causing more

than 50% of the errors in the autonomous driving protocol while testing (Section 4.4.3). The lower

vantage point of the chassis when compared to the full-size solutions for its creators developed

the OFFSEG semantic segmentation algorithm – which this project uses – is likely a cause for

the relatively poor performance of the segmentation, which further work may improve (Sec-

tion 6.2)

This thesis improved the positioning system – analyzed in Section 4.2.3 –to a point where it could

reliably route the vehicle within the required 5 m radius of the goal point. This however had

severe ramifications for the ZED 2 stereo camera (Section 3.4.3), which impacts the further us-

age of its remaining performance potential. While the improved resolution has not shown any

advantage for the single stage segmentation (Section 4.3.1), it may impact the future usage of

the second stage segmentation in the future (Section 6.2).

After the integration of the GPS system, magnetometer and odometry based heading fusion

system, evaluated in Section 4.4.2, the vehicle could reliably drive into the correct goal direction

and reach its target. While the system remains far from perfect – with an assumed 15° deviation

from the true heading direction – it is within non-critical ranges for this project. Since this project

does not expressly intend on finding the absolute fastest path to goal, a path with slight curves

and occasional deviations from the straight line is acceptable. This is because the navigational

system will automatically self-correct once the distance to the goal shrinks, making angular de-

viations larger, thus naturally increasing the steering input, allowing the vehicle to reach its goal.

Finally, the navigational system. One of the largest remaining issues addressed in Section 4.4.3

is the large pause interval of 660 ms between control inputs, which internal 1.5 FPS throttling

causes. While the algorithm may theoretically run faster (Section 4.3.1) this is has adverse ef-

fects on the rest of the system due to resource unavailability which causes occasional crashes,

however exact tests towards this are outside the scope of this thesis.

Overall, when considering the difficulties it must deal with, the navigational algorithm performs

surprisingly well. Even with imperfect and error-prone data streams from all sources, the algo-

rithm manages to effectively compensate for most of the issues and still steer the vehicle to its

goal reliably. The recovery system (Section 3.6.4) especially increases the system’s overall ca-

pability, allowing it to compensate for crashes and collisions caused by occasional lapses in the

other systems. While this project neglects more complex navigational systems (Section 2.4.2)

according to reasoning in Section 3.1.3, the chosen system of trajectory-based tentacle naviga-

tion proved reliable and effective at momentary, short range navigation.

Lastly, it is important to contextualize the software package – which has been the focus of this

section thus far – in front of the background of the vehicle’s mechanical basis. This mechanical

offroad performance of the vehicle governs the effectiveness of any and all control inputs from

the software. The chosen basis here, the Traxxas Slash 4x4 with additional suspension up-

grades (Section 4.1.1) proved an effective platform, with no interventions necessary because of

5 Discussion

69

the inadequacy of the chassis. The arrangement of sensors – while evaluated as suboptimal

(Sections 4.2.1 and 4.2.2) – was largely nonconsequential for the vehicle as a whole, with the

other factors governing performance (Section 4.4.3).

5.2 Comparison with existing Systems

After the previous section discussed the specific results of this thesis’ project, the individual com-

ponents, and their interactions as well as their validity, it is now important to compare the

developed system with other examples and platform available in the space of autonomous AV.

This is especially important when considering that the primary goal of this project is to create an

in-between solution bridging the gap between full-size offroad AV and the smaller, cheaper RV

scale AV. Thus, this section will present this comparison between both full-size and the smaller

scale vehicles to then assess in the last section of this chapter whether or not this thesis reached

its original goal. This comparison will include both hard- and software, of which overviews are

available in Sections 4.1.1 and 4.1.2 respectively. Section 1.1 and specifically Figure 1.1 outline

the aspects this system tries to gain from the respective platforms.

5.2.1 Full-size Systems

Chapter 2 presents many previous, current, on- and offroad full-size AV systems as examples

for the categories of mechatronics and chassis, sensorics, perception as well as pathfinding and

navigation. Since this thesis aims to miniaturize the approach to a full-size offroad autonomous

system, the current section will analyze the developed solution in the light of these four catego-

ries and compare it with the presented full-size solutions such as EDGAR (Figure 5.3).

Figure 5.3: The F1TENTH-platfrom-based vehicle developed in this thesis in front of the TUM’s

EDGAR vehicle which Appendix C presents.

Firstly, this section will assess the most obvious difference between full-size solutions and this

thesis’ RC-car-based variant, which is immediately obvious from Figure 5.3: the chassis. While

it is naturally not comparable in scale – since that is part of the problem statement of this project

(Section 1) – it still features all the important elements which Section 3.1.1 extracts from Section

2.1.1, such as lockable differentials, all-wheel drive and a robust and capable suspension. Addi-

tionally, when compared to a full-scale solution, the developed platform is much more robust in

general, surviving falls, crashes and collisions that would impart severe damage to a full-scale

5 Discussion

70

vehicle. The used Traxxas Slash 4x4 chassis and motor system are capable for their size and

scale, traversing vegetation and deep ruts which may cause problems for larger platforms. Thus,

this thesis concludes that while the developed mechanical vehicle obviously cannot stack up to

a dedicated offroad ATV used as a basis for example in the AVIDOR-2004 vehicle (Section 2.1.1)

it is a nearly ideally scaling image of its larger counterparts. This should provide good scalability

for future research and allows the rest of the system to adopt methods and techniques from

larger vehicles without intensive adaptation.

Next, this section will cover the sensorics used on the vehicle. Sections 2.2 and 3.1.2 respec-

tively present and analyze the sensor system currently used on larger research vehicles. Now,

while the system incorporates many of the sensor devices used on larger vehicles in the category

of exteroceptive sensors (Section 2.2.1), such as a stereo camera or 2D LiDAR, this project has

to adapt to its scale. Because of the limited available compute resources, similarly limited avail-

ability of funds for more advanced systems and likewise limited space on the vehicle, the

developed system uses far less sensory equipment as compared to larger vehicles. Multiple 2D

LiDAR scanners on Stanley or RASCAL, multiple camera systems on RAVON or the 3-layered

camera system with surround capabilities which EDGAR uses (Appendix C) all dwarf the singular

stereo camera and 2D LiDAR on this project. While this obviously presents a large discrepancy

in capability, it also shows that results are obtainable with far less resources. This simultaneously

allows the vehicle to still profit from advanced sensor processing and perception techniques pre-

sented in the following paragraphs, while cutting down on complexity and overhead of fusion

systems, which makes the software lighter and more efficient.

Regarding Section 2.2.2’s proprioceptive sensors, this project uses a similar set of sensors as

full-size AOV: IMU/odometry, GPS, magnetometer, and encoders. However, obvious from Sec-

tions 4.2.3 and 4.4.2, the accuracy of our system cannot match capabilities which full-scale

vehicles require (Section 2.2.2). While this diminishes capabilities for research on and imple-

mentation of more localization-dependent systems (Section 2.4.2), the success of this system

also shows that such inaccuracies may not immediately crush any attempt at it. This opens the

door for more research into the specific causes and consequences for this system’s issues and

may provide interesting material for future researchers who deal with similar issues.

When assessing perception in the field of environmental perception (Section 2.3.1), this thesis’

system proves to be an excellent testbed for current technologies. With capable hardware and

software frameworks, which are virtually analogous to current systems used by real, full-size

vehicles (Sections 2.3.3 and 3.1.4), this projects vehicle implements modern techniques such as

semantic segmentation, 3D top-down mapping and Camera-LiDAR-fusion. While the system

again falls short of the performance possible in larger systems with more capable hard- and

software, when it comes to perception, the developed system falls much closer to actual vehicles,

allowing a direct, full adaptation of research areas currently in development. The localization side

of perception (Section 2.3.2) however shows a different image, which the lacking proprioceptive

sensor performance discussed in the prior paragraph causes. Advanced localization techniques

and potential use-cases in navigation (Section 2.4.2) are thus out of reach on this platform.

Finally, the goal of every autonomous vehicle system: navigation (Sections 2.4 and 3.1.3). This

project’s navigation algorithm bases itself on a trajectory navigation system using tentacles (Sec-

tion 2.4.1), which the vehicle directly adapts from full-size vehicles such as the MuCAR-3 AOV,

once again showing the scalability of this system implementation. The previous paragraphs al-

ready explain why a more advanced navigational system (Section 2.4.2) which looks over the

horizon of local pathfinding is not implementable here: poor localization and lacking

5 Discussion

71

computational capability. However, since some AOV examples still use local pathfinding, multi-

level planning is not a necessity, which the developed system’s in-the-field performance proves.

5.2.2 F1TENTH Platform

Firstly, while it integrates software and concepts from the full-scale systems the previous section

compares it with, this project builds on the F1TENTH platform, from which it also intends to inherit

certain features. Relevant to this comparison here are the ease of use and greater simplicity,

inexpensive hardware, better availability at research institutions.

Secondly, this thesis stipulates that the usage of the F1TENTH platform coincides with a greater

ease of use when compared to a full-size solution. Development and testing are fast, easy, and

work well with rapid prototyping techniques. Larger vehicles would require dedicated test tracks,

complicated control systems to cover a wider range of scenarios and teams of researchers to

successfully develop and operate them. In contrast to this, the presented work proves that a

single individual can achieve autonomous navigation on the F1TENTH platform in the scope of

a bachelor’s thesis, with significantly reduced complexity in the systems of the vehicle.

This transitions directly into the next aspect, inexpensive hardware. Where larger vehicles re-

quire entire sensor arrays of expensive hardware to cover a sufficient area far enough into the

distance to be viable for AV development, this thesis only requires single 2D LiDAR, stereo cam-

era, and GPS module, again, simplifying the entire approach. Additionally, compared to the

procurement of an entire full-size car or other vehicle, an RC car is a small investment, even

when considering the cost of compute hardware, motor controller and power delivery systems.

Lastly, Section 2.1.4 shows that F1TENTH platforms are already available at automotive and

mobility departments in research institutions around the world. Combined with the fact that the

only actual modifications to the existing platform requiring extra hardware were the GPS sensor

and custom spring set (which together come in at under 100 $), it is obvious that research with

a similar project is easily attainable for any researcher with access to an F1TENTH platform.

5.2.3 Final Verdict on this thesis’ goals

This chapter will now conclude with a final verdict on this thesis’ goals as set out in Section 1.1,

specifically Figure 1.1. Analogous to this, Figure 5.4 shows the achieved elements the goal.

Figure 5.4: Final assessment of this thesis’ results, analogous to Figure 1.1

72

73

6 Conclusion

Over the course of this thesis – written at the Technical University of Munich’s Autonomous

Vehicle Systems department – this project transformed a common F1TENTH-platform set up for

indoor experiments into a capable, autonomous offroad vehicle. The developmental process in-

tegrated many lessons-learnt, findings, algorithms, and technologies from successful full-size

vehicles on a miniature scale, which never existed before in the field of AOV.

Because it is neither a new design nor a direct copy, the finished vehicle depicted in Figure 6.1

is a synthesis of knowledge and research spanning many quadrants of current and past auton-

omous vehicle technology. As such, the work done here is not in its elements revolutionary, but

innovative in its combination of these known components into a new form.

Figure 6.1: Final version of the modified F1TENTH platform developed in this thesis.

The vehicle developed within this work started as a standard F1TENTH platform with an addi-

tional ZED 2 stereo camera. After developing custom mounts and brackets for initial tests,

software development began. Here, the development of the f1tenth_offroad package begun

with the integration of the OFFSEG semantic segmentation suite, before moving on to the fusion

of this segmentation, the LiDAR scan data, and the camera 3D data into a top-down map. After

this, the vehicle added a GPS positioning system and weathered the complications associated

with it. Navigation was the next goal, which the vehicle achieves via the application of a trajec-

tory-based tentacle evaluation system. Lastly, the vehicle underwent modifications to the chassis

for offroad driving, as well as to the software, for performance improvement and power reduction.

After the initial analysis of the state-of-the-art, the presentation of the method and results as well

as the discussion thereof, the current chapter will conclude this thesis with a final assessment of

the contributions made, possible objectives for further research and closing remarks.

List of Symbols

74

6.1 Contributions of this Work…

This project’s main contribution is the developed vehicle, which spans the gap between full-size

offroad autonomous vehicles and small-scale research and teaching AV. Additionally, as Section

5.1 extensively explains, the primary value of this work is not in the novelty of the utilized systems

and components, but in the manner of their combination. This thesis’ outcome is a truly unique,

first-of-its-kind small-scale F1TENTH platform vehicle incorporating the capabilities of full-size

AOV, which of course uses many existing elements from both of its ‘parents’, combining them in

a novel way. As such, the contributions of this work depend on the point of view, or which of his

‘parents’ assesses its differences, in a manner of speaking. The current section will present this

thesis’ contributions in an equivalent manner.

6.1.1 … to the Research on the F1TENTH-platform

When compared with existing F1TENTH-platform research, this work presents the following con-

tributions:

• Development of an offroad-suitable hardware platform, with detailed power and

performance measurements for individual components and systems

• GPS sensor usage on a F1TENTH-platform vehicle, with results and analysis of

interfering factors and performance for future use

• Integration of high-performance semantic segmentation specific for offroad navi-

gation on the F1TENTH’s onboard hardware

• Magnetometer, crude GPS-based heading and odometry fusion algorithm

• Trajectory-based tentacle navigation system using segmentation-LiDAR-stereo-fu-

sion and magnetometer-GPS-odometry-fusion data

• Creation of the open-source f1tenth_offroad ROS package [84], which com-

bines all aspects of perception and navigation, making them available for any and

all researchers interested in autonomous offroad driving

6.1.2 … to the Field of Autonomous Offroad Driving

When considering the field of full-size autonomous offroad driving, the developed platform con-

tributes the following unique aspects:

• Potential availability of autonomous offroad driving research platforms to any insti-

tution already supporting F1TENTH-based projects

• Simplification of the AOV system to allow for focus on specific element of research

elements without significant overhead

• Inexpensive hardware setup that is widely available and easy to set up, lowering

the initial hurdle for AOV research

• Scalable system that allows both the straight-forward application of full-size tech-

nology or sensors and provides good applicability of the results gathered

• Risk reduction through the usage of a much smaller, cheaper vehicle

List of Symbols

75

6.2 Possible Objectives for further Development

Though this thesis answered the questions asked at the beginning and the project currently re-

mains in a completed stage, many open questions and tasks remain. Considering the amount of

potential further developments and research areas, this section will list them in order of their

perceived importance without in-depth explanations as to not exceed the scope of this chapter.

1. The crashes apparent when the vehicle exceeds the 1.5 FPS limit require investi-

gation, since higher computation rates could improve performance significantly.

2. To improve overall system performance, further modifications should improve ei-

ther the navigational computations or the segmentation performance for higher

FPS rates (Section 5.1.1) or to remedy the current 1.5 FPS limit.

3. If none of this is possible, the navigation algorithm should be decoupled from the

perception pipeline such that control inputs can happen at a higher frequency to

alleviate problems currently present (Section 5.1.3).

4. Retraining of the segmentation model with a custom dataset of camera images

recorded on the vehicle could improve the accuracy of the semantic segmentation.

5. If this is insufficient, it may be viable to increase the camera resolution from VGA

to HD720 to increase segmentation retraining results.

6. Either a time-average or an odometry-based filtering approach could mediate

LiDAR ground strikes, which currently influence the navigational performance.

7. In the same vein, a 3D LiDAR could bring additional perceptive qualities (Appendix

D) while at the same time improving 3D projection accuracy.

8. Retraining the two-stage segmentation algorithm might provide better results,

which could then improve navigation quality via the knowledge of specific terrain

types and puddles.

9. With a more robust localization system (via DGPS, odometry fusion or other

means), the robot could implement SLAM or other multilevel navigation ap-

proaches (Section 2.4.2), which would increase its navigational capabilities.

6.3 Closing remarks

The author of this thesis greatly appreciates the opportunity to work on such an inter-disciplinary

and interesting project. While the system’s components themselves are hardly an innovative

leap forward on their own, their unique and novel combination on this vehicle proves that the

field of offroad AV does not only permit expensive and singular prestige projects.

While the primary goal of this work was to show that the creation of such a small-scale AOV

vehicle is possible, and the intended consequence of this is primarily the enabling of other re-

search based on this platform, other exiting possibilities remain. The vehicle in and of itself may

prove useful beyond the application of a research testbed, for autonomous mapping, search and

rescue or fire prevention, many applications are conceivable for a small, autonomous offroad

system.

76

i

List of Figures

Figure 1.1: Intended characteristics of this thesis’ proposed vehicle compared to existing

solutions. ... 2

Figure 1.2: Schematic representation of the structure of this thesis. 3

Figure 2.1: Overview of the autonomous offroad driving process, adapted and simplified

from [4]. ... 5

Figure 2.2: Different (and similar) approaches to Offroad Autonomous Driving. On the left,

Stanley of Stanford University [14], and on the right AVIDOR-2004 of Team

SciAutonics [16]. ... 6

Figure 2.3: On the right, one example of the RHex platform [22] and on the left, ACFR’s

Swagbot, a wheeled robot for agricultural applications [25]. 7

Figure 2.4: Robots for extreme off-road terrain: left ‘Tracked’, and right ‘Ackermann’, which

[26] tests and evaluates in tunnels and mines. .. 8

Figure 2.5: The Perseverance Mars rover [29], which NASA’s JPL developed and built to

explore the Martian surface in search of water .. 8

Figure 2.6: On the left, a stock Traxxas Slash 4x4 model driving in its intended

environment [31], on the right an example finished configuration of an

F1TENTH vehicle based on the Slash chassis and drivetrain [32]. 9

Figure 2.7: Overview of sensing systems on AV, on the basis of information from [2] ... 10

Figure 2.8: Different sensor systems on early AOVs, on the left Stanford’s “Stanley”

Robot’s roof rack, with the SICK LiDAR sensors on top, a monocular camera

below the middle sensor, and two orange-colored Radar sensors on either side

of the rack [38]. On the right RAVON’s sensor suite [39]. 11

Figure 2.9: On the left, the cameras mounted on the Remote Sensing Mast of the

Perseverance Rover, including the outer stereo Navcams, with another pair of

stereo cameras in between them, and the SuperCam topping the Mast [47].

 .. 13

Figure 2.10: Symbolic representation of perception systems on AV, based on [18] 16

Figure 2.11: Comparison between results obtained in [63] from different FCN’s, with

differing amounts of layers. From left to right: Input image; provided annotation

e.g. the desired output; the segmentation results of a network with 18, 50, and

101 layers [63]. ... 17

Figure 2.12: Example of the OFFSEG algorithm. From left to right: Input image, desired

output from first segmentation, segmentation result, final result after clustering

and classification. .. 18

List of Figures

ii

Figure 2.13: RSPMP perception pipeline, left, example RGB camera input, middle,

semantic segmentation results for that image, right, 2D-projected result map

containing semantic segmentation results. .. 19

Figure 2.14: Different compute solutions in autonomous vehicles, left, Stanleys trunk-

mounted compute network of multiple computers and batteries [69], Right, a

partially completed F1TENTH vehicle with the NVIDIA Jetson SoC circled in

red [34]. ... 21

Figure 2.15: Schematic representation of AV navigation systems, based on [75] 22

Figure 2.16: Tentacle configurations of MuCAR-3. (a) shows the total set of tentacles,

colored according to the current vehicle speed from green to orange to

magenta. For the other example subsets of tentacles (b) to (d), orange

tentacles are feasible, yellow indicates predicted stopping distance on a

tentacle, a blue arrow denotes the current steering angle, where purple shows

an arbitrary target trajectory, and the selected path has a red border in (b) and

(d). ... 24

Figure 3.1: Overview for the miniature AV development process in this thesis. 27

Figure 3.2: State of the thesis at the start of the physical project, grouped by subsystems

in order of their development in this thesis. Black text signifies components

already present, green denotes elements developed in this section. 31

Figure 3.3: Initial configuration of the F1TENTH platform supplied by TUM’s AVS

department. ... 31

Figure 3.4: Initial modifications to the provided F1TENTH platform, with annotations. The

NVIDIA Jetson Nano is easier to see in Figure 3.3, where it mounts at the

same place. ... 32

Figure 3.5: Modifications of the provided F1TENTH platform vehicle. Left, modifications

with plastic outer shell. Right, data gathering run in off-road environment. ... 33

Figure 3.6: Progress of the project at the start of software development, black items signify

current implementations, green items are this section’s additions. 34

Figure 3.7: Schematic Overview of the f1tenth_offroad package’s perception system

also containing a placeholder for the navigational components. 34

Figure 3.8: Results of the OFFSEG semantic segmentation pipeline. 36

Figure 3.9: Visualization of steps one and two of the 3D integration pipeline, with a

OFFSEG semantic segmentation result, corresponding depth image and the

resulting point cloud. For the depth image, brighter points are farther away,

brightest being 5 m. .. 37

Figure 3.10: Example of the resulting top-down map from the 3D integration pipeline,

together with the corresponding segmentation result overlayed over the

camera input. .. 39

Figure 3.11: Thesis progress at the start of GPS development. Black text denotes items

which the system currently implements, this section implements green text

items. ... 40

List of Figures

iii

Figure 3.12: On the left: aluminum shielding applied to the inside of the vehicle’s hull before

installation of the grounding wire. On the right, the final mounting position of

the GPS receiver at the rear of the vehicle on its standoff (red circle). 41

Figure 3.13: Project state and modifications for the navigation system. Black items signify

the current state of the project, green items are modifications in this section.

 .. 42

Figure 3.14: Schematic overview of the navigation side of the f1tenth_offroad ROS

package. .. 42

Figure 3.15: Representation of the prospective paths evaluated by the navigation system

in yellow overlayed over a top-down navigational map showing traversable

terrain in blue. ... 44

Figure 3.16: Heading odometry provided by the fusion system at standstill and while the

vehicle is moving. Arrows indicate the heading reading of a specific

sensor/system, with heading 0 defined in the upwards direction. At standstill,

the GPS heading has no influence, and an average between GPS and

magnetometer heading appears while moving. ... 46

Figure 3.17: Result of the navigational algorithm (right) with the corresponding camera

image (left). The color of a path indicates its evaluation result, with better

results indicated by more intense yellow. The orange dot signifies the direction

of the goal point. ... 47

Figure 3.18: Project state at the end of if the initial development cycle. Final fixes,

modifications, and improvements to earlier systems in the later stages of

testing and development are green, with the existing state of the project in

black. ... 47

Figure 3.19: Traxxas Slash 4x4 chassis with the custom suspension upgrade, new shock-

and-spring combo circled in red. .. 48

Figure 4.1: Overview of hard- and software components of the finished vehicle platform.

 .. 51

Figure 4.2: On the left, the final, completed vehicle hardware platform with its outer shell.

On the right, the main mounting platform with the compute and sensing

hardware. .. 52

Figure 4.3: Schematic overview of the complete f1tenth_offroad ROS package. 53

Figure 4.4: Left, LiDAR and camera sensor mounting position, middle and right, LiDAR

scan data as white points with and without the outer plastic shell, with shell

interference circled in red. The intersection point of the axes signifies the scan

center point or point of origin. ... 54

Figure 4.5: Left, the minimum tilt forward to cause a ground strike (barely visible in the

tires as the suspension is drooping). Right, a top-down map (Section 3.3.2)

with a ground-strike in the LiDAR data, were the ground-strike-related data

points in the green circle. .. 55

Figure 4.6: Masking pipeline for example incoming camera data, from left to right, with the

two input images on the left and in the middle and the resulting output on the

right. .. 55

List of Figures

iv

Figure 4.7: Comparison between depth quality settings ‘Ultra’ and ‘Neural’, with depth

images of the same scene on top with corresponding top-down maps below

(Section 3.3.2). .. 56

Figure 4.8: Visualization of Vehicle GPS data with multiple hardware configurations while

the vehicle is stationary as well as when moving. The vehicle traversed the

path for the ‘Vehicle moving’ data in both directions. 57

Figure 4.9: Examples of the two stages of the OFFSEG system for comparison. On the

top, the single- or first-stage segmentation, on the bottom the two-stage

segmentation, both overlayed over their respective camera input. 59

Figure 4.10: Examples of the resulting top-down maps from the 3D integration pipeline,

together with respective segmentation results overlayed over their camera

inputs. .. 61

Figure 4.11: Examples of navigational results with their corresponding camera images. The

saturation of the paths indicates their evaluation result, with better results

indicated by brighter yellow. The orange dot on the edge of the map is the

direction to the goal... 62

Figure 4.12: Offroad testing track used in this thesis with a round trip length of around 1km.

The track here represents GPS data from one of the final tests. 63

Figure 5.1: Relative time taken by the respective steps in the f1tenth_offroad ROS

package developed for this project, with total computation cycle time and

resulting FPS. ... 65

Figure 5.2: Hierarchical overview of the information flow in the f1tenth_offroad

package. .. 67

Figure 5.3: The F1TENTH-platfrom-based vehicle developed in this thesis in front of the

TUM’s EDGAR vehicle which Appendix C presents. 69

Figure 5.4: Final assessment of this thesis’ results, analogous to Figure 1.1 71

Figure 6.1: Final version of the modified F1TENTH platform developed in this thesis. ... 73

Figure A.1: Notable ELROB AOVs. On the left, MuCAR-3 of the UniBw [91], and an the

right the RAVON vehicle of the University of Kaiserslautern [92] xx

Figure B.1: On the left: forward facing camera image of an AV [3]. On the right: Combined

top-down sensor image from a Radar and LIDAR sensor viewing the same

scene as the camera. Colored points represent data from the LIDAR sensor,

while white points represent Radar data [3]. ... xxi

Figure C.1: TUM’s EDGAR AV, an example of a modern AV platform. xxiii

Figure C.2: EDGAR’s sensor roof rack. Annotations 1, 2 and 3 are medium-, long- and

short-range camera respectively, with 4 and 5 denoting medium- and short-

range LiDAR respectively, adapted from [54] .. xxiii

Figure D.1: Left, an image from RASCAL’s right camera, which was analyzed and

annotated with road boarders according to its perception algorithm [15], on the

right an image from MuCAR-3’s perception pipeline, showcasing the result of

its saturation based analysis algorithm, where black indicates traversability, in

List of Figures

v

conjunction with an early drivability analysis result in the form of colored paths

[43] .. xxv

Figure D.2: Left, a visual representation of a simple artificial neural network containing an

input, hidden, and output layer, fully connected between layers, in the form of

a directed graph [102]. Right, the architecture of LeNet-5, a convolutional

neural network designed for reading handwritten text, with two convolutional

layers (which utilize local connections and weight sharing), two pooling layers

and three fully connected layers [100]. .. xxvi

Figure D.3: Height-Based LiDAR Classification categories of RAVON [40] xxvii

vi

vii

List of Tables

Table 2.1: Exteroceptive sensors usage percentage in this thesis’ examples, grouped by

type, in comparison to EDGAR’s sensor configuration, for which checkmarks

and crosses denote sensor presence and absence respectively. Expanded

table in Appendix C. .. 15

Table 2.2: Proprioceptive sensors usage percentage in this thesis’ examples, grouped by

type, compared with EDGAR’s setup. Values in parentheses are assumptions

with not explicitly stated sensors, which this thesis assumes to be present. Full

table in Appendix C. .. 15

Table 2.3: Comparison of Global and Local Pathfinding [77] .. 23

Table 3.1: Intended Setup of this thesis’ platform based on prior work and analysis thereof.

 .. 30

Table 4.1: Final hardware setup of this thesis’ AOV platform ... 52

Table 4.2: Test results of camera framerate in ROS and in the f1tenth_offroad package,

as well as the estimated data rate for the package FPS reading. VGA

resolution is 672 by 376 pixels at 1.01 MB per message, HD720 is 1280 by

720 pixels at 3.69 MB per message. .. 56

Table 4.3: Power system tests: modified elements, resulting runtime and battery voltage

at crash. .. 58

Table 4.4: Segmentation System timing and FPS depending on resolution and stages

used. ... 60

Table 4.5: 3D Processing algorithm processing time and resulting FPS depending on

configuration. .. 60

Table 4.6: Navigation system errors during the field tests grouped by type. 64

Table 4.7: Recovery attempts, failures, and successes during the final test. 64

Table C.1: Exteroceptive sensors in the presented AV examples, ordered by appearance

in this paper. Checkmarks indicate sensor presence, while sensors not

mentioned in the corresponding reference have their field left empty.

Checkmarks centered in subcolumns (e.g., between 2D and 3D LiDAR)

indicate presence without information about subtypes. xxiv

Table C.2: Interoceptive sensors used in the presented AV examples, ordered by

appearance in this paper. Black checkmarks indicate presence, grey

checkmarks indicate situations where research does not explicitly mention

sensor presence, but where it is highly likely, with fields for all other non-

mentioned sensors left blank. .. xxiv

viii

ix

Bibliography

[1] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, "Deep Learning Sensor Fusion for

Autonomous Vehicle Perception and Localization: A Review," Sensors, early access. doi:

10.3390/s20154220.

[2] J. Kocic, N. Jovicic, and V. Drndarevic, "Sensors and Sensor Fusion in Autonomous Vehi-

cles," in 2018 26th Telecommunications Forum (TELFOR): Proceedings of papers :

Belgrade, Serbia, November, 20-21, 2018 = XXVI Telekomunikacioni forum TELFOR

2018 : zbornik radova, Belgrade, 2018, pp. 420–425, doi: 10.1109/TEL-

FOR.2018.8612054.

[3] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, "Sensor and Sensor Fusion

Technology in Autonomous Vehicles: A Review," Sensors, early access. doi:

10.3390/s21062140.

[4] H. A. Ignatious, H.-E. Sayed, and M. Khan, "An overview of sensors in Autonomous Vehi-

cles," Procedia Computer Science, vol. 198, pp. 736–741, 2022. doi:

10.1016/j.procs.2021.12.315. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S1877050921025540

[5] K. Berns, K.-D. Kuhnert, and C. Armbrust, "Off-road Robotics—An Overview," Künstl In-

tell, vol. 25, no. 2, pp. 109–116, 2011, doi: 10.1007/s13218-011-0100-4.

[6] Amirreza Shaban, Xiangyun Meng, JoonHo Lee, Byron Boots, and Dieter Fox, "Semantic

Terrain Classification for Off-Road Autonomous Driving," in Proceedings of the 5th Con-

ference on Robot Learning, vol. 164, Aleksandra Faust, David Hsu, and Gerhard

Neumann, Eds., Proceedings of Machine Learning Research: PMLR, 2022, 619--629.

[Online]. Available: https://proceedings.mlr.press/v164/shaban22a.html

[7] R. Behringer, "The DARPA grand challenge - autonomous ground vehicles in the desert,"

IFAC Proceedings Volumes, vol. 37, no. 8, pp. 904–909, 2004. doi: 10.1016/S1474-

6670(17)32095-5. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1474667017320955

[8] D. Khalatyan, "Towards Modularity and Reconfigurability for Robotic Off-Highway Equip-

ment: A Proof-of-Concept Prototype: Towards Modularity and Reconfigurability for Robotic

Off-Highway Equipment: A Proof-of-Concept Prototype," [Online]. Available: https://

qspace.library.queensu.ca/items/4787bda8-ccb5-4445-8878-28c7283a7e95

[9] Robert Hudjakov, "Long-Range Navigation for Unmanned Off-Road Ground Vehicle," Fac-

ulty of Mechanical Engineering, TALLINN UNIVERSITY OF TECHNOLOGY, 2013.

[Online]. Available: https://www.researchgate.net/publication/281432404_Long-Range_

Navigation_for_Unmanned_Off-Road_Ground_Vehicle

Bibliography

x

[10] T. Bailey, "Mobile Robot Localisation and Mapping in Extensive Outdoor Environments,"

2002. [Online]. Available: https://www.semanticscholar.org/paper/Mobile-Robot-Localisa-

tion-and-Mapping-in-Extensive-Bailey/b9fc38a6ce41c8709377f6a5974a66b59de9487c

[11] A. Agnihotri, M. O'Kelly, R. Mangharam, and H. Abbas, "Teaching Autonomous Systems

at 1/10th-scale," in Proceedings of the 51st ACM Technical Symposium on Computer Sci-

ence Education, New York, NY, USA, 2020, doi: 10.1145/3328778.3366796.

[12] B. Li et al., "Toward Fair and Thrilling Autonomous Racing: Governance Rules and Perfor-

mance Metrics for the Autonomous One," IEEE Trans. Intell. Veh., vol. 8, no. 8, pp. 3974–

3982, 2023, doi: 10.1109/TIV.2023.3298914.

[13] M. O'Kelly, H. Zheng, D. Karthik, and R. Mangharam, "F1TENTH: An Open-source Evalu-

ation Environment for Continuous Control and Reinforcement Learning," Proceedings of

Machine Learning Research, vol. 123, 2020. [Online]. Available: https://par.nsf.gov/biblio/

10221872

[14] S. Thrun et al., "Stanley: The robot that won the DARPA Grand Challenge," Journal of

Field Robotics, vol. 23, no. 9, pp. 661–692, 2006, doi: 10.1002/rob.20147.

[15] R. Behringer et al., "RASCAL - an autonomous ground vehicle for desert driving in the

DARPA grand challenge 2005," in 2005 IEEE Intelligent Transportation Systems Confer-

ence (ITSC): Vienna, Austria, 13 - 16 September 2005 ; [8th International Conference on

Intelligent Transportation Systems, Vienna, Austria, 2005, pp. 644–649, doi:

10.1109/ITSC.2005.1520123.

[16] R. Behringer et al., "The DARPA grand challenge - development of an autonomous vehi-

cle," in 2004 IEEE Intelligent Vehicles Symposium: Parma, Italy, June 14 - 17, 2004,

Parma, Italy, 2004, pp. 226–231, doi: 10.1109/IVS.2004.1336386.

[17] G. Seetharaman, A. Lakhotia, and E. P. Blasch, "Unmanned vehicles come of age: The

DARPA grand challenge," Computer, vol. 39, no. 12, pp. 26–29, 2006, doi:

10.1109/MC.2006.447.

[18] J. van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, "Autonomous vehicle percep-

tion: The technology of today and tomorrow," Transportation Research Part C: Emerging

Technologies, vol. 89, pp. 384–406, 2018. doi: 10.1016/j.trc.2018.02.012. [Online]. Availa-

ble: https://www.sciencedirect.com/science/article/pii/s0968090x18302134

[19] Off-road vehicle engineering principles. St. Joseph, Mich.: American Society of Agricul-

tural Engineers, 2006.

[20] Bill McBride, Raul Longoria, and Eric Krotkov, Measurement and prediction of the off-road

mobility of small, robotic ground vehicles, 2003. [Online]. Available: https://www.re-

searchgate.net/profile/raul-longoria-2/publication/246790618_measurement_and_

prediction_of_the_off-road_mobility_of_small_robotic_ground_vehicles

[21] J. Folkesson and H. Christensen, "SIFT Based Graphical SLAM on a Packbot," Field and

Service Robotics, vol. 42, pp. 317–328, 2008. doi: 10.1007/978-3-540-75404-6_30.

[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-75404-6_30

[22] Chris Prahacs, Aaron Saunders, Matthew K Smith, Dave Mcmordie, and Martin Buehler,

"Towards legged amphibious mobile robotics," in 2004. [Online]. Available: https://www.re-

searchgate.net/publication/228869003_Towards_legged_amphibious_mobile_robotics

Bibliography

xi

[23] U. Saranli, M. Buehler, and D. E. Koditschek, "RHex: A Simple and Highly Mobile Hexa-

pod Robot," The International Journal of Robotics Research, vol. 20, no. 7, pp. 616–631,

2001, doi: 10.1177/02783640122067570.

[24] B. Siciliano, C. Laschi, and O. Khatib, Eds. Experimental Robotics (Springer Proceedings

in Advanced Robotics). Cham: Springer International Publishing, 2021.

[25] N. D. Wallace, H. Kong, A. J. Hill, and S. Sukkarieh, "Motion Cost Characterisation of an

Omnidirectional WMR on Uneven Terrains," IFAC-PapersOnLine, vol. 52, no. 22, pp. 31–

36, 2019. doi: 10.1016/j.ifacol.2019.11.043. [Online]. Available: https://www.sciencedi-

rect.com/science/article/pii/S2405896319309784

[26] R. Thakker et al., "Autonomous Off-Road Navigation over Extreme Terrains with Percep-

tually-Challenging Conditions," in Experimental Robotics (Springer Proceedings in

Advanced Robotics), B. Siciliano, C. Laschi, and O. Khatib, Eds., Cham: Springer Interna-

tional Publishing, 2021, pp. 161–173.

[27] "ODIN - OE Data Integration Network." Accessed: Jan. 26, 2024. [Online]. Available:

https://odin.tradoc.army.mil/WEG/Asset/Telemax_PRO_German_Tracked_Unmanned_

Ground_Vehicle_(UGV)

[28] Traxxas.com. "Traxxas X-Maxx | RC Monster Truck." Accessed: Jan. 26, 2024. [Online].

Available: https://traxxas.com/products/landing/x-maxx/

[29] NASA/JPL-Caltech/MSSS. "6037 MSL Banner." Accessed: Jan. 26, 2024. [Online]. Avail-

able: https://mars.nasa.gov/msl/home/

[30] A. Rankin, M. Maimone, J. Biesiadecki, N. Patel, D. Levine, and O. Toupet, "Driving Curi-

osity: Mars Rover Mobility Trends During the First Seven Years," in 2020 IEEE Aerospace

Conference: Yellowstone Conference Center, Big Sky, Montana, March 7-14, 2020, Big

Sky, MT, USA, 2020, pp. 1–19, doi: 10.1109/AERO47225.2020.9172469.

[31] "Slash 4X4 VXL TSM | 4X4 Brushless RC Truck | Traxxas." Accessed: Feb. 10, 2024.

[Online]. Available: https://traxxas.com/products/models/electric/slash-4x4-tsm?t=features

[32] "Build." Accessed: Feb. 10, 2024. [Online]. Available: https://f1tenth.org/build

[33] T. Hattori, X. Huo, S. Maldonado, P. Napier, W. Swist, and S. Anderson, "Autonomous

Miniature Car for Room Exploration and Object Search," 1546-2188, 2023. [Online]. Avail-

able: https://repository.arizona.edu/handle/10150/670501

[34] "F1TENTH." Accessed: Feb. 10, 2024. [Online]. Available: https://f1tenth.org/

[35] S. Campbell et al., "Sensor Technology in Autonomous Vehicles : A review," in 29th Irish

Signals and Systems Conference (ISSC): Belfast, UK, June 21-22, 2018, Belfast, 2018,

pp. 1–4, doi: 10.1109/ISSC.2018.8585340.

[36] "What is LiDAR and How Does it Work? | Synopsys." Accessed: Feb. 11, 2024. [Online].

Available: https://www.synopsys.com/glossary/what-is-lidar.html

[37] N. Li et al., "A Progress Review on Solid‐State LiDAR and Nanophotonics‐Based LiDAR

Sensors," Laser & Photonics Reviews, vol. 16, no. 11, 2022, Art. no. 2100511. doi:

10.1002/lpor.202100511. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/

10.1002/lpor.202100511

[38] Smithsonian Institution. ""Stanley" Robot Car | Smithsonian Institution." Accessed: Feb.

11, 2024. [Online]. Available: https://www.si.edu/object/nmah_1377824

Bibliography

xii

[39] "Elrob 2009 TeamInformation Kaiserslautern." Accessed: Feb. 11, 2024. [Online]. Availa-

ble: https://www.elrob.org/files/elrob2009/

[40] C. Armbrust et al., "RAVON: The robust autonomous vehicle for off-road navigation," in

Using Robots in Hazardous Environments, Elsevier, 2011, pp. 353–396.

[41] Harald Weber, "LiDAR sensor functionality and variants: SICK AG WHITEPAPER," SICK

AG, Waldkirch, Germany, 2018. Accessed: Dec. 2, 2024. [Online]. Available: https://

cdn.sick.com/media/docs/3/63/963/whitepaper_lidar_en_im0079963.pdf

[42] HOKUYO AUTOMATIC CO., LTD. "UST-10/20LX | Products List | Scanning Rangefinder |

Distance Data Output | UST-10/20LX | HOKUYO AUTOMATIC CO., LTD." Accessed:

Feb. 12, 2024. [Online]. Available: https://www.hokuyo-aut.jp/search/single.php?serial=

167

[43] M. Himmelsbach et al., "Team MuCAR-3 at C-ELROB 2009," in Proceedings of 1st Work-

shop on Field Robotics, Civilian European Land Robot Trial 2009, 2009.

[44] M. Yahiaoui et al., "FisheyeMODNet: Moving Object detection on Surround-view Cameras

for Autonomous Driving," Aug. 2019. [Online]. Available: http://arxiv.org/pdf/

1908.11789.pdf

[45] G. Reina, A. Milella, and R. Worst, "LIDAR and stereo combination for traversability as-

sessment of off-road robotic vehicles," Robotica, vol. 34, no. 12, pp. 2823–2841, 2016,

doi: 10.1017/S0263574715000442.

[46] Mars.nasa.gov. "Blog: Mars Perseverance Rover Mission - NASA." Accessed: Feb. 20,

2024. [Online]. Available: https://mars.nasa.gov/mars2020/mission/status/

[47] J. N. Maki et al., "The Mars 2020 Engineering Cameras and Microphone on the Persever-

ance Rover: A Next-Generation Imaging System for Mars Exploration," Space Sci Rev,

early access. doi: 10.1007/s11214-020-00765-9.

[48] K. S. Chong and L. Kleeman, "Accurate odometry and error modelling for a mobile robot,"

in Proceedings / 1997 IEEE International Conference on Robotics and Automation: April

20 - 25, 1997, Albuquerque, NM, Albuquerque, NM, USA, 19XX-, pp. 2783–2788, doi:

10.1109/ROBOT.1997.606708.

[49] M. BROSSARD and S. BONNABEL, "Learning Wheel Odometry and IMU Errors for Lo-

calization," in 2019 International Conference on Robotics and Automation (ICRA),

Montreal, QC, Canada, 2019, pp. 291–297, doi: 10.1109/ICRA.2019.8794237.

[50] GitHub. "GitHub - vedderb/bldc: The VESC motor control firmware." Accessed: Feb. 23,

2024. [Online]. Available: https://github.com/vedderb/bldc/

[51] Moafipoor, Shahram, Dorota A. Grejner-Brzezinska, C. K. Toth, Ed., Adaptive calibration

of a magnetometer compass for a personal navigation system, 2007.

[52] C. J. Hegarty and E. Chatre, "Evolution of the Global Navigation SatelliteSystem (GNSS),"

Proc. IEEE, vol. 96, no. 12, pp. 1902–1917, 2008, doi: 10.1109/JPROC.2008.2006090.

[53] X. Li et al., "Accuracy and reliability of multi-GNSS real-time precise positioning: GPS,

GLONASS, BeiDou, and Galileo," J Geod, vol. 89, no. 6, pp. 607–635, 2015. doi:

10.1007/s00190-015-0802-8. [Online]. Available: https://link.springer.com/article/10.1007/

s00190-015-0802-8

Bibliography

xiii

[54] P. Karle et al., "EDGAR: An Autonomous Driving Research Platform -- From Feature De-

velopment to Real-World Application," Sep. 2023.

[55] M. Matosevic, Z. Salcic, and S. Berber, "A Comparison of Accuracy Using a GPS and a

Low-Cost DGPS," IEEE Trans. Instrum. Meas., vol. 55, no. 5, pp. 1677–1683, 2006, doi:

10.1109/TIM.2006.880918.

[56] S. Pendleton et al., "Perception, Planning, Control, and Coordination for Autonomous Ve-

hicles," Machines, vol. 5, no. 1, p. 6, 2017, doi: 10.3390/machines5010006.

[57] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware implementation for vis-

ual perception system in autonomous vehicle: A survey," Integration, vol. 59, pp. 148–156,

2017. doi: 10.1016/j.vlsi.2017.07.007. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0167926017303218

[58] Z. Xiang and U. Ozguner, "Environmental perception and multi-sensor data fusion for off-

road autonomous vehicles," in 2005 IEEE Intelligent Transportation Systems Conference

(ITSC): Vienna, Austria, 13 - 16 September 2005 ; [8th International Conference on Intelli-

gent Transportation Systems, Vienna, Austria, 2005, pp. 584–589, doi:

10.1109/ITSC.2005.1520113.

[59] D. Chen, M. Zhuang, X. Zhong, W. Wu, and Q. Liu, "RSPMP: real-time semantic percep-

tion and motion planning for autonomous navigation of unmanned ground vehicle in off-

road environments," Appl Intell, vol. 53, no. 5, pp. 4979–4995, 2022. doi: 10.1007/s10489-

022-03283-z. [Online]. Available: https://link.springer.com/article/10.1007/s10489-022-

03283-z

[60] B. Forkel, J. Kallwies, and H. -J. Wuensche, "Probabilistic Terrain Estimation for Autono-

mous Off-Road Driving," in 2021 IEEE International Conference on Robotics and

Automation (ICRA), 2021, pp. 13864–13870, doi: 10.1109/ICRA48506.2021.9561689.

[61] K. Viswanath, K. Singh, P. Jiang, S. P. B., and S. Saripalli, "OFFSEG: A Semantic Seg-

mentation Framework For Off-Road Driving," 2021, doi: 10.48550/arXiv.2103.12417.

[62] D. Maturana, P.-W. Chou, M. Uenoyama, and S. Scherer, "Real-Time Semantic Mapping

for Autonomous Off-Road Navigation," in Field and Service Robotics (Springer Proceed-

ings in Advanced Robotics), M. Hutter and R. Siegwart, Eds., Cham: Springer

International Publishing, 2018, pp. 335–350.

[63] F. Elander, "Semantic segmentation of off-road scenery on embedded hardware using

transfer learning," Master of Science, Industrial Engineering and Management, Royal In-

stitute of Technology, Stockholm, 2021.

[64] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, "BiSeNet V2: Bilateral Network

with Guided Aggregation for Real-time Semantic Segmentation," Apr. 2020. [Online].

Available: http://arxiv.org/pdf/2004.02147

[65] Q.-C. Nguyen, M.-T. Pham, D.-D. Phan, and D.-L. Vu, "Efficient Multi-Organ Segmenta-

tion Using HRNet And OCRNet," in 2022 RIVF International Conference on Computing

and Communication Technologies (RIVF): RIVF 2022 : December 20-22, 2022, Ho Chi

Minh City, Vietnam : proceedings, Ho Chi Minh City, Vietnam, V. N. Q. Bao, Ed., 2022, pp.

542–547, doi: 10.1109/RIVF55975.2022.10013867.

[66] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis, "A Survey

of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous

Bibliography

xiv

Vehicle Applications," IEEE Internet Things J., vol. 5, no. 2, pp. 829–846, 2018, doi:

10.1109/JIOT.2018.2812300.

[67] R. Ren, H. Fu, H. Xue, X. Li, X. Hu, and M. Wu, "LiDAR‐based robust localization for field

autonomous vehicles in off‐road environments," Journal of Field Robotics, vol. 38, no. 8,

pp. 1059–1077, 2021, doi: 10.1002/rob.22031.

[68] T. Luettel, M. Himmelsbach, F. v. Hundelshausen, M. Manz, A. Mueller, H.-J. Wuensche.

All: Autonomous Systems Technology (TAS), UniBw Muenchen, Ed., Autonomous Of-

froad Navigation Under Poor GPS Conditions, 2009.

[69] Wikipedia. "Stanley (vehicle)." Accessed: Mar. 28, 2024. [Online]. Available: https://en.wik-

ipedia.org/w/index.php?title=Stanley_(vehicle)&oldid=1197125325

[70] NVIDIA. "Eingebettete Systeme von NVIDIA für autonome Maschinen der nächsten Ge-

neration." Accessed: Mar. 28, 2024. [Online]. Available: https://www.nvidia.com/de-de/

autonomous-machines/embedded-systems/

[71] B. Zhou et al., "An autonomous navigation approach for unmanned vehicle in outdoor un-

structured terrain with dynamic and negative obstacles," Robotica, vol. 40, no. 8, pp.

2831–2854, 2022. doi: 10.1017/S0263574721001983. [Online]. Available: https://

www.cambridge.org/core/journals/robotica/article/an-autonomous-navigation-approach-

for-unmanned-vehicle-in-outdoor-unstructured-terrain-with-dynamic-and-negative-obsta-

cles/1E8CB785AE85F33F7C87D018ACBAB50D

[72] A. A. Suzen, B. Duman, and B. Sen, "Benchmark Analysis of Jetson TX2, Jetson Nano

and Raspberry PI using Deep-CNN," in HORA 2020: 2nd International Congress on Hu-

man-Computer Interaction, Optimization and Robotic Applications : June 26-27, 2020,

Turkey : proceedings, Ankara, Turkey, 2020, pp. 1–5, doi:

10.1109/HORA49412.2020.9152915.

[73] "ROS: Home." Accessed: Mar. 28, 2024. [Online]. Available: https://www.ros.org/

[74] A. Hussein, P. Marin-Plaza, D. Martin, A. de La Escalera, and J. M. Armingol, "Autono-

mous off-road navigation using stereo-vision and laser-rangefinder fusion for outdoor

obstacles detection," in 2016 IEEE Intelligent Vehicles Symposium (IV), Gotenburg, Swe-

den, 2016, pp. 104–109.

[75] K. Konolige et al., "Mapping, navigation, and learning for off‐road traversal," Journal of

Field Robotics, vol. 26, no. 1, pp. 88–113, 2009, doi: 10.1002/rob.20271.

[76] S. Campbell, N. O'Mahony, A. Carvalho, L. Krpalkova, D. Riordan, and J. Walsh, "Path

Planning Techniques for Mobile Robots A Review," in 2020 6th International Conference

on Mechatronics and Robotics Engineering: ICMRE 2020 : Barcelona, Spain, February

12-15, 2020, Barcelona, Spain, 2020, pp. 12–16, doi: 10.1109/IC-

MRE49073.2020.9065187.

[77] A. Y. Kapi, M. S. Sunar, and Z. A. Algfoor, "Summary of Pathfinding in Off-Road Environ-

ment," in 2020 6th International Conference on Interactive Digital Media (ICIDM),

Bandung, Indonesia, 2020, pp. 1–4, doi: 10.1109/ICIDM51048.2020.9339639.

[78] K.-D. Kuhnert, "Software architecture of the Autonomous Mobile Outdoor Robot AMOR,"

in 2008 IEEE Intelligent Vehicles Symposium: Eindhoven, Netherlands, 4 - 6 June 2008,

Eindhoven, Netherlands, 2008, pp. 889–894, doi: 10.1109/IVS.2008.4621234.

Bibliography

xv

[79] M. Himmelsbach, T. Luettel, F. Hecker, F. v. Hundelshausen, and H.-J. Wuensche, "Au-

tonomous Off-Road Navigation for MuCAR-3," Künstl Intell, vol. 25, no. 2, pp. 145–149,

2011.

[80] A. Cherubini, F. Spindler, and F. Chaumette, "A new tentacles-based technique for avoid-

ing obstacles during visual navigation," in 2012 IEEE International Conference on

Robotics and Automation (ICRA 2012): St. Paul, Minnesota, USA, 14 - 18 May 2012, St

Paul, MN, USA, 2012, pp. 4850–4855, doi: 10.1109/ICRA.2012.6224584.

[81] Raia Hadsell, Ayse Erkan, Pierre Sermanet, Jan Ben, and Yann LeCun, "A Multi-Range

Vision Strategy for Autonomous Offroad Navigation," in 2007. [Online]. Available: https://

www.researchgate.net/publication/216792726_A_Multi-Range_Vision_Strategy_for_Au-

tonomous_Offroad_Navigation

[82] "GitHub - f1tenth/f1tenth_system: Drivers and system level code for the F1TENTH vehi-

cles." Accessed: Apr. 10, 2024. [Online]. Available: https://github.com/f1tenth/f1tenth_

system

[83] GitHub. "GitHub - stereolabs/zed-ros-wrapper: ROS wrapper for the ZED SDK." Ac-

cessed: Apr. 10, 2024.

[84] GitHub. "TUM-AVS/f1tenth_offroad." Accessed: Apr. 11, 2024. [Online]. Available: https://

github.com/TUM-AVS/f1tenth_offroad

[85] Stevewhims. "Aktivieren von NVIDIA CUDA unter WSL 2." Accessed: Apr. 14, 2024.

[Online]. Available: https://learn.microsoft.com/de-de/windows/ai/directml/gpu-cuda-in-wsl

[86] GitHub. "kasiv008/OFFSEG: Official Implementation of OFFSEG: A Semantic Segmenta-

tion framework for Off-Road Driving." Accessed: Apr. 11, 2024. [Online]. Available: https://

github.com/kasiv008/OFFSEG

[87] "kmcuda/src at master · src-d/kmcuda." Accessed: Apr. 11, 2024. [Online]. Available:

https://github.com/src-d/kmcuda/tree/master/src

[88] GitHub. "image_pipeline/depth_image_proc/src/nodelets/point_cloud_xyz.cpp at master ·

mjgarcia/image_pipeline." Accessed: Apr. 11, 2024. [Online]. Available: https://github.com/

mjgarcia/image_pipeline/blob/master/depth_image_proc/src/nodelets/point_cloud_xyz.cpp

[89] "ros/src/detector/scripts/pipeline.py at master · bostondiditeam/ros." Accessed: Apr. 11,

2024. [Online]. Available: https://github.com/bostondiditeam/ros/blob/master/src/detector/

scripts/pipeline.py

[90] GitHub. "GitHub - ros-drivers/nmea_navsat_driver: ROS package containing drivers for

NMEA devices that can output satellite navigation data (e.g. GPS or GLONASS)." Ac-

cessed: Apr. 15, 2024. [Online]. Available: https://github.com/ros-drivers/nmea_navsat_

driver

[91] H. Marsiske, "Elrob: Leistungstest für Roboter - Motivationsschub für die Forscher," heise

online, 15 Jun., 2009. Accessed: Apr. 4, 2024. [Online]. Available: https://www.heise.de/

news/Elrob-Leistungstest-fuer-Roboter-Motivationsschub-fuer-die-Forscher-181837.html

[92] H. Marsiske, "ELROB 2008: Nur zwei kamen durch," heise online, 07 Jan., 2008. Ac-

cessed: Feb. 11, 2024. [Online]. Available: https://www.heise.de/news/ELROB-2008-Nur-

zwei-kamen-durch-182649.html

Bibliography

xvi

[93] F. E. Schneider, D. Wildermuth, and H.-L. Wolf, "ELROB and EURATHLON: Improving

search & rescue robotics through real-world robot competitions," in 2015 10th International

Workshop on Robot Motion and Control (RoMoCo 2015): Poznań, Poland, 6-8 July 2015,

Poznan, Poland, 2015, pp. 118–123, doi: 10.1109/RoMoCo.2015.7219722.

[94] B. Zhou et al., "The Mars rover subsurface penetrating radar onboard China's Mars 2020

mission," Earth and Planetary Physics, vol. 4, no. 4, pp. 1–10, 2020, doi:

10.26464/epp2020054.

[95] W. Xu, C. Yan, W. Jia, X. Ji, and J. Liu, "Analyzing and Enhancing the Security of Ultra-

sonic Sensors for Autonomous Vehicles," IEEE Internet Things J., vol. 5, no. 6, pp. 5015–

5029, 2018, doi: 10.1109/JIOT.2018.2867917.

[96] M. N. Mubarak, "Outdoor obstacle detection using ultrasonic sensors for an autonomous

vehicle ensuring safe operations," [Online]. Available: https://trepo.tuni.fi/handle/

123456789/21422

[97] W. C. Lin and H. R. Tsui, "On dual ultrasound sensor technique for unmanned vehicles,"

Automation in Construction, vol. 1, no. 2, pp. 153–165, 1992. doi: 10.1016/0926-

5805(92)90005-5. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

0926580592900055

[98] Y. Ma, Z. Wang, H. Yang, and L. Yang, "Artificial intelligence applications in the develop-

ment of autonomous vehicles: a survey," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp.

315–329, 2020, doi: 10.1109/JAS.2020.1003021.

[99] P. Neigel, J. Rambach, and D. Stricker, "OFFSED: Off-Road Semantic Segmentation Da-

taset," in Proceedings of the 16th International Joint Conference on Computer Vision,

Imaging and Computer Graphics Theory and Applications, Online Streaming, --- Select a

Country ---, 2021, pp. 552–557.

[100] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, "A Survey of Convolutional Neural Net-

works: Analysis, Applications, and Prospects," IEEE transactions on neural networks and

learning systems, early access. doi: 10.1109/TNNLS.2021.3084827.

[101] K. O'Shea and R. Nash, "An Introduction to Convolutional Neural Networks," Nov.

2015. [Online]. Available: http://arxiv.org/pdf/1511.08458.pdf

[102] K. Kumar and G. S. M. Thakur, "Advanced Applications of Neural Networks and Artifi-

cial Intelligence: A Review," IJITCS, vol. 4, no. 6, pp. 57–68, 2012, doi:

10.5815/ijitcs.2012.06.08.

[103] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Muller, "Explaining

Deep Neural Networks and Beyond: A Review of Methods and Applications," Proc. IEEE,

vol. 109, no. 3, pp. 247–278, 2021, doi: 10.1109/JPROC.2021.3060483.

[104] S. Albawi, T. A. Mohammed, and S. Al-Zawi, "Understanding of a convolutional neural

network," in Proceedings of 2017 International Conference on Engineering & Technology

(ICET'2017): Akdeniz University, Antalya, Turkey, 21-23 August 2017, Antalya, 2017, pp.

1–6, doi: 10.1109/ICEngTechnol.2017.8308186.

[105] H. Stoll, P. Zimmer, F. Hartmann, and E. Sax, "GPS-independent localization for off-

road vehicles using ultra-wideband (UWB)," in IEEE ITSC 2017: 20th International Confer-

ence on Intelligent Transportation Systems : Mielparque Yokohama in Yokohama,

Bibliography

xvii

Kanagawa, Japan, October 16-19, 2017, Yokohama, 2017, pp. 1–6, doi:

10.1109/ITSC.2017.8317763.

[106] H. Mousazadeh, "A technical review on navigation systems of agricultural autonomous

off-road vehicles," Journal of Terramechanics, vol. 50, no. 3, pp. 211–232, 2013. doi:

10.1016/j.jterra.2013.03.004. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0022489813000220

[107] A. Hussein, H. Mostafa, M. Badrel-din, O. Sultan, and A. Khamis, "Metaheuristic optimi-

zation approach to mobile robot path planning," in 2012 International Conference on

Engineering and Technology (ICET 2012): New Cairo City], Cairo, Egypt, 10 - 11 October

2012, Cairo, Egypt, 2012, pp. 1–6, doi: 10.1109/ICEngTechnol.2012.6396150.

[108] H. Rastgoftar, B. Zhang, and E. M. Atkins, "A Data-Driven Approach for Autonomous

Motion Planning and Control in Off-Road Driving Scenarios," in 2018 Annual American

Control Conference (ACC): June 27-29, 2018, Wisconsin Center, Milwaukee, USA, Mil-

waukee, WI, 2018, pp. 5876–5883, doi: 10.23919/ACC.2018.8431069.

[109] J. Silveira, K. Cabral, S. Givigi, and J. A. Marshall, "Real-Time Fast Marching Tree for

Mobile Robot Motion Planning in Dynamic Environments," in ICRA 2023: Conference pro-

ceedings : 29th May-2nd June 2023, ExCeL London : IEEE International Conference on

Robotics and Automation, London, United Kingdom, M. O'Malley, Ed., 2023, pp. 7837–

7843, doi: 10.1109/ICRA48891.2023.10160595.

xviii

xix

Appendix

Appendix A ELROB Vehicle’s Chassis Setups .. xx

Appendix B Other Exteroceptive Sensors used on AV ... xxi

Appendix C Additional Information on Sensor Configurations ... xxiii

Appendix D Expanded Perception Preliminaries and Techniques xxv

Appendix E Global Pathfinding .. xxxi

Appendix

xx

Appendix A ELROB Vehicle’s Chas-

sis Setups

Figure A.1: Notable ELROB AOVs. On the left, MuCAR-3 of the UniBw [91], and an the right the

RAVON vehicle of the University of Kaiserslautern [92]

The ELROB offers both military and civilian challenges, which allow teams to choose from a set

of predefined scenarios to develop systems for and compete in. These range from “different

kinds of reconnaissance and surveillance missions combined with the detection of special ob-

jects, or transportation, which can be carried out with a single vehicle or in form of a convoy with

at least two vehicles” [93, p. 119].

Firstly, competing in the 2008 ELROB, is RAVON, the Robust Autonomous Vehicle for Offroad

Navigation (Figure A.1, left), developed by the University of Kaiserslautern in Hannover, Ger-

many. While it failed to finish the 2008 Offroad Course, it completed a majority of it, with only a

modified tracked military vehicle covering more of the track [92]. The platform used for the

RAVON robot is a robuCAR TT system manufactured by Robosoft, of which the researchers

altered several components to comply with the high requirements for offroad driving, such as

reinforcing the shock absorbers and transverse links. Having independent axles allows the plat-

form to make sharp turns and – by steering in parallel directions – drift away from lateral

obstacles without changing direction, which leads the Kaiserslautern team to theorize that this

increased mobility can drastically increase its capabilities to maneuver in obstacle rich environ-

ments. RAVON utilizes four independent 1.9 kW motors driving heavy Hankook offroad wheels,

allowing the robot to reach a maximum velocity of 3 m/s and climbing up to 100 percent slopes,

and with its eight 55Ah OPTIMA Batteries, it can travel for up to 4 hours [40].

Also highlighted here are the efforts of the MuCAR-3 Team, based at the University of the Bun-

deswehr (German Armed Forces) in Neubiberg, Germany, who competed in the 2009 ELROB

Installment. In direct analogy to the Stanford University’s “Stanley” vehicle used a VW Touareg

as the basis of their Platform (Figure A.1, right), likely with similar considerations, maybe inspi-

ration taken from the Stanford Team. In addition to modifications the Stanford Team mentioned

three to five years earlier, the MuCAR-3 AOV was additionally with a high-power generator, to

power more advanced Computing hardware as compared to earlier approaches [43]. As the

Touareg provides low level systems for electronic control of throttle and brake, the only needed

electric actuators interface with the original Steering Wheel shaft, the parking brake as well as

the gear shift lever [43].

Appendix

xxi

Appendix B Other Exteroceptive

Sensors used on AV

Figure B.1: On the left: forward facing camera image of an AV [3]. On the right: Combined top-

down sensor image from a Radar and LIDAR sensor viewing the same scene as the

camera. Colored points represent data from the LIDAR sensor, while white points rep-

resent Radar data [3].

Radar Sensors

“Radio Detection and Ranging, or Radar, was first established before World War II and operated

on the principle of radiating electromagnetic (EM) waves within the area of interest and receiving

the scattered waves (or reflections) of targets for further signal processing and establishing range

information about the targets” [3, p. 11]. Utilizing the Doppler property of EM Waves, a radar can

additionally determine the relative speed of objects within the scan range directly, without the

need for post processing [2]. Radars are not affected by adverse weather conditions or lighting,

and can detect objects at distances up to 200m away [2]. Problems of Radar sensors include

poor resolution (especially in the vertical direction), less data points, slow processing speeds,

and false detections of metal and/or stationary objects [2, 3, 35]. An example of this can is visible

in Figure B.1, which shows combined LIDAR and radar data on the right. The Radar sensor

delivers less data overall, with some false positives (white points) in the middle of the image [3].

Still, radar sensors are employed in some AV [3] to detect both moving and stationary obstacles,

and some vehicles might utilize them in mapping workloads. It is however limited in object de-

tection tasks by its low resolution, which is why radar data is often fused with LIDAR or camera

data in order to get more reliable information [3]. Radars mainly operate at 24 GHz or at higher

frequencies around 79 GHz; though the 79 GHz Sensors have a higher resolution of range,

velocity and angle and have thus become more favored as time goes on [3].

The presented examples use radar, although less than LIDAR or cameras. RASCAL uses a

radar system for the purpose of detecting metal objects like fences, which might be hard to pick

up on other sensor systems [15], the AVIDOR-2004 vehicle of their sister team also employs a

radar in the mm-wave range [7]. Stanford’s Stanley vehicle uses two forward facing 24 GHz

Appendix

xxii

radar sensors, depicted in Figure 2.8, for far field detection up to 200m [14]. Radar sensors are

omitted in RAVON [40] and MuCAR-3 [43], and from literature analyzed here, it seems that while

radar is in use on certain Mars rovers, it seems to be for more scientific purposes and not for

pathfinding or perception [94]. Radar sensors are omitted in all of the smaller vehicles which

provide sensor stacks, such as the F1TENTH platforms [11, 13, 33], all of the vehicles tested

and analyzed in [26] and the University of Sydney’s Swagbot [24].

Ultrasonic Sensors

“An Ultrasonic sensor is a device that uses sound waves to measure the distance to an ob-

ject” [35, p. 2]. Similar to LIDAR sensors, by measuring the TOF for a sent out pulse of ultrasound

returning after reflecting off of a surface and knowing the velocity of the wave, it is possible to

calculate the distance to said surface [35, 95]. They have found application in obstacle avoidance

and path planning and are robust, cheap, reliable in adverse conditions and excel in the precise

measurement of small distances [35]. Their downsides include difficulties with the detection of

angled surfaces, a limited range – about 6m [16, 96] – and susceptibility to shocks, vibrations

and external disturbances [35, 96, 97]. Other limitations lie in their slow response time and long

signal travel time, which limits the frequency of measurements, as well as their large area of

detection, which effectively confines their use to 1D distance measurements [96].

In AVs, only two of the presented examples mention the use of ultrasound sensors, SciAutonics’

AVIDOR-2004 [7] and RASCAL [16], the latter of which employed them for redundancy in short

range obstacle detection or emergency situations, in which longer range sensors may not work

correctly. When this fallback is necessary, the vehicle is then limited to slow speeds owing to the

ultrasound sensors short range; however, as this system is a fallback only used in emergencies,

this limitation was found not impact vehicle performance by researches in [16].

Appendix

xxiii

Appendix C Additional Information

on Sensor Configurations

Figure C.1: TUM’s EDGAR AV, an example of a modern AV platform.

EDGAR (Figure C.1) is based on a Volkswagen T7 Multivan eHybrid [54], the high roof of which

introduced limitations for the sensor roof rack (Figure C.2), necessitating trade-offs between

long- and short-range sensors. The vehicle also enables the researchers to use built-in sensors

such as ultrasound and radar sensors and control the vehicle via built in actuators for assisted

driving functionality.

For the exteroceptive sensors, EDGAR uses six mid-range cameras to provide a 360° view

around the vehicle, placed and equipped to minimize blind spots. In addition to this, two long-

range cameras are placed at the front of the vehicle to facilitate long range, stereo vision, with

two additional short range, active IR depth cameras placed on the roof rack (Figure C.2). ED-

GAR’s LiDAR complement utilizes four 3D units, two rotating sensors placed on the front corners

of the roof rack, suppling 360° coverage around the vehicle, and two long range solid-state Li-

DAR for front and rear long-range detections (Figure C.2). The vehicle also employs 6 Radar

sensors, which alternate between near- and far-field scanning patterns. Lastly, EDGAR uses

four microphones at the corners of the vehicle. This is done to locate and detect emergency

vehicle sirens, provide blind spot detection and to generate datapoints for road surface estima-

tion [54]. Figure C.2 shows EDGARs exteroceptive sensors as well as the sensor combinations

of the previous examples.

Figure C.2: EDGAR’s sensor roof rack. Annotations 1, 2 and 3 are medium-, long- and short-range

camera respectively, with 4 and 5 denoting medium- and short-range LiDAR respec-

tively, adapted from [54]

Appendix

xxiv

Table C.1: Exteroceptive sensors in the presented AV examples, ordered by appearance in this pa-

per. Checkmarks indicate sensor presence, while sensors not mentioned in the

corresponding reference have their field left empty. Checkmarks centered in subcolumns

(e.g., between 2D and 3D LiDAR) indicate presence without information about subtypes.

Proprioceptive Sensors on EDGAR include a combined GPS-IMU system, taking advantage of

both DGPS to achieve 2cm of GPS accuracy and a dual-antenna setup to measure heading via

GPS, even at a standstill. The IMU is only used during a GPS outage, to bring the vehicle to a

safe stop [54]. Table C.2 contains a comparison of proprioceptive sensors of the presented AVs.

Table C.2: Interoceptive sensors used in the presented AV examples, ordered by appearance in this

paper. Black checkmarks indicate presence, grey checkmarks indicate situations where

research does not explicitly mention sensor presence, but where it is highly likely, with

fields for all other non-mentioned sensors left blank.

Vehicle Names

LiDAR Camera

Radar

Ultrasonic

Sensors 2D 3D mono stereo

Stanley [14] ✔ ✔ ✔

RAVON [40] ✔ ✔ ✔

RASCAL [15] ✔ ✔ ✔ ✔

AVIDOR-2004 [16] ✔ ✔ ✔

MuCAR-3 [43] ✔ ✔

Tracked and

Ackermann [26]
✔ ✔ ✔

Mars Rovers [47] ✔ ✔

F1TENTH in [11] ✔

F1TENTH in [33] ✔

F1TENTH in [13] ✔ ✔

EDGAR [54] ✔ ✔ ✔ ✔ ✔

Vehicle Names

 IMS GPS

Encoders IMU Magnetometer position heading

Stanley [14] ✔ ✔ ✔ ✔

RAVON [40] ✔ ✔ ✔ ✔

RASCAL [15] ✔ ✔ ✔ ✔

AVIDOR-2004 [16] ✔ ✔ ✔

MuCAR-3 [43] ✔ ✔ ✔ ✔

Tracked and Ackermann

[26]
✔ ✔

F1TENTH [11, 13, 33] ✔ ✔

EDGAR [54] ✔ ✔ ✔ ✔

Appendix

xxv

Appendix D Expanded Perception

Preliminaries and Techniques

This chapter of the appendix will present the background and extended knowledge required to

fully understand and contextualize the perception algorithms presented in this work.

Strictly Calculative Approaches to Camera Perception

One directly calculative approach is pursued by researchers in [15] with their previously pre-

sented RASCAL vehicle. By dividing each camera feed of their stereo setup into multiple Regions

of Interest (ROIs), median-filtering, applying a linear gradient filter and using a Hough transfor-

mation their vision algorithm extracts line segments of road borders from the camera feed (Figure

D.1 on the left). The algorithm then forwards these, along with obstacles which the stereo camera

detects via the maximally stable extremal regions approach, to the path planning and control

systems.

Another approach is presented in [43] with the MuCAR-3 vehicle, which has been an example

in previous sections. Here, the researchers detect the road surface by assessing and normalizing

the saturation value of each pixel in the image in the HSI color format – denoted by s6(7, �) –

according to formula (C.1),

s6(7, �) =
⎩⎨
⎧ 0 s6(7, �) ≤ 3*255(s6(7, �) − 3*)

�4((3* < s6(7, �) < (3* + �4(()
255 s6(7, �) ≥ (3* + �4(()

 (C.1)

where 3& is a temporal low-pass filtered mean saturation value serving as the lower cutoff, and �4((is the upper cut-off value for the normalization. The system can then use this further via path

planning algorithms, which Figure D.1 displays on the right, a algorithm overlays colored lines

over the black-and-white perception result indicating the drivability of selected paths.

Figure D.1: Left, an image from RASCAL’s right camera, which was analyzed and annotated with

road boarders according to its perception algorithm [15], on the right an image from

MuCAR-3’s perception pipeline, showcasing the result of its saturation based analysis

algorithm, where black indicates traversability, in conjunction with an early drivability

analysis result in the form of colored paths [43]

Appendix

xxvi

Artificial Intelligence Basics

Recent Advancements in AI and machine learning have enabled the deployment of these tech-

nologies into the realm of Autonomous Driving [56, 57, 98], and can apply to the topic of semantic

segmentation: “Current state-of-the-art approaches to semantic full image segmentation mainly

rely on convolutional neural networks that take in a monocular RGB-image as input and produce

a class label for every pixel in the image” [99, p. 552]. It has been demonstrated that utilizing

convolutional neural networks (CNNs) for this task yields systems that are robust to scaling,

while at the same time outperforming other state-of-the-art methods in literature, which rely on

hand-crafted features and their relations in color and texture [57], and can rival human perception

accuracy in some tasks [98].

A convolutional neural network is a special type of artificial neural network [100, 101], which in

turn represents a generalized, mathematically modeled version of a biological nervous sys-

tem [101, 102]. An artificial neural network is a collection of neurons – modeled as nodes in a

graph – which receive and forward information along the directed nodes of said graph according

to an activation function, which describes how the output value derives from the input values. By

organizing these neurons into the simplest form of an artificial neural network, which contains

three layers and is depicted in Figure D.2 on the left, we can derive output variables from a set

of input variable [102]. This is done by iterating though the linear transformations formed by the

activation functions of the neurons in each layer, successively applying these functions until we

arrive at the output layer [102, 103]. More advanced, or ‘deep’ neural networks, employ multiple

hidden layers between input and output, which enhances their prediction power and accuracy at

the cost of increased computational complexity and less reliable estimations, and have proven

themselves as powerful tools in computer vision [103]. Convolutional neural networks are de-

signed to work primarily with images which otherwise would be too complex to efficiently analyze

them with regular artificial neural networks [101, 104]. To this effect, they introduce three ad-

vantages over general artificial neural networks, reducing complexity as well as time required to

‘train’ a network [100, 104], e.g. adapting the activation functions to achieve the desired outputs

[101, 102]:

10. Local connections: Neurons do not connect to all neurons of the previous layer,

only to a small area, e.g., 3x3 pixels.

11. Weight sharing: a group of neurons may share the same computational weights or

activation function.

12. Down-/subsampling: reduction of the number of datapoints while retaining useful

information in the form of a pooling layer.

Figure D.2 shows an example of a CNN on the right. As its creators designed it to work with

images as input, the first layers are two-dimensional, square fields of neurons.

Figure D.2: Left, a visual representation of a simple artificial neural network containing an input,

hidden, and output layer, fully connected between layers, in the form of a directed

graph [102]. Right, the architecture of LeNet-5, a convolutional neural network

Appendix

xxvii

designed for reading handwritten text, with two convolutional layers (which utilize local

connections and weight sharing), two pooling layers and three fully connected layers

[100].

To ‘train’ the network, making the outputs display the desired values for a given input, neural

networks self-optimize through machine learning. This can happen through two different para-

digms [101, 102]:

• Unsupervised Learning: Users provide training data without preassigned, expected

outputs, instead, the neural network attempts to cluster the input according to self-

detected patterns into different classes.

• Supervised Learning: Users provide the neural network with example inputs and

their respective expected outputs, which it then uses to self-optimize – ‘train’ – to

reduce the overall output error and provide the correct results. Researchers use

this in image-focused approaches, which are relevant here.

Further expanding the capabilities of CNNs are Fully Convolutional Networks (FCNs) [100],

which build upon the idea by introducing “deconvolution” layers, which up-sample to increase

output resolution – if the output is an image – as well as skip layers, which connect early layers

to up-sampled layers to preserve high-frequency detail [62].

There exist many more approaches for vehicle, pedestrian and lane detection, which use more

complicated perception approaches, often combining machine learning and AI with more tradi-

tionally calculative algorithms [18, 56, 57], but since these are not deemed relevant here for the

task of perception for offroad autonomous locomotion, this thesis will not present them here.

LiDAR Perception

Figure D.3: Height-Based LiDAR Classification categories of RAVON [40]

Stanley, one of the earliest offroad AVs, uses a mainly LiDAR based perception system [14].

Here, the algorithm transforms LiDAR Data into a 2D top-down grid, and then analyzed based

on the vertical distance between points. When measurements between vertical points in a certain

Appendix

xxviii

grid space exceed a critical threshold value, the algorithm detects an obstacle. When it finds no

such points, but at least one point falls into a grid cell, it classifies terrain as drivable, while with

no points in a cell cause the algorithm to assume that it is unknown. Similar systems are em-

ployed in later offroad AVs such as MuCar-3 [43], who reference the work done in [14], and

RAVON, who additionally classify overhangs, vegetation and negative obstacles [40], shown in

Figure D.3. However, while effective at standstill, in motion, such systems proved unreliable,

since small pose estimation errors related to the vehicles orientation could throw off readings,

resulting wrong perception results, subsequently forcing the vehicle off the road [14]. While a

system could combat this by better pose estimation systems, these proved too expensive for the

researchers of Stanford University and their Stanley vehicle. Instead, testing showed that time

between measurements links to measurement errors, and by applying a time-based confidence

value to measurements, results can improve. Lastly, the researchers apply a learning-based

parameter tuning approach like a behavioral copying in AI. A human drives the vehicle over only

traversable terrain, while an algorithm optimizes the thresholds and confidence values to classify

the driven-over terrain as traversable in the perception algorithm. Combining these two systems,

error rates dropped from 12.6% to 0.002% [14].

Newer work on the topic of LiDAR perception includes work done by a team of the UniBw in

Munich, who focus on the – drivable – terrain itself rather than classifying obstacles [60]. Here,

by accumulating the LiDAR data over time via an information filter, and subsequently applying a

special smoothing operation, they decouple terrain estimation and obstacle detection, resulting

in accurate height and slope information, while at the same time allowing the algorithm to inter-

polate to areas which are not visible to the sensors, further expanding capability [60].

Another recent approach is presented by researchers of the University of Washington in [6],

where a special CNN called Bird’s Eye View Network (BEVNet) predicts terrain classes based

on LiDAR input. This network takes LiDAR data discretized into 3D pixels as input – so called

voxels – and directly generates a 2D top-down traversability map, classifying terrain into free,

low-cost, medium-cost, and lethal. This approach yielded more reliable results especially in of-

froad terrain, for example on the RELLIS-3D dataset, where it outperformed any other tested

solutions with a large gap [6].

Historic Sensor Fusion Approaches

The first example of sensor fusion on offroad AV presented here comes from one of early DARPA

Grand Challenge vehicles, Stanley of Stanford University [14]. Developed to combat range limi-

tations with the existing LiDAR road/obstacle detection system, Stanley uses a long-range color

camera to ‘extend’ the range of the LiDAR system. It does this by identifying a quadrilateral of

drivable terrain using the LiDAR system, mapping it into the camera image, and detecting the

color of the drivable terrain using Gaussian functions. These then merge into an internal, dy-

namic database of drivable terrain colors – thus integrating elements of early machine learning –

which are subsequently used to classify a camera image into drivable and non-drivable terrain

based on the color of the surface. The algorithm only keeps drivable areas which connect to the

initial quadrilateral, and all other surfaces are set to non-drivable. This Camera-LiDAR fusion

system extends the range of the system from 22m up to 70m, enabling higher driving speeds

[14].

Another approach to LiDAR-Camera fusion is shown in [43], on the MuCAR-3 vehicle. Here, an

algorithm performs traversability analysis on combined factors from both camera and LiDAR,

where the latter provides overall binary drivability assessment together with a ‘clearness’ and a

Appendix

xxix

‘flatness’ factor, while the camera provides an additional factor based on the calculative ap-

proach shown previously.

Next, utilizing a stereo camera and a 3D LiDAR system, researchers in [45] combine classifica-

tion data from the two systems into a unified perception model. Both sensors utilize a similar

system related to basic perception algorithms already presented, using Gaussian functions and

comparative algorithms to assess whether certain features belong to the ‘ground’ class. After

these algorithms run, they generate two separate maps. These then combine using data gener-

ated from ground truth datasets, where they calculate weights for the detections based on the

respective accuracy of both classifier systems and the two classes. This showed a notable im-

provement from an accuracy of 95.5% and 95.1% for LiDAR and camera respectively to 96.5%

combined. A similar approach to sensor fusion is proposed in [74], where the selection between

the two separate maps is based on simply a confidence value provided by the classification

algorithms.

The “sensor fusion” term may also apply to the integration of Radar and Ultrasound sensors,

exemplary shown on the RAVON vehicle in [15]. Here, researchers use Radar sensors to detect

metal wire fences, which are hard to detect with other sensors, and ultrasound for low-range,

poor visibility situations. These then merge with other obstacle/environment data – e.g., from a

Camera and LiDAR – in a unified coordinate frame, and subsequently passed on to navigation

and pathfinding routines.

Local localization and SLAM

SLAM systems usually use grid-based maps to record occupancy of obstacles or other terrain

elements, where the map is filled in an iterative, live process while the robot is moving through

the environment [10, 18]. According to [18], this process is realized as follows:

1. The robot uses exteroceptive sensor to gain knowledge about its environment, e.g.,

location of obstacles or terrain features.

2. Data transfers into the grid depending on the sensor data, e.g., increasing or de-

creasing the likelihood of obstacles.

3. Using distance-to-landmark information or odometry, the robot localizes itself on

the map.

4. The robot moves somewhere else in the space of the map.

5. Repeat the process until the map is complete or the robot reaches the goal.

The data stored in the grid can vary, and include visual terrain imagery, as well as obstacle

probabilities, terrain slopes or predicted movement costs [10, 18, 59, 60]. Challenges here in-

clude stationary vs. dynamic obstacles and higher vehicle speeds [18]. Specifically in off-road

environments, additional complications include reliable data acquisition when the vehicle posi-

tion is uncertain, complex geometries of obstacles and terrain, decluttering of the long-term map,

large computational overhead with long-duration, complex maps and the reliable detection of

recurring elements and looping paths [10].

To combat this, the following approaches to local localization have been developed by research-

ers: Stanley, Stanford University’s entry to the DARPA Grand Challenge, used an IMU-system

based mainly on accelerometers and gyroscopes to gain information about vehicle orientation in

order to facilitate SLAM for short-range navigation purposes [14], and the RAVON offroad AV

Appendix

xxx

expands on this by additionally including wheel odometry – as does the MuCAR-3 vehicle [68]

– and a magnetic field sensor [40]. Researchers from the Karlsruhe Institute of Technology have

proposed a system in [105] that, in addition to odometry and IMU measurements, also includes

a network of ultra-wideband (UWB) antennas to provide position information via TOF measure-

ments. Other local localization approaches include the usage of highly accurate RTK-GPS [106],

and, more recently, Camera, LiDAR, Radar and Ultrasonic based localization systems [1, 67].

One Camera-based localization approach a two-stage approach, where an algorithm first per-

forms rough position orientation through orientation histograms, then, it achieves fine localization

through a landmark map, which achieved up to 75cm accuracy, but was susceptible to changes

in illumination and the angle of the camera system. An alternative approach to camera based

systems utilizes visual odometry, where a stereo camera is used to track feature points in the

environment over multiple frames, thus enabling the calculation of relative position changes [66].

Such systems, which utilize machine vision, are complex and computationally expensive [106],

but can be low cost alternatives that perform reasonably well [66].

LiDAR and Radar based techniques work in similar ways, through tracking of landmark points in

the sensor data like SLAM techniques. In Radar, due to the low number of detection points,

errors can still reach into the meters, although some solutions with ground penetrating radars

that utilize map knowledge achieved accuracy results in the centimeter range. LiDAR systems

provide significantly more data, and as such, are much more viable for the task of localization,

routinely achieving accuracies in the centimeter range. While they can provide accurate and

robust information, their drawbacks include high power draw and complex computations, as well

as high implementation costs [66].

At this point, it is also worth noting that some researchers propose systems in which the need

for precise, local localization is mitigated, substituting the mediated perception approach for a

behavior reflex approach, which provides end-to-end driving solutions that don’t rely on exten-

sive SLAM techniques [1].

Appendix

xxxi

Appendix E Global Pathfinding

Numerous different approaches for global pathfinding in offroad navigation have been developed,

tested and evaluated by researchers, namely classic path planning algorithms – such as Dijks-

tra’s or the A* algorithm – and improvements thereof, which introduce adaptivity and other

improvements [77]. All of these system operate on some variant of map-type data which is pre-

viously known [5].

Classic Path planning algorithms

Classic Path planning algorithms for the task of autonomous offroad navigation encompass the

A*, D* and Dijkstra’s algorithm [56, 77]. These methods apply as a graph search, with a graph

network that reflects drivable roads and paths, their connections and may also include other

information such as motion cost and slopes which then constitute the ‘weight’ of individual graph

edges. These networks can be either manually generated using maps, may be computer calcu-

lated based on vehicle movement or through computer vision techniques [56].

Examples of experiments using these algorithms encompass work done by researchers in [78]

and a comparative study in [77], where the latter especially shows that the base level algorithms

are unsuitable for offroad navigation, since they are incapable of accounting for the movement

cost of steep slopes, uneven maps, instability of data and power limits [77]. Expanding on this,

papers [77], [56] and [75] have found the A*, Dijkstra’s and D* algorithm respectively to be insuf-

ficient for the task of autonomous offroad navigation.

Improved Algorithms

Modifying the A*, D* and Dijkstra’s algorithm can lead to viability in offroad tasksets, as analyzed

in [77]. By including terrain slope into the calculations, it is possible to modify the algorithms in

order obtain viable paths, however most studies lack tests for real time capability. Other improve-

ments include a modified A* algorithm that utilizes rays rather than grid cells on a map in [81],

which has been tested in the field and has proven to be viable. Other notable improved classic

algorithms are an 3D anthill colony algorithm, which, while faster, did not find a shorter path

compared to other solutions, and an adaptive Dijkstra’s and A* algorithm, which also showed to

reduce processing time while not addressing other issues previously mentioned [77].

Another improvement for global path planning includes trajectory-based optimization [107]. Here,

the algorithm selects a random path through the environment at first, and then iteratively opti-

mizes it. One of the proposed algorithms for this is Tabu Search, which uses local optimization

and the acceptance of non-improving solutions over endless optimization attempts to facilitate

an increase in computational speed. Another proposed algorithm is Simulated Annealing. In-

spired by the physical process of annealing, it is easy to implement, able to solve complex, non-

linear problems without entrapment in optimization loops, however, it also possesses many var-

iables that require tuning. Lastly, a Genetic Algorithm, based on the principles of natural selection,

in which advantageous solutions with unique advantages progress in the iterative process, can

apply to the task of global pathfinding. While it is highly capable, it also cannot guarantee finding

the optimal path. In testing done in [107], SA is proven to be the fastest of these three solutions,

while the genetic algorithm arrives at a near optimal solution faster than any other algorithm.

Appendix

xxxii

Two more global navigation algorithms are presented in [76], which are the potential field method

and the cell decomposition method. The former treats the robot as a particle, which moves in an

artificial potential field constituted by influences from obstacles as repulsive forces and the des-

tination point as an attractive force. The cell decomposition method breaks the robot’s

surroundings up into cells, which it then populates with obstacles and traverses with the goal of

reaching the robots target point. While both of these methods have proven viable, they are still

limited in real-world application due to high computational requirements and inability to perform

in dynamic situations [76].

Some researchers introduce custom solutions to the global pathfinding problem. In [75], after

determining that a D* algorithm is insufficient, researchers implement a custom gradient planner,

which operates on a cost map by simulating wavefronts over the cell space of the map. Work

done in [108] implements a global planner based on dynamic programming, and researchers in

[71] implement another custom solution that values terrain reliability, terrain flatness and slope

analysis. Finishing up, research in [109] introduces a Real-time fast marching tree analysis for

the task of mobile robot navigation. As its creators designed it to combat complex and dynamic

obstacles, it combines the advantages of multiple algorithms, by first providing a suboptimal,

local path to start robot navigation while simultaneously searching for a more optimal path in the

background and reintegrating new data about the environment. In comparison with other algo-

rithms, this approach proved to be effective, realizing a faster time to target even though initial

path computation may provide a suboptimal result [109].

AI-based navigation approaches

In comparison to the approaches presented above, AI-based navigation approaches have po-

tential for more human-like learning in a heuristic approach [76, 106]. The following section will

briefly present an overview of the different approaches, which include artificial neural networks,

fuzzy logic, and genetic algorithms.

Firstly, using artificial neural networks for navigation has the main advantage of being able to

deal well with a variety of factors and sensors, however drawbacks include large amounts of

training data, often by driving the vehicle manually first, and error minimization between com-

puted data and required output [76, 106]. Some researchers propose hybrid approaches, where

other algorithms are introduced to smooth the generated paths with some success [76].

Next, approaches using fuzzy logic employ semi-states which operate between the classical true

and false of Boolean logic and seen extensive use in the field of robot path planning. The main

advantage of an approach like this is the heuristic capability of the controller, being able to infer

knowledge and output from sensor data even through uncertainties. It’s shown by researchers

that this can increase the capabilities of an navigation system with respect to dynamic obsta-

cles [76].

Lastly, concept of natural selection in biology inspires the genetic algorithm, which is one of the

most viable approaches to generating solutions to pathfinding tasks. By starting with (often ran-

dom) solutions to the problem, the genetic algorithm will then iteratively optimize, first by

generating a population of paths derived from the input using mutation and crossovers, evaluat-

ing the solutions by some metrics, e.g. length of paths, travel costs or distance to prospective

obstacles, selecting the best fit solutions, and then starting again [76, 106, 107]. In tests done in

[107] it has been shown to arrive at a near optimal solution faster than other approaches, while

taking slightly longer to reach the optimum, which it is not guaranteed to find [107].

