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Abstract

Quantum oscillations are a powerful tool for determining electronic proper-
ties of metals. Due to the relation between the quantum oscillation frequency
and the area enclosed by the Fermi surface, measuring quantum oscillations
provides insight into the Fermi surface geometry. In recent years, oscillation
frequencies equal to combinations of the standard frequencies have been ob-
served in thermodynamics and conductivity in systems with multiple Fermi
pockets. Questioning the canonical theory, a theory of interband impurity
scattering was proposed to explain the appearance of the difference frequency
in conductivity measurements and its temperature stability. In this thesis,
I investigate the impact of interband electronic interactions on the quantum
oscillation spectrum. I show that the interactions lead to the appearance of
a low-temperature difference frequency in thermodynamics and conductivity.
The combination of impurity and interaction effects produces a non-Lifshitz-
Kosevich temperature dependence of the difference frequency amplitude. The
derived theoretical model is related to previous experimental results. A fit to
temperature dependence measured in CoSi demonstrates agreement between
the model and the data. The here proposed theory enlarges the understand-
ing of quantum oscillations in the presence of interactions.
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Chapter 1

Introduction

The study of conductive materials has been an active field of physics since
the development of the electromagnetic theory. Proper understanding of the
problem eluded physicists until the advent of the atomic theory – only then
conduction could be explained as the motion of electrons in a background of
ionized atoms. An early example of a successful theory is the Drude model
[1], where the electrons are imagined as classically moving particles that
scatter off of positively charged atomic cores.

With the advent of the quantum theory, it became clear that to obtain
a full understanding of the behavior of electrons in a metal, a treatment of
many-body quantum systems is required. At first glance, the problem seems
impossibly complex – even solving the Schrödinger equation in the case of a
single particle is no easy task, and in a macroscopic metal there are roughly
1023 electrons. Thankfully, there is no need to find the behavior of each
individual electron in metals. What is usually of interest are the macroscopic
properties arising due to the collective motion of the constituents of the
system. Therefore, methods of statistical physics can be used to drastically
simplify the problem.

The simplest quantum model of electrons in a metal is a gas of free
fermions [2]. There, the particles move freely without interacting with each
other. However, they influence each other due to the Pauli exclusion principle
– no two fermions can occupy the same quantum state. Because of that,
the ground state is not just a group up of electrons in the lowest-energy
single-particle state. Instead, the electrons fill states in a bounded region
in momentum space, termed the Fermi sea. The boundary of this region is
called the Fermi surface. The excitations above the ground state are states
where electrons close to the Fermi surface leave the Fermi sea, leaving behind
a hole.

Although the free fermion model is extremely simplified, it is surpris-
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ingly effective at describing the behaviour of electrons in real metals (where
interactions between electrons and between electrons and atomic cores are
expected to play a role). This is explained by the concept of a Fermi liquid
[3, 4]. When one imagines adiabatically “turning on” the interactions, the
ground state and the first excited states of the free gas are expected to be
smoothly transformed into the ground state and the first excited states of
the Hamiltonian with interactions. Therefore, the structure of states close
to the Fermi surface is preserved in the presence of interactions and only
constants like the electron mass are renormalized to new values. Provided
the interactions are sufficiently weak, the insights from the free Fermi gas
can still be used in the case of interacting electrons.

The geometry of a metal’s Fermi surface determines its low-energy be-
haviour. Therefore, tools to measure it are of particular interest. One such
method is measuring oscillations of thermodynamical and transport quanti-
ties in a metal as a function of the magnetic field, which allows to access the
geometry of the Fermi surface directly! When a metal is placed in a magnetic
field, and then e.g. conductivity of the material is measured as a function
of the magnetic field, one finds that it oscillates as σ ∼ cos

(
2π F

B

)
. The fre-

quency of oscillations turns out to be related to the area inside of the Fermi
surface A (in two dimension) or the area of the extremal cross-section of the
Fermi surface perpendicular to the magnetic field (in three dimensions) as
A = eF .

Figure 1.1: First evidence of quantum oscillations of magnetic susceptibility,
observed by de Haas and van Alphen in bismuth [5].

Oscillations in thermodynamic quantities were first discovered in 1930 by
de Haas and van Alphen [5], and in conductivity in the same year by Shub-
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nikov and de Haas [6]. An insightful semiclassical explaination was provided
in 1952 by Onsager [7], establishing the connection between oscillation fre-
quencies and the area inside of the Fermi surface. A full quantum description
was devised by Lifshitz and Kosevich in 1956 [8]. An upshoot was the tem-
perature dependence of the quantum oscillation amplitude. In the case of a
two dimensional electron gas, it follows

RLK(χ) =
χ

sinhχ
(1.1)

with χ = 2π2mT
eB

, where T is the temperature, m the effective mass, e the elec-
tron charge and B the external magnetic field. This temperature damping
is another reason why measuring magnetic oscillations is a powerful experi-
mental tool – it can be used to determine the effective particle mass m in a
metal.

Figure 1.2: The Fourier transform of longitudinal conductivity as a function
of the magnetic field measured in CoSi [9]. Noticeable peaks are at funda-
mental frequencies α, β, second harmonics 2α, 2β and sum and difference
frequencies β ± α. The curves of different colors denote measurements at
different temperatures – note the surprising temperature stability of the dif-
ference frequency peak!

The standard theory of quantum oscillations has been enormously suc-
cessful, finding confirmation in countless experiments and being widely used
to investigate electronic properties of metals. In recent years, deviations
from the standard theory have been found in a number of materials, like
the appearance of quantum oscillations in bulk insulators [10, 11] and het-
erostructures [12, 13]. Of particular interest to this work is the discovery
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of combination frequencies. In materials with multiple distinct Fermi pock-
ets (enclosing areas A1, A2), in addition to frequencies proportional to A1,
A2 individually, frequencies proportional to k1A1 ± k2A2 with integer k1, k2

have been observed in thermodynamics [14–17] and conductivity [9]. The
difference frequency proportional to A1−A2 in conductivity is especially in-
teresting, as it has been shown to survive to surprisingly high temperatures
[9].

A model explaining the appearance of the combination frequencies in
multi-band materials has recently been proposed by Leeb and Knolle [18].
There, electrons from different bands can scatter on impurities to change
their band index. This causes the self-energy associated with a single band
to oscillate as a function of 1

B
with frequencies proportional to areas of both

Fermi pockets, which in turn produces the combination frequencies in observ-
ables. The model predicts the appearance of the sum and difference frequency
in conductivity and only the sum frequency in thermodynamical quantities.
Moreover, the difference frequency term in conductivity depends on tem-
perature through the LK factor Eq. (1.1), but with χ proportional to the
difference of effective masses of the two bands m1−m2. This explains the re-
markable temperature stability of the difference frequency – when m1 ≈ m2,
RLK(χ) decays very slowly.

The theory of Leeb and Knolle is promising as a model of combination
frequency QOs, but does not explain all of their experimentally observed
features. In a resistivity measurement in CoSi [9], the difference frequency
amplitude indeed survives to a high temperature ∼ 70 K, but additionally it
slightly drops in longitudinal conductivity and increases in transversal con-
ductivity at low temperatures ∼ 1 K. Additionally, it does not lead to the
appearance of the difference frequency in thermodynamics, which has been
observed in many other materials [14–16]. This suggests the existence of an
additional mechanism, which could produce a difference frequency in ther-
modynamics, and influence the low-temperature behavior of the amplitude
in conductivity.

Besides the scattering of electrons at impurities, it is natural to consider
the impact of interactions between electrons on the quantum oscillation spec-
trum. In the single-band case, they have been shown to only change the am-
plitude due to spin splitting and introduce a constant shift to the chemical
potential [19, 20]. Results for layered metals show that interactions can lead
to the appearance of the difference frequency in thermodynamical quantities
[21].

In this work, I consider a multi-band model with electronic interactions. I
show that allowing electrons from different bands to interact introduces new
terms to the real part of the self energy which are temperature damped. This
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leads to new difference frequency terms in conductivity and thermodynamics,
which depend on temperature through a factor of R2

LK . The resulting tem-
perature dependence of the amplitude in conductivity qualitatively agrees
with the one observed in CoSi.

Outline of the work

The thesis is structured as follows. In chapter 2, I lay out the standard theory
of quantum oscillations in metals. I begin in section 2.1 with their semiclas-
sical treatment and a few qualitative remarks. In section 2.2, I describe the
behavior of a system of fermionic particles in a constant magnetic field. In
sections 2.3 and 2.4, I use the results of the previous section to derive the
oscillations of thermodynamic quantities and conductivity as a function of
the magnetic field. Chapter 3 is dedicated to deriving anomalous quantum
oscillations emerging in multi-band systems due to interband impurity scat-
tering and interactions. In section 3.1, I derive the Feynman rules for general
impurities and interactions in a system of fermions in a magnetic field. In
section 3.2, I compute the lowest-order self-energy contributions using the
derived rules. In section 3.3, I generalize the previously considered system
to the case of multiple bands and introduce interactions between fermions in
different bands. In section 3.4, I show that in a system described in previous
sections, there appear new quantum oscillation frequencies with new types of
temperature dependence. Finally in section 3.5, I discuss the experimental
consequences of my findings.
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Chapter 2

Quantum oscillations in
conventional metals

2.1 Qualitative treatment
The appearance of oscillations of thermodynamic and transport quantities as
a function of the external magnetic field can be seen already on the level of
semiclassical analysis. This approach was first developed by Onsager [7], here
I recount the main results. I start from the equation of motion of electrons
(neglecting Berry phase effects)

k̇ = −ev ×B, (2.1)

which relates the time derivative of the momentum k to the Lorentz force,
where v = ∇kεk is the velocity and B is the external magnetic field. The
equation can be integrated with respect to time to obtain

k − k0 = −e(r − r0)×B. (2.2)

This result means that in the plane perpendicular to B the trajectory of
electrons in real space has the same shape as their trajectory in momentum
space, only rotated and rescaled by a factor eB. To introduce quantum
effects, an additional constraint of the motion of the electrons has to be
introduced – the Bohr quantization rule∫

p · dr = 2π(n+ γ), (2.3)

where p = k− eA is the conjugate momentum to position r and γ is a con-
stant dependant on the form of the dispersion. The integral can be expressed
as ∫

p · dr =
S

eB
, (2.4)
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with S being the area inside of the trajectory electrons take in momentum
space. Therefore, relation Eq. (2.3) constrains the electrons to trajectories
such that the area enclosed by them is quantized in units of 2πeB.

Figure 2.1: The structure of states of a free fermion gas before and after
turning on a magnetic field perpendicular to the plane of motion. The free
Fermi Hamiltonian is diagonalized by momentum eigenstates, thus the states
are located on a lattice in momentum space. With the magnetic field, the
lattice collapses onto discrete, degenerate energy levels.

In the full quantum case, the momentum eigenstates usually present in
fermionic systems are replaced by discrete energy levels called Landau levels
(as I shall show in section 2.2). The levels are evenly spaced in energy and
highly degenerate. Using the insight from Eq. (2.3), they can be imagined
as circles (or, in the three-dimensional case, cylinders) in momentum space,
as depicted in figure 2.1. Of course, this picture is not rigorous, as in the
presence of a magnetic field the translation symmetry is broken, making it
impossible to diagonalize the Hamiltonian in the momentum basis. However,
it is useful to get an intuitive understanding of the problem.

At this point, the appearance of magnetic oscillations of the density of
states ρ can be explained. As the magnitude of the magnetic field increases,
so does the separation between energy levels and their degeneracy, as depicted
in figure 2.2. There will be values of B, for which one of the energy levels
is close to the Fermi level, resulting in a high density of states. For other
values of B, the density of states will be low. As the magnetic field grows, the
energy levels will periodically cross the Fermi energy, resulting in oscillatory
behaviour of ρ. The period of these oscillations can be determined from the
Bohr quantization rule Eq. (2.3): it will be the difference between two values
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Figure 2.2: The energy levels in a free fermion system with a magnetic field
for growing magnitudes of the magnetic field, and a red circle representing
the Fermi energy. When the magnetic field increases, the energy levels peri-
odically fall out of the Fermi surface.

of 1
B
, for which one of the energy levels crosses the Fermi surface

1

Bn

− 1

Bn−1

=
2πe

S
. (2.5)

Therefore, the density of states has an oscillatory part behaving like

ρosc(EF ) ∼ cos

(
S

eB

)
, (2.6)

where S is the area enclosed within the Fermi surface! It is an important
result, as it means that by measuring magnetic oscillations (for example in
magnetization or conductivity), one can learn about the geometry of the
Fermi surface. It becomes more powerful in three dimensions, where S is the
area of an extremal cross-section of the Fermi surface perpendicular to the
magnetic field. Then, one can measure oscillations with the magnetic field
in various directions to discover the shape of the three-dimensional Fermi
surface.

2.2 Fermions in a constant magnetic field
To understand further features of magnetic oscillations, they have to be de-
scribed within a microscopic theory [8]. I restrict my considerations to the
continuum, finite-volume fermion system with quadratic dispersion. However
it should be noted that quantum oscillations can be shown to appear in a
wide variety of models with different dispersions and lattice geometries [22].
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A 2-dimensional gas of free fermions is described by the Hamiltionian

H =

∫
d2rφ†(r)

(
−∇2

2m
− µ

)
φ(r), (2.7)

where m is the effective electron mass and µ is the chemical potential. Using
the minimal coupling scheme, the magnetic field can be included by trans-
forming p→ p− eA, where A is the vector potential fulfilling B = ∇×A.
Then, the Hamiltonian takes the form

H =

∫
d2rφ†(r)

(
−(∇ + ieA)2

2m
− µ

)
φ(r). (2.8)

The case of interest is that of a constant magnetic field perpendicular to the
plane of motion of the electrons, B = Bez. The treatment of this system
was first developed by Landau [23]. One choice for the vector potential
leading to this magnetic field is A = −Byex. With this vector potential, the
Hamiltonian is

H =

∫
d2rφ†(r)

(
−(∂x − ieBy)2

2m
−

∂2
y

2m
− µ

)
φ(r). (2.9)

To diagonalize it, I first utilize the translation symmetry in the x direction
and perform a Fourier transform

φ(r) =
1√
Lx

∑
kx

eikxxφkx(y), (2.10)

changing the Hamiltonian into

H =

∫
dy
∑
kx

φ†kx(y)

(
(kx − eBy)2

2m
−

∂2
y

2m
− µ

)
φkx(y). (2.11)

Now, one may notice the similarity to the Hamiltonian of the quantum har-
monic oscillator - it contains terms quadratic in ∂y and y. To exploit this
feature, I transform the field in the following way:

φkx(y) =
∞∑
l=0

ψl

(
y − kx

eB

)
φkx,l, (2.12)

where ψl is the wavefunction of the quantum harmonic oscillator:

ψl(y) =
1√
2ll!

(
eB

π

) 1
4

e−
1
2
eBy2

Hl

(√
eBy

)
, (2.13)
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with Hl being the l-th Hermite polynomial and ωc = eB
m

being the cyclotron
frequency. Substituting Eq. (2.12) into Eq. (2.9) and carrying out the deriva-
tives and position integrals, the Hamiltonian transforms into

H =
∞∑
l=0

∑
kx

εl φ
†
kx,l
φkx,l (2.14)

with the dispersion

εl = ωc

(
l +

1

2

)
− µ. (2.15)

The electrons occupy discrete energy levels l called Landau levels. In a finite-
size system with sizes Lx, Ly, each level has a finite, but macroscopically high
degeneracy. It can be found by noting, the shift kx

eB
appearing in Eq. (2.12)

has to lie within the bounds of the system, that is

0 ≤ kx
eB
≤ Ly. (2.16)

Since kx = 2πn
Lx

, the degeneracy is

NΦ =
eBLxLy

2π
=

Φ

Φ0

(2.17)

and is equal to the amount of elementary magnetic flux quanta Φ0 = 2π
e

in
the system.

To compute observables – thermodynamic quantities like magnetization
and transport quantities like conductivity – I make use of the Green’s function
formalism. For the Hamiltonian Eq. (2.14), the full Green’s function can be
immediately read off to be

G0
l (iωn) =

1

iωn − εl
, (2.18)

where ωn =
2π(n+ 1

2
)

β
is a fermionic Matsubara frequency with β = 1

T
being

the inverse temperature. The kx dependence is suppressed, as the dispersion
is only a function of l.

To model the effect of impurities in the system, the fermions obtain a
finite lifetime τ (a more complete treatment of impurity scattering is given
in chapter 3.1). It will manifest as an imaginary contribution to the self-
energy

Σl(iωn) = − i sgn(ωn)

2τ
, (2.19)
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which appears in the Green’s function as

Gl(iωn) =
1

iωn − εl − Σl(iωn)
. (2.20)

For further calculations, the retarded/advanced Green’s functions are re-
quired, which are obtained by taking the analytic continuation ωn → ω± iδ,
with δ being a small, positive constant. In this case, the Green’s functions
take the form:

G±l (ω) =
1

ω − εl ∓ i 1
2τ

. (2.21)

2.3 De Haas-van Alphen effect
The de Haas-van Alphen effect denotes oscillations of thermodynamic quanti-
ties, like magnetization or magnetic susceptibility, as a function of the inverse
magnetic field. To compute those quantities, it is best to use the density of
states to obtain the thermodynamic potential, from which observables can
be derived by taking appropriate derivatives. This effect was first explained
by Lifshitz and Kosevich [8]. I rederive their result using a more general
method presented in [18].

The density of states ρ can be obtained directly from the Green’s function:

ρ(ω) = − 1

πLxLy
Tr [ImG(ω)]

= − 1

πLxLy

∑
l,kx

ImΣl(ω)

(ω − εl −ReΣl)2 + (ImΣl)2
. (2.22)

The sum over kx is trivial and simply produces a factor NΦ:

ρ(ω) = − eB
2π2

∑
l

ImΣl(ω)

(ω − εl −ReΣl)2 + (ImΣl)2
. (2.23)

The case of interest is that of the l-independent self-energy. Then, the sum
over l can be evaluated using the Poisson summation formula (for proof, see
appendix A)

∞∑
n=a

f(n) =
∞∑

k=−∞

∫ ∞
a

dx e2πikxf(x). (2.24)

Defining ε = ω
ωc
, w = µ−ReΣ

ωc
, Γ = −ImΣ

ωc
and applying the formula, the

density of states transforms into

ρ(ω) =
m

2π2

∞∑
k=−∞

∫ ∞
0

dx
|Γ|e2πikx

(ε− x− 1
2

+ w)2 + Γ2
. (2.25)
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Figure 2.3: The integration contours (in blue and red) used in evaluation of
the density of states, and the poles of the integrand (in pink). The arcs are
understood to lie at infinity, such that they do not contribute to the integral.

After taking x→ x+ ε+ w − 1
2
:

ρ(ω) =
m

2π2

∞∑
k=−∞

∫ ∞
1
2
−ε−w

dx
(−1)k|Γ|e2πik(x+ε+w)

x2 + Γ2
(2.26)

the lower integration bound can be extended to −∞. This step is justified,
as in the considered case w = µ

ωc
is large. The integral for k = 0 is special,

as it can be evaluated immediately and gives a non-oscillating contribution
to ρ. For k 6= 0, the integral can be computed using contour integration.
The integrand has two poles at x = ±i|Γ|. The poles and two appropriate
contours are depicted in figure 2.3. The choice of contour depends on the
sign of k, to ensure eikx goes to 0 at the closing semicircle. After computing
the integrals, the density of states is

ρ(ω) =
m

2π

∞∑
k=−∞

(−1)ke2πik(ε+w)Rk
D

=
m

2π

(
1 + 2

∞∑
k=1

(−1)kcos [2πk(ε+ w)]Rk
D

)
, (2.27)

where I introduced the Dingle damping factor

RD = exp

(
−2π| ImΣ|

ωc

)
. (2.28)
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Now, I can calculate the thermodynamic potential using

Ω = −T
∑
states

log
(
1 + e−βE

)
= −T

∫ ∞
−∞

dE ρ(E)log
(
1 + e−βE

)
= −

∫ ∞
−∞

dE nF (E)N(E), (2.29)

where I defined the number of states below energy E as

N(E) =

∫ E

−∞
dω ρ(ω). (2.30)

When the self energy has the form Eq. (2.19), N is easily computed and
yields (keeping only oscillatory terms)

N(ω) =
eB

2π2

∞∑
k=1

(−1)k

k
sin [2πk(ε+ w)]Rk

D. (2.31)

Then, using Eq. (2.29) and the imaginary part of an integral formula (proven
in the appendix A) ∫ ∞

−∞
dx

eiαx

1 + ex
= − iπ

sinh(πα)
, (2.32)

the thermodynamic potential is shown to be

Ω =
(eB)2

4π3m

∞∑
k=1

(−1)k

k2
cos

(
2πk

µ

ωc

)
RLK

(
2π2kT

ωc

)
Rk
D, (2.33)

with the Lifshitz-Kosevich temperature damping factor defined as in Eq. (1.1).
The magnetization is straightforwardly computed by taking a derivative

of Ω with respect to the magnetic field. The term where the derivative is
taken with respect to B inside of the cosine dominates, as it is proportional
to a large factor µ

ωc
. Keeping only this term I obtain:

M = −∂Ω

∂B
= − µe

2π2

∞∑
k=1

(−1)k

k
sin

(
2πk

µ

ωc

)
RLK

(
2π2kT

ωc

)
Rk
D. (2.34)

At this point, a few qualitative statements on the form of magnetic oscil-
lations can be made. The magnetization oscillates as a function of 1

B
with

frequencies that are integer multiples of F = mµ
e
. It can be related to the

area of the Fermi sea S as:

S = πp2
F = 2πmµ = 2πeF. (2.35)
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The k-th harmonic is damped with the k-th power of the Dingle factor
Eq. (2.28), which grows with increasing disorder. Due to this damping,
only the first few harmonics can be observed in experiments. Oscillations
are also exponentially damped with increasing temperature according to the
Lifshitz-Kosevich factor Eq. (1.1), which is plotted in figure 2.4.

Figure 2.4: The Lifshitz-Kosevich temperature damping factor.

2.4 Shubnikov-de Haas effect

vα vβ

(a) Without vertex corrections.

vα vβ

(b) Example vertex correction.

Figure 2.5: Two kinds of contributions to the Kubo formula for conductivity.
The diagrams of the type on the right vanish in the considered models.

The Shubnikov-de Haas effect denotes the magnetic oscillations of conduc-
tivity. To show it, I need the Kubo-Bastin formula for conductivity in the
presence of a magnetic field derived in [24]. Here, I rederive the result starting
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from the general Kubo formula

σαβ(ω) = σgαβ(ω)− i
e2

ω
Sαβ(ω), (2.36)

where the first term is the gauge term

σgαβ(ω) = − iNe2δαβ
mω

. (2.37)

Sαβ(ω) is obtained by taking the analytic continuation iωn → ω + iδ of

Sαβ(iωn) = T
∑
νn

Tr [vαG(iνn)vβG(iνn + iωn)] , (2.38)

where vα is the velocity operator in the α direction. The above formula in
terms of diagrams is a bubble of two Green’s functions with two insertions
of the velocity operator, as in figure 2.5a. There are no vertex corrections
(i.e. diagrams with interaction/impurity lines connecting the two Green’s
functions as in figure 2.5b) contributing to the conductivity in the case of
momentum-independent interactions and impurity scattering. To show this,
note that the velocity operators are related to the momentum and position
operators p̂, x̂ of the harmonic oscillator the energy levels of which are the
Landau levels. Looking at transformation Eq. (2.12), it is clear that vx =
kx
m

= x̂eB
m

and vy = ky
m

= p̂
m
. Then introducing the Landau level ladder

operators as

a =

√
mωc

2

(
x̂+ i

p̂

mωc

)
; (2.39)

a† =

√
mωc

2

(
x̂− i

p̂

mωc

)
, (2.40)

the velocity operators can be expressed as

vx =

√
ωc
2m

(
a† + a

)
; (2.41)

vy =i

√
ωc
2m

(
a† − a

)
. (2.42)

The momentum kx is left unchanged by the velocity operators. Therefore,
any diagram with a vertex correction is proportional to an integral∫

dkxψ
†
l

(
y − kx

eB

)
ψl−1

(
y − kx

eB

)
= 0 (2.43)
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and thus vanishes.
The Matsubara sum in Eq. (2.38) can be evaluated by replacing it with an

integral with the Fermi-Dirac distribution. One has to proceed with caution,
as the integrand has two discontinuities – one on the real line and another on
the line with imaginary part equal to −iωn – because the imaginary part of
the self-energy Eq. (2.19) changes sign at these values. The three necessary
contours are depicted in figure 2.6.

After simplifying and taking the analytic continuation, the formula is
transformed into

Sαβ(ω) =

∫ ∞
−∞

dν

2π
[−2nF (ν)]Tr

[
vα ImG(ν)vβG

+(ν + ω)

+vαG
−(ν)vβ ImG(ν + ω)

]
. (2.44)

In the static limit ω → 0, this expression can be treated perturbatively in
ω
ωc
. Using

ImG =
1

2i
(G+ −G−) (2.45)

the leading order term can be represented as

Sαβ(0) = i

∫ ∞
−∞

dν

2π
[−2nF (ν)]Tr

[
vαG

+(ν)vβG
+(ν)− vαG−(ν)vβG

−(ν)
]
.

(2.46)

It has to cancel with the gauge term Eq. (2.37) for the conductivity Eq. (2.36)
to be finite. Indeed, using the commutation relation of the position operator
rα and the inverse Green’s function

vα = −i[rα, H] = i[rα, G
−1] (2.47)

the integral can be brought to a form

Sαβ(0) = δαβ

∫ ∞
−∞

dν

2πi
[−2nF (ν)]Tr

[
G+(ν)−G−(ν)

]
= −Nδαβ

m
(2.48)

which cancels with the gauge term exactly.
Keeping only the term independent of ω (as all the others are proportional

to ω and thus vanish), the conductivity takes the form

σαβ(0) =
ie2

π

∫ ∞
−∞

dν nF (ν)Tr
[
vα ImG(ν)vβG

′+(ν)

−vαG′−(ν)vβ ImG(ν)
]
, (2.49)
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where G′± are the derivatives of the retarded/advanced Green’s function with
respect to energy.

Figure 2.6: The integral contours used in evaluation of the conductivity (in
blue, orange and red) and the branch cuts of the integrand (in pink). The
arcs at the top and bottom as well as the lines on the left and right are
understood to lie at infinity, such that they do not contribute to the integral.

2.4.1 Longitudinal conductivity

In the longitudinal conductivity, Eq. (2.49) can be simplified due to the
cyclicity of the trace and formula Eq. (2.45). It is transformed like

σαα =
ie2

π

∫ ∞
−∞

dν nF (ν)Tr
[
vα ImG(ν)vα

(
G′+(ν)−G′−(ν)

)]
=− 2e2

π

∫ ∞
−∞

dν nF (ν)Tr [vα ImG(ν)vα ImG′(ν)] . (2.50)

Using integration by parts, the integral can be carried out in two steps as

σαα =

∫ ∞
−∞

dω [−n′F (ω)]σ̂αα(ω); (2.51)

σ̂αα(ω) = −e
2

π
Tr [vα ImG(ω)vα ImG(ω)] , (2.52)

where −n′F (E) = β

4 cosh2(βE
2

)
is the derivative of the Fermi-Dirac distribution.

The trace in the conductivity kernel Eq. (2.52) contains a trivial momentum
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sum which produces a prefactor of NΦ. Then, the trace over Landau levels
can be performed as

σ̂αα(ω) = − e2NΦ

πLxLy

∑
l,l′

〈l| vα |l′〉 ImGl′(ω) 〈l′| vα |l〉 ImGl(ω). (2.53)

The matrix elements of the velocity operators are

〈l| vx |l′〉 =

√
ωc
2m
〈l| a† + a |l′〉 =

√
ωc
2m

(√
lδl,l′+1 +

√
l + 1δl,l′−1

)
; (2.54)

〈l| vy |l′〉 = i

√
ωc
2m
〈l| a† − a |l′〉 = i

√
ωc
2m

(√
lδl,l′+1 −

√
l + 1δl,l′−1

)
. (2.55)

Using Eq. (2.54), one of the LL sums in Eq. (2.53) can be resolved, giving

σ̂xx(ω) =
e2NΦωc
πmLxLy

∞∑
l=1

l ImGl(ω) ImGl−1(ω). (2.56)

To compute the remaining sum, the same strategy as for the density of states
Eq. (2.23) can be employed: firstly, the sum is changed into an integral with
the Poisson summation formula Eq. (2.24). Then, after a change of variables
l→ l− µ

ωc
, the lower integration boundary is extended like − µ

ωc
→ −∞. The

integral is evaluated using contour integration – the choice of the contour
depends on the sign of k. The integrand has four poles at ±i|Γ|, 1 ± i|Γ|,
depending on the contour the poles in the lower/upper half of the complex
plane have to be included. Finally, the kernel turns out to equal

σ̂xx(ω) = σ0
(ε+ w)|Γ|
1 + 4Γ2

[
1 + 2

∞∑
k=1

(−1)k cos[2πk(ε+ w)]Rk
D

]
(2.57)

with σ0 = 2e2

π
and ε = ω

ωc
, w = µ−ReΣ

ωc
as in the calculation of the density

of states. In the simplest case Eq. (2.19), the self-energy does not depend
on ω and the integral Eq. (2.51) can be evaluated using formula Eq. (2.32)
integrated by parts ∫ ∞

−∞
dx

eiαx

cosh2(x)
=

απ

sinh (απ)
. (2.58)

Keeping only oscillating terms with the highest power of µ
ωc
, the longitudinal

conductivity takes the form

σxx = σ0
µ|Γ|

ωc(1 + 4Γ2)

[
1 + 2

∞∑
k=1

(−1)k cos

(
2πk

µ

ωc

)
RLK

(
2π2kT

ωc

)
Rk
D

]
.

(2.59)
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Conductivity oscillations have similar features to oscillations of magnetiza-
tion Eq. (2.34). The only difference is the amplitude, which scales linearly
with the chemical potential µ and depends on the scattering rate through Γ.

2.4.2 Transversal conductivity

The Kubo formula for transversal conductivity

σxy =
ie2

π

∫ ∞
−∞

dν nF (ν)Tr
[
vx ImG(ν)vyG

′+(ν)

−vxG′−(ν)vy ImG(ν)
]

(2.60)

needs to be transformed to make further calculations feasible. I use the sim-
plification developed by Smrčka and Streda [25, 26]. Using the commutation
relation of the position operator rα and the inverse Green’s function

vα = [rα, H] = [rα, G
−1] (2.61)

the trace in the integrand can be split into two parts

Tr
[
vx ImG(ε)vyG

′+(ε)− vxG′−(ε)vy ImG(ε)
]

=
1

2

∂

∂ε
A(ε) + B(ε), (2.62)

where A(ε) and B(ε) are

A(ε) = iTr
[
vx ImG(ε)vyG

+(ε)− vxG−(ε)vy ImG(ε)
]

; (2.63)

B(ε) =
1

2
Tr

[
∂ ImG(ε)

∂ε
(rαvβ − rβvα)

]
. (2.64)

Keeping in mind that G(ε) depends on ε in the same way as on B save for a
prefactor, B(ε) can be further rewritten as

B(ε) =
1

e

∂

∂B
Tr ImG(ε). (2.65)

After integration by parts, I split Eq. (2.60) into σIxy – a part with A and σIIxy
– a part with B to express the transversal conductivity like

σxy =

∫ ∞
−∞

dω [−n′F (ω)]
(
σ̂Ixy(ω) + σ̂IIxy(ω)

)
; (2.66)

σ̂I
xy(ω) =

ie2

2π
Tr
[
vx ImG(ω)vyG

+(ω)− vxG−(ω)vy ImG(ω)
]

; (2.67)

σ̂II
xy(ω) = e

∂N(ω)

∂B
, (2.68)
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where N(ω) is the number of states below energy ω as defined in Eq. (2.31).
With the help of the matrix elements of the velocity operators Eq. (2.54)

and Eq. (2.55), the first part of the transversal conductivity kernel Eq. (2.67)
can be expressed as

σ̂I
xy(ω) =

e2NΦωc
2πmLxLy

∑
l

l [ImGl−1(ω)ReGl(ω)−ReGl−1(ω) ImGl(ω)]

= − 1

2|Γ|
σ̂xx(ω)

= −σ0

2

(ε+ w)

1 + 4Γ2

[
1 + 2

∞∑
k=1

(−1)k cos[2πk(ε+ w)]Rk
D

]
. (2.69)

As for the second part of the kernel Eq. (2.68), after derivating Eq. (2.31)
with respect to B, I get

σ̂II
xy(ω) = −σ0

2
(ε+ w)

∞∑
k=1

(−1)k cos[2πk(ε+ w)]Rk
D. (2.70)

The two contributions can be combined into the transversal resistivity kernel

σ̂xy(ω) = −σ0

2

(ε+ w)

1 + 4Γ2

[
1 + (3 + 4Γ2)

∞∑
k=1

(−1)k cos[2πk(ε+ w)]Rk
D

]
(2.71)

and then integrated with the derivative of the Fermi-Dirac distribution to
obtain the oscillating part of the transversal conductivity

σxy =− σ0

2

µ

ωc(1 + 4Γ2)

×

[
1 + (3 + 4Γ2)

∞∑
k=1

(−1)k cos

(
2πk

µ

ωc

)
RLK

(
2π2kT

ωc

)
Rk
D

]
.

(2.72)

The oscillations have a familiar form – they differ from longitudinal conduc-
tivity oscillations Eq. (2.59) only in the dependence of the prefactor on Γ.
The following relations hold:

σnon−osc
xx =− 2|Γ|σnon−osc

xy ; (2.73)

σosc
xx =− 2|Γ|

3 + 4Γ2
σosc
xy . (2.74)
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Chapter 3

Interaction-induced combination
frequencies

3.1 Feynman rules
To see the effects of interactions on the QO spectrum, it is necessary to treat
them microscopically. I introduce two new terms to the Hamiltonian, one
modeling scattering on impurities, and the other electronic interactions

Himp =

Nimp∑
i=1

∫
d2r u(r −Ri)φ

†(r)φ(r); (3.1)

Hint =

∫
d2r

∫
d2r′ V (r − r′)φ†(r)φ†(r′)φ(r′)φ(r). (3.2)

The system contains Nimp impurities at random positions Ri. The electrons
scatter on impurities with potential u and interact with potential V . Later,
both potentials will be set to delta functions for simplicity, but for now I
proceed with a general position dependence.

After transforming the fields with Eq. (2.12), as well as Fourier trans-
forming u and V like

u(r) =
1

LxLy

∑
q

eiq·ruq; (3.3)

V (r) =
1

LxLy

∑
q

eiq·rVq, (3.4)
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the Hamiltonian terms take the form

Himp =
∑
l,l′,kx

1

LxLy

∑
q

Nimp∑
i=1

e−iq·Riuq

×
∫
dy eiqyyψ∗l′

(
y − kx + qx

eB

)
ψl

(
y − kx

eB

)
φ†kx+qx,l′,σ

φkx,l,σ; (3.5)

Hint =
∑
kx,k′x

∑
l1,l2,l3,l4

1

LxLy

∑
q

Vq

×
∫
dy eiqyyψ∗l2

(
y − kx + qx

eB

)
ψl1

(
y − kx

eB

)
×
∫
dy′ e−iqyy′ψ∗l4

(
y′ − k′x − qx

eB

)
ψl3

(
y′ − k′x

eB

)
× φ†kx+qx,l2

φ†k′x−qx,l4φkx,l1φk′x,l3 . (3.6)

It is apparent that the integral

I (kx,q, l, l
′) =

∫
dyeiqyyψ∗l′

(
y − kx + qx

eB

)
ψl

(
y − kx

eB

)
(3.7)

is crucial in computations with the above Hamiltonian. It can be evaluated
analytically (see appendix A) and yields

I (kx,q, l, l
′) =

√
l!

l′!

(
−qx + iqy√

2eB

)l′−l
eiqy

qx+2kx
2eB e−

q2

4eBLl
′−l
l

(
q2

2eB

)
, (3.8)

where Lmn (x) is the generalized Laguerre polynomial. In terms of I, the
Hamiltonian can be expressed as

Himp =
∑
l,l′,kx

1

LxLy

∑
q

Nimp∑
i=1

e−iq·RiuqI (kx,q, l, l
′)φ†kx+qx,l′

φkx,l; (3.9)

Hint =
∑
kx,k′x

∑
l1,l2,l3,l4

1

LxLy

∑
q

VqI (kx,q, l1, l2) I (k′x,−q, l3, l4)

× φ†kx+qx,l2
φ†k′x−qx,l4φkx,l1φk′x,l3 . (3.10)
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From this form of H, the Feynman rules can be immediately read off as

=
1

LxLy

∑
qy

Nimp∑
i=1

e−iq·RiuqI (kx,q, l, l
′) ; (3.11)

=
1

βLxLy

∑
ωn,qy

VqI (kx,q, l1, l2) I (k′x,−q, l3, l4) . (3.12)

3.2 Self-energy
Using the derived Feynman rules, I compute diagrams to second order in
impurity scattering and to first order in interactions. I assume the system is
self-averaging, therefore I can average over impurity positions Ri to obtain
a self-energy that is independent of them.

The lowest order impurity diagram is

=
nimp

LxLy

∑
qy

∫
d2R e−iq·Ruq

∫
dy eiqyyψ∗l′

(
y − kx + qx

eB

)
ψl

(
y − kx

mωc

)
=nimpu0δkx,k′xδl,l′ , (3.13)

where nimp =
Nimp

LxLy
is the impurity concentration. The diagram is a constant

independent of incoming energy, momentum and LL index. It is also diagonal
in all quantum numbers. The next lowest-order contribution is a diagram
corresponding to two scattering events on a single impurity.

=
nimp

L2
xL

2
y

∑
qx,q1y ,q2y ,r

∫
d2Re−i(qx−kx+k′x−qx)X−i(q1y+q2y)Y uqx−kx,q1y

× uk′x−qx,q2yI (kx, qx − kx, q1y, l, r) I (qx, k
′
x − qx, q2y, r, l

′)G0
r

=
nimpδkx,k′x

(2π)2

∑
r

∫
d2q|uq|2

√
l!

l′!
(−1)r−l

(
qx − iqy√

2eB

)l′−l
e−

q2

2eB

× Ll′−rr

(
q2

2eB

)
Lr−ll

(
q2

2eB

)
G0
r. (3.14)
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After a change into polar coordinates qx − iqy → qe−iϕ, I notice that the
only dependence of the integrand on ϕ is through a factor ei(l−l′)ϕ (provided
uq depends only on the magnitude of q). Then, the integral over ϕ can be
evaluated and gives a factor of 2πδl,l′ - the diagram is diagonal in the LL
index. It equals to

=
nimpδkx,k′xδl,l′

2π

∑
r

∫ ∞
0

dq q|uq|2(−1)r−le−
q2

2eBLl−rr

(
q2

2eB

)
Lr−ll

(
q2

2eB

)
G0
r.

(3.15)

To make further progress, I have to specify the form of the scattering poten-
tial. I choose the point-like scattering potential, as this simple case already
yields the desired result (a more realistic case of Gaussian extended impuri-
ties is discussed in appendix C). In momentum space, it is expressed as

uq = u0. (3.16)

Then, the second-order diagram simplifies to

=
nimpu

2
0eBδkx,k′xδl,l′

2π

∑
r

G0
r. (3.17)

The first considered interaction contribution is the Hartree diagram

=
1

βLxLy

∑
ωn,px,qy ,r

V0,qyI (kx, 0, qy, l, l
′) I (px, 0,−qy, r, r)G0

r(iωn)

=
1

βLxLy

∑
ωn,px,qy ,r

V0,qy

√
l!

l′!
(−iqy)

l′−l e
iqy
eB

(kx−px)e−
q2y

2eB

× Ll′−ll

(
q2
y

2eB

)
L0
r

(
q2
y

2eB

)
G0
r(iωn)

=
V0eBδl,l′

2πβ

∑
r,ωn

G0
r(iωn). (3.18)

In going from the second to third line, I integrated over px to obtain δqy ,0,
which requires l = l′ for the diagram to be nonzero.
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The second contribution at this order is the Fock diagram

=− 1

βLxLy

∑
q,r,ωn

VqI (kx,q, l, r) I (kx + qx,−q, r, l′)G0
r(iωn)

=−
δkx,k′xδl,l′

2πβ

∑
r,ωn

∫ ∞
0

dq qVq(−1)r−le−
q2

2eB

× Ll−rr

(
q2

2eB

)
Lr−ll

(
q2

2eB

)
G0
r(iωn), (3.19)

which has the same form as Eq. (3.15), only summed over the Matsubara fre-
quency. In further considerations, I take a constant Vq = V0, corresponding
to the electrons interacting with a delta potential (possibility of proceed-
ing with the Coulomb interactions is discussed in appendix C). Then, the
diagram simplifies to

=−
V0eBδkx,k′xδl,l′

2πβ

∑
r,ωn

G0
r(iωn). (3.20)

The Hartree and Fock diagrams are similar to the impurity contribution
Eq. (3.15), but they are summed over the Matsubara frequency in the Green’s
function. The disparity will turn out to be crucial, as it ensures the diagrams
are purely real. For the considered model, the Hartree and Fock diagrams
differ only by the sign. However, this is not the case in general. When
electron spin is included, the absolute value of the Hartree diagram is twice
as big as of the Fock diagram. When one considers momentum-dependent
interactions like in appendix C, the Hartree diagram does not change, but
the Fock diagram becomes dependent on the incoming Landau level.

3.3 Multi-band systems and interband scatter-
ing

The new oscillation frequencies I expect to obtain are combinations of fun-
damental frequencies. For that, I naturally require a system with multi-
ple different fundamental frequencies. In terms of the band structure, that
means multiple distinct Fermi pockets (or, in three dimensions, multiple ex-
tremal cross-sections of the Fermi surface). One particularly simple way of
constructing a system with this feature is to consider a multi-band system,
where the electrons in different bands have a different dispersion [18]. How-
ever to utilize the results of section 3.2, it is important that the electrons
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in the different bands have the same wavefunction. This is realized by the
following two-band free Hamiltonian

H0 =
∞∑
l=0

∑
kx,λ

εl,λ φ
†
kx,l,λ

φkx,l,λ, (3.21)

where λ ∈ {1, 2} is the band index. In further considerations, λ̄ denotes
the band other than λ. The dispersion has the same form but with a band-
dependent mass and energy shift

εl,λ = ωcλ

(
l +

1

2

)
−Wλ (3.22)

where ωcλ = eB
mλ

. To allow the two bands to influence each other, I need to
modify the impurity and interaction terms as well. In position space, the
most general form they can take is

Himp =
∑
λ

Nimp∑
i=1

∫
d2r u(r −Ri)Φ

†(r)ΛΦ(r); (3.23)

Hint =
∑
λ

∫
d2rd2r′V (r − r′)

[
γλφ

†
λ(r)φ†λ(r

′)φλ(r
′)φλ(r)

+ηφ†
λ̄
(r)φ†λ(r

′)φλ(r
′)φλ̄(r) + θφ†λ(r)φ†

λ̄
(r′)φλ(r

′)φλ̄(r)
]
, (3.24)

where I introduced Φ(r) = (φ1(r), φ2(r))T and the band mixing matrix

Λ =

(√
α1

√
β√

β
√
α2

)
. (3.25)

To treat the terms perturbatively, I need to transform the fields into the
Landau level basis like in Eq. (2.12). The impurity and interaction potentials
need to be Fourier transformed like in Eq. (3.3). Then, the Hamiltonian is
brought into the form

Himp =
∑
l,l′,kx

1

LxLy

∑
q

Nimp∑
i=1

e−iq·RiuqI (kx,q, l, l
′) Φ†kx+qx,l′

ΛΦkx,l; (3.26)

Hint =
∑
kx,k′x,λ

∑
l1,l2,l3,l4

1

LxLy

∑
q

VqI (kx,q, l1, l2) I (k′x,−q, l3, l4)

×
[
γλφ

†
kx+qx,l2,λ

φ†k′x−qx,l4,λφkx,l1,λφk′x,l3,λ

+ ηφ†kx+qx,l2,λ
φ†
k′x−qx,l4,λ̄

φkx,l1,λφk′x,l3,λ̄

+θφ†
kx+qx,l2,λ̄

φ†k′x−qx,l4,λφkx,l1,λφk′x,l3,λ̄

]
, (3.27)
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where Φkx,l = (φkx,l,1, φkx,l,2)T .
The impurity term Eq. (3.26) and its treatment were developed in [18], I

rederive it with the addition of the new interaction term Eq. (3.27).
To indicate the new interactions, I introduce two types of vertices: squares

for those that change the band index, and circles for those that do not. Then,
the elementary Feynman diagrams are:

λλ √
αλ

λ̄λ √
β

λ λ

γλ

λ λ

λ λ

η

λ̄ λ̄

λ λ̄

θ

λ̄ λ

With the new Feynman rules, I can proceed to calculating the self-energy of
the multiband system. For that, I use the self-consistent Born approximation.
I compute the self-energy contribution with the full Green’s functions (i.e.
ones already containing the self energy). Then, I solve the resulting self-
consistent equations by reinsertion perturbatively in the Dingle factor RD.

I take diagrams to second order in impurity scattering u0 and to first
order in impurity density nimp and interaction V0. The relevant diagrams are

Σλ = √
αλ

+
λ

√
αλ

√
αλ

+
λ̄

√
β

√
β

+

λ

γλ
+

λ̄

η
+

λ

γλ

+
λ̄

θ

(3.28)

Σλλ̄ = √
β

+
λ

√
αλ

√
β

+
λ̄

√
β

√
αλ̄

(3.29)

Since the two bands introduce a new degree of freedom, the self energy de-
pends on the band index λ. There are terms non-diagonal in the band index
Eq. (3.29), however I neglect them in further considerations in order to make
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the analytical calculation feasible. The first-order diagram in u0 is con-
stant and real, so it can be removed by a redefinition of the energy shifts
Wλ → Wλ − nimpu0

√
αλ.

To put the diagonal part in an algebraic form, I can use expressions
derived in section 3.1. The only changes are the addition of prefactors α, β,
γ, η, θ, replacements m→ mλ, µ→ Wλ with an appropriate band index and
the replacement of free Green’s functions with full ones. Then, the diagonal
part of the self-energy reads (neglecting the first diagram, which is just a
constant real shift)

Σλ(iωn) =
eB

2π

∞∑
l=0

[
nimpu

2
0

(
αλGl,λ(iωn) + βGl,λ̄(iωn)

)
+
V0

β

∑
νn

(
γλGl,λ(iνn) + (η − θ)Gl,λ̄(iνn)

)]
, (3.30)

where Gl,λ(iωn) = (iωn − εl,λ − Σλ(iωn))−1. The LL sums can be evaluated
with Poisson summation Eq. (2.24). I employ the same strategy as when
calculating the density of states Eq. (2.27): replace the sum over l with an
integral, change variables, extend the lower boundary to −∞, and then use
contour integration to evaluate the integral. The Green’s function has only
a single pole, so depending on the sign of k the integral can vanish. After
discarding a divergent, non-oscillating real part, the sum equals

∑
l

Gl(iωn) =− iπsgn(ωn)

ωcλ

[
1 + 2

∞∑
k=1

(−1)ke
2πiksgn(ωn)

iωn+Wλ−Σλ
ωcλ

]
. (3.31)

Now, it is suitable to define the Dingle temperature πTDλ = 1
2
nimpu

2
0Mλ as

the non-oscillating imaginary part of the self energy. The constants are also
redefined as α̃λ = mλ

Mλ
αλ, β̃λ =

mλ̄
Mλ
β, δ = η − θ, where Mλ = mλαλ + mλ̄β

is the mean effective mass of the two bands. The operator A is introduced
for brevity, its action is Afλ = fλ̄A. Additionally, I define Γλ = −ImΣλ

ωcλ

and wλ = Wλ−ReΣλ
ωcλ

in analogy to Γ and w in the single-band case. Then,
I split the self energy into a real and imaginary part to get the following
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self-consistent equations:

ReΣλ =πTDλ

(
α̃λ + β̃λA

) ∞∑
k=1

(−1)k sin (2πkwλ) e
− 2πk
ωcλ
|ωn|e−2πk|Γλ|

+
V0

β
(γλ + δA)

∑
νn,k>0

mλ(−1)k sin (2πkwλ) e
− 2πk
ωcλ
|νn|e−2πk|Γλ|;

(3.32)

| ImΣλ| =πTDλ

[
1 +

(
α̃λ + β̃λA

) ∞∑
k=1

(−1)k cos (2πkwλ) e
− 2πk
ωcλ
|ωn|e−2πk|Γλ|

]
.

(3.33)

I solve the equations perturbatively in the Dingle factor

RDλ = exp

(
−2π2TDλ

ωcλ

)
. (3.34)

For further calculations, I require the real part of the self-energy to first order
and the imaginary part to second order in the Dingle factor, as the real and
imaginary parts appear differently in the observables – only these orders are
necessary to obtain Ω and σ to second order in RD.

The equations can be solved to a sufficiently high order by a single rein-
sertion of the self-energy into the right-hand side of the equation for the
imaginary part. Then, the right hand side can be expanded with respect
to RD, dropping terms above the first order in ReΣ and above the second
order in ImΣ. Then, the sum over Matsubara frequencies appearing in the
interaction terms can be evaluated, as it takes the form of a simple geometric
sum: ∑

νn

e
− 2πk
ωcλ
|νn| = 2

∞∑
n=0

e
− 2π2k(2n+1)

βωcλ =
1

sinh
(

2π2k
βωcλ

) . (3.35)

Afterwards, the self-energy can be transformed from imaginary to real fre-
quencies by taking iωn → ω + iδ with δ being a small positive number. This
procedure mixes the real and imaginary part. Then, ελ = ω

ωcλ
can be defined

analogously to the single-band case. It is best to work with a dimensionless
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self-energy Σλ
ωcλ

which takes the form

ReΣλ(ω)

ωcλ
=− τλ (αλ + βλA) sin

[
2π

(
ελ +

Wλ

ωcλ

)]
RDλ

− V0mλ

2π2
(γλ + δA) sin

(
2π
Wλ

ωcλ

)
RLK

(
2π2T

ωcλ

)
RDλ; (3.36)

| ImΣλ(ω)|
ωcλ

=τλ

[
1− (αλ + βλA) cos

[
2π

(
ελ +

Wλ −ReΣλ

ωcλ

)]
e−2π|Γλ|

+ (αλ + βλA) cos

[
4π

(
ελ +

Wλ

ωcλ

)]
R2
Dλ

]
, (3.37)

where τλ = πTDλ
ωcλ

. At this point, the effect of the introduced impurities and in-
teractions is evident. At zeroth order in RD, the impurities lead to a constant
imaginary part of the self-energy analogous to the lifetime in the single-band
case Eq. (2.19). At higher orders, intraband impurity scattering proportional
to αλ introduces terms oscillating with a frequency associated with band with
the same index as the self-energy in the imaginary and real parts. Intraband
interactions proportional to γλ have the same effect, but only in the real part.
Interband scattering (proportional to βλ) and interactions (proportional to
θ and η) have a more profound effect. In self-energy with index λ, there are
terms oscillating with the frequency associated with band λ̄. it is this feature
that leads to oscillations of observables with combination frequencies.

The intraband terms will only lead to a renormalization of oscillation
amplitudes in observables. They are unnecessary to obtain the desired effect,
but I include them for completeness. The two types of interband interactions
have the same impact when the interactions are point-like – only a single type
is enough to produce combination frequencies.

3.4 Interaction-induced anomalous quantum os-
cillations

3.4.1 De Haas-van Alphen effect

The density of states and conductivity kernels in the multiband case are
straightforwardly obtained from analogous formulas for single-band systems
Eq. (2.27), Eq. (2.57) and Eq. (2.71). One needs to add a band index to
all instances of, m, then change Γ → Γλ = ImΣλ

ωcλ
, RD → e−2π|Γλ|, µ →

Wλ −ReΣλ . Then, the expression should be summed over the band index.
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After these modifications, the density of states takes the form

ρ(ω) =
∑
λ

mλ

2π

(
1 + 2

∞∑
k=1

(−1)k cos [2πk (ελ + wλ)] e−2πk|Γλ|

)
. (3.38)

Now, I use the derived self-energy Eq. (3.36), Eq. (3.37) and expand ρ to
second order in the Dingle factor RDλ. Due to the self-energy with index
λ oscillating with frequencies associated with band λ̄, terms mixing the two
bands appear. They can be simplified using

sin(a) sin(b) =
1

2
[cos(a− b)− cos(a+ b)] , (3.39)

to leave only one cosine in each term. Keeping only oscillating terms up to
second order in RD, the density of states takes the form

ρ(E) =−
∑
λ

mλ

π
cos

[
2π
E +Wλ

ωcλ

]
RDλ

+
∑
λ

mλ

π
(1− 2πα̃λτλ) cos

[
4π
E +Wλ

ωcλ

]
R2
Dλ

−
∑
λ

V0m
2
λγλ

2π2
cos

[
2π
E + 2Wλ

ωcλ

]
RLK

(
2π2T

ωcλ

)
R2
Dλ

− 2
∑
λ

β̃λmλτλ cos

[
2π
E +W+

ω+

]
RD1RD2

−
∑
λ

V0m
2
λδ

2π2
cos

[
2π

(
E

ωcλ
+
W+

ω+

)]
RLK

(
2π2T

ωcλ̄

)
RD1RD2

+
∑
λ

V0m
2
λδ

2π2
cos

[
2π

(
E

ωcλ
+
W−
ω−

)]
RLK

(
2π2T

ωcλ̄

)
RD1RD2, (3.40)

where ω−1
± = ω−1

c1 ± ω−1
c2 andW±

ω±
= W1

ωc1
± W2

ωc2
. At this point, the impact

of introduced impurities and interactions becomes evident. At first order
in RD, they play no role and the oscillations have the same form as in the
single-band case Eq. (2.27). At second order, there are three kinds of second
harmonic terms. In the second line, there is one present in the single-band
case and one induced by intraband impurity scattering. In the third line,
one sees a second harmonic term induced by intraband interactions. It is
unusual, because it already appears with a temperature damping RLK . In
the fourth line, there appears a sum frequency term induced by interband
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impurity scattering. Finally in the fourth and fifth line, one finds sum and
difference frequency terms induced by interband interactions – once again,
they are proportional to the Lifshitz-Kosevich temperature damping. The
appearance of the temperature damped difference frequency in the density
of states is one of the key results of this work.

To obtain the thermodynamic potential, I need to first integrate ρ over
energy to get N(E) Eq. (2.30). The integrals are of the form∫ µ

−∞
dE cos

(
2π
E

ωc

)
=
ωc
2π

sin

(
2π

µ

ωc

)
. (3.41)

Their effect is to add a prefactor (the inverse of the quantity multiplying
E in the cosine) After that, N needs to be integrated with the Fermi-Dirac
distribution like in Eq. (2.29). As indicated by Eq. (2.32), this effectively
means setting E to 0 and adding a factor πT

sinh(aπT )
(which can be absorbed

into RLK), where a is the prefactor of E inside of the sine, and changing the
phase from sine to cosine. After these steps, the thermodynamic potential
turns out to equal

Ω =
∑
λ

A
(1)
λ RLK

(
2π2T

ωcλ

)
cos

(
2π
Wλ

ωcλ

)
RDλ

+
∑
λ

[
A

(2)
λ RLK

(
4π2T

ωcλ

)
+B

(2)
λ RLK

(
2π2T

ωcλ

)2
]

cos

(
4π
Wλ

ωcλ

)
R2
Dλ

+ A+RLK

(
2π2T

ω+

)
cos

(
2π
W+

ω+

)
RD1RD2

+B+RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
cos

(
2π
W+

ω+

)
RD1RD2

+B−RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
cos

(
2π
W−
ω−

)
RD1RD2 (3.42)

with the lengthy amplitudes given in appendix B.
The derived thermodynamic potential has interesting features arising due

to interband interactions. Most importantly, two new oscillation frequencies
appear – the difference and sum frequency. There are two types of temper-
ature dependencies of the second harmonic and sum frequency terms: the
ones produced by impurity scattering decay with a single Lifshitz-Kosevich
factor with ω+ (i.e. the sum of the effective masses) in the argument, and
the ones coming from interactions decay with two LK factors with effective
masses of both bands in the argument. The difference frequency term ap-
pears only with the second kind of temperature damping. The main result of
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this section is that difference frequency oscillations appear in thermodynamic
quantities solely due to the inclusion of electronic interactions between bands
(as indicated by the amplitude B− being proportional to interband interac-
tion strength δ).

3.4.2 Shubnikov-de Haas effect

The computation of the longitudinal and transversal conductivity for the
two-band system follows similar steps to the above calculation of the thermo-
dynamic potential. First, I obtain the formulas for the conductivity kernels
by modifying Eq. (2.57) and Eq. (2.71)

σ̂xx(ω) = σ0

∑
λ

(ελ + wλ)|Γλ|
1 + 4Γ2

λ

[
1 + 2

∞∑
k=1

(−1)k cos[2πk(ελ + wλ)]R
k
Dλ

]
;

(3.43)

σ̂xy(ω) = −σ0

2

∑
λ

(ελ + wλ)

1 + 4Γ2
λ

[
1 + (3 + 4Γ2

λ)
∞∑
k=1

(−1)k cos[2πk(ελ + wλ)]R
k
Dλ

]
.

(3.44)

Then, I expand the kernels with respect to the Dingle factor RD, keeping
terms to the second order. In this case, I need second-order terms from
ImΣλ, as they will contribute through the non-oscillating part of the kernel.
Once again, I obtain terms oscillating with the combination frequencies. I
integrate the kernels with the derivative of the Fermi-Dirac distribution as
in Eq. (2.51) to obtain the final form of the longitudinal conductivity

σxx
σ0

=
∑
λ

C
(1)
xx,λRLK

(
2π2T

ωcλ

)
cos

(
2π
Wλ

ωcλ

)
RDλ

+
∑
λ

[
C

(2)
xx,λRLK

(
4π2T

ωcλ

)
+D

(2)
xx,λRLK

(
2π2T

ωcλ

)2
]

cos

(
4π
Wλ

ωcλ

)
R2
Dλ

+ Cxx,+RLK

(
2π2T

ω+

)
cos

(
2π
W+

ω+

)
RD1RD2

+Dxx,+RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
cos

(
2π
W+

ω+

)
RD1RD2

+ Cxx,−RLK

(
2π2T

ω−

)
cos

(
2π
W−
ω−

)
RD1RD2

+Dxx,−RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
cos

(
2π
W−
ω−

)
RD1RD2, (3.45)
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and the form of σxy is the same, only with different amplitudes Cxy, Dxy.
For explicit forms of the amplitudes, see appendix B.

In the conductivities, the second-order terms appear with two types of
temperature dependencies. The second harmonic has a part decaying with a
single LK factor with the same argument as the first harmonic multiplied by
2, and another which decays with a square of the first harmonic LK factor.
The sum frequency has a part produced by impurities which is proportional
to the LK factor with the sum of two effective masses in the argument and
a second one produced by interactions that is proportional to a product of
two LK factors with different masses. The difference frequency term is of
most interest, as the impurity-induced part is proportional to a LK factor
with a difference of effective masses in the argument, and thus decays with
increasing temperature much slower than the interaction-induced one. it is a
key result of this work – the combination of the two mechanisms will lead to
an anomalous temperature dependence of the difference frequency discussed
in section 3.5.

3.4.3 Extension to three dimensions

The results of previous sections are straightforwardly generalized to three
dimensions as shown in [18]. In this case, the dispersion becomes dependent
on the momentum parallel to the magnetic field kz and takes the form

εl,kz ,λ = ωcλ

(
l +

1

2

)
+

k2
z

2mλ

−Wλ. (3.46)

To transform the equations to their three-dimensional form, it is enough to
take Wλ → k2

z

2mλ
and add a sum 1

Lz
in the self-energy, density of states and

conductivity. In each case, it will result in an integral of the type∫ ∞
−∞

dx
(
µ− x2

)n
e±2πi(µ−x2) =

µn√
2

e±2πiµ∓iπ
4 , (3.47)

solved in appendix A. As a consequence, the magnetization and conductivity
oscillations differ from those in Eq. (2.34), Eq. (2.59) and Eq. (2.72) only
by a phase (π

4
in first and second harmonics, π

2
in sum and 0 in difference

frequency) and the modified amplitudes. As an example, the oscillatory part
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of the longitudinal conductivity in 3D is

σ
(3D)
xx

σ0

=
∑
λ

C
′(1)
xx,λRLK

(
2π2T

ωcλ

)
cos

(
2π
Wλ

ωcλ
− π

4

)
RDλ

+
∑
λ

C
′(2)
xx,λRLK

(
4π2T

ωcλ

)
cos

(
4π
Wλ

ωcλ
− π

4

)
R2
Dλ

+
∑
λ

D
′(2)
xx,λRLK

(
2π2T

ωcλ

)2

cos

(
4π
Wλ

ωcλ
− π

4

)
R2
Dλ

+ C ′xx,+RLK

(
2π2T

ω+

)
cos

(
2π
W+

ω+

− π

2

)
RD1RD2

+D′xx,+RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
cos

(
2π
W+

ω+

− π

2

)
RD1RD2

+ C ′xx,−RLK

(
2π2T

ω−

)
cos

(
2π
W−
ω−

)
RD1RD2

+D′xx,−RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
cos

(
2π
W−
ω−

)
RD1RD2. (3.48)

The transversal conductivity and the magnetization oscillations change in
the same way.

3.5 Experimental consequences

3.5.1 General remarks

Oscillations of magnetization and conductivity as a function of 1
B

derived in
previous sections can, in principle, be directly observed. By measuring the
observables for various magnitudes of the external magnetic field, and then
taking the Fourier transform, one can get the frequencies by determining the
position of the peaks. The temperature dependence is obtained by repeating
the measurement at different temperatures and then finding either the oscil-
lation amplitude at some value of B or the height of the Fourier peaks as a
function of temperature.

My model of interband interaction-induced combination frequencies has
a single experimental signature: additional contributions to the second har-
monic, sum and difference frequency, which depend on temperature through
R2
LK . They appear in both thermodynamical and transport quantities. In

second harmonic and sum frequency terms, this modification is likely hard
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to observe. The reason is that

RLK

(
2π2T

ω+

)
≈ RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
, (3.49)

as illustrated in figure 3.1.

Figure 3.1: Comparison of the temperature dependencies of the sum fre-
quency for induced by impurities (in orange) and interactions (in green)
and the temperature dependence of the first harmonic (in blue). The effec-
tive masses of electrons in both bands are taken to be the same. Notation
RT (m) = RLK(2π2kBT

~ωc ) was introduced for simplicity.

A more promising prospect is observing a difference frequency at low
temperatures in thermodynamics, which appears only due to interactions and
is not present in a model with just impurities. A low-temperature difference
frequency has been discovered in magnetization in some materials, which I
discuss in section 3.5.2. It can be argued that it is produced by electronic
interactions, however, there are other mechanisms leading to the same effect,
like magnetic interaction [22] (discussed in appendix D).

The strongest possibility of experimental verification of my model is given
by the difference frequency in conductivity. The difference frequency terms
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take the form

σ−xx
σ0

=

[
Cxx,−RLK

(
2π2T

ω−

)
+Dxx,−RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)]
× cos

(
2π
W−
ω−

)
RD1RD2; (3.50)

σ−xy
σ0

=

[
Cxy,−RLK

(
2π2T

ω−

)
+Dxy,−RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)]
× cos

(
2π
W−
ω−

)
RD1RD2. (3.51)

Here, the contribution induced by impurities is damped by RLK

(
2π2T
ω−

)
,

which decays very slowly with temperature provided m1 ≈ m2. In contrast,
the interaction-induced contribution decays quickly due to the R2

LK temper-
ature dependence. The combination of both effects produces an anomalous,
non-Lifshitz-Kosevich temperature dependence of the amplitude, with a part
that survives to high temperature and an additional change introduced at low
temperature. The shape of the temperature dependence is governed by the
ratio of amplitudes D−

C−
. As illustrated in figure 3.2, depending on the relative

sign and magnitude of the amplitudes, a wide array of shapes is possible.
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Figure 3.2: Temperature dependencies of the difference frequency given
by the derived model for different values of the ratio of amplitudes of
the impurity- and interaction-induced parts. For visualization purposes,
m1 = me and m2 = 1.1me were chosen.

It should be noted that the amplitudes C−, D− appearing in the derived
model (written explicitly in appendix B) are polynomial functions of the mag-
netic field and can even change sign at some values of the field. Even though
the amplitudes vary much slower than the oscillatory factor, they could in-
fluence the measured temperature dependence if it is determined through
the height of the Fourier transform peak. Due to the dependence of ampli-
tudes on a multitude of material-dependent parameters (effective masses mλ,
energy shifts Wλ, Dingle temperatures TDλ, impurity and interaction param-
eters αλ, βλ, γλ, δ), I investigate the resulting temperature dependence only
in the case of a particular material in section 3.5.2.

Thanks to the derived model, one can obtain information about the role of
interactions and impurities in a material. The dimensionless parameters αλ,
βλ, γλ, δ can provide insight into the relative strength of inter- and intraband
impurity scattering and interaction effects. By fitting the obtained formulas
to experimental data (as in the following section 3.5.2), one can determine
these parameters through a measurement of the temperature dependence of
combination frequency quantum oscillations.
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3.5.2 Relation to experimental data

Resistivity measurement in CoSi

(a)

(b)

Figure 3.3: Temperature dependencies of the difference frequency amplitude
in longitudinal (a) (transversal (b)) resistivities measured in CoSi, repro-
duced with permission from [9]. Note that at low temperatures, the ampli-
tude slightly decreases in longitudinal resistivity and noticeably increases in
transversal resistivity.

In a resistivity measurement in CoSi [9], the temperature dependencies of
the difference frequency term depicted in figure 3.3 were observed. One
can see that in longitudinal resistivity the amplitude slightly drops at low
temperature (within the margin of error), while in transversal resistivity, the
amplitude grows noticeably at low temperature. Here, I fit the derived model
to the data obtained in the experiment. One difficulty is that in this work
I calculated conductivities, while the measurement concerns resistivities. In
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the case σxx = σyy, σxy = −σyx they are related like

ρxx =
σxx

σ2
xx + σ2

xy

; (3.52)

ρxy = − σxy
σ2
xx + σ2

xy

. (3.53)

It seems that the oscillations of longitudinal/transversal resistivity are pro-
duced by a mix of oscillations of both conductivities. To further investigate
this, I split the conductivities as

σαβ = σ
(0)
αβ + σ̃αβ, (3.54)

where σ(0)
αβ is the non-oscillating part of the conductivity and σ̃αβ(B) is the

oscillatory part with σ̃αβ/σ
(0)
αβ � 1.

When I expand Eq. (3.52) and Eq. (3.53) to first order with respect to
σ̃xx

σ
(0)
xx

and σ̃xy

σ
(0)
xy

, I obtain

ρxx =
σ

(0)
xx(

σ
(0)
xx

)2

+
(
σ

(0)
xy

)2 −

(
σ

(0)
xx

)2

−
(
σ

(0)
xy

)2

((
σ

(0)
xx

)2

+
(
σ

(0)
xy

)2
)2 σ̃xx

− 2σ
(0)
xx σ

(0)
xy((

σ
(0)
xx

)2

+
(
σ

(0)
xy

)2
)2 σ̃xy; (3.55)

ρxy =− σ
(0)
xy(

σ
(0)
xx

)2

+
(
σ

(0)
xy

)2 +
2σ

(0)
xx σ

(0)
xy((

σ
(0)
xx

)2

+
(
σ

(0)
xy

)2
)2 σ̃xx

−

(
σ

(0)
xx

)2

−
(
σ

(0)
xy

)2

((
σ

(0)
xx

)2

+
(
σ

(0)
xy

)2
)2 σ̃xy. (3.56)

I notice that the oscillating part of the longitudinal/transversal resistivity are
a combination of the oscillating parts of both conductivities. Since the pref-
actors depend on the magnetic field through σ(0)

xx and σ(0)
xy , they introduce an

unknown magnetic field dependence to the quantum oscillation amplitudes.
This makes the connection between my model and the CoSi measurement
challenging. To mitigate this, a different experimental technique is required.
If the temperature dependence of the difference frequency amplitude is mea-
sured for a single value of the magnetic field, the magnetic field dependence
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of the amplitude becomes irrelevant. Alternatively, the full resistivities ob-
tained in a measurement similar to the one in CoSi could be used to compute
the full conductivities before the Fourier analysis, sidestepping the problem
entirely.

For simplicity, in this work I ignore the magnetic field dependence of the
amplitude introduced by the conversion from conductivities to resistivities
– I set σ(0)

xx and σ
(0)
xy to constants. Their only effect will be to introduce a

relative magnitude difference between the longitudinal and transversal resis-
tivity oscillations called κ. I will preform a fit to the following formulas for
the difference frequency oscillations of resistivity:

σ−xx
σ0

=κ

[
Cxx,−RLK

(
2π2T

ω−

)
+Dxx,−RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)]
× cos

(
2π
W−
ω−

)
RD1RD2; (3.57)

σ−xy
σ0

=

[
Cxy,−RLK

(
2π2T

ω−

)
+Dxy,−RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)]
× cos

(
2π
W−
ω−

)
RD1RD2. (3.58)

In [9], the height of the Fourier peak was used to determine the tem-
perature dependence of the difference frequency. To compute the difference
frequency amplitude at a given temperature predicted by my model, I gener-
ate values of σ−xx and σ−xy (as in Eq. (3.50) and Eq. (3.51) with field-dependent
amplitudes as in appendix B) for values of B ∈ [7 T, 20 T]. I perform a dis-
crete Fourier transform with respect to 1

B
. I use zero-padding to smooth out

the results and a Hamming window to mitigate the effects of taking a finite
interval. Then, I fit a Gaussian to the peak to extract the height of the peak.

In the fit, I use numerical values of Fλ = 2πWλmλ
~e (F1 = 565 T, F2 = 663

T), mλ (m1 = 0.92me, m2 = 0.92me) and TDλ (TD1 = 1.3 K, TD2 = 1.2 K),
which enters through τλ = πkBTDλmλ

~eB in amplitudes C, D, measured in [9]. I
set V0 = 1

me
for dimensional reasons – the particular value doesn’t matter,

as it always appears together with the fitting parameter δ. The values of αλ,
β and δ remain undetermined. I restrict the first two to be positive, but I
allow δ = η − θ to take any real value.

I fitted Eq. (3.57) and Eq. (3.58) to longitudinal and transversal resistivity
data simultaneously. I obtained κ = 3.8 ± 0.2, α1 = 3 ± 2, α2 = 1.9 ± 0.7,
β = (3.9±0.3)×10−4, δ = (−2.4±0.1)×10−4. The temperature dependencies
for this choice of parameters together with the data points are plotted in
figures 3.4 and 3.5.
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Figure 3.4: The amplitude of the difference frequency in ρxx as a function
of temperature measured in CoSi (blue points with errorbars) and a fitted
curve produced by the derived model (red).

Figure 3.5: The amplitude of the difference frequency in ρxy as a function
of temperature measured in CoSi (blue points with errorbars) and a fitted
curve produced by the derived model (red).

45



The fitted curves are in excellent agreement with the data. It’s worth
noting that the temperature dependence in longitudinal conductivity couldn’t
be obtained if the amplitudes C−, D− were taken to be constant like in figure
3.2. The appearance of a local minimum and a local maximum for non-zero
temperatures is only possible because in the model the amplitudes change
noticeably in the magnetic field range spanned by the measurement.

Magnetization measurements in UPd2Al3 and PtCoO2

Figure 3.6: The quantum oscillation spectrum observed in a magnetization
measurement in UPd2Al3, reproduced from [14].

A difference frequency in thermodynamics has been observed in several ma-
terials. A magnetization measurement in UPd2Al3 [14] resulted in a quantum
oscillation spectrum in figure 3.6. One can see two fundamental frequency
peaks labeled Λ and Ξ, as well as a small peak at 1740T ≈ Ξ − Λ. The
temperature dependence of this frequency was not measured. However, the
fact that the peak is of the same magnitude as 2Λ suggests that it is also a
second order effect.
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Figure 3.7: The quantum oscillation spectrum observed in a magnetization
measurement in PtCoO2, together with the temperature dependence of the
three observed frequencies. Reproduced from [16].

A measurement of magnetization in PtCoO2 resulted in a quantum os-
cillation spectrum in figure 3.7. The measurement was performed for differ-
ent orientations of the magnetic field, resulting in different values of the
fundamental frequencies Fα and Fβ, but also a third frequency fulfilling
Fγ = Fα − Fβ. The temperature dependence of the three frequencies was
measured for a particular angle, resulting in the plots in figure 3.7. The
measured effective masses fulfill mγ ≈ mα +mβ, which is consistent with my
prediction that the temperature dependence of the difference frequency in
thermodynamics is RLK

(
2π2T
ωc1

)
RLK

(
2π2T
ωc2

)
≈ RLK

(
2π2T
ω+

)
.

47



Chapter 4

Conclusion

The standard Lifshitz-Kosevich theory of quantum oscillations has proven to
be incredibly reliable for the 70 years since its invention. The improvement
of experimental techniques in the recent years has brought new insights, re-
vealing the role of interactions in generating oscillations which do not appear
in the LK theory. In this work, I derived a mechanism for the appearance of
non-Onsager frequencies in multiband systems due to interactions between
electrons in different bands.

A proper treatment of impurity scattering and electronic interactions in
the Landau level basis reveals oscillations of the self-energy as a function of
the magnetic field. In the case of impurities, the second-order contribution
gives oscillations of the real and imaginary parts of the self energy that differ
only by a π

2
phase. In multiband systems with interband impurity scattering,

this leads to temperature stable difference frequency oscillations in conduc-
tivity. Interactions have a similar effect, but with two crucial disparities.
The lowest-order diagrams are purely real and they contain a temperature
damping term. This results in a difference frequency in both thermodynamics
and conductivity, which, in contrast to the impurity-induced one, is strongly
temperature damped.

The combination of impurities and interactions leads to a novel type of
temperature dependence. When including both effects, the amplitude of the
difference frequency is comprised of a low temperature and a high tempera-
ture part, which can be additive or subtractive. This possibly explains the
temperature dependence observed in resistivity measurements in CoSi.

The model developed in this thesis could be expanded in multiple direc-
tions. The case of extended impurities or Coulomb interactions described in
appendix C could be investigated further, possibly with numerical methods.
Higher order diagrams could introduce new effects as well. Finally, finding
additional experimental signatures of the model would strengthen its connec-
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tion to data and make it possible to distinguish between it and other models
giving similar predictions.

In conclusion, interband electronic interactions can significantly influence
the quantum oscillation spectrum. They lead to the appearance of frequen-
cies beyond Lifshitz-Kosevich theory with a novel temperature dependence.
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Appendix A

Integral formulas

In this appendix, I prove formulas used in the work.

A.1 Poisson resummation
The Poisson summation formula states that

∞∑
n=0

f(n) =
∞∑

k=−∞

∫ ∞
0

dx e2πikxf(x). (A.1)

It becomes evident after realizing that
∞∑

n=−∞

δ (x+ n) =
∞∑

k=−∞

e2πikx, (A.2)

as after multiplying by f(x) and integrating both sides with respect to x one
obtains Eq. (A.1).

A.2 Temperature convolution
The integral required to compute the temperature dependence of quantum
oscillations is∫ ∞
−∞

dx
eiαx

1 + ex
= 2πi

[
θ(α)

∞∑
k=0

Resiπ(2k+1) − θ(−α)
−∞∑
k=−1

Resiπ(2k+1)

]
eiαx

1 + ex

= −2πie−πα

[
θ(α)

∞∑
k=0

e−2πkα − θ(−α)
∞∑
k=1

e2πkα

]
=

−iπ

sinh(πα)
. (A.3)
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A.3 Oscillator eigenfunction integral
The integral of eiqyy with the harmonic oscillator eigenfunctions used in the
Feynman rules is

I (kx,q, l, l
′) =

∫
dy eiqyyψ∗l′

(
y − kx + qx

eB

)
ψl

(
y − kx

eB

)
=

e
iqykx
eB

√
2l+l′l!l′!

√
eB

π

∫
dy e−

eB
2
y2− eB

2
(y− qx

eB
)2+iqyy

Hl′

(√
eB(y − qx

eB
)
)
Hl

(√
eBy

)
=

e
iqy(2kx+qx)

2eB e−
q2

2eB

√
2l+l′l!l′!π

∫
dy e−y

2

Hl′

(
y +
−qx + iqy

2
√
eB

)
Hl

(
y +

qx + iqy

2
√
eB

)

=


√

l!
l′!

(
−qx+iqy√

2eB

)l′−l
eiqy

qx+2kx
2eB e−

q2

4eBLl
′−l
l

(
q2

2eB

)
l ≤ l′√

l′!
l!

(
qx+iqy√

2eB

)l−l′
eiqy

qx+2kx
2eB e−

q2

4eBLl−l
′

l′

(
q2

2eB

)
l′ < l

=

√
l!

l′!

(
−qx + iqy√

2eB

)l′−l
eiqy

qx+2kx
2eB e−

q2

4eBLl
′−l
l

(
q2

2eB

)
. (A.4)

In the second to last line, I used formula 7.377. from [27], and in the last
line, I used a property of the generalized Laguerre polynomials

(−x)n

n!
Ln−mm (x) =

(−x)m

m!
Lm−nn (x). (A.5)
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Appendix B

Derived quantum oscillation
amplitudes

In the two-band model with interband impurity scattering and interactions,
the amplitudes appearing in the thermodynamic potential Eq. (3.42) equal

A
(1)
λ = − (eB)2

4π3mλ

; (B.1)

A
(2)
λ =

(eB)2

16π3mλ

(1− 2πα̃λτλ) ; (B.2)

B
(2)
λ = −V0γλ(eB)2

8π4
; (B.3)

A+ = −
ω2

+

2π2

∑
λ

β̃λmλτλ; (B.4)

B+ = −V0δ(eB)2

4π4
; (B.5)

B− = −V0δ(eB)2

4π4
. (B.6)
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In the conductivities Eq. (3.45), the amplitudes differ in the longitudinal and
transversal component. They turn out to be

C
(1)
xx,λ =

Wλ̄βλ̄τλ̄
(
4τ 2
λ̄
− 1
)

ωλ̄
(
4τ 2
λ̄

+ 1
)

2
+
Wλ (4 (αλ − 2) τ 3

λ − (αλ + 2) τλ)

ωcλ (4τ 2
λ + 1) 2

; (B.7)

C
(2)
xx,λ =

Wλ̄

(
βλ
(
16τ 4

λ̄
− 1
)
τλ̄ (2παλτλ − 1) + 2β2

λ̄

(
4τ 2
λ̄
− 3
)
τ 3
λ̄

)
ωcλ̄
(
4τ 2
λ̄

+ 1
)

3

+
2Wλτλ (α2

λ (4τ 2
λ − 3) τ 2

λ − αλ (4τ 2
λ + 1) (τλ (4τλ (πτλ + 1) + 3π)− 1))

ωcλ (4τ 2
λ + 1) 3

+
2Wλτλ

ωcλ (4τ 2
λ + 1)

; (B.8)

D
(2)
xx,λ =

V0γλmλ

2π

(
Wλ̄βλ̄τλ̄

(
4τ 2
λ̄
− 1
)

ωcλ̄
(
4τ 2
λ̄

+ 1
)

2
+
Wλ(4 (αλ − 2) τ 3

λ − (αλ + 2) τλ)

ωcλ (4τ 2
λ + 1) 2

)
;

(B.9)

Cxx,+ =
∑
λ

Wλβλτλ
ωcλ (4τ 2

λ + 1) 3

(
2π
(
16τ 4

λ − 1
)
βλ̄τλ̄ + 1

+2τλ
(
16π (αλ − 2) τ 4

λ + 8 (αλ − 1) τ 3
λ − 6αλτλ − π (αλ + 2)− 16πτ 2

λ

))
;

(B.10)

Dxx,+ =
∑
λ

WλδV0τλ (βλ (4τ 2
λ − 1)mλ̄ +mλ (4 (αλ − 2) τ 2

λ − αλ − 2))

2πωcλ (4τ 2
λ + 1) 2

;

(B.11)

Cxx,− =
∑
λ

Wλβλτλ (4αλ (4τ 2
λ − 3) τ 2

λ − 16τ 4
λ + 1)

ωcλ (4τ 2
λ + 1)

3 ; (B.12)

Dxx,− =
∑
λ

WλδV0τλ (βλ (1− 4τ 2
λ)mλ̄ +mλ (−4 (αλ − 2) τ 2

λ + αλ + 2))

2πωcλ (4τ 2
λ + 1) 2

;

(B.13)

C
(1)
xy,λ = −

4Wλ̄βλ̄τ
2
λ̄

ωcλ̄
(
4τ 2
λ̄

+ 1
)

2
+
Wλ (−8 (αλ − 2) τ 2

λ + 16τ 4
λ + 3)

2ωcλ (4τ 2
λ + 1) 2

; (B.14)

C
(2)
xy,λ =

Wλ̄τ
2
λ̄

(
β2
λ̄

(
1− 12τ 2

λ̄

)
− 4βλ

(
4τ 2
λ̄

+ 1
)

(2παλτλ − 1)
)

ωcλ̄
(
4τ 2
λ̄

+ 1
)

3

+
Wλ (α2

λ (2τ 2
λ − 24τ 4

λ) + 2αλτλ (4τ 2
λ + 1) (8τλ (2πτ 3

λ + πτλ + 1) + 3π))

2ωcλ (4τ 2
λ + 1) 3

− Wλ (4τ 2
λ + 3)

2ωcλ (4τ 2
λ + 1)

; (B.15)
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D
(2)
xy,λ =

V0γλmλ

4π

(
−

8βλ̄τ
2
λ̄(

4τ 2
λ̄

+ 1
)

2
+

2− 8 (αλ − 1) τ 2
λ

(4τ 2
λ + 1) 2

+ 1

)
; (B.16)

Cxy,+ =
∑
λ

Wλβλτλ
ωcλ (4τ 2

λ + 1) 3

[
−8π

(
4τ 3
λ + τλ

)
βλ̄τλ̄ + 3π + 4τλ

+ 2τλαλ (1− 4τλ (τλ (4πτλ + 3) + π))

+4τ 2
λ

(
4τλ
(
4πτ 3

λ + 5πτλ + 1
)

+ 7π
)]

; (B.17)

Dxy,+ =
∑
λ

WλδV0 (mλ (−8 (αλ − 2) τ 2
λ + 16τ 4

λ + 3)− 8βλτ
2
λmλ̄)

4πωcλ (4τ 2
λ + 1) 2

; (B.18)

Cxy,− =
∑
λ

2Wλβλτ
2
λ (4 (2− 3αλ) τ

2
λ + αλ + 2)

ωcλ (4τ 2
λ + 1) 3

; (B.19)

Dxy,− = −
∑
λ

WλδV0 (mλ (−8 (αλ − 2) τ 2
λ + 16τ 4

λ + 3)− 8βλτ
2
λmλ̄)

4πωcλ (4τ 2
λ + 1) 2

. (B.20)

They were derived in Mathematica by expanding Eq. (3.43) with respect
to the self-energy, combining products of trigonometric functions to obtain
trigonometric functions of combinations, and then collecting terms with the
same argument of the cosine.
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Appendix C

Coulomb interactions and
extended impurities

In this appendix, I discuss the possibility of extending my results to more
generic forms of interactions and impurity potential. It will influence the
oscillations through changing the form of the self energy.

C.1 Coulomb interactions
In two dimensions, the Fourier transform of the (unscreened) Coulomb in-
teraction reads:

V (q) =
e2

|q|
. (C.1)

In this case, the Hartree diagram will be divergent, as it is proportional to
V0. As for the Fock contribution, I can plug Vq it into Eq. (3.19) and get

=−
e2δkx,k′xδl,l′

2πβ

∑
r,ωn

∫ ∞
0

dq (−1)r−le−
q2

2eB

Ll−rr

(
q2

2eB

)
Lr−ll

(
q2

2eB

)
G0
r(iωn)

=−
e2
√
eBδkx,k′xδl,l′

2
√

2πβ

∑
r,ωn

(−1)r−lΓ(1
2
)Γ(r + 1

2
)

r!Γ(r − l + 1
2
)Γ(l − r + 1)

3F2

(
−r, l − r +

1

2
,
1

2
;−r +

1

2
, l − r + 1; 1

)
G0
r(iωn), (C.2)

where 3F2 is the hypergeometric function.This expression contains no diver-
gences for any values of l, r. The hypergeometric function appearing here is
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a finite sum:

3F2

(
−r, l − r +

1

2
,
1

2
;−r +

1

2
, l − r + 1; 1

)
=

r∑
n=0

(−r)n(l − r + 1
2
)n(1

2
)n

(−r + 1
2
)n(l − r + 1)nn!

.

(C.3)
This form of the self-energy poses two problems for proceeding analytically.
First of all, it is hard to evaluate the LL sum with the standard techniques
described in 3.1. The reason is that after using the Poisson summation
formula, extending the integration to the whole real line introduces additional
poles. Second of all, to calculate the density of states or conductivity by the
method of contour integration, one needs to solve the pole condition of the
form

iωn − εl − Σl(iωn) = 0, (C.4)
which become difficult when the self-energy depends on l. However, the
problem is tractable with numerical methods. In the sum over r in Eq. (C.2),
terms with r ≈ l dominate, so only a few terms in the vicinity of l need to be
summed. Then, evaluating the thermodynamic potential and conductivity
with the obtained self energy is feasible.

C.2 Extended impurities
For impurity scattering, I consider a Gaussian scattering potential, which in
Fourier space takes the form

uq = u0e
−λ

2q2

2 , (C.5)

with the impurity size λ. Plugging this into Eq. (3.15), the second-order
contribution to the self energy reads

=
nimpu

2
0eBδkx,k′xδl,l′

2π

∑
r

∫ ∞
0

dq q(−1)r−le−
q2

2eB
(1+κ)

Ll−rr

(
q2

2eB

)
Lr−ll

(
q2

2eB

)
G0
r

=
nimpu

2
0eBδkx,k′xδl,l′

2π

∑
r

∫ ∞
0

dx e−x(1+κ)xr−l
l!

r!

[
Lr−ll (x)

]2
G0
r, (C.6)

where I defined κ = 2eBλ2. At this point, an approximation can be made.
Since only the high Landau levels l ∼ µ

ωc
� 1 contribute to quantum oscilla-

tions, I can use that for large l

Lrl (x) ≈ l
r
2 e

x
2x−

r
2Jr(2

√
lx), (C.7)
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where Jr is the Bessel function of the first kind. Using this formula, the
diagram simplifies to

=
Nimpu

2
0eB

2π

∑
r

∫ ∞
0

dxe−κx
l!lr−l

r!

[
Jr

(
2
√
lx
)]2

G0
r

=
Nimpu

2
0eB

2πκ
e−

2l
κ l!
∑
r

lr−l

r!
Ir−l

(
2l

κ

)
G0
r

=
Nimpu

2
0eB

4π
3
2
√
κ
l!
∑
r

lr−l−
1
2

r!
G0
r, (C.8)

where Iα is the Bessel function of the second kind and to obtain the last line
I used its asymptotic expansion

Iα(z) ≈ ez√
2πz

(C.9)

valid for α � z. The expansion is justified, since only terms with l ∼ r
contribute to the sum. The reason is that for r < l, the summed term is
quickly damped by lr−l (keeping in mind that l is large), and for large r,
it is damped by 1

r!
. The expression can be further simplified by using the

Stirling’s approximation
n! ∼

√
2πn

(n
e

)n
(C.10)

valid for large n. Then

=
Nimpu

2
0eB

2π
√

2κ
e−l
∑
r

lr

Γ(r + 1)
G0
r. (C.11)

The self-energy contribution for this kind of extended impurities turns out
to be surprisingly simple. The Landau level summation could be evaluated
using the standard techniques, as the summed term has only a single pole
from the Green’s function. The problem for proceeding analytically appears
when computing the density of states and conductivity, as solving equation
Eq. (C.4) is challenging.
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Appendix D

Magnetic interaction

Magnetic interaction is an alternative mechanism producing similar predic-
tions to the model proposed in this work. In this appendix, I compute the
oscillations from magnetic interaction in the model considered in section 3.4
(based on a derivation in [22]).

The magnetic interaction mechanism consists of replacing the external
magnetic field B with the mean magnetic field B + µ0M in formulas for the
oscillating part of magnetization/conductivity (where µ0 = 4π × 10−7 H

m
is

the vacuum permeability constant). The justification for the replacement is
that the magnetic field fluctuates on a much smaller scale than the magnetic
length lB = 1√

eB
. Since quantum oscillations arise from physics on the scale

of the magnetic length, they must be governed by the mean magnetic field.
To obtain oscillations produced by magnetic interaction in the consid-

ered model, I need to insert the formula for M obtained from Eq. (3.42)
into itself and into the formulas for conductivity oscillations in Eq. (3.43)
and Eq. (3.44). Then, I expand in the Dingle factor RD to get combina-
tion frequencies at second order. The term with the highest power of the
large parameter Wλ

ωcλ
is the one produced by expanding the oscillating factor

cos
(

2π F
B+µ0M

)
, the rest can be discarded.

Since I want to compare the predictions of the magnetic interaction model
and the one developed in this thesis, I will focus on the difference frequency
terms. Using the procedure described above, I get the following contributions
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to magnetization and conductivities

M− =− µ0e
3

4π3

∑
λ

W 2
λWλ̄

ω2
cλmλ

sin

(
2π
W−
ω−

)
(D.1)

×RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
RD1RD2; (D.2)

σ−xx =
µ0σ

2
0

2

∑
λ

W 2
λWλ̄Γλ

ω2
cλωcλ̄mλ̄(1 + 4Γ2)

cos

(
2π
W−
ω−

)
(D.3)

×RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
RD1RD2; (D.4)

σ−xy =− µ0σ
2
0

8

∑
λ

W 2
λWλ̄(3 + 4Γ2

λ)

ω2
cλωcλ̄mλ̄(1 + 4Γ2)

cos

(
2π
W−
ω−

)
(D.5)

×RLK

(
2π2T

ωc1

)
RLK

(
2π2T

ωc2

)
RD1RD2. (D.6)

Apart from the form of the non-universal amplitudes, magnetic interaction
produces the same contributions to observables as interactions between elec-
trons. To distinguish between the two effects, another method than mea-
suring the temperature dependence is needed. However as noted in [21], the
effect from magnetic interaction is likely too small to explain the appear-
ance of the difference frequency in magnetization measurements discussed in
section 3.5.2.
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