
SCHOOL OF COMPUTATION, INFORMATICS
AND TECHNOLOGY

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master Thesis in Computational Science and Engineering

Evaluating Convolutional Neural Networks in
Multi-Fidelity Modeling

Philipp Kutz

SCHOOL OF COMPUTATION, INFORMATICS
AND TECHNOLOGY

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master Thesis in Computational Science and Engineering

Evaluating Convolutional Neural Networks in
Multi-Fidelity Modeling

Author: Philipp Kutz
Supervisor: Prof. Dr. Felix Dietrich
Advisor: M.Sc. Vladyslav Fediukov
Submission Date: 30.10.2024

I confirm that this master thesis in computational science and engineering is my own work
and I have documented all sources and material used.

Munich, 30.10.2024 Philipp Kutz

Acknowledgments

I would like to thank my supervisor Prof. Dr. Felix Dietrich and my advisor M. Sc.
Vladyslav Fediukov for their support throughout my master thesis.

Abstract

The first goal is to investigate how well Convolutional Neural Networks (CNNs) are suited
for multi-fidelity (MF) modelling. The second objective is to analyse which architectures
and approaches perform better and which perform worse and why there are differences
between the various methods. Neural Networks (NN) are capable of learning arbitrary
discontinuous functions and can handle high dimensional data better than other regression
methods. CNNs are NN, which are well-suited for image processing. MF modelling is an
important component in surrogate modelling. There are two main learning styles: NN-based
MF models learn the low-fidelity (LF) / high-fidelity (LF) relation either implicit or explicit.
Terramechanical data with bi-fidelity tabular data and images were provided by the German
Aerospace Center (DLR) for the investigations. Two main architecture types were examined:
the Multi-Fidelity Data-Fusion (MF-DF) and the Transfer Learning Neural Network (TLNN)
architecture type. The MF-DF architecture type was represented with the explicitly learning
MDACNN architecture. The MDACNN architecture processes tabularized data. The TLNN
architecture type was represented with the implicitly learning MFCNN-TL architecture and
with the implicitly and explicitly learning MF-TLNN architecture. Both the MFCNN-TL
and the MF-TLNN architecture process images. It can be concluded from the investigations
that all main architectures (MF-DF and TLNN architecture types) and all learning types
(explicit, implicit and mixed learning) are suitable for MF modelling. CNNs can be used
effectively in MF models. The MF-TLNN architecture with its mixed-learning approach
outperformed the other two architectures. This leads to the conclusion that the combination
of explicit and implicit learning styles in a network increases learning performance. In
future work, more implicit and explicit learning architectures and their combinations in the
MF-TLNN architecture need to be investigated to further optimise the performance of the
TLNN architecture.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. State of the Art 3
2.1. Neural Networks . 3
2.2. Convolution Neural Networks (CNNs) . 11
2.3. Multi-Fidelity Modelling . 15
2.4. Multi-Fidelity and CNNs . 21

3. Evaluating Convolutional Neural Networks in Multi-Fidelity Modeling 26
3.1. Datasets . 26
3.2. Software . 27
3.3. MDACNN architecture . 28
3.4. MFCNN-TL architecture . 33
3.5. MF-TLNN architecture . 37

4. Experiments 40
4.1. Experiments on the MDACNN architecture . 40

4.1.1. Performance Optimization based on default Benchmarks 40
4.1.2. Performance Optimisation based on terramechanical Data 45

4.2. Experiments on the MFCNN-TL architecture . 54
4.3. Experiments on the MF-TLNN architecture . 57

5. Conclusion and Future Work 62
5.1. Conclusion . 62
5.2. Future Work . 65

Bibliography 67

A. Evaluating Convolutional Neural Networks in Multi-Fidelity Modeling 71

B. Experiments on the MDACNN architecture 75

C. Optimization Experiments regarding the MDACNN 81

v

Contents

D. Experiments on the MFCNN-TL architecture 90

E. Experiments on the MF-TLNN architecture 98

vi

1. Introduction

Mathematical models have always been developed to solve problems. A big disadvantage
of mathematical problems is that they are theoretical and idealised which makes them
hard to compute in real-world computers which have to take into account parameters like
computational cost. A solution for this problem is the creation of numerical models which
are surrogate models created by approximating the operations in the mathematical model.
Out of a single mathematical model can be derived, several numerical models which differ
in accuracy and computational cost. On the one hand, there are numerical models which
approximate better and which have a higher accuracy and computational cost. These models
are called High-Fidelity models (HF models). Their results are reliable but due to the high cost,
they are less applicable in daily life computations. On the other hand, there are numerical
models which approximate worse and which have a lower accuracy and a computational cost.
These models are called Low-Fidelity models (LF models). Due to the lower accuracy, the
results of these models are less reliable, but the models are very practical for calculations in
everyday life due to their low cost. The holy grail in many model design tasks is to create
a numerical model which has an accuracy as high as possible and a computational cost as
low as possible. To get a model which delivers reliable results and is easily applicable in
daily-life computations. Multi-Fidelity modelling (MF modelling) is a method which tries to
generate exactly that kind of model. Typical MF models take as input either just the input
sample X if they are implicit learning or they take the input sample X and its LF value fLF

if they are explicit learning models. Correspondingly, an implicit learning MF model can
be described as fMF : X → fHF and an explicit learning MF model as fMF : (X, fLF) → fHF.
Independently, whether the MF model is implicit or explicit learning - all MF models need
to learn the LF/HF relation - the relationship between the LF and HF function. Therefore,
each MF model is trained with datasets of different fidelity values, e.g., an LF and HF dataset.
During training, the MF models learn to make the transition from the LF value fLF to the HF
value fHF of the input sample X. This approach increases the accuracy of the MF model and
keeps the computational cost low compared to a single-fidelity model.
MF modelling can be implemented using different methods. Two of the most popular
methods are Gaussian processes (GP) like by Dietrich and Fediukov et al. [1] and neural
networks (NN) like by Chen et al. [2]. Both methods have their general advantages and
disadvantages but according to [2] is the main advantage of NN against GP that 1) NN
are generally better at learning arbitrary discontinuous functions and 2) NN are better at
processing high dimensional data than GP. The master thesis aims to create an MF model for
a given terramechanical dataset, which is provided by DLR [3][4]. The terramechanical data
describes a wheel of a rover moving through the sand. The LF/HF relation in the provided
dataset is complex and the features are 12-dimensional - all these are indicators that a NN-

1

based MF model is better suited for the task than a GP-based MF model. Therefore, the Master
thesis aims to create a NN-based MF model. A typical NN-based MF model architecture is
the Multi-Fidelity Data-Fusion architecture (MF-DF architecture) type. The original MF-DF
architecture is a single perceptron (Figure 2.8) which learned the LF/HF relation implicitly.
Later, Guo et al. [5] demonstrated that the original and implicit learning MF-DF architecture
is less powerful than multi-level MF-DF architectures, which are composite networks where
each sub-network explicitly learns a single relationship. Explicit learning multi-level MF-DF
architectures like the 3-level MF-DF architecture by Meng et al [6] (Figure 2.9) and the 2-level
MF-DF architecture by Liu et al. [7] and Motamed [8] (Figure 2.10) became state of the art.
Now, it needs to be considered that the original MF-DF architecture and the 3-level and
2-level MF-DF architectures are perceptrons. But the provided terramechanical data has not
only a complex LF/HF relation and 12-dimensional samples but the terramechanical data
can be described in general as an aggregation of two different datasets, where one dataset
contains tabularized data and the other dataset images. Both data sets refer to the wheel
moving through the sand; they just provide a different type of data. Both the tabularized
data and the image data can be more effectively processed if using a Convolutional Neural
Network (CNN) instead of a perceptron. Therefore, the investigations regarding the Master
thesis focus on MF modelling using CNNs.
Two main architecture types are used for MF modelling using CNNs: the already known
MF-DF architecture type and the Transfer Learning Neural Networks architecture (TLNN
architecture) type. In this master’s thesis, the MF-DF and the TLNN architecture type are
represented by the following networks: the MF-DF architecture type gets represented by
the MDACNN architecture by Chen et al. [2] (Figure 3.3) and the TLNN architecture type
gets represented by the MFCNN-TL architecture by Liao et al. [9] (Figure 3.6) and the
MF-TLNN architecture by Zhang et al. [10] (Figure 3.10). All three networks learn the LF/HF
relationship in different ways; the MDACNN architecture learns the LF/HF relation explicitly,
the MFCNN-TL architecture learns it implicitly and the MF-TLNN architecture combines
both approaches and learns explicitly and implicitly. To summarise, two essential framework
conditions were defined for the investigations regarding the Master’s thesis: 1) MF modelling
is implemented based on the given terramechanical data with the aid of CNNs, and 2) three
different learning strategies are implemented, which are used to train MF models. Each
learning strategy is represented by its own target architecture: MDACNN, MFCNN-TL, and
MF-TLNN architecture. Out of these two frame conditions, two hypotheses can be derived:

1. The MF models using CNNs will outperform the MF models using perceptrons in
terms of the terramechanical data provided. The reason for this is that CNNs learn,
e.g., image processing much more efficiently than perceptrons, as they generalise to
local patterns and reuse their weights using moving kernels.

2. The MF-TLNN architecture will have a higher learning performance than the two
other architectures. The MF-TLNN architecture combines both the explicit and the
implicit learning strategy in one network and therefore learns in the theoretically most
efficient way.

2

2. State of the Art

2.1. Neural Networks

Neural Networks (NN) are a part of Artificial Intelligence (AI), see Figure 2.1a. But AI
includes many more methods than just NNs. This Master Thesis will use NN to process
high-dimensional data. The table will be tabularized or images. To understand, why out of
all things NNs are used instead of any other AI method to process the data, the AI method
environment and the role of NN in the AI environment needs to be understood. AI describes a
broad field of ongoing research intending to create methods and techniques which can imitate
human intelligence. To understand the area of AI better books like "Artificial Intelligence:
A Modern Approach" from Stuart Russel and Peter Norvig [11] are very important. Stuart
Russell is a Professor at the University of California, Berkeley and Peter Norvig is the Director
of Researcher at Google. This section was written with the knowledge taken from this book.
Not all AI is the same. There are multiple levels like shown in Fig. 2.1a, where the most
general version of AI is marked with orange colour. Methods which are part of this type of
AI are systems which operate entirely with knowledge pre-given to them by the human. The
entire knowledge in which these systems operate was given to them initially and the systems
do not elaborate new and more knowledge during the process. A typical example for AI is
First Order Logic (FOL) with which it is possible to encode knowledge in a logical manner
and make it accessible to machines. A typical state in FOL would is shown in Eq. 2.1:

∀x King(x)→ Person(x). (2.1)

The x in the FOL is defined as a set of values e.g., here the values can be names. The
knowledge encoded by Eq. 2.1 is (1) if x is the king then x is a person, (2) it is not possible
that x is the king but not a person, (3) x can be a person but not the king and (4) if x is not a
person then x cannot be the king. Methods like FOL are very efficient if the features like King
or Person and their border values for different categorization classes are already known for
the given dataset. If the features and their border values are unknown for the data, then are
pure AI methods like FOL highly ineffective. For these cases methods of Machine Learning
(ML) were developed. ML is a subfield of AI- like visualized in Fig. 2.1a. All methods of
ML are AI but not all methods of AI are ML. ML is all about feature extraction, pattern
recognition and categorization of data based on the new found features and their border
values. It fills the task gap which the pure AI like FOL or robotic agents like lawn mowers are
not able to resolve. ML differs from AI by trying to find unknown pattern in the input data
and create new knowledge about the dataset which was prior not there. Typical examples
are Support Vector Machines (SVM) and most of the unsupervised clustering algorithms like

3

2.1. NEURAL NETWORKS

(a) Sets of AI, ML and DL. (b) KMeans [12].

Figure 2.1.: Left: relation of AI, ML and DL to each other. Right: KMeans [12], a ML method.

K-Means. K-Means - depicted in Fig. 2.1b - is one of the most commonly used clustering
algorithm. It finds clusters of input samples based on the distance of the input samples to
each other in the input space. The basic idea is that samples with similar values possesses
similar features and belong therefore to the same category. The hyper-parameter k denotes
the k nearest input samples around a (virtual) center point in the input space. Each cluster
needs k samples to be valid. K-Means is not able to correct itself and reduce its loss because it
is not able to change its parameter like hyper-parameter k on its own to find the most optimal
cluster distribution. The loss in K-Means can be e.g., the sum of all distances of all cluster
points to their common center point. The goal is to make this distance as small as possible
and therefore make the clusters as dense as possible like visualized in Fig. 2.1b. A human
needs to supervise the algorithm and optimize the hyper-parameters manually to reduce
the error. Generally speaking, ML is very effective if using it on low dimensional data for
linear and logistic regression. But there are also ML methods which are capable of processing
non-linear functions, like Gaussian Processes and SVM using the kernel trick. Otherwise are
the most ML methods less effective if it comes to the processing of high dimensional data
and for non-linear regression. Typical ML methods like K-Means on their own are not able to
use the knowledge from prior feature extractions to find optimal clusters in a new unknown
dataset. The downsides of ML equalize Deep Learning (DL). DL is a subfield of ML like
depicted in Fig. 2.1a. All methods of DL are part of ML (and AI), but not all methods of
ML are part of DL. Typical tasks for ML and DL methods are classification and regression.
Default ML methods like SVM and GP, but also DL methods perform well on these tasks for
high dimensional data and are capable of non-linear regression. DL is also able to minimise
its error by updating its parameters during a training process and can learn new features
and how to detect them in the data by generalizing during training. The generalization
after training enables an NN to recognize later on the learned features in unknown data
which differs DL from ML as well. In other words: DL performs much better than other ML
algorithms when it comes to very high-dimensional data with a large number of training data.

4

2.1. NEURAL NETWORKS

The classic examples of this are images or text data. Typical DL methods are NNs like Fully
Connected (FC) Networks, Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN). This work focuses on the usage of CNNs.

Due to different types of input data like images, texts or speech many different networks
and network architectures were developed. Roughly there are two basic types of Neural
Networks (NN): the cyclic recurrent networks and the acyclic feedforward networks[11].
CNNs are acyclic feedforward networks like depicted in Figure 2.2. The Master Thesis focuses
on CNNs. Therefore, CNNs will be described further. Convolutions are used in CNNs; the
most common application for CNNs is image detection.

Figure 2.2.: Typical feedforward network [13]. Each node is characterized with trainable
parameters.

Almost all NN are build out of neurons. All these neurons of a layer are connected with
all neurons of the prior layer. The neurons of the same layer are not connected. Due to the
connection among the layer this type of feedforward network is called a Fully Connected
network (FC network) with Fully Connected layers (FC layers). CNNs are build out of a block
of convolutional layers followed by a block of block of FC layers. The convolutional layers
extract features, and the FC layers are used to recognise correlations between the features
found. The block of FC layers also outputs the result of the regression or classification task.
All neurons in all FC layers possess the same ground structure and do therefore the same
basic computations in exact the same order. The goal of each neuron is to either find new
feature or find new (non-) linear correlations between already found features. First each
neuron does a linear transformation and then the non-linear activation like described in Eq.
2.2. A neuron can be described by the equation:

hW(xj) = σ(w0 + ∑
n=i

wi ∗ xj,i) (2.2)

where the w0 +∑w
n=i i ∗ xj,i denotes the linear transformation and σ(.) the non-linear activation.

hw(xj) denotes the output (activation) of the neuron h with the weights w for input xj. The

5

2.1. NEURAL NETWORKS

weights are important for the neuron to weigh the incoming inputs according to their
importance for the feature detection and extraction happening in the node itself. A practical
example for the application of Equation (2.2) can be made by using the neuron h1 from
Figure 2.2. Neuron h1 gets the input vector x0 = [I1, I2]T. For each of the two input values
possesses the neuron h1 a trained weight with which the weighted inputs w1 ∗ I1 and w2 ∗ I2

get computed. The weighted inputs get summed together before adding the bias b = w0 to
the sum. Until this point, neuron h1 performed a linear transformation. The result of the
linear transformation can be additionally passed through a non-linear activation function σ

to add non-linearity. The total equation for neuron h1 based on Eq. 2.2 can be described by:

(h1)W(x0) = σ(w0 + w1 ∗ I1 + w2 ∗ I2)

The bias b = w0 is an important parameter which prevents the results of the linear trans-
formation from being zero if the weighted sum should be zero. This can happen e.g. if all
inputs xj into the node hj are zero. The training process for neuron parameters optimizes
only parameters which are directly associated with incoming input values xj like the weights
w. The bias b itself does not interfere directly with input values, it just gets added to the
weighted sum. Therefore, bias b = w0 gets defined as weight by using a dummy input x0 = 1.
The dummy input x0 does not exist actually and possesses a constant value which never
changes. In this way, the bias gets trained by the same training procedure that trains the
weights. In Equation (2.2) a sigmoid function σ gets used as an activation function. Following
non-linear activation functions are the most common to be used in NN:

• The sigmoid function is popular for logistic regression due to its values y ∈ [0, 1]

σ(x) = 1/(1 + e−1)

• The rectified linear unit (ReLU) leads in many cases to faster convergence during the
training than other activation functions.

ReLU(x) = max(0, 1)

• The softplus function is a variant of the ReLU function with a smoother transition from
y = 0 to y = x at x = 0. The derivative of the softplus is the sigmoid function.

so f tplus(x) = log(1 + ex)

• The tanh function is a shifted and scaled variant of the sigmoid function with y ∈ [−1, 1]

tanh(x) =
e2x − 1
e2x + 1

= 2σ(2x)− 1

The ability of an NN to perform non-linear regression does not only depend on whether the
NN possesses neurons with non-linear activation functions. The Universal Approximation
Theorem[11] defines the minimum requirement which each NN needs to fulfil to be able to

6

2.1. NEURAL NETWORKS

learn arbitrary functions. According to the theorem the smallest possible NN to do this needs
only two (propagating) layers - a hidden layer and an output layer - where the first layer
is non-linear and the second layer is linear. To describe this using an example: According
to the Universal Approximation Theorem, the network shown in Figure 2.2 is the smallest
possible NN for learning arbitrary functions if the nodes h1 and h2 have non-linear activation
functions and the node out in the output layer a linear activation function like, e.g., y = x.

In most cases the input gets forwarded through many neurons and layers of neurons.
Therefore, the Equation (2.2) needs to be put into context of the propagation serially through
many layers. The Equation (2.3) describes a full propagation of the input x through the
network deriving the predicted output hW(x). All neurons of the network execute the
operations described by Equation (2.2) during the propagation:

hW(x) = g(2)(W(2)g(1)(W(1)x)). (2.3)

Eq. 2.3 describes the forward propagation through a two-layer network with an input layer
(x), hidden layer (parameters W(1) and g(1)) and an output layer (parameters W(2) and g(2)).
The two-layer network could, e.g., the two-layer NN visualised in 2.2. Each weighted sum in
W(1)x gets passed through its corresponding activation function in g(1). The result is a vector
of (non-)linear activation’s g(1)(W(1)x). The second layer does the same as the first layer: it
computes with the weight matrix W(2) the weighted sum for each neuron and computes
then with the activation vector g(2) the corresponding (non-)linear activations. Referring to
the example network in Figure 2.2, there the output layer possesses only one neuron. In
this case, the output hW(x) = ŷ is the prediction of the network. Using Equation (2.3) it is
possible to describe the complete forward propagation through the network in Figure 2.2 by
the following equations:

ŷ = g(out)(inout) (2.4)

= g(out)(w0,out + w5 ∗ h1 + w6 ∗ h2) (2.5)

= g(out)(w0,out + w5 ∗ (g(h1))(w0,h1 + w1 ∗ i1 + w2 ∗ i2) (2.6)

+ w6 ∗ (g(h2))(w0,h2 + w3 ∗ i1 + w4 ∗ i2)) (2.7)

Where inout is the weighted sum of the output node which gets computed out of its bias
w0,out and weighted inputs w5 ∗ h1 + w6 ∗ h2. g(out) is the (non-)linear activation function of
the output neuron though which the weighted sum inout gets passed.

Like already proved, the weight parameter have together with the activation functions a
key role during the forward propagation. The combinations of all weights over all layers
expresses the function learned by the NN. The weights of the NN are initialized arbitrarily
and we optimize them to learn a target function y, i.e. learn the weights. To optimize the
weight parameters NNs gets trained using a special training set which contains samples x and
corresponding ground truths y. Ground truths y are the correct class or desired regression
value for a certain input sample x and gets used to evaluate the model prediction ŷ which
can deviate from the ground truth especially before and and during the training. The most

7

2.1. NEURAL NETWORKS

common method to update and optimize the weight parameters during the training process
is called Gradient Descent:

w← w− α∇WL(w) (2.8)

The gradient in Gradient Descent is ∇WL(w) and can be rewritten as δL(w)/δw, which
describes a derivative of the loss function L(w) w.r.t. a weight parameter. Backpropagation is
the process, where the NN gets optimized by updating its weights. Backpropagation starts at
the output of the output neuron with the Loss function Loss(hw) and computes from the back
to the front the gradients of all weight parameters in the system. The Loss function defines
the prediction error between the prediction y and the ground truth ŷ, which the NN had
during a training cycle. There are different methods to compute the loss (prediction error)
during the training. All losses of a training cycle computed using the same method and put
together create the loss function Loss(hw). One example would be the L2-Loss:

Loss(hw) = L2(y, hw(x)) = ||y− hw(x)||2 = (y− ŷ)2. (2.9)

A different approach to compute the loss is to use the negative log-likelihood as loss
function:

Loss(hw) = −logP(D|W) (2.10)

Negative log-likelihood describes, how well an NN defined by the weights W can can define
the observed data D. The decrease of the negative log-likelihood via optimizing the weights
to maximize the likelihood is called Maximum Likelihood Estimate (MLE) and is a popular
method to derive parameters for NN.
The forward propagation starts at the input layer and ends at the output layer and computes
each prediction ŷ for and input x. The backpropagation starts at the output layer and ends at
the input layer, takes as input the loss function L(w) and computes on its way through the
network all derivatives ∇WL(w) of the loss function according to all weights in the network.

δg(f (x))
δx

=
δg(f (x))

δ f (x)
∗ δ f (x)

δx
(2.11)

Backpropagation gets implemented using the chain rule. The chain rule makes the derivations
throughout the whole network easier because it enables the possibility to reuse already com-
puted derivations over and over again as shown in Equation (2.11) which saves computational
power. An application of the backpropagation on the feedforward network described in Fig.
2.2 for the weight w5 would be:

δ

δw5
L(hW) =

δ

δw5
(y− ŷ)2 = −2 ∗ (y− ŷ)

δŷ
δw5

(2.12)

= −2(y− ŷ)
δ

δw5
gout(inout) = −2(y− ŷ)g′out(inout)

δ

δw5
inout (2.13)

= −2(y− ŷ)g′out(inout)
δ

δw5
(w0,out + w5h1 + w6h2) (2.14)

= −2(y− ŷ)g′out(inout)h1. (2.15)

8

2.1. NEURAL NETWORKS

L(hW) describes the Loss function based on the weights w of the network hW. In the back-
propagation above the Loss function gets computed using the L2-Loss (y− ŷ)2 where for each
input sample x the ground truth is y and the prediction is ŷ. w0,out is the bias of the output
node and h1 and h2 are the activations of the corresponding neurons which get weighted with
the weights w5 and w6 by the out neuron. The weighted sum of the out neuron gets denoted
by inout.

Backpropagation computes the gradients for all parameters like δL(w)/δw and functions
like δL(w)/δa inside the NN. Parameter w5 from the Figure 2.2 updated by subtracting the

gradient
δ

δw5
L(hW) retrieved in the Equation (2.16).

w5 ← w5 − α
δ

δw5
L(hW). (2.16)

It is very expensive to fit the entire dataset, as they could be extremely large. However, the
gradient could be seen as an expectation, and the expectation can be approximated using
smaller data samples. Therefore, we randomly (stochastically) split the original dataset into
smaller mini-batches and update the weights using backpropagation on this smaller set. We
iteratively update the weights based on what we have learned from each minibatch. When
we went through the entire dataset, its called an epoch. We repeat this iterative process until
we converge to the optimal weight values. There are different approaches to determine the
size of mini-batches. The goal is to reduce outliners and define a clear trend that stabilises
the convergence. Another problem during training are vanishing gradients. Vanishing
gradients are a problem during training because they block the optimisation process of the
NN parameters during training. The network does not update its parameters, the weights
remain equal, and the predictions do not improve over training iterations. Vanishing gradients
describe the phenomenon that the network makes false predictions (Loss function is not zero)
but the gradients δL(w)/δw are close to zero or zero due to rounding errors or Underflow
and do not update the weight parameters using Gradient Descent like described in Eq. 2.8.
An effective and commonly used approach to counter the degradation of information in the
forward propagation and vanishing gradients in the backpropagation are residual connections.
These residual connections connect inside the network layers (and their activations) with layers
behind those and transport the activation over several layers unprocessed over several layers
back into the network. By cutting out some processing steps and adding the activations later
on again into the main information flow residual connections fight information loss. Another
method to counter vanishing gradients is to use Batchnormalization. Batchnormalization gets
described as follows:

âi = γ
ai − µ√
ϵ− σ2

+ β. (2.17)

ai is the activation of a neuron hw for the i-th input sample out of x1, ... xN samples in
the batch and âi is the normalized activation passing the Batchnormalization layer. Mean
µ and the variance σ2 get computed by forward propagating all batch samples through the
layer, storing their corresponding unnormalized activations and compute out of the resulting

9

2.1. NEURAL NETWORKS

set of activations a the mean µ and the variance σ2. The term ϵ prevents the denumerator
from being zero if the variance σ2 should be zero. γ and β are two learnable parameters to
optimize the Batchnormalization.
The most important feature of an NN is its ability to generalize. Generalization is the ability
of a NN two learn knowledge during its training and to apply the learned knowledge later on
unknown data correctly. In other words: the network learns the patterns in the train dataset
and not the train dataset value-by-value. There are three different methods to make sure
that the NN generalizes as well as possible during the training: network architecture search,
dropout, early stopping etc. The network architecture is important for the generalization
because the architecture must fit the input data type, e.g., speech or text needs a different
network type (recurrent neural networks) than images (feedforward network including
convolutional layers). Then there is the empirical findings that the deeper the network, the
better does the network generalize - independently from the amount of parameters which the
network possess. The more layers, the better the network generalizes. Normally the optimal
network architecture for a problem gets found with experience and good evaluation. But there
are also algorithms which get used to construct an network architecture which provides the
most optimal generalization like the Evolution Algorithm. The Evolution algorithm possesses
a heuristic leading it to minimize the loss function and maximize the generalization by search
for the optimal architecture. The algorithm merges two already created architectures together
and creates this way a new architecture. Also new mutations can be added to the networks.
Mutations are stochastically generated features which get implemented into the network.
Another way to improve the generalization is weight decay via applying regularization:

L(hW)regularized = L(hW) + λ ∑
i,j

W2
i,j. (2.18)

L(hW) is the Loss function of network hW computed with a chosen loss metric. Penalty
λ ∑i,j W2

i,j penalizes big weights by increasing the loss function. Factor λ weights the penalty
which gets added to the Loss function L(hW). This leads to bigger gradients during backprop-
agation and bigger update steps of the weight parameters during the Gradient Descent. The
goal is to minimize the weight parameters because big weight parameters lead to numerical
instability, overfitting and disturbed convergence. The last method is dropout. Dropout
possesses as probability p which defines for each neuron how big its probability for each
batch is to be activated. An activated gets used during the forwardpropagation and backprop-
agation of batch samples and deactivated neuron does not get used. E.g., if p = 70% than the
probability for each neuron is 70% that the neuron will be activated. A possible explanation
for the effectiveness of dropout is, that dropout forces the individual neurons to find the most
effective feature to look for in the input data and to learn the most effective way to pass the
found feature to many different other neurons in the following layer in a form in which the
following neurons can use the found feature.

10

2.2. CONVOLUTION NEURAL NETWORKS (CNNS)

2.2. Convolution Neural Networks (CNNs)

There are different tasks which are connected to the processing of images using Neural
Networks (NN). One of the most common ones is to classify the shown object on the image.
There are different approaches to how the classification can be realized.
On the one hand, a feasible approach would be to use a Neural Network which is built out of
Fully Connected Layers - a Fully Connected Network (FCN). The original image is organized
as a 2D to 3D matrix. An FCN cannot handle data organised in matrix-like shapes. Therefore,
the image gets transformed into a 1D vector by flattening before it gets processed by the FCN.
Flattening converts the image (matrix) into a 1D vector by serially concatenating all rows back
after back. One of the biggest downsides of this approach is, that there will be a huge amount
of training data necessary to train such an NN due to the large amount of parameters the NN
will have. The problem with the sheer amount of parameters is illustrated later on in this
section.
On the other hand, a Convolutional Neural Network (CNN) could perform the classification
task just as well. Advantages of the CNN before an FCN are:

1. CNN reuse their parameters and need therefore less training data. The concept is
known as shared weights and will be explained later on. Due to shared weights, CNNs
are more invariant to input data transformation than FCNs are. Data transformations
are, e.g., distortion, translation, rotation, scaling, wrapping, etc.

2. The CNN uses an important key feature of images: directly adjacent pixels are more
correlated to each other than distant pixels. Unlike the FCN are the CNNs able to use
the knowledge of correlating pixels for their classification.

The CNN enables these advantages over the FCN by incorporating the following features
into its architecture: (i) local receptive fields, (ii) weight sharing (iii) (down-) sampling.

Figure 2.3.: Typical structure of an CNN [14]. The Convolutional Layer tries to find local
features using kernels to search in image patches. The Pooling Layer downsamples
the convolution results. This makes the CNN more invariant regarding data
transformations like translation or distortion. The Fully Connected Layer section
at the end finds the correlation among the found features - merges the local
features together to global features - and classifies the image.

11

2.2. CONVOLUTION NEURAL NETWORKS (CNNS)

All these three features get visualized in Fig. 2.3. In the first step the Fig. 2.3 shows the
Input Layer. The input layers contains the image which depicts the objects which must be
classified. The input image in consists out of only one plane which carries all pixels. In this
case - by default - does the image depict its content in different scales of gray. The single
plane represents the distribution of the feature brightness over the area of the image, therefore
the plane is called a feature map. The next layer in Fig. 2.3 is a Convolutional Layer. An
important key feature of the CNN is to be spatial invariant. The CNN should be able to detect
the same feature independently where the feature is located on the image. To search after a
certain feature in the whole image feature detection must be applied to different locations
of the image. For that purpose, the image gets divided into smaller sub-pieces - so-called
patches. The goal is to check in each patch individually whether the feature is contained in
the corresponding area of the image or not. All patches possess the same size, and patches
can overlap each other - the patch size itself and whether the patches overlap or not depend
on the parameters of the used feature detectors. The feature detectors are also called kernels.
Each feature possesses for detection its own kernel. The feature detection using a kernel
outputs a feature map showing the overall distribution of the feature over the input image.
In practice, a default Convolutional Layer possesses several kernels to create an efficient
Neural Network (NN). In Fig. 2.3 possesses the output of the Convolutional Layer several
feature maps - the input image was investigated after several features (each feature got a
kernel) and each feature detection produced one output feature map. All kernels of the same
Convolutional Layer possess the same hyper-parameters like a fixed defined size and stride.
The stride is the step size of a kernel between two feature detection operations. The size of
the kernel equals the size of the patches in the input image. The Convolutional Layer applies
between each patch and the kernel a convolution explained in Eq. 2.19. Therefore, each patch
of the image marks a local receptive field. Each kernel is characterized by adjustable weight
parameters, a bias value and an associated (non-linear) activation function. The convolution
computed by a kernel is more a cross-correlation - it gets checked how similar is the kernel
compared to the currently checked image patch. A convolutional operation can be expressed
by

z = σ((
N

∑
n=1

wi ∗ xi) + b). (2.19)

First all kernel weights w get element-wise multiplied with the corresponding image patch
values x. N describes the number of values which the same-sized kernel and image patch
contain. All wi ∗ xi products get summed together. Then the scalar bias value b gets added to
the sum ∑. In the last step an activation function σ gets applied to the resulting scalar value -
the activation z is the output of the (non-linear) activation function σ and the result of the
convolution. A typical activation function could be e.g., Rectified Linear Unit (ReLU).
Short summary for the convolutional layer: the convolutional layer must be spatial invariant.
Therefore, the input image gets split up into patches to provide local feature detection using
a kernel at different locations of the image. The kernels use the key feature of correlation
among adjacent pixels to find features in the input image. Each patch area in the image
corresponds to a local receptive field. A single kernel gets reused over and over again

12

2.2. CONVOLUTION NEURAL NETWORKS (CNNS)

for different patches to detect the same feature at different locations. Therefore, the CNN
possesses fewer parameters than a comparable FNC and can be trained faster with less data
than the FCN.
A simple example to illustrate the advantage of CNNs over FCNs: the total amount of
parameters for a Fully Connected layer (FC layer) zFC gets computed by:

zFC = w ∗ n + b

where w is the number of input values, n is the number of neurons which the FC layers
possess and b describes the amount of bias values in the FC layer. Each neuron in an FC layer
possesses by default one bias value. Therefore, is n = b. The total amount of parameters for a
kernel in a Convolutional Layer zCONV is:

zCONV = h ∗ w + b

where h describes the height, and w the width of the kernel and b describes the scalar bias
value of the kernel. A kernel possesses only one bias value b - therefore, is b = 1.
Lets consider for the example only the first layer of an image processing NN. Case 1: If the
image has n pixels and the first layer is a FC layer with the same amount of neurons as there
are image pixels, then the total amount of parameters for the one layer is n2 + n ≈ n2. For a
typical megapixel RGB image this would be 9 Trillion weights. Case 2: If the first layer is not
a FC layer like in Case 1 but a Convolutional Layer like depicted in Fig. 2.3 with a kernel of
shape rxc where r << n is the amount of rows and c << n is the amount of columns a kernel
covers. If the Convolutional Layer possesses a single kernel and d = r ∗ c + 1 is the total
amount of parameters for a single kernel, than d << n2 is true. Even if the Convolutional
Layer has l << n different kernels, than the total amount of parameters is d ∗ l << n2.
No matter how many kernels the Convolutional Layers possesses, under the given circum-
stances the Convolutional Layer possesses with one kernel d << n2 and with several kernels
d ∗ l << n2 significantly less parameters than a comparable FC Layer (n2 parameters). An-
other shown advantage is, that with d⊥n and (d ∗ l)⊥n the number of parameters of the
Convolutional Layer unlike the FC Layer is independent of the size of the input image.

A big problem for feature detection using Convolutional Layers are data transformations
of the input data. E.g., translations, distortions and other shifts. These data transformations
make the feature detection less unambiguous. But the more unambiguous the results of
feature detection are, the more effective the NN. It is common to pair a Convolutional Layer
with a subsequent Pooling Layer visualised in Figure 2.3 to reduce the effects of small shifts
in the input data, to make the feature maps of the Convolutional Layer less ambiguous and
therefore make the NN generally more effective. The effect of a Convolution-Pooling pair
on a convolution result is illustrated in Figure 2.4. The Pooling Layer achieves this result
by downsampling the spatial resolution of the feature maps. The Pooling Layer removes
units in the feature maps but does not removes feature maps. There are as many feature
maps after pooling as there where before pooling. The Pooling Layer defines a sliding
pooling window. The pooling window is like a kernel in the Convolutional Layer which is
moving over the input and operates at different locations of the feature maps. But unlike the

13

2.2. CONVOLUTION NEURAL NETWORKS (CNNS)

kernels, the pooling window does not possess any parameters. A typical Pooling Layer is a
pooling window of size 2x2 which covers a feature map patch of 2x2. Due to downsampling,
commonly, the patches created by the Pooling Layer do not overlap each other. If the pooling
window has a size of 2x2, then the window possesses a stride s = 2. This way the Pooling
Layer has halved the number of units in the feature maps. Each patch (feature map) consists
out of 2 ∗ 2 = 4 values and gets reduced by the pooling window to one scalar value. The
computation of the scalar pooling results differs, depending whether using Average Pooling
or Max Pooling. Average Pooling (bottom right in Fig. 2.4) computes out of all patch values
in the current pooling window the average value. In Max Pooling (top right in Fig. 2.4) the
pooling window does not compute the average but extracts the biggest value (maximum) out
of the current patch.

Figure 2.4.: The left image the original image before pooling [15]. On the right side is the
image after pooling. Both - average and max pooling - increase the contrast of
the image visibly and highlight this way the edge routing even more than the
original image does. This way the result of the Convolutional Layer gets less
unambiguous and the NN gets more efficient.

Fig. 2.3 shows an example CNN which possesses only one Convolutional and Pooling
Layer paired together (Convolution-Pooling pair). Most CNNs are build out of several
Convolution-Pooling pairs which are stacked up together in a sequential manner. This way
the CNN is able to search for even more complex features in the input image. The deeper the
Convolution-Pooling pair lies in the CNN, the more invariant is it to data transformations of
the original input image due to the prior poolings (down samplings). The more Convolution-
Pooling pairs a NN possesses and the deeper inside the NN they are, the smaller but more
reliable and less unambiguous are the feature maps due to down sampling. To counter the
information loss through the reduction of spatial resolution over the propagation course

14

2.3. MULTI-FIDELITY MODELLING

through all Convolution-Pooling pairs, it is common to search after more and more features
(use more kernels per Convolutional Layer) the deeper inside the NN. This leads to the
effect, that the deeper the layer, the smaller the feature maps but the more feature maps are
contained in the output data of layers.
All CNNs can be generally split into two parts: first a feature extraction part followed by
a classification part. The example CNN in Fig. 2.3 depicts this architecture as well. In the
feature extraction part all features of the input image get identified, extracted and mapped in
the feature maps. For this task CNNs use Convolutional and Pooling Layers paired together.
The classification part consists of the FC layers and the output layer. The Convolutional Layer
is good in feature extraction regarding images. The FC layer is good in finding correlations
between the features found by the Convolutional Layer. The output layer - using a softmax
function - computes out of the found correlations for each possible class the probability that
the input image belongs to the class. The output layer computes all probabilities and outputs
than only the class with the highest probability as the classification result.
The training of a CNN can be done based on error minimisation. The error could be
described by the loss function. The optimisation of the network parameters can be done
via backpropagation - although for CNNs there must be done smaller adjustments to the
backpropagation (compared to the backpropagation for FC layers) due to the used shared
weights.

2.3. Multi-Fidelity Modelling

Multi-Fidelity Modelling is part of current research and its goal is to make numerical mod-
els more efficient by decreasing their computational cost and increasing their speed while
keeping their accuracy high. The paper "Survey of Multifidelity Methods in Uncertainty
Propagation, Inference, and Optimization" [16] from 2018 investigated over 200 publications
regarding Multi Fidelity Modelling and defined the Multi Fidelity Modelling as a concept,
defined the tasks and the corresponding areas of applications where Multi Fidelity Modelling
is better suited than using other methods (see Fig. 2.6), defined the typical Multi Fidelity
Model architectures which get used and defined the typical methods how low fidelity models
can be derived as approximations of the corresponding original high fidelity models. The
highly cited publication [16] will therefore be used as default source if not marked otherwise.
Modern Computer Science, Engineering, Physics, etc. would not be working without mathe-
matical and numerical models. Models describe systems of interest by learning the correlation
(relationship) between the system’s input and output.
Each numerical model possesses three main features: accuracy, computational cost and speed.
The accuracy denotes how well the model learned the mapping between the input and
output. The more and bigger errors the model makes, the lower its accuracy and the lower its
fidelity. Models which possess a high accuracy are called high fidelity models fHF : X → YHF

and models which possess a low accuracy are called low fidelity models fLF : X → YLF.
Computational cost describes the amount of needed computational operations and therefore,
the amount of computational resources aka hardware which is needed to process the model.

15

2.3. MULTI-FIDELITY MODELLING

Figure 2.5.: The lower the error (the higher the accuracy) the higher the computational cost.
The higher the error (lower the accuracy) the lower the computational cost [16].

Computational resources are finite and the common goal for processing models is to process
models with as few computational resources as possible as fast as possible. Therefore, it is
generally viewed as an important practical advantage if numerical models are computation-
ally cheap. The speed describes how fast the model computes the output for an input and it is
linked to the computational cost of the computer and the faster the better. Fig. 2.5 shows the
correlation between the accuracy, computational cost and speed using a high fidelity model
fHF and several low fidelity models fLF. Usually, one high-fidelity model fHF comes with
several lower-fidelity models fLF, which all try to approximate the higher one with lower
accuracy. Generally speaking, according to Fig. 2.5, the higher the accuracy the higher the
computational cost and the lower the accuracy the lower the computational cost.

Due to the correlations between accuracy, computational cost and speed and the possibility
of defining approximation of very expensive models, there are three different basic model
systems which can be implemented as shown in Fig. 2.6. All model systems in Fig. 2.6 are
built the same: the model is embedded into an outer-loop application where the model and
its propagation of the input is the inner-loop and the outer-loop is an application which uses
the knowledge about in- and output into the system to perform a task - like the optimization
of a design. The first model in Fig. 2.6a shows the approach using only the high fidelity
model as single fidelity in the system. An advantage over the other model types is that the
accuracy is always as high as desired. The drawbacks, illustrated in Fig. 2.5 typically involve
high computational costs and slower processing speeds, which result from the increased
complexity of the model. A typical example would be e.g., Newton’s method which is
used for parameter updating during the training of neural networks. Newton’s Method is a
computationally more expensive alternative to the commonly used Gradient Descent and the
computational cost in Newton’s Method comes from the necessity to compute the Hessian
matrix (second derivation). There are two other models in Fig. 2.6 which try to counter the
disadvantage of the high computational cost of the high fidelity model system in Fig. 2.6a.
The second model system in Fig. 2.6b shows a low-fidelity model embedded into an outer-

16

2.3. MULTI-FIDELITY MODELLING

(a) Single-Fidelity model utilizing a
High-Fidelity model [16].

(b) Single-Fidelity model utilizing a
Low-Fidelity model [16].

(c) A Multi-Fidelity model [16].

Figure 2.6.: Left: the high fidelity model is accurate but computationally expensive and slow.
Middle: the low fidelity model is less accurate but computationally cheaper and
faster. Right: the multi fidelity model uses the high accuracy model to guarantee
convergence and define the desired accuracy, the low fidelity models enable the
computational efficient propagation through the model

loop application. The low fidelity model regarding Newton’s Method would be e.g., a version
of Newton’s Method where the Hessian matrix (the most expensive procedure) does not get
computed explicitly but gets approximated which lowers significantly the computations cost
and improves the speed but lowers the accuracy. A big disadvantage of such a system is the
absence of the original high-fidelity model. With the exchange of the high fidelity model
with a low fidelity model the model system looses also all information about the highest
desired accuracy - the accuracy of the high fidelity model - and there can be convergence
problems because in contrast to high fidelity models do low fidelity models not guarantee
convergence. The multi-fidelity model in Fig. 2.6c tries to combine the advantages of the high
fidelity and the low fidelity model by creating a model which has a high accuracy and does
guarantee converges but has also a lower computational cost and is faster than the original
high fidelity model. The multi-fidelity model is built out of multiple single-fidelity models.
The high-fidelity model is kept to keep the knowledge about the highest desired accuracy
and to guarantee convergence. The low-fidelity models are kept for fast computations. A very
important aspect of multi-fidelity models is to combine the different models effectively with
each other. Depending on the executed task (described as an outer-loop application in Fig.
2.6) there where developed different model management strategies to enable multi-fidelity
modelling based on the task.

There are three basic applications for which the model management strategies can be used:
Uncertainty Propagation, Statistical Inference and Optimization.

17

2.3. MULTI-FIDELITY MODELLING

The goal of the common Uncertainty Propagation is to compute the uncertainty distribution
for a random input vector x which gets forwarded into a model. The uncertainty distribution
shows the error of the model which occurs because the I/O correlation function learned by the
model does not correspond perfectly to the I/O correlation of the system of interest. Due to
falsely learned correlations the model is able to predict for the same input x different outputs
y. The uncertainty distribution displays these output values y together with their occurrence
probability. The errors are all predictions y which divert from the ground truth ŷ of the input
x. Gaussian Process Regression and Kriging compute similar uncertainty distributions for
given datasets. Normally the uncertainty distribution gets computed by propagating the
model many times through the given model. The cost for the computation is n ∗ ccmodel where
n is the number of propagations of input x and ccmodel describes the computational cost of
the model for one propagation. For uncertainty propagation using a high fidelity model the
cost can get very high very fast with a low amount of propagations. But a high number of
propagations is very important to build an expressing uncertainty distribution, therefore
saving computational cost by reducing the number of propagations of x through the model is
not always a preferred choice for cost reduction - at this point comes multi-fidelity modelling
into play. The computational cost gets lowered by exchanging the high-fidelity model with a
low-fidelity model which approximates the uncertainty distribution computationally cheaply.
The low-fidelity model is an approximation of the original high-fidelity model with lower
accuracy and computational cost. This Master Thesis focuses on CNNs applied to multi-
fidelity modelling. CNNs are neural networks, and due to their fixed defined weights, neural
networks do not possess any uncertainty distribution in their output. As long as the model
uses the same set of weights the output y keeps the same for the same input x over different
iterations. Therefore, the commonly used method described above cannot be applied to
CNNs. [17] investigates how uncertainty propagation regarding neural networks can still
be done. An answer is to not compute the uncertainty distribution for one input x but for
the whole input space X, measuring the error occurring over the input space and describing
it with first and second order statistics (mean and variance). In the method for computing
uncertainty described above the number of samples remains the same and the model gets
approximated by a low fidelity model. [17] suggests doing exactly the opposite for neural
network models, keeping the model (no approximation) and reducing the amount of actually
propagated samples. As one of the simplest methods for reducing the number of samples
[17] suggests to use e.g., Markov Chain Simulation where a subset Xsub ⊆ X uses the law of
big numbers to approximate with a smaller subset Xsub of randomly sampled inputs x from
the original state space x the neural networks uncertainty distribution aka. the error of the
learned I/O correlation function of the neural network.
Another application for multi fidelity modelling is e.g., Statistical Inference. A typical
application regarding of Statistical Inference [18][19][20][21] is solving the Inverse Problem
where are given a model and the output of the model and the goal is to find the input which
caused the output of the system. The search after the input in the Inverse Problem is equal to
finding the input with the highest posterior:

p(Y|X) = p(X|Y) ∗ p(Y).

18

2.3. MULTI-FIDELITY MODELLING

The posterior p(Y|X) defines the probability that the model outputs for input X the output Y.
The prior p(Y) defines the already known output Y - the output is pre-known in the Inverse
Problem. The likelihood p(X|Y) compares the known output distribution Y with the output
distribution X obtained by propagating input X through the model. The likelihood is a cross
entropy and gets bigger the bigger the correlation between the two distributions is. The bigger
the likelihood p(X|Y), the bigger the posterior p(Y|X), the bigger the probability that the
corresponding input sample is the solution of the inverse problem. Statistical Inference can
get very fast computationally very expensive if computing for each input sample in the input
space the output distribution using the high fidelity model. There are two basic ways how
the computational cost can be reduced. On the one hand it is possible to use Monte Carlo
Sampling and sample from the input space randomly a subset of inputs which gets checked.
On the other hand multi fidelity modelling can be used where it is possible to pre-filter
input samples using computationally cheap low fidelity models to approximate their output
distribution and to pass input samples only to the computationally expensive high fidelity
model if the low fidelity model gives the input sample a pass. An input sample gets a pass if it
gets accepted by the low fidelity model and the approximated output distribution lies within
a desired interval. A common method to pre-check input samples using pre-conditioned
Markov Chain Monte Carlo (MCMC) [22][23][24][25]. Pre-conditioned MCMC combines
Monte Carlo Sampling with multi fidelity modelling. First Monte Carlo samples an input
X. Then the Markov Chain uses in the first step a low fidelity model to evaluate the input
sample. If the input sample gets a pass, the input sample gets forwarded in to the actual high
fidelity model in the next step where the actual posterior p(Y|X) gets defined. Choose the
input sample X as output for the Inverse Problem which gets the highest posterior.
The last of common application types for multi fidelity modelling is optimization. Optimiza-
tion gets typically done in three different ways. Instead of using the high fidelity model the
search after the optimal parameters can be accelerated by using low fidelity models as well
[26][27][28][29]. Another way is to use low fidelity models together with adaptive correction
to minimize their error and increase the optimization process [30][31][26][32][33]. The third
and last approach would be define a completely new surrogate model which takes over the
optimization task. Typically surrogate models can be realized using a neural network which
gets trained with data from models of different fidelities e.g., via transfer learning. The
surrogate approach is interesting for this Master Thesis because the Master Thesis investigates
the usage of CNNs in multi fidelity modelling.
Multi fidelity modelling is about combining models of several different fidelities with each

other. [16] identified three basic methods - so called model management strategies - how
models of different fidelity can be effectively combined together: Adaptation, Fusion, Filter-
ing. All these basic methods get displayed in Fig. 2.7 together with the tasks for which they
mainly get used. The first model management strategy represented in Fig. 2.7 is Adaptation.
Using [30] as an example Adaption can be used to optimze the design of an airfoil (wing
shape). The goal is to optimize the wing shape with as less computational cost as possible.
The multi model in [30] consists out of a high fidelity and an low fidelity model therefore,
to reduce the computational cost of the multi fidelity model it is necessary to relocate the

19

2.3. MULTI-FIDELITY MODELLING

Figure 2.7.: The lower the error (the higher the accuracy) the higher the computational cost.
The higher the error (lower the accuracy) the lower the computational cost [16].

iterative optimization computation from high fidelity model to the low fidelity model. [30]
implemented Adaption using following routing: at the beginning the high fidelity model
gets an airfoil blank, evaluates it (is the blank already optimally shaped) and if it needs to be
optimized, the high fidelity model forwards the blank to the low fidelity model. After the
iterative optimization process does the low fidelity model forward the airfoil result back to
the high fidelity model were it gets examined again. If the airfoil is still not perfectly shaped
after the criteria of the high fidelity model, does the high fidelity model forward the airfoil
back to the low fidelity model. Other publications which were investigated by [16] and which
researched by themselves multi fidelity modelling using adaptation are: [34][35][36]. The next
model management strategy presented in Fig. 2.7 is Fusion. [37] is using Fusion to compute
aerodynamic parameters (e.g., flow) of a given airfoil falling back on computational flow
dynamics (CFD) and kriging. CFD gets used to compute numerical flow simulations and
kriging is used for interpolation. [37] uses a high fidelity CFD and a low fidelity CFD model.
In the first step an input space gets created where the individual input samples represent
locations. In the second step two input sets get defined: a huge low fidelity set and a small
high fidelity set. In the third step both input sets get propagated through the corresponding
CFD models. The samples from the low fidelity set get propagated through the low fidelity
CFD model, the samples from the high fidelity input set get propagated through the high
fidelity CFD model. After the applying the low fidelity CFD model, kriging gets applied
to the low fidelity results to interpolate the flow parameters for the samples from the input
space which were not propagated through the low fidelity CFD model. In the fourth step
the interpolated low fidelity output set and the high fidelity output set get merged together.
The goal is to correct the interpolated low fidelity output set with the high fidelity output
set with a kriging bridge function. The last model management system represented in Fig.
2.7 is Filtering. Using as example the research made in [22], Filtering can be described as
follows: [22] built a Metropolis–Hastings Markov Chain Monte Carlo which as the goal to
compute the next state of the Markov Chain as computationally efficient as possible. The
solution is to no apply all possible states of the state space to the high fidelity model but first

20

2.4. MULTI-FIDELITY AND CNNS

Figure 2.8.: Original All-In-One architecture of a MF-DF network. [5].

apply those to low fidelity model where the individual states get evaluated and promoted if
they are likely to be a successor state of the current state. Apply the high fidelity model then
only on those states which got promoted by the low fidelity models. This low fidelity based
pre-selection of the states lowers the computational cost dramatically.

This Masterthesis works with neural networks. Multi fidelity related neural networks can
be related to the model management strategy Fusion. Unlike the Fusion model in [37] does
the neural network not consists out of two separate models, but through the training of the
neural netowork with multi fidelity data (e.g., transfer learning) does the neural network
automatically merge the knowledge of the different fidelity models together during each
propagation - like the kriging bridge function merges the models of different fidelity together
in [37].

2.4. Multi-Fidelity and CNNs

Many NNs utilised for MF modelling are fusion models (model management strategy: fusion),
where each prediction gets made by aggregating the LF and HF predictions. Due to the
research achievements, fusion models and their architectures are popular nowadays for MF
modelling (surrogate modelling). Several strategies were developed to make fusion models
as efficient as possible. The brand-new paper by Zhang et al.[10] fetches the investigation
and implementation history of fusion models used regarding MF modelling from the current
state-of-the-art perspective. It disaggregates the development history, describes the current
state-of-the-art mainstream approaches, and tries to beat them by the proposal of a novel
approach that is derived from the current mainstream methods. Therefore, [10] will be used
as the main source, and all information will come from there if not noted otherwise.

There are two mainstream architectures which dominate the design of fusion models [10]:
Multi-Fidelity Data-Fusion (MF-DF) and Transfer-Learning Neural Networks (TLNN).

21

2.4. MULTI-FIDELITY AND CNNS

Figure 2.9.: 3-level MF-DF architecture [5]. A first representative of multi-level MD-DF
architecture whose goal is to improve the All-In-One network architecture.

The original MF-DF architecture is the All-in-One network displayed in Fig. 2.8. The All-
In-One architecture has the advantage that it learns the relation between the LF and HF
function implicitly. Learning the LF/HF relation implicitly means that the model gets as
input a sample X and derives internally first its LF value and, in a second stage, the HF
value. The disadvantage of this structure is, that the network learns two different relations
(X/LF and LF/HF) at the same time. Problems occur if these two relations are of different
magnitudes, then the architecture underperforms heavily compared to comparable networks
of similar size. To solve the problem of learning multiple relations of different magnitudes in
the same model architecture, the multi-level MF-DF architecture was developed. The main
idea behind those multi-level MF-DF architectures is to distribute the relations over several
networks where each model learns one relation (a "level") and then assembles all networks
to a composite NN. Guo et al. [5] verified in their research that the multi-level MF-DF
architecture leads to better performance than the original All-In-One MF-DF architecture.
Meng et al. [6] was one of the first to develop a 3-level MF-DF depicted in Fig. 2.9. In a 3-level
MF-DF architecture, the All-In-One MF-DF network is split into three separate networks,
and each of these three networks is trained separately with (partially) different datasets.
E.g., in Fig. 2.9 the orange network NNLF learns the relation fLF : X → YLF between the
input feature X and the LF predictions YLF, the grey network NNlin learns the between linear
relation fHFlin : (X, YLF) → YHFlin between the input features X, the LF predictions YLF and
the (linear) HF predictions YHF. The blue and last network learns the non-linear relationship
fHF : (X, YLF, YHFlin) → YHF between the input features X, LF predictions YLF, linear HF
predictions YHFlin and the non-linear HF predictions YHF. Due to this structure, does the

22

2.4. MULTI-FIDELITY AND CNNS

Figure 2.10.: 2-level MF-DF architecture [10]. The goal is to reduce the number of trainable
parameters and make the network more resilient against overfitting by using
fewer networks than the 3-level MF-DF architecture.

3-level MF-MF architecture outperform the All-in-One MF-DF architecture if it comes to
complex LF/HF relations. A disadvantage of the 3-level MF-DF architecture is that it needs
more parameters to compute the output predictions just because it consists of three separate
networks. The bigger number of parameters leads faster to overfitting for smaller datasets
compared to the original All-in-One MF-DF architecture. If a model overfits, it starts to learn
the train dataset value-by-value and does not learn any pattern - this is not wanted.

An approach to minimise the number of parameters of the 3-level MF-DF is to use fewer
networks by fusing learning tasks. Motamed [8] and Wang et al. [7] used a 2-level MF-DF
architecture similar to the one depicted in Fig. 2.10. The 2-level MF-DF consists of 2 networks,
which get assembled to one composite NN. Like the 3-level MF-DF architecture possesses
the 2-level MF-DF architecture a NNL which learns the LF function (upper network in Fig.
2.10). The difference between the 2-level and the 3-level MF-DF architecture is, that the
2-level architecture unites the learning of the linear- and non-linear LF/HF relation in a single
network. The 2-level MF-DF learns both, the linear and the non-linear relation separately in
the same network and predicts out of their aggregation the HF values yH, see Fig. 2.10. The
2-level MF-DF architecture is the attempt to increase the performance relative to the original
All-in-One MF-DF architecture by distributing the relations to be learnt over several networks
and to lower the risk of overfitting for smaller train datasets compared to 3-level MF-DF
architecture by lowering the number of parameters by using two and not three different
networks in its architecture. If the goal is to minimise the amount of trainable parameters to
further minimise the overfitting problem, TLNN can be the solution. TLNN is the second big

23

2.4. MULTI-FIDELITY AND CNNS

Figure 2.11.: TLNN [10]. Transfer Learning is the second big mainstream method to apply
multi-fidelity modelling.

mainstream approach regarding multi-fidelity modelling using NN.
Transfer-Learning is a special method of training a neural network. A typical Transfer-

Learning process is shown in Fig. 2.11. According to [38] Transfer-Learning can be described
as follows: first there should be defined two datasets - a source DS and a task domain TS,
and there must be a source DT and a task target TT, where DS ̸= DT and TS ̸= TT. Usually
do the source and target domain not share any samples. The Transfer-Learning is done in
two separate steps. In the first training, the whole network gets pre-trained with the source
dataset. The first training is depicted by the upper half of Fig. 2.11. After the first training,
some network layers get frozen. Freezing a layer means that all weights of the affected layer
will not be updated (not trained because of being immutable) in the following second training
step. In Fig. 2.11, the purple layer in the lower half of the figure marks the unfrozen layer -
all layers to the left of the purple layer are frozen. After the first pre-training with the source
dataset and freezing of layers, the second training gets started - this time with the task dataset.
The forward propagation during the training gets done through all layers, but only the
unfrozen layers will be updated during the backpropagation. The usage of Transfer-Learning
in MF modelling is a special case because here, the big LF dataset defines the source dataset
(pre-training), and the smaller HF dataset defines the task dataset (transfer-learning aka. as
fine-tuning). The Master Thesis focuses on CNNs and their role in MF modelling. A typical
CNN architecture is structured as follows: first is the block of convolutional layers and the
input, followed by a second block of FC layers and the output. The convolutional layers do
feature extraction, and the fully-connected layers at the end do feature relation detection
and classification/regression. If using transfer learning on CNNs, typically, the pre-trained

24

2.4. MULTI-FIDELITY AND CNNS

convolutional layers get frozen, and the unfrozen fully-connected layers get fine-tuned using
transfer learning. In a nutshell, if combining multi-fidelity modelling, transfer learning and
CNNs, then the LF data trains the pattern recognition of the model and the HF dataset trains
the classification/regression. A quick comparison between the MF-DF and TLNN architecture:
MF-DF models learn the LF/HF relation explicitly, while TLNN models learn this relation
implicitly. The advantage of the TLNN against MF-DF architecture is the smaller number
of parameters in the network and, therefore, the reduced risk of overfitting during training.
This results also out of the fact that in the TLNN architecture, a single network gets trained
and not two different networks like in the 2-level MF-DF architecture. The disadvantage of
the TLNN architecture is that it can have convergence problems e.g., because of negative
transfer. Negative transfer describes the effect where the network unlearns knowledge during
the transfer-learning. After the transfer learning, the network cannot do a task it was capable
of as it was only pre-trained.

25

3. Evaluating Convolutional Neural Networks
in Multi-Fidelity Modeling

The two mainstream methods regarding MF modelling are MF-DF and TLNN. So far, so
good. Until now, theoretical concepts have been discussed. From now on, the practical
implementation of theoretical concepts will be documented. The implementations get realised
by building APIs, making them accessible for input data and embedding representative
model architectures in those APIs. In this section, the crucial necessities like data, software,
API design and chosen model architectures will be discussed. The APIs are meant to check
the architectures on their MF modelling performance. The results of these experiments will
be presented and discussed in the next section. An important selection criterion for the
representative model architectures is that those are CNNs due to the initial focus of the
Master Thesis on this type of NN.

3.1. Datasets

As depicted in the next sections, three different model architectures were chosen to be
investigated further. The MDACNN [2] represents the MF-DF architecture, the MFCNN-TL
[9] represents the TLNN architecture, and the MF-TLNN [10] is more or less a composite
network, mixing both main architecture types (MF-DF and TLNN) into one model. Due to
different architectures and different inputs, each model architecture needed its individual
dataset - therefore, three different datasets were used throughout the investigations. All
datasets originate from the same source because all references were obtained by analysing
the same rotating (rover-) wheel moving through the sand. All datasets were provided by the
DLR [3, 4].
The MDACNN takes tabularised data. The data is structured as visualised in Fig. 3.4b. The
only difference to the tabularised data in Fig. 3.4b is that the used dataset is not 2D but 12D.
The 12 dimensions define the 3D positional coordinates of the centre of the wheel regarding
the surface, 3D translational velocity, 3D rotational velocity, and 3D gravity vector. The
ground truth of the 12D data is also 12D and defines the LF and HF values for the 3D force
and 3D torque. The MFCNN-TL possesses as CNN several convolutional layers and processes
images. An according dataset provides 64x64 images which show the sand structure related
to the movement of the wheel through the sand. Samples of these images are shown in Fig.
3.1. The MFCNN-TL architecture does transfer learning, there the network needs two types
of images: one set of images with only LF values for the 6D ground truth features (3D force,
3D torque) and one set of images with only HF values. The third and last network is the
MF-TLNN model architecture. The model is a composite-network-like build and requires

26

3.2. SOFTWARE

(a) Example image 1 (b) Example image 2 (c) Example image 3 (d) Example image 4

Figure 3.1.: Typical examples for images with content. The originally provided dataset was
filtered after those images and these images were used to train the models.

two different inputs for a prediction - an image and the corresponding LF value. The images
are the same 64x64 sand structure showing images like for the MFCNN-TL. But to train the
network, the model architecture requires images with bi-fidelity features - the 6D ground
truth is needed twice with feature values for LF and HF. The 6D ground truth (3D force, 3D
torque) holds six different features out of those only three are interesting for the research: the
traction force (X-dim. force), the normal force (Z-dim. force) and the yaw rotation (Y-dim.
torque). All experiments were done using the traction force only. The traction force was
used as an exemplary feature because due to redundancy all model architectures and all
performance optimization methods on the model architectures are 1:1 applicable to the other
two features of interest as well if they work for the traction force.

3.2. Software

All experiments, all APIs, and model architectures were implemented using the programming
language Python. The model architectures were implemented using the library TensorFlow
and there, especially Keras [39]. All Python files were edited and executed using PyCharm
as integrated development environment (IDE). PyCharm was executed using the operating
system (OS) Somona 14.6.1 on an M1 System-on-Chip (SoC) with an ARM architecture. Four
experiments were carried out as part of the master thesis. The code for the two experiments
regarding the MDACNN architecture can be found in 1, the code for the experiment regarding
the MFCNN-TL architecture in 2 and the code for the experiment regarding the MF-TLNN
architecture in 3.

1https://github.com/pwkutz/MasterThesis__MDACNN.git
2https://github.com/pwkutz/MasterThesis__MFCNN-TL.git
3https://github.com/pwkutz/MasterThesis__MT-TLNN.git

27

https://github.com/pwkutz/MasterThesis__MDACNN.git
https://github.com/pwkutz/MasterThesis__MFCNN-TL.git
https://github.com/pwkutz/MasterThesis__MT-TLNN.git

3.3. MDACNN ARCHITECTURE

3.3. MDACNN architecture

The model chosen to represent the MF-DF architecture is the Multi-Fidelity Aggregation
Convolutional Neural Network (MDACNN), which was presented by Chen et al. [2] in 2021.
The model was chosen because it combines the current state-of-the-art approach regarding
MF-DF networks and combines it with CNN architecture.

(a) Point-Point relation [2]. (b) Point-Domain relation [2].

Figure 3.2.: Left: A typical Point-Point relation [2] learned by the models designed by Liu et al.
[7], Motamed [8] and Meng [6]. Point-Domain relation learned by the MDACNN
designed by Chen et al. [2].

The MDACNN architecture presented by [2] can be categorised as follows in the MF-DF
architecture universe: out of the original All-in-One MF-DF architecture developed Meng et al.
[6] a 3-level MF-DF architecture where the first network learns the X/LF relation, the second
network the linear LF/HF relation and the third network the non-linear LF/HF relation. Out
of the 3-level MF-DF architecture got developed the 2-level MF-DF architecture by Liu et
al. [7] and Motamed [8] where the first network is similar to the first network in the 3-level
MF-DF architecture but the second network in the 2-level MF-DF architecture learns the
linear and nonlinear LF/HF relation at once, see the lower NNH architecture in Fig. 2.10,
and represents therefore the second and third network in the 3-level MF-DF architecture
in one model. The MDACNN architecture drops the first network in the 2-level MF-DF
architecture, keeps its second network and attaches to the front of the network a convolutional
layer, creating effectively a CNN. The main idea behind using a convolutional layer at the
front is to increase the performance of the model architecture by improving the predictions
by increasing the database that the model can access per prediction. The original MF-DF,
the 3-level MF-DF and the 2-level MF-DF architectures have all in common that they learn
a Point-to-Point relationship depicted in Fig. 3.2a. The Point-to-Point relationship for the
MDACNN architecture can be expressed by

fHF(x) = fMF(x, fLF(x)) (3.1)

due to its two inputs x and fLF(x).

28

3.3. MDACNN ARCHITECTURE

Figure 3.3.: The architecture of the MDACNN [2]. The network learns linear and non-linear
features into two separate network branches before they get aggregated together
before the final prediction happens. The linear relationship gets learned using the
characteristic skip-connection, which is inspired by the residual connections from
the ResNet [40].

Chen et al. [2] extend the concept of the 2-level MF-DF by upgrading the learning result
from a Point-to-Point relationship to a Point-to-Domain relationship depicted in Fig. 3.2b. The
basic idea behind using Point-to-Domain instead of Point-to-Point relations can be described
as follows: in the first step, a sample x gets defined whose HF value needs to be computed.
In the second step, the closest neighbours x of sample x get identified. In the next step, the LF
values fLF(x) and fLF(x) of the sample x and its neighbours x get defined. The sample x, its
neighbours x, and their LF values define a local domain, and in the last step, the MDACNN
architecture model computes out of this domain the HF value for the initial sample x. This
was just the breath idea behind using local domains for Point-to-Domain relations. Chen et al.
[2] went a step further by using not only the closest neighbours but the whole dataset for a
single prediction. The dataset gets split up into a set of local domains, as depicted in Fig. 3.2b.
Combining all local domains into a global domain allows Chen et al. [2] to use the whole
dataset to predict a single HF value. The convolutional layer is important because its kernel
splits the dataset into a set of local domains. Each kernel position defines a local domain.
To enable the usage of multiple local domains per prediction (to use the whole LF dataset
with all its samples), the data must be organised in a tabular form, and a moving window
needs to be introduced. The table is divided into columns with LF samples xLF and their
LF values fLF(xLF) and into columns for an HF sample xHF and its LF value fHF(xHF). The
columns should be ordered according to the structure [xLF, fLF(xLF), xHF, fLF(xLF)], similar
like depicted in Fig. 3.4. The organisation of the tabularised data is from a row perspective
quite easily: each row corresponds to an LF sample. The moving window will go row-wise
step-by-step through the table, and in each step, it computes the relation of the HF sample
xHF with the current local domain of LF samples xLF and their LF values fLF(xLF). Each table
is associated with one HF sample xHF whose HF value fHF(xHF) needs to be predicted. This

29

3.3. MDACNN ARCHITECTURE

(a) Multiple LF functions [2]. (b) Multiple features per sample [2].

Figure 3.4.: The data tables necessary for the MDACNN architecture can be easily extended
to process multiple LF functions (left) and multiple features per sample (right)

row-wise step-by-step locomotion of a moving window is equal to the locomotion of a kernel
in a convolutional layer - therefore, this processing step gets realised using a convolutional
layer in the MDACNN.
Chen et al. [2] updated the 2-level MF-DF architecture and the newly designed input table
(tabularised input data) is depicted in Fig. 3.3. The tabularised data brings some advantages.
The tabularized data makes it possible to easily extend the given input data with data from
more fidelities without significantly changing the architecture of the MDACNN. Fig. 3.4a
shows a 3-fidelity case where the system consists of one HF function and two LF functions.
The extension happens just by adding for each new LF function a new column - both LF
functions use the samples xLF from the same big LF dataset. Another effect of the tabularised
data is that the dimensionality of the LF and HF samples is less important and does not
form a bottleneck for the functional capability of the MDACNN architecture. Due to the
tabularization, the dimensionality of the samples can be increased or decreased simply by
adding or removing columns in the table. Each column in the table represents a feature
(a dimension). Fig. 3.4b shows how the network can be easily extended to data of higher
dimensions.

In summary, it can be concluded that due to the tabularised data, the MDACNN architecture
possesses advantages over the conventional 2-level MF-DF architecture.

1. The MDACNN architecture defines a single network and can be trained in a single
training run. The multi-level MF-DF architectures are composite networks where each
network needs to be trained separately before the network can be used.

2. The MDACNN architecture uses the whole LF dataset as a base for a prediction. The
MDACNN architecture switches from a Point-to-Point to a Point-to-Domain relation.

3. The MDACNN architecture can be easily extended to process data of higher dimension-
ality with more fidelity functions. Unlike the 2-level or 3-level MF-DF architecture, the

30

3.3. MDACNN ARCHITECTURE

MDACNN architecture does not need to change its structure significantly for that.

The MDACNN architecture is shown in Fig. 3.3. Regarding the hyper-parameters, the
MDACNN uses the Mean Squared Error (MSE) as a loss function and the Adam Optimizer
with a learning rate of 0.001 to update the weights during Gradient Descent. In [2], it
is nowhere explicitly written that pre-processing of the input data like normalisation or
regularisation methods like batch normalization, pooling and dropout are used. The NN
starts with a convolutional layer. The kernel width is 3. The kernel height is equal to the
number of columns in the input table and depends, therefore, on the dimensionality of the
LF and HF samples and the number of fidelities considered. In total, the kernel shape can be
defined by 3xN. With a kernel width of three, the kernel always considers 3 LF samples at the
same time per local domain. Because the kernel height is equal to the number of columns, the
executed convolution on multi-dimensional input data can be compared to a 1D convolution.
The kernel moves with a stride of one. The convolution results get flattened and forwarded
into the linear and non-linear branch. The non-linear branch (learns the non-linear LF/HF
relation) is visualised with the green neurons in Fig. 3.3. The colour green marks neurons
with a non-linear activation function. The non-linear branch consists of three layers. The first
two layers possess each ten neurons with a tanh activation function. The last layer possesses
a single grey neuron. The colour grey marks neurons with a linear activation function. The
linear branch - represented by the skip-connection - possesses just a single grey neuron with
a linear relationship. The outputs of both branches get aggregated together and forwarded
to the output neuron. Due to the regression task of the MDACNN, has the yellow output
neuron a linear activation function.

Algorithm 1 API MDACNN architecture

1: procedure Train and Test, and Performance Check

2: if modus = "Train and Test" then
3: data← retrieveBasicData()
4: TrainData← Dataset(data)
5: ValData← Dataset(data)
6: TestData← Dataset(data)
7: MDACNNmodel ← MDACNN()

8: MDACNNmodel ← trainMDACNN(TrainData, ValData)
9: MDACNNmodel.analysis(TestData)

10: else if modus = "Performance Check" then
11: data← retrieveCommonDataset()
12: DataTables← Dataset(data)
13: MSEloss← CrossValidation(DataTables)

Chen et al. [2] developed their MDACNN architecture using the datasets built out of LF
and HF functions presented in Fig. 4.1. The investigations as part of the master thesis checked
the MDACNN architecture performance on the benchmark datasets, but the main focus
during the experiments was on the performance of the MDACNN architecture if applied to

31

3.3. MDACNN ARCHITECTURE

Figure 3.5.: The regularized 7x32 MDACNN architecture. The layer is a convolutional layer
with 64 3x26 kernels and with stride 1. It follows a batch normalisation layer
and an average-pooling layer with a 5x1 kernel and stride 3. After flattening,
follow a dropout layer and the architecture’s linear and non-linear branches (Deep
Neural Network). The non-linear branch consists of 7 FC layers with 32 non-linear
neurons each. Every two FC layers is located a dropout layer. The linear branch
consists of a single neuron with a linear activation function. The output is formed
by a linear neuron due to the regression task.

the dataset provided by the DLR [3][4]. The investigations concluded that the performance of
the MDACNN architecture on the provided custom data was poor but could be improved.
As a result of the following performance optimisation efforts was developed the Regularised
7x32 MDACNN architecture, as shown and described in Fig. 3.5. Out of all developed
architectures, it has the one with the lowest loss with a reasonable amount of parameters for
an MF model. All conclusions which lead to the design of the Regularised 7x32 MDACNN
architecture are described in section 4.1.

During the investigations, an API for processing the MDACNN architecture was developed.
The API enabled experiments with the network. The API is visualised in Alg. 1 as pseudo
code and in Fig. A.1 as a flowchart. The implemented MDACNN model is embedded into
that API. The API generally allows two main processes: training and testing with the default
train and test dataset ("Train+Test") or checking the overall performance of the model by
using K-Fold Cross-Validation ("Performance Check"). If activating the first main process,
"Train+Test", the first step is to load the dataset and pre-process it. During the pre-processing,
the data gets tabularised, and train, validation and test datasets get generated. In the second
step, the MDACNN model gets initialised and trained using the train and validation dataset.
In the third step, the trained MDACNN model gets analysed by checking its performance
with the test dataset; the loss gets measured using MSE and the predicted HF values for the
test samples get plotted. If activating the second main process, "Performance Check", then the
train and test datasets get taken and merged into one big dataset. This one dataset gets then
pre-processed like described for "Train+Test". Then, a 10-Fold Cross-Validation is performed

32

3.4. MFCNN-TL ARCHITECTURE

by training the same model ten times with different train datasets to check its overall ability to
generalise. Ten folds for the cross-validation were chosen because a 90/10 split of the dataset
into train/test datasets is common practice. The performance check via cross-validation
is done because the given dataset has a predefined split into train and test datasets. This
predefined split into train and test datasets is only given for the MDACNN architecture, not
for the other architectures. The test dataset contains several smaller sub-datasets, from which
the biggest two are chosen to be the Validation and Test dataset during "Train+Test". By
shuffling all datasets together and training and testing the model on datasets with varying
favourable and unfavourable splits, the true performance of the model architecture gets
captured.

3.4. MFCNN-TL architecture

The discussed MDACNN architecture [2] is a CNN but possesses only a single convolutional
layer, and the rest of the network is a perceptron. And that single convolutional layer is not
used to process images - for what convolutional layers originally were intended for - but data
tables.
However, MF modelling can also be carried out with larger CNNs with more convolution

Figure 3.6.: The original MFCNN-TL architecture by [9], processing data provided by the
DLR [3][4]. The predicted feature is the traction force FX. The figure visualizes
the structure of the transfer learning process

layers and with other architectural approaches than the MF-DF architecture. CNNs have the
advantage that they are very effective in the extraction of local patterns in spatial data like im-
ages. Therefore, a typical application of CNNs is image recognition, which is commonly used
in areas like aerospace. A typical application in aerospace is the design optimisation of wings.
Liao et al. [9] designed the MFCNN-TL architecture, which is a CNN, implemented into an
optimisation framework to optimise the shape of wings and make them as aerodynamic as

33

3.4. MFCNN-TL ARCHITECTURE

possible. The work of Liao et al. [9] was chosen due to several reasons. First, the designed
MFCNN-TL architecture is a representative of the TLNN architecture type, therefore, one of
those architectures learning the LF/HF implicitly. Second, the MFCNN-TL architecture is
supposed to be trained by transfer learning. Third, the MFCNN-TL architecture is an MF
model. Fourth, due to the fact of being designed as an MF model, the MFCNN-TL architecture
is designed to be a small-scale and light-weighted architecture like depicted in the Fig. D.1
and Fig. D.2 (appendix). Fifth, the MFCNN-TL architecture is a CNN that is supposed to
process images. Therefore, [9] will be used as the main information source in this section,
and if not marked otherwise, all information will come from there. The original MFCNN-TL
architecture is depicted in Fig. 3.6. The architecture expects as input data 128x128 greyscale
images. The MFCNN-TF architecture represents a CNN, which consists of two convolutional
and two FC layers with already implemented regularisation. The architecture is designed as
follows: The first layer is a convolutional layer whose goal is to extract the shape from the
objects on the input image. The original architecture uses four Sobel functions as kernels.

Figure 3.7.: The Perceptron MFCNN-TL architecture. The first layer is an average pooling
layer with a 2x2 kernel and a stride of 2. After flattening, the first FC layer has
1024 nonlinear neurons, and the output is formed via a single linear neuron.

A Sobel function is a 3x3 kernel specialising in extracting lines (of a certain orientation)
in an image. In this case, the four Sobel functions cover the lines of angles ±45. During
the investigations, the amount of kernels in the first convolutional layer was extended to
improve the shape extraction. The kernels get moved with a stride of 1 over the input image.
The output is a 126x126 image. After the first convolutional layer follows a max-pooling
layer to delete the redundancies among the data and condense the information density. The

34

3.4. MFCNN-TL ARCHITECTURE

max-pooling layer possesses a 2x2 kernel with a stride of 1. The second convolutional layer
extracts advanced geometric features like thickness, relative height, curvature, and tangent
direction out of the found wing shape. The layer possesses 12 5x5 kernels with a stride of
2. It follows again a max-pooling with a 2x2 kernel and a stride of 2. Now, the output gets
flattened and forwarded into the first FC layer. The MFCNN-TL architecture possesses two
FC layers of the same design. Both FC layers possess 1024 neurons with a PReLU, aka. Leaky
ReLU as a non-linear activation function. The PReLU is defined by:{

y = 0.1x, x ≤ 0

y = x, 0 ≤ x
.

The output layer predicts several predictions due to multi-task learning. In multi-task learn-
ing, the model predicts several features for a single input sample. Although the investigations
of the Master Thesis prioritise three features (traction force, normal force and yaw rotation)
and multi-task learning would have been an option, the implemented MFCNN-TL model
architecture will learn just a single feature per training run. As loss function gets used MSE.
Fig. 3.6 documents the structure of the fine-tuning of the MFCNN-TF. The whole network
gets trained in the first training step with the Source dataset DS - the LF dataset. In the
second training step, all layers get frozen, which are encircled by the red line in Fig. 3.6 - only
the blue encircled layers remain trainable and get fine-tuned with the Target dataset DT aka.
HF data. Effectively only the last two layers get trained with the HF dataset.
During the investigations associated with the master thesis, the original MFCNN-TL architec-
ture was applied to the dataset provided by the DLR[3][4]. These investigations conclude that
the original MFCNN-TL architecture performs poorly on the custom dataset, but improving
its efficiency by utilising performance optimisation by altering the model architecture is
possible. The 1x8+2x24 MFCNN-TL architecture and the 1x24 MFCNN-TL architecture were
developed to check the influence on the performance of an emphasised shape feature extrac-
tion (extended second convolutional block), respectively, an emphasised shape extraction
(extended first convolutional block). The 1x8+2x24 MFCNN-TL architecture is shown and
closer described in Figure 3.8 and the 1x24 MFCNN-TL architecture is shown and closer de-
scribed in Figure 3.9. As a result of the investigations, the Perceptron MFCNN-TL architecture,
depicted and described in Fig. 3.7, was developed. The Perceptron MFCNN-TL architecture
has the most optimal loss out of all investigated MFCNN-TL-related architectures. Section 4.2
shows the conclusions made which led to the development of the Perceptron MFCNN-TL
architecture. For the investigations, the MFCNN-TL architecture was implemented as a model
into a corresponding API visualised in Alg. 2 as pseudo code and in Fig. A.2 (appendix) as
flowchart. The APIs for the MDACNN and MFCNN-TL architecture implementations do not
differ much from each other. Both possess two main processes: "Train+Test" and "Performance
Check" - both are already described in the MDACNN architecture section. Of course, there
are differences, as, on the one hand, the MDACNN API focuses on tabularizing data during
the data pre-processing, and it trains an MDACNN model. On the other hand, does the
MFCNN-TL API focus on images during the data pre-processing and train an MFCNN-TL
model. A bigger difference is the extended data pre-processing for the MFCNN-TL API

35

3.4. MFCNN-TL ARCHITECTURE

Figure 3.8.: 1x8+2x24 MFCNN-TL architecture. The architecture emphasises an extended
second convolutional block and, therefore, shape feature extraction. The shape
gets extracted by the first convolutional layer. Convolutional layer Cov1 has 8
3x3 layers with a stride 1. Average-Pooling Layer Av-Pool1 has a 2x2 kernel with
a stride 2. The convolutional layers Cov2 and Cov3 have 24 5x5 kernels with a
stride 2. The average-pooling layer Av-Pool2 has a 2x2 kernel with a stride 2.
FC describes an FC layer with four linear neurons. The FC layers H1 and H2
possess 1024 non-linear neurons each. The output defines a single linear neuron.
More information on the 1x8+2x24 MFCNN-TL architecture is in the appendix,
see Figure D.3 and fig. D.4. The red box marks all layers which get pre-trained
with the LF data set and the blue box marks all layers which get fine-tuned with
HF data during transfer learning.

Figure 3.9.: 1x24 MFCNN-TL architecture. The architecture emphasises the first convolutional
layer and, therefore, shape extraction. The convolutional layer Cov has 24 3x3
kernels with a stride 1. The average-pooling layer Av-Pool has a 2x2 kernel with a
stride 1. The FC layer FC has 1024 non-linear neurons, and the output is built out
of a single linear neuron. More information on the 1x24 MFCNN-TL architecture
is in the appendix, see Figure D.5 and Figure D.6 The red box marks all layers
which get pre-trained with the LF data set, and the blue box marks all layers
which get fine-tuned with HF data during transfer learning.

depicted in Fig. 3 as pseudo code and in Fig. A.2 (appendix) as a flowchart. In the first
step, unsuitable images get sorted out. Some images in the dataset are without information
because they are completely blacked out and do not show any sand structures like the rest of
the images. To improve the training and testing performance of the model, these samples
get dropped out of the dataset. In the second step, the LF and HF functions get denoised by
smoothing their LF and HF values (aka. Y values, aka. ground truth values, aka. target values)

36

3.5. MF-TLNN ARCHITECTURE

Algorithm 2 API MFCNN-TL architecture

1: procedure Train and Test, and Performance Check

2: if modus = "Train and Test" then
3: HFdata← dataloader.loadTrainData()
4: LFdata← dataloader.loadTrainData()
5: MFCNNTLmodel ← MFCNNTL()
6: MFCNNTLmodel ← Trans f erLearning(HFdata, LFdata)
7: MFCNNTLmodel.analysis()
8: else if modus = "Performance Check" then
9: data← retrieveCommonDataset()

10: DataTables← Dataset(data)
11: MSEloss← CrossValidation(DataTables)

Algorithm 3 Extended Image Preprocessing using function preprocessing(data).
The function gets used inside dataloader.loadTrainData() in Alg. 4 and Alg. 2

1: procedure preprocessing(data)
2: data← RemoveContentlossImages(data)
3: data← MovingAverage(data)
4: data← NormalizeData(data)
5: TrainData, TestData← SplitDataset(data)
6: return TrainData, TestData

using the Moving Average. In the third step, the data gets normalised to increase the training
performance of the model. In the fourth and last step, the dataset gets split into a train and
test set. This step was not necessary for the MDACNN model because the provided dataset
was already pre-divided into train and test datasets. The split into train and test datasets
happens randomly. Therefore, the MFCNN-TL model gets trained in each training run with a
different train dataset. Due to the already random splitting in the "Train+Test" main process,
it is debatable whether the MFCNN-TL API needs its own K-Fold Cross-Validation process.

3.5. MF-TLNN architecture

With the MDACNN architecture [2] and with the MFCNN-TL architecture [9] were introduced
networks which learn the LF/HF relation either explicitly or implicitly. Why not combine
both learning strategies in one architecture to increase performance? This is the main thought
behind the development of the MF-TLNN architecture by Zhang et al. [10].
The original MF-TLNN architecture is shown in the appendix in Fig. E.3. The MF-TLNN
architecture is designed for MF modelling. Therefore, the goal of all individual networks
which are connected to the MF-TLNN architecture is to learn the LF/HF relation. In a
nutshell, the MF-TLNN architecture can be explained as a composite-network-like structure,
which computes its output through a weighted aggregation of the predictions of two parallel

37

3.5. MF-TLNN ARCHITECTURE

arranged networks where one network learned the LF/HF relation implicitly (NNL in Fig.
E.3) and the other one explicitly (AEL in Fig. E.3). The MF-TLNN architecture needs to be
trained in three steps: in the first step, the implicit learning NNL and the explicit learning
AEL network get pre-trained with the LF dataset. In the second step, both networks get
combined via a weighted aggregation of their outputs to the MF-TLNN. In the third step, the
whole network gets fine-tuned by freezing all but the last layers of the former NNL and AEL

networks and applying transfer learning using the HF dataset.
The explicit learning AEL network is explicitly defined by Zhang et al. [10] as an autoencoder

Algorithm 4 API MF-TLNN architecture

1: procedure Train and Test

2: HFdata← dataloader.loadTrainData()
3: LFdata← dataloader.loadTrainData()
4: AEmodel ← NN("AE")
5: NNLmodel ← NN("NNL")
6: AEmodel ← AEmodel.SourceTraining(LFdata)
7: NNLmodel ← NNLmodel.SourceTraining(LFdata)
8: MFTLNNmodel ← NN("MFTLNN")
9: MFTLNNmodel ← MFTLNNmodel.TaskTraining(HFdata)

10: MFTLNNmodel.analysis()

(AE). An AE has two parts: the encoder and the decoder. The task of AE is to split data from
noise by compressing the input sample to a minimum and rebuilding the sample out of its
reduced representation. Usually, a high-dimensional sample or an image gets forwarded into
the AE, and the encoder compresses the input sample into a low-dimensional representation
in the latent space. The compressed representation in the latent space outlines the complete
usable data of the input sample without noise and redundancies. The decoder takes this
compressed latent space representation and develops it through up-sampling back to the
original input sample. However, [10] defines that input into the AE architecture is a single
scalar value. Therefore, an inverted AE needs to be implemented, where the decoder and
encoder have swapped positions. The scalar input sample gets interpreted as the already
compressed latent space representation. The architecture of the constructed AE is depicted in
Fig. 3.10 and with a focus on the parameter distribution in Fig. E.1 and Fig. E.2 (appendix).
The architecture type of the NNL network is not as clearly defined as for the AE. The only
definition is that the network needs to be an MF model and needs to learn the LF/HF
relation implicitly. The NNL network was implemented using the MFCNN-TL architecture
because the MFCNN-TL architecture fulfils all required criteria, and the original MFCNN-TL
architecture is a CNN.
As a summary, for the investigations carried out for the master thesis, the MF-TLNN ar-
chitecture was implemented using the already described AE architecture (as AEL) and the
Perceptron MFCNN-TL architecture (as NNL) as the best performing version of the MFCNN-
TL architecture if applied to the datasets provided by the DLR [3][4]. The architecture of the
implemented MF-TLNN architecture is shown and described in Fig. 3.10.

38

3.5. MF-TLNN ARCHITECTURE

The implementation of the MF-TLNN architecture got embedded into the API shown in
Fig. 4 as pseudo code and in Fig. A.3 (appendix) as a flowchart. The MF-TLNN API is
mostly similar to the MFCNN-TL API in Fig. 2 and corresponds there to the "Train+Test"
branch. Due to the nested MFCNN-TL network in the MF-TLNN architecture processes, the
MF-TLNN architecture model images. The pre-processing of the dataset is mostly the same,
together with the extended pre-processing API presented in the MFCNN-TL. The only major
difference is that the MFCNN-TL API trains only the MFCNN-TL architecture model while
the MF-TLNN API trains first the NNL, AEL and only then the MF-TLNN architecture model
gets initialised and trained as well.

Figure 3.10.: The Perceptron MF-TLNN architecture. The upper model is built according to
the Perceptron MFCNN-TL architecture, see Fig. 3.7. The model gets as input an
image yH,i and predicts its HF value QH(yH,i). The lower model is an AE. The
model takes as input QL(yH,i), the scalar LF value of the image yH,i. The middle
layer consists of eight non-linear neurons that decode the scalar value. The
output layer consists of one non-linear neuron that encodes the data back into
a scalar value. Both models are combined via a weighted aggregation of their
HF value QH(yH,i) predictions. Both models get first pre-trained on LF data and
later on fine-tuned with transfer learning using HF data. More information on
the number of parameters of the Perceptron MF-TLNN architecture is provided
in Fig. E.4 and Fig. E.5. The utilised dataset is provided by the DLR [3][4].

39

4. Experiments

This section tests the MDACNN architecture as a representative of the MF-DF architecture
type and the MFCNN-TL and MF-TLNN architectures as representatives of the TLNN
architecture type. All architectures get investigated using the custom dataset provided by the
DLR[3][4] and described in section 3.1. The MDACNN architecture gets tabularised data, and
the MFCNN-TL and MF-TLNN architecture get images. The MDACNN architecture will be
tested additionally utilising default benchmarks, see Tab. A.1, due to its structure and input
data.

4.1. Experiments on the MDACNN architecture

4.1.1. Performance Optimization based on default Benchmarks

In research, benchmarks are commonly used. Also, in the research regarding MF modelling,
a benchmark gives the ability to define a default case with a defined desired outcome and
enables to investigate the ability to generalise for different architectures. By becoming a
default in research, a benchmark makes it possible to define common learning goals. The
default benchmarks in MF modelling are shown in Tab. 4.1.

Tab. 4.2 visualizes for each benchmark the hyperparameters applied to the MDACNN
architecture model during training.

The seven default benchmarks are: 1) Continuous Functions with Linear Relation (see
Fig. B.1a). 2) Discontinuous function with linear relationship (see Fig. 4.1a). 3) Continuous
function with non-linear relationship (see Fig. B.2a). 4) Continuous oscillating function
with non-linear relationship (see Fig. 4.2a). 5) Phase-shifted oscillation (see Fig. B.3a). 6)

Different periodicity (see Fig. B.4a) and 7) 50-dimensional function (see Fig. ??).
Two short disclaimers at the beginning: First, with "Benchmark provided by [2]" like in

the caption in Fig. 4.1a means running the benchmark without normalising the input data.
Normalisation was implemented afterwards to improve the generalisation and, therefore,
the performance of the MDACNN architecture. Normalisation was not applied immediately
from the beginning due to the announcement that: "the proposed method can handle data
aggregation from multiple sources across different scales" [2], (p. 1). Secondly, all plots
shown below and in the appendix visualise how the trained MDACNN architecture models
reacted to the applied test dataset. The test dataset was used to check the generalisation
capability of the individual models. The MDACNN was trained according to Tab. 4.1 and Tab.
4.2). The almost perfect benchmark results given by [2] and displayed in Fig. B.1a, 4.1a, B.2a,
4.2a, B.3a, B.4a and B.5a could only be verified by propagating the training dataset (known
data) through the original MDACNN architecture and could be only achieved with the test

40

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

Table 4.1.: All seven default benchmarks used in MF modelling. Each benchmark defines its
LF and HF function.

Table 4.2.: Hyperparameter settings for each benchmark described in Fig. 4.1

dataset (unknown data) if upgrading the API or the MDACNN architecture. Each benchmark
is evaluated using three figures and focuses on the generalisation performance of the model.
The first image shows the benchmark result provided by [2], like Fig. 4.1a, the second image
shows the benchmark results if implementing the API and MDACNN architecture exactly
like they are described in [2], like Fig. 4.1b, and the third image shows the benchmark
results after improving either the API or the MDACNN architecture, like Fig. 4.1c. The

41

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

X-axis of the plots shows the sample values. The sample values are chosen from the interval
[0, 1]. The Y-axis of the plot shows the function values of the LF-, HF-, and approximated
HF-function (MDACNN). The blue graph represents the LF function, the red/orange graph
represents the HF function, and the green graph represents the approximated HF function
(MDACNN). This section represents a representative of relations among non-oscillating
functions in Fig. 4.1 and a representative of relations among oscillating functions in Fig.
4.2. All other benchmark results are moved to the appendix. This was done because the
research showed that the MDACNN architecture has significant performance differences
when applied to non-oscillating and oscillating functions. The results of the experiments can
be summarized as follows:

1. The MDACNN architecture generalises well on continuous and discontinuous functions
and high dimensional data. The MDACNN architecture can generalise well on continu-
ous and discontinuous functions because the relationship complexities between those
functions are comparable simple and, therefore, easy to learn for the small architecture.
The MDACNN architecture performs well on high dimensional data due to the tabular-
ized input data and its kernel in the convolutional layer, which spans over all feature
dimensions and considers, therefore, per convolution step, all features at the same time.
Namely, the affected benchmarks are: 1) continuous functions with linear relation, 2)

discontinuous function with linear relationship, 3) continuous function with non-linear
relationship and 7) 50-dimensional function.

2. The MDACNN generalises badly or does not generalise on oscillating functions. A rea-
son for this can be that the oscillating character of the functions increases the complexity
of their relationships with each other, which complicates the generalisation on them for
the small MDACNN architecture. Affected are the benchmarks: 4) continuous oscillat-
ing function with non-linear relationship, 5) phase-shifted oscillation and 6) different
periodicity.

The benchmark with the most simple relationship is 1) continuous functions with linear
relation. As visible in Fig. B.1b, the benchmark result of the first implementation has a huge
bias. The bias can be removed by making the training dataset bigger by increasing the number
of HF samples from the recommended 4 HF samples (see appendix, Fig. 4.2) to a minimum
of 15 HF samples. With more data, the model does not underfit, learns the pattern and the
bias is gone, as shown in Fig. B.1c.

The next benchmark is 2) discontinuous function with a linear relationship. Again, the
MDACNN architecture has not generalised well in the benchmark of the first implementation
and a huge bias forms shown in Fig. 4.1b. To remove the bias, it was necessary to normalise
the input data. By normalising the input data, all input features get re-scaled to a common
scale. This way, all features matter the same when training and the training is more efficient.
The more efficient training eliminates the bias, as can be seen in Fig. 4.1c.
The benchmark 3) continuous function with non-linear relationship is one of the best examples,
where the benchmark of the first implementation achieved a comparably low bias and good
generalisation. Fig. B.2b visualises only a small bias from X=0.0 until X=0.55. Like in the

42

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

(a) Benchmark provided by [2]

(b) Benchmark after implementing the MDACNN
model and utilise the API and MDACNN archi-
tecture described in [2].

(c) Benchmark after improving the data pre-processing
of the API by normalizing the input data.

Figure 4.1.: Benchmark: 2) discontinuous functions with linear relationship. This benchmark
represents benchmarks with non-oscillating LF and HF functions.

43

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

(a) Benchmark provided by [2]

(b) Benchmark after implementing the MDACNN
model and utilise the API and MDACNN architec-
ture described in [2].

(c) Benchmark after improving the generalisation abil-
ity of the MDACNN architecture by extending the
non-linear branch in the MDACNN architecture and
adding more neurons and layers.

Figure 4.2.: Benchmark: 4) Continuous oscillation functions with nonlinear relationship. This
benchmark represents all benchmarks with oscillating LF and HF functions.

prior benchmark, it is possible to remove the bias by normalising the input data, enabling the
model to train using more features and making the training more efficient. The improved
generalisation is visible in Fig. B.2c. The first benchmark where the model does not generalise
well (even if improved) is 4) Continuous oscillation functions with non-linear relationship.
Regularisation, an increase in training data or normalisation of the input data did not help to
overcome the bad learning performance from Fig. 4.2b. By extending the non-linear branch
of the MDACNN with more neurons and layers, it was possible to improve the generalisation

44

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

visible in Fig. 4.2c. The relationship between the LF and HF functions is non-linear. By
extending the non-linear branch of the MDACNN architecture with additional neurons and
layers, the MDACNN architecture becomes more effective in learning non-linear relationships
and has better performance. Although the result got better, the generalisation is still not
good (compared to prior benchmarks). The approximated HF function does not match at any
point the actual HF function. The overshoot of the approximated HF function (MDACNN
architecture model) has just been reduced.
The benchmark 5) phase-shifted oscillations, like its predecessor, again examines the rela-
tionship between oscillating functions with a non-linear relationship. The non-linear branch
needs again the same extension with more neurons and layers like in the prior benchmark.
The performance of the first implementation in Fig. B.3b improved to the performance shown
in Fig. B.3c with a lower bias, and the HF and approximated HF function are closer together,
but the result is not satisfactory even after the improvement.
Like the two previous benchmarks, the current benchmark -6) different periodicity - also
works with oscillating functions, as shown in Fig. B.4b. As in the two previous benchmarks,
regularisation, an increase in the training data or normalisation of the input data do not help
here either. Here too, the extension of the non-linear branch is necessary to slightly improve
the generalisation capability of the MDACNN architecture model, as shown in Fig. B.4c. And
again, the generalisation is not satisfactory, e.g. due to massive overshoots and noisy peaks.
The last benchmark is 7) 50-dimensional functions. The goal is to check whether the MDACNN
architecture can process high-dimensional data (here: 50 dimensions) and whether a big input
data dimensionality has an impact on the accuracy of the model. As visible in Fig. ??, the
results are very good. The MDACNN architecture is capable of processing high-dimensional
data. This is due to the convolution kernel, which processes all feature dimensions of all
covered samples within a position at once.

4.1.2. Performance Optimisation based on terramechanical Data

The benchmarks pre-define LF-, HF-function and the interval range of sample value x to en-
sure a common standard for datasets if the benchmark is executed by different research groups
for different research projects (on the topic of multi-fidelity modelling). In the prior section,
the generalisation performance of the MDACNN was tested - and, if needed, improved. Now,
we shift our focus from the default benchmarks to an application-oriented dataset provided
by the DLR [3][4]. The challenge is that the LF/HF relation of the terramechanical data is
much more complex than the relationships provided by the benchmarks. Each benchmark
focuses on testing a certain LF/HF relation with a function which is as simple as possible
to be able to draw the wanted relation (to make the test case not unnecessarily complex).
The terramechanical data can be more difficult to process for the MDACNN architecture
because the LF/HF relation in the data can be more complex due to the combination of many
individual relations defined by the default benchmark in Tab. 4.1.
Due to the increased complexity when switching from the default benchmarks to the ter-

ramechanical data, the performance optimisation of the MDACNN architecture is divided
into parts. In the first step, the ability of the MDACNN architecture to be generally able to

45

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

Table 4.3.: Learning performance of different MDACNN architecture versions. The test
was done by propagating the train dataset as test dataset through the trained
MDACNN model. The following two versions of the MDACNN architecture
were checked: the original MDACNN architecture, visualised in Fig. 3.3, and the
3x32 MDACNN architecture, visualised in the appendix in Fig. C.3. The 3x32
MDACNN architecture has an extended non-linear branch with additional neurons
and layers. The lowest loss value for each iteration, the lowest average loss value
and the lowest minimum loss value are printed in bold.

Iteration Original 3x32
1 0.05286 0.05396
2 0.05323 0.03713
3 0.03209 0.03834
4 0.03541 0.03966
5 0.04503 0.03920
6 0.05538 0.04222
7 0.03899 0.04355
8 0.05995 0.05727
9 0.06277 0.04704

10 0.04889 0.02987
Average Loss 0.04846 0.04282

Minimum Loss 0.03209 0.02987

learn the training data will be secured. The general ability to learn the train dataset gets
tested by training the model with the train dataset and later on, propagating through the
trained model the used train dataset. If the architecture can learn the train dataset, then it
will predict all train samples correctly. If the architecture will not be able to predict the train
samples correctly, then optimization methods need to be applied to increase the performance
of the architecture. The second step aims to check whether the model can generalise well.
This is the most important trait which the model needs to possess - at least after optimisation.
The model needs to be able to learn the pattern of the LF/HF relation in the terramechanical
train dataset and recognise those patterns again later on in the corresponding test dataset.
Independently of which step gets performed: if the original MDACNN architecture is not
capable of learning the train dataset or is not capable of generalising well, then the model
architecture needs to be adjusted. Adjusting the architecture has the goal of extracting more
features by increasing the learning efficiency of the network. A feature in images can be
a line or its position to another line in the image. But what is a feature or a sub-feature
if the data is tabularized like the terramechanical data is? Features equal the individual
columns in the input table. However, after passing through the network layers, a feature
can describe a value distribution between different columns in the input table or the relation
between the occurrences of the two value distributions at two different kernel positions. Out
of those extracted features, does the MDACNN architecture predict the HF value of interest.

46

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

Table 4.4.: Generalization performance of different MDACNN architecture versions. All
versions utilised the same training and test set. The following five versions of the
MDACNN architecture were checked: the Original MDACNN (Figure 3.3), 3x32
MDACNN (Figure C.3), 5x32 MDACNN, 7x32 MDACNN (Figure C.5), regularised
7x32 MDACNN (Figure 3.5) and the 9x32 MDACNN architecture. All architectures
except the original MDACNN architecture possess an extended non-linear branch
with, e.g., 9 FC layers with 32 non-linear neurons each in the case of the 9x32
MDACNN architecture. The lowest loss value for each iteration, the lowest average
loss value and the lowest minimum loss value are printed in bold.

Iteration Original 3x32 5x32 7x32 regularised 7x32 9x32
1 0.22993 0.18552 0.32667 0.11121 0.17362 0.24567
2 0.25434 0.20435 0.25000 0.19931 0.35256 0.22700
3 0.30194 0.15534 0.70030 0.14216 0.14317 0.17309
4 0.16265 0.18596 0.12657 0.15847 0.12521 0.15668
5 0.16294 0.15874 0.13114 0.17826 0.10971 0.18347
6 0.28296 0.25577 0.15383 0.22139 0.23594 0.23592
7 0.16455 0.25872 0.14790 0.15687 0.12208 0.17752
8 0.31542 0.50171 0.13886 0.15448 0.22634 0.13303
9 0.19315 0.25448 0.14083 0.13628 0.09335 0.11902

10 0.21297 0.17083 0.16380 0.12965 0.14063 0.18302
Average Loss 0.22909 0.23315 0.22799 0.15905 0.17226 0.18345

Minimum Loss 0.16265 0.15534 0.12657 0.11121 0.09335 0.11902

Figure 4.3.: Distribution of the average loss and minimum loss over the different MDACNN
architecture versions, which are benchmarked in Table 4.4. The green line marks
the global optimum (lowest losses) reached by the 7x32 MDACNN model.

47

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

Common ways to adjust the architecture to improve the performance of the model (enable
the model to learn more complex LF/HF relation with higher precision) are by adding layers,
neurons and regularisation. The more layers a network possesses, the more sub-features a
model can learn. And the more sub-features a model extracts, the more data it has on which
basis it can do good regression (the MDACNN is a regression model). This is at least the core
thought behind adding more layers. If the model does not perform very well, it can have too
few layers. A layer always learns the sub-features of the feature learnt by the prior layer. Each
neuron learns a feature. The more neurons a layer possesses the more features it can learn.
Therefore, the addition of more neurons to the model can increase its regression performance.
The last step is implementing regularization. Regularization is less focused on installing more
infrastructure (more neurons, more layers) to learn more features. Regularisation aims to
make the learning of the already existing infrastructure more efficient to obtain even better
results. During the experiments generally were first added neurons and layers and only then
was regularization implemented to fine-tune the model.
MF models have a limitation in their complexity and amount of parameters. MF models
like the MDACNN architecture have the mission to approximate the HF function value as
accurately as possible while being computationally cheap - in construction, training and later
during execution. In short, being as precise as an HF model but as computationally cheap as
an LF model. Therefore, there cannot be added an infinite amount of neurons and layers to
the MDACNN architecture to improve its performance - the complexity of the model needs to
stay at a reasonable scale to not lose the original intended use of the MDACNN architecture
as an MF model. Another reason why adding more and more neurons (and layers) to the
model is not always the best idea is because, yes - each added neuron learns a new feature -
but not each feature learnt will be used later on by the model to develop its regression output
at the end. However, these unused neurons still need to be trained and increase unnecessarily
the precious computational cost. Therefore, the goal during the performance optimisation is
to obtain a result as good as possible while keeping the model architecture in a reasonable
and appropriate size.
During the experiments, several versions of the original MDACNN architecture were de-
signed, trained and tested. The loss is used to evaluate the performance of the models because
the original MDACNN architecture is a regression model. On the one hand, describes the
loss the numerical difference between the predicted value and the ground truth value and
is therefore suited to evaluate regression models. On the other hand, accuracy (the other
big evaluation method) captures whether the predicted value is equal to the ground truth or
not and is, therefore, better suited to evaluate classification models. Independently from the
evaluation, by default, the loss function gets utilised as the objective function during training.
Before skipping to the presentation of the results, another short disclaimer: the goal of
the performance optimisation is to optimise the performance of the MDACNN architecture
regarding the terramechanical dataset provided by the DLR. The terramechanical dataset
is already pre-split into a train and test dataset. Therefore, the priority is to increase the
performance of the MDACNN architecture regarding exactly this data split. The top goal is
to create a model which extracts as much information as possible out of the provided train

48

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

(a) Original MDACNN architecture by Chen et al. [2]. (b) 3x32 MDACNN architecture.

Figure 4.4.: First steps in adapting the MDACNN to the provided terramechanical data.
Visualised are the learning performances of the Original MDACNN and the 3x32
MDACNN architecture. The goal is to ensure the MDACNN architectures possess
enough parameters to learn the train dataset. In both cases, the train dataset got
propagated through the already trained model. The test result is that the 3x32
MDACNN architecture, with its extended non-linear branch, performs better than
the original MDACNN architecture.

dataset (generalise well on the LF/HF relation) and apply as much knowledge as possible
to the test dataset. K-Fold Cross-Validation will be used later on to check how the model
performs for different data splits. As already mentioned, the loss will be used to evaluate
the performance of the different MDACNN architecture versions. A problem during training
is that the same architecture can be trained with the same training and test dataset several
times, and each time, the trained model performs a little bit differently. But to evaluate and
benchmark different versions of the MDACNN model with each other, it is necessary to
characterise each model with an average performance (described by loss). This problem was
solved using the law of big numbers: to approximate the average performance of a model
architecture, several randomly sampled model training runs were taken, and their average
performance (average loss) was computed. Important is to randomly sample those trained
models and their losses because this ensures that the resulting approximation is unbiased
and, therefore, more accurate. E.g. to approximate the performance of an architecture, each
architecture was trained ten times - as a result, there were ten different losses, and out of
these ten different losses, the average performance of the architecture was approximated.
Starting with the first optimisation step, checking whether the original MDACNN archi-

tecture is capable of learning the terramechanical train dataset provided by the DLR. The
result can be seen in Figure 4.4a. The blue line is the LF function, red is the HF function,
and green is the approximated HF function (by the MDACNN). The lines of interest are the

49

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

red and the green lines because the HF function and the approximated HF function should
be equal in an ideal case. In reality, the original MDACNN architecture can match the red
and green lines with each other most of the time, but a careful observer will realise that
the original MDACNN architecture has problems, especially when learning peak values.
Not all peaks, but many peaks are not correctly interpretable for the original MDACNN
architecture - although the trained model processed known training data. A reason could
be that the original MDACNN architecture possesses too few parameters and is not able to
learn the training data. The problem could be solved by adding more neurons and layers. It
needs to be considered that the LF/HF relationship between the blue and red graph is highly
non-linear. Therefore, the extra neurons and layers must be added to the non-linear branch
of the MDACNN. The architecture of the original MDACNN architecture is depicted in Fig-
ure 3.3 and in the appendix with more detail in Figure C.1 and with a focus on parameters in
Figure C.2. The experiments revealed that there exists a small sweet spot between the number
of parameters and accuracy in learning the training dataset for the MDACNN network and
within this sweet spot lies the 3x32 MDACNN architecture. The 3x32 MDACNN architecture
is a version of the original MDACNN architecture where in the non-linear branch the two FC
layers with each ten non-linear neurons got replaced with three FC layers with each non-linear
32 neurons. The improvement in results is shown in Table 4.3. The difference is not big, but
the 3x32 MDACNN architecture delivers a better average loss and better models with a lower
minimum loss than the original MDACNN architecture. The 3x32 MDACNN architecture is
depicted in the appendix with a focus on its architecture in Figure C.3 and with focus on its
parameters in Figure C.4. As visible in Figure 4.4b does the 3x32 MDACNN architecture learn
the training data better than the original MDACNN architecture. The green and red lines
are better matching and most of all peaks were recognized by this MDACNN architecture
version. In the second and last optimization step, the goal is to improve the generalisation
ability of the MDACNN architecture regarding the provided terramechanical train and test
dataset. In Figure 4.4a and Figure 4.4b is visible how the original MDACNN architecture
and the 3x32 MDACNN architecture do perform on the test dataset. Again, the blue line is
the LF function, red is the HF function, and green is the approximated HF function (by the
MDACNN model). Both MDACNN architectures do not perform well. Both architectures
possess a big bias. The bias is a sign of underfitting, which means they do not learn enough
features from the training data. Generally, in both cases, the green line follows the red line,
but only in a rough manner. Due to the underfitting of the original MDACNN architecture
and the 3x32 MDACNN architecture, the experiments aimed to add neurons and layers and
achieve this way better results. And because the LF/HF relation is non-linear those neurons
and layers got added to the non-linear branch of the MDACNN. The optimisation process was
done in phases: first, add neurons and layers to let the model learn more features (act against
overfitting) second, find the best-performing architecture, and third, add regularisation for
fine-tuning to make the learning process of the existing architecture more effective. Table 4.4
shows the progression of the most important experiments, their order, and with which results
the experiments were done. The experiments started from the 3x32 MDACNN architec-
ture because it has better learning capabilities regarding the train dataset than the original

50

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

(a) Original MDACNN. The non-linear branch consists
out of two layers, each containing ten neurons.

(b) 3x32 MDACNN. The non-linear branch is build out
of three layers with each 32 neurons.

(c) 7x32 MDACNN. The original non-linear branch got
replaced with seven layers, each containing 32 neu-
rons.

(d) Regularized 7x32 MDACNN.

Figure 4.5.: Benchmarking four different MDACNN versions regarding their generalization
abilities. All models got trained with the same training and testing dataset to
secure that all models had to learn the same LF/HF relationship.

51

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

MDACNN architecture (see Table 4.3). The original MDACNN, 3x32 MDACNN on the 5x32
MDACNN, 7x32 MDACNN and the 9x32 MDACNN architecture were tested. In Figure 4.3,
it is visible how the average loss and the minimum loss (best-trained model) develop. The
average loss remains almost constant for the original MDACNN, 3x32 MDACNN and the
5x32 MDACNN architecture. This means that these MDACNN architecture versions produce
models which possess, after training, on average, the same performance. Starting from the
original MDACNN architecture, it can be generally said that the more layers are established,
the better the optimal model, and the lower the optimal loss (...until the 9x32 MDACNN
architecture). The absolute lowest average loss and minimum loss were achieved by the 7x32
MDACNN architecture during the experiments. After the 7x32 MDACNN architecture, both
features go up for the 9x32 MDACNN architecture - therefore, the regularisation got imple-
mented for the 7x32 MDACNN architecture. The 7x32 MDACNN architecture is visualised in
the appendix with a focus on its architecture in Figure C.5 and with a focus on its parameters
in Figure C.6. The generalisation performance of the 7x32 MDACNN architecture is visualised
in Figure 4.5c. The 7x32 MDACNN has a way lower bias than the original MDACNN and
3x32 MDACNN architecture. And the 7x32 MDACNN architecture follows visually more
the red HF function than both others do. But the output is pretty noisy - e.g., there are huge
peaks from X = [1.500, 2.500] (label x-label "Samples" as X). One goal of the regularisation is,
therefore, to get rid of these spikes. The regularised 7x32 MDACNN architecture is depicted
in Figure 3.5 and in the appendix in Figure C.7 and Figure C.8. The regularisation methods
used are batch normalisation, average pooling and dropout. Batch normalisation and average
pooling are used after the convolution layer, and dropout is used firstly after the flattening of
the convolution results and secondly inside the non-linear branch. The experiments showed
that the batch normalisation, in combination with the average pooling, helps to learn the
valley-like curve from X = [750, 2.000] unbiased and the dropout immediately after flattening
helps to learn the hill-like curve from X = [1.500, 2.500]. The dropout inside the non-linear
branch just smooths (de-noise) the learned LF/HF relation. The result is that the model has,
according to Table 4.4, a higher average loss than the original 7x32 MDACNN architecture,
but the minimum loss (optimal trained model) could be further reduced to a global minimum
if compared to all other MDACNN architecture versions. The generalisation performance of
the regularised 7x32 MDACNN architecture is depicted in Figure 4.5d.
The 10-fold cross-validation is used as a final performance check to investigate the generali-

sation performance of the most important MDACNN architecture versions on different data
splits into train and test dataset than the one predefined and provided by the terramechanical
data. 10-fold cross-validation was used because it is common practice to split a dataset into 90
& train dataset and 10 % test dataset. In 10-fold cross-validation, different average losses are
calculated for the same architecture after each run. To approximate the overall average loss
for each MDACNN architecture version, 10-fold cross-validation was therefore applied ten
times to each architecture according to the previously applied law of large numbers (LLN).
The most important MDACNN architectures are the original MDACNN, 3x32 MDACNN,
the 7x32 MDACNN and the regularised 7x32 MDACNN architecture. These architectures
are benchmarked with each other in a final comparison in Table 4.6. The original MDACNN

52

4.1. EXPERIMENTS ON THE MDACNN ARCHITECTURE

Table 4.5.: Final verification of the most important MDACNN architecture versions and their
generalisation performance by applying 10-fold cross-validation on them. The
10-fold cross-validation was executed ten times for each architecture. The Original
MDACNN, 3x32 MDACNN, 7x32 MDACNN and the regularised 7x32 MDACNN
architecture were tested. The aim is to check whether the architectures not only
generalise well on the predefined data split of the terramechanical data into a train
and a test dataset but also whether they can handle other data splits. The lowest
loss value for each iteration, the lowest average loss value and the lowest minimum
loss value are printed in bold.

Iteration Original 3x32 7x32 regularised 7x32
1 0.00480 0.00361 0.00478 0.00342
2 0.00403 0.00429 0.00515 0.00299
3 0.00452 0.00361 0.00538 0.00284
4 0.00420 0.00411 0.00489 0.00246
5 0.00477 0.00375 0.00555 0.00314
6 0.00499 0.00656 0.00571 0.00317
7 0.00470 0.00423 0.00597 0.00315
8 0.00396 0.00411 0.00589 0.00291
9 0.00523 0.00515 0.00512 0.00263

10 0.00419 0.00395 0.00478 0.00255
Average Loss 0.004539 0.00434 0.00532 0.00293

Minimum Loss 0.00396 0.00361 0.00478 0.00246

architecture [2] is the initial one from where all the research started. The 3x32 MDACNN
architecture is the smallest architecture which learns the provided terramechanical train
dataset better than the original MDACNN architecture, see Figure 4.4. The 7x32 MDACNN
architecture was the best generalising, non-regularised architecture in Table 4.4 and the
regularised 7x32 MDACNN architecture was in Table 4.4 generally the best-performing
architecture on the provided terramechanical data. The results in Table 4.5 are surprising: like
in Table 4.4 outperforms the 3x32 MDACNN architecture the original MDACNN architecture.
A reason could be, that independent from the data split, regarding the terramechanical data,
generalises the 3x32 MDACNN architecture better the the original one. A big surprise was the
7x32 MDACNN architecture. Although it outperformed all other non-regularised MDACNN
architecture versions in Table 4.4, it performed the worst in Table 4.5. An explanation is, that
the 7x32 MDACNN architecture is especially well suited for generalising on the particular
data split which is predefined in the provided terramechanical data. But generally has the
7x32 MDACNN architecture bigger problems in generalising on the terramechanical data.
The best-performing architecture in Table 4.4 is also the best-performing one in Table 4.5. The
regularised 7x32 MDACNN architecture outperforms all other architectures. This leads to
the conclusion that, regardless of the data split, the regularised 7x32 MDACNN architecture
generalises better than all other MDACNN architecture variants.

53

4.2. EXPERIMENTS ON THE MFCNN-TL ARCHITECTURE

Table 4.6.: Summarised comparison of the Original MFCNN-TL, 3x32 MFCNN-TL, 7x32
MFCNN-TL and regularized 7x32 MFCNN-TL architectures with each other. The
architectures get benchmarked on training data, prediction time, number of param-
eters and their average loss. Mind: the 7x32 MDACNN architecture has a lower
average loss than the regularised 7x32 MDACNN architecture, but the regularised
7x32 MDACNN architecture generates the best-performing models with minimal
loss (Table 4.4) and performs better on different data splits (Table 4.5). For both
architectures, the same train and test dataset was used. The training time refers to
the biggest time needed to process an epoch during training. The prediction time
refers to processing the whole test dataset. The lowest value for each feature is
printed in bold.

Original 3x32 7x32 reg. 7x32
Training Time 14 s 15 s 26 s 38 s

Prediction Time 77 ms 70 ms 1 s 889 ms
Number of Parameters 141.062 414.852 419.076 148.996

Average Loss 0.22909 0.23315 0.15905 0.17226

4.2. Experiments on the MFCNN-TL architecture

In this section, the MFCNN-TL architecture is investigated. The MFCNN-TL architecture
belongs to the TLNN architecture type, where an NN-based MF model gets trained utilising
transfer learning. As part of investigations regarding the MFCNN-TL architecture, all
developed MFCNN-TL architecture versions and their experimentally obtained generalisation
performances are noted in Table 4.7. The performance of each architecture is measured using
the average loss and the minimum loss. Each architecture model had different loss values
after the same training with the same train dataset. This is problematic when the goal is
to retrieve the loss of an architecture. Therefore, each MFCNN-TL architecture version was
trained 10 times to approximate the actual mean loss of the architecture using the LLN.
Important for the correct application of the LLN is that all trained architecture models with
their corresponding loss values are sampled randomly. The same method was already used
for the MDACNN architecture in the prior section. All architectures get trained, utilising the
terramechanical image data provided by the DLR [3][4].
The original MFCNN-TL architecture [9] was the first architecture to be tested in Table 4.7. The
original MFCNN-TL architecture is shown in Figure 3.6 and closer described in the appendix
in Figure D.1 and Figure D.2. The original MFCNN-TL architecture has an approximated
average loss of 0.03556 and a minimum loss of 0.03247. These loss values need to be beaten
by alternative MFCNN-TL architecture versions.
The 1x8+2x24 MFCNN-TL architecture is the second architecture investigated in Table 4.7.

The architecture is shown and closer described in Figure 3.8. The 1x8+2x24 MFCNN-TL
architecture focuses on shape feature extraction. Shape extraction focuses on the extraction of
the shape of an object from a given image. The shape of an object is normally characterised

54

4.2. EXPERIMENTS ON THE MFCNN-TL ARCHITECTURE

Table 4.7.: Generalization performance of different MFCNN-TL architecture versions. Investi-
gated are the Original MFCNN-TL (Figure 3.6), 1x8+2x24 MFCNN-TL (Figure 3.8),
1x24 MFCNN-TL (Figure 3.9) and the Perceptron MFCNN-TL architecture (Fig-
ure 3.7). All models are described in the appendix in detail as well. The 1x8+2x24
MFCNN-TL network is the worst-performing architecture, and the Perceptron
MFCNN-TL network is the best-performing architecture. The lowest loss value for
each iteration, average loss, and minimum loss value are printed in bold.

Iteration Original 1x8+2x24 1x24 Perceptron
1 0.03452 0.03830 0.02498 0.01469
2 0.03642 0.03634 0.02256 0.01077
3 0.03519 0.03740 0.02195 0.01658
4 0.03615 0.03717 0.02346 0.01306
5 0.03247 0.03770 0.02272 0.01519
6 0.03567 0.03860 0.02341 0.01333
7 0.03698 0.03954 0.02287 0.01135
8 0.03537 0.03786 0.02508 0.01559
9 0.03590 0.03638 0.02272 0.01405
10 0.03684 0.03859 0.02093 0.01419

Average Loss 0.03556 0.03786 0.02278 0.01387
Minimum Loss 0.03247 0.03634 0.02093 0.01077

by lines. Therefore, shape extraction is mostly equal to line recognition. Shape feature
extraction focuses on finding features of the extracted shape, like relative height, thickness,
etc. The 1x8+2x24 MFCNN-TL architecture has an enlarged second convolutional block
to enable an extended shape feature extraction. The investigations in Table 4.7 showed,
that with an average loss of 0.03786 and minimum loss of 0.03634 performs the 1x8+2x24
MFCNN-TL architecture even worse than the original MFCNN-TL architecture. It can be
concluded, that the shape feature extraction is not responsible for a high generalization
performance of the MFCNN-TL architecture regarding the terramechanical image data. The
1x24 MFCNN-TL architecture is the third architecture which got tested. The architecture
is shown and closer described in Figure 3.9. The main feature of the 1x24 MFCNN-TL
architecture is the emphasised shape extraction. Therefore, the architecture has an enlarged
first convolutional layer compared to the original MFCNN-TL architecture. Extract better the
shape of the sand structures on the terramechanical images by using more kernels. The second
convolutional block (used for shape feature extraction) and some FC layers were removed
as well to emphasise the shape extraction. The breath thought behind the 1x24 MFCNN-TL
architecture is that if the enlarged shape feature extraction of the 1x8+2x24 MFCNN-TL
architecture has no positive effect on the performance, then the shape extraction must be
the operation which influences the performance of the architecture. The investigations in
Table 4.7 show an increasing generalisation performance of the 1x24 MFCNN-TL architecture
with an average loss of 0.02278 and minimal loss of 0.02093. These are better loss values

55

4.2. EXPERIMENTS ON THE MFCNN-TL ARCHITECTURE

than for both architectures tested before. The hypothesis that the shape extraction of the
first convolutional block of the original MFCNN-TL architecture has a big influence on the
performance was thus confirmed.
Out of the checked architectures is the Perceptron MFCNN-TL architecture in Table 4.7, the
biggest surprise. The Perceptron MFCNN-TL architecture is shown in Figure 3.7 and closer
described in the appendix in Figure D.7 and Figure D.8. The outstanding performance of

(a) Original MFCNN-TL architecture (b) Perceptron MFCNN-TL architecture

Figure 4.6.: Visualizing the optimisation results. It is visible that the Perceptron MFCNN-TL
architecture has a much higher generalisation performance than the original
MFCNN-TL architecture.

the Perceptron MFCNN-TL architecture surprises because the input data are images, and
CNNs are generally better suited and more effective to process images than perceptrons. The
reason for that is that CNNs are mainly built out of convolutional layers and every single
convolutional layer learns local patterns, applies the learned local pattern (kernel) all over
the image and therefore reuses their parameters. Therefore, a convolutional layer needs by
tendency fewer parameters than a comparable fully connected layer and a smaller training
dataset. Perceptrons consist of FC layers, and FC layers are much less effective in processing
images than convolutional layers. Fully connected layers do not learn local features (no
kernels), but they need to learn to interpret the object explicitly at all possible positions
in the image - this requires much more data and training effort than for CNNs. FC layers
are also much more ineffective regarding parameters because they do not reuse weights as
convolutional layers do. The Perceptron MFCNN-TL architecture is smaller than any other
tested MFCNN-TL architecture version. The training dataset is huge. It can be assumed that
the big training dataset possesses all possible sand structures and, for each sand structure, all
possible positions in the image. Therefore, the Perceptron MFCNN-TL is enabled to effectively
process images from the provided distribution (after being trained). The question remains,
why does the Perceptron MFCNN-TL architecture (perceptron) perform better than the 1x24

56

4.3. EXPERIMENTS ON THE MF-TLNN ARCHITECTURE

MFCNN-TL architecture (CNN)? One possible answer is that the knowledge learned by the
Perceptron MFCNN-TL architecture for each specific sand structure at each position has a
higher information value than the generalised local pattern learned by the 1x24 MFCNN-TL
architecture and leads, therefore, to a better prediction performance.

Table 4.8.: Summarised comparison of the Original MFCNN-TL, 1x8+2x24 MFCNN-TL, 1x24
MFCNN-TL and Perceptron MFCNN-TL architectures with each other. The archi-
tectures get benchmarked on training data, prediction time, number of parameters
and their average loss. For both architectures, the same train and test dataset was
used. The training time refers to the biggest time needed to process an epoch
during training. The prediction time refers to processing the whole test dataset.
The lowest value for each feature is printed in bold.

Original 1x8+2x24 1x24 Perceptron
Training Time 24 s 78 s 134 s 4 s

Prediction Time 1 s 2 s 3 s 85 ms
Number of Parameters 1.079.496 1.139.973 91.449.585 1.050.625

Average Loss 0.03556 0.03786 0.02278 0.01387

Other advantages of the Perceptron architecture, next to the better performance, are
highlighted in Table 4.8. The Perceptron MFCNN-TL architecture is lightweight compared to
the other MFCNN-TL architectures, and its training is much faster than that of all other CNN
architectures. Its performance is roughly twice as good as the best-performing CNN-based
MFCNN-TL architecture (would be the 1x24 MFCNN-TL architecture). Fig. 4.6 benchmarks
the generalisation performance of the original MFCNN-TL MFCNN-TL architecture with the
Perceptron MFCNN-TL architecture - here gets visualised how much better the perceptron
performs on the given dataset.

4.3. Experiments on the MF-TLNN architecture

The original MF-TLNN architecture was defined by Zhang et al. [10] and was introduced in
2024. The main idea behind the MF-TLNN architecture is to combine explicit and implicit
learning in a single architecture to improve the learning efficiency and prediction performance
of the HF values. Therefore, the MF-TLNN architecture is implemented by combining an
implicit and explicit learning architecture in a composite network-like architecture by adding
the outputs of both architectures in a weighted aggregation. Both combined architectures
predict the same HF value for an input sample X. After aggregating both (pre-trained)
architectures together, the MF-TLNN architecture fine-tunes its architecture weights using
transfer learning. Therefore, it belongs to the group of TLNN architectures. In general,
the construction process of the MF-TLNN architecture can be described as follows: First,
an implicit and an explicit learning architecture are defined, and both architectures get
pre-trained utilising LF data. Initially, before they are aggregated and fine-tuned, both
architectures are pre-defined by learning the X/LF relationship (relationship between the

57

4.3. EXPERIMENTS ON THE MF-TLNN ARCHITECTURE

(a) Train Dataset (b) Test Dataset

Figure 4.7.: Visualisation of the results of propagating the training and test data sets through
the autoencoder (AE). Although the AE has not learnt the training dataset very
well (the model has problems learning the peaks), the model performs well on
the test dataset. The AE can recover the test patterns well.

input sample and its LF value). Second, create the MF-TLNN architecture by aggregating
the outputs of both pre-trained architectures using a weighted aggregation. Third, fine-tune
the MF-TLNN architecture with HF data, so that the network learns the X/HF (implicit)
and LF/HF (explicit) relation. The combination of implicit and explicit learning in a single
architecture is a novel approach because the MF-DF architecture type aims only at explicit
learning and the TLNN architecture type only at implicit learning. The MF-DF architecture
type has so far been represented by the MDACNN architecture [2], and the TLNN architecture
type has so far been represented by the MFCNN-TL architecture [9]. The implemented
MF-TLNN architecture is visualised in Figure 3.10 and in the appendix in Figure E.1 and
Figure E.2. Zhang et al. [10] defined the explicit learning architecture to be an AE and
the implicit learning architecture is simply described as an NN. Zhang et al. [10] did not
define a general architecture to be used for neither the AE nor the NN. Therefore, first
of all, both architectures got constructed based on the terramechanical data provided by
the DLR [3][4]. The architecture of the AE gets closer described in Figure 3.10 and in the
appendix in Figure E.1 and Figure E.2. The constructed AE is small, lightweight and has good
performance as shown in Figure 4.7. Therefore, this AE architecture is used for all presented
MF-TLNN architecture versions.
Tab. 4.9 shows the performance results for the two best-performing models. Due to its good

performance, the same AE architecture was used in all investigated MF-TLNN architecture
versions. As NN was chosen the best-performing MFCNN-TL architecture from the prior
Section 4.2. This was done because the MF-TLNN architecture and the MFCNN-TL are
well suited to process images and to perform transfer learning. The Perceptron MF-TLNN

58

4.3. EXPERIMENTS ON THE MF-TLNN ARCHITECTURE

Table 4.9.: Generalization performance of the 1x24 MF-TLNN architecture and the Percep-
tron MF-TLNN architecture. The original MF-TLNN architecture is visualised
in Figure E.3. The 1x24 MF-TLNN architecture was realised by implementing
the 1x24 MFCNN-TL architecture as NNL in the original MF-TLNN architecture.
The Perceptron MF-TLNN architecture was implemented by using the Perceptron
MFCNN-TL architecture as NNL in the original MF-TLNN architecture. The 1x24
MFCNN-TL and the Perceptron MFCNN-TL architectures are described in Sec-
tion 4.2. The lowest loss value for each iteration, the lowest average loss value, the
lowest standard deviation loss and the lowest minimum loss value are printed in
bold.

Iteration 1x24 Perceptron
1 0.00160 0.00283
2 0.00125 0.01065
3 0.00615 0.00562
4 0.01521 0.00491
5 0.00299 0.00622
6 0.02013 0.01720
7 0.01165 0.01108
8 0.01835 0.00207
9 0.01141 0.01450
10 0.00250 0.00311

Average Loss 0.00912 0.00782
Standard Deviation Loss 0.00681 0.00497

Minimum Loss 0.00125 0.00207

architecture was the first MF-TLNN network to be implemented. The Perceptron MF-TLNN
architecture uses the Perceptron MFCNN-TL architecture as its NN. The performance of the
Perceptron MFCNN-TL architecture is described in the prior Section 4.2. The Perceptron
MFCNN-TL architecture was chosen because it showed the best performance among all
MFCNN-TL architecture versions for the provided terramechanical dataset. The second
MF-TLNN architecture in Table 4.9 is the 1x24 MF-TLNN architecture. The 1x24 MFCNN-TL
architecture was implemented in the prior Section 4.2. The performance of the 1x24 MFCNN-
TL architecture is visualised in Table 4.7. The 1x24 MFCNN-TL architecture is the second
best-performing MFCNN-TL architecture version and is therefore used in the 1x24 MF-TLNN
architecture to benchmark the Perceptron MF-TLNN architecture. Both architectures - the
Perceptron MFCNN-TL and the 1x24 MFCNN-TL architecture - get again compared with
each other because the dataset for the MF-TLNN architectures is smaller than the one for the
MFCNN-TL architectures - which can have an impact on the model performance, especially
if using perceptrons for image processing. The datasets for the MFCNN-TL and MF-TLNN
architecture come from the same distribution.

According to Tab. 4.9, does the Perceptron MF-TLNN architecture outperform the 1x24

59

4.3. EXPERIMENTS ON THE MF-TLNN ARCHITECTURE

Figure 4.8.: Propagation result of the 1x24 MF-TLNN architecture for test data. Generally
speaking, the MF-TLNN architecture performs well - the predicted output func-
tion (red) matches the HF function (blue) nearly everywhere. The course of the
predicted output function shows almost no influences of the LF function (green).

MF-TLNN architecture if comparing the average loss. The average loss is an approximation
of the true (and unknown) average loss of the models, which was computed by using the
LLN and randomly sampled loss values of different trained models of the same architecture.
On the one hand, the Perceptron MF-TLNN architecture generates the best models on
average; on the other hand, the 1x24 MF-TLNN architecture generates the absolute best
models. The best model generated by the 1x24 MF-TLNN architecture has a minimum loss
of 0.00125 (MSE), roughly twice as accurate as the best model generated by the Perceptron
MF-TLNN architecture with a minimum loss of 0.00207 (MSE). In general, the 1x24 MF-TLNN
architecture has the highest standard deviation and, therefore, less stable training results than
the Perceptron MF-TLNN architecture. A possible cause could be the utilised dataset and
its splitting into train and test dataset. The dataset for the MF-TLNN architecture is smaller
than that for the MFCNN-TL architecture. Both architectures are MF networks, but - e.g. for
training and testing purposes - the MFCNN-TL architecture requires its data samples to have
either an LF or an HF value, while the MF-TLNN architectures require all data samples to
have an LF and an HF value. A CNN like the 1x24 MFCNN-TL architecture learns patterns
and needs less data to learn those to be capable of processing images than a perceptron. If
a perceptron is to be used for image processing, it cannot learn a generalised local pattern
but must explicitly learn all possible object positions for each object in the image so that the
perceptron - ineffective learning. A smaller dataset can bring the risk, that not all positions
are covered. This could explain why the 1x24 MF-TLNN architecture sometimes outperforms
the Perceptron MF-TLNN architecture that heavily. However, it does not explain why the

60

4.3. EXPERIMENTS ON THE MF-TLNN ARCHITECTURE

1x24 MF-TLNN architecture has the biggest standard deviation, whereas the Perceptron
MF-TLNN architecture is more stable. One possible reason for this could be that the data set
is randomly split into a training and a test dataset at the beginning of each training and test
run of an architecture model (90 % training, 10 % test). Due to the different splits for each
training, there may be data splits that are beneficial for learning patterns. A typical property
for a good split would be that all patterns in the test dataset are also included in the training
dataset. And there may be data splits that are only beneficial for learning one object and all
its positions on the image - these splits are especially beneficial for the Perceptron MF-TLNN
architecture and less beneficial for the 1x24 MF-TLNN architecture. Taking this into account,
it can be concluded that the Perceptron MF-TLNN architecture is less sensitive to different
data splits than the 1x24 MF-TLNN architecture due to the lower standard deviation. The
Perceptron MF-TLNN and the 1x24 MF-TLNN are benchmarked in a final step with each
other in Table 4.10.

Table 4.10.: Summarised comparison of the 1x24 MF-TLNN and Perceptron MF-TLNN ar-
chitectures with each other. The architectures get benchmarked on training data,
prediction time, number of parameters and their average loss. The same AE was
used for both versions of the MF-TLNN architecture. The training time refers
exclusively to the time required to calculate the NNL network, as the training
time for all other networks is the same for both MT-TLNN architecture versions.
For both architectures, the same train and test dataset was used. The training
time refers to the biggest time needed to process an epoch during training. The
prediction time refers to processing the whole test dataset. The lowest value for
each feature is printed in bold.

1x24 Perceptron
Training Time 134 s 4 s

Prediction Time 63ms 30 ms
Number of Parameters 274.348.358 1.050.652

Average Loss 0.00912 0.00782

61

5. Conclusion and Future Work

5.1. Conclusion

Mathematical models represent the optimal mathematical solution process to solve a problem.
Numerical models are approximations of mathematical models applying theoretical mathe-
matical solutions in practice. HF models are numerical models which approximate better and
have a higher accuracy and computational cost. LF models are the other kind of numerical
models which approximate worse and get, therefore, lower accuracy and computational cost.
There is a trade-off between accuracy and computational cost. The goal of MF modelling
is to beat this trade-off and to create high-accuracy, low-cost models. MF models typically
learn the relation between the LF and HF values (learn the relation between the LF and HF
function) out of pre-given LF and HF predictions. There are two main ways how an MF
model can learn the relation between the LF and HF function: implicitly and explicitly. If
learning implicitly the MF model just gets the sample X alone and then it needs to compute
the corresponding HF value. An explicit learning MF model gets as input the LF value (and
the sample X) to compute directly out of the LF value the HF value. MF modelling can be
applied to classification and regression tasks. This master thesis utilised MF modelling for
regression tasks to approximate the HF value as a scalar out of a continuous interval. Typical
regression methods are linear, logistic regression and Co-Kriging for easy relations between
LF and HF. If the relation gets more complicated, regression methods like Gaussian Processes
and NN are used. But of course can Gaussian processes and NN be applied to linear relations
as well. NN are well suited to learning non-linearities like those between many LF and
HF functions. However, due to the nature of MF modelling, there are also borders set: MF
models must be small and lightweight. A MF model must be accurate and computationally
cheap. The goal of this Master Thesis is to investigate how well NN can be used for MF
modelling if learning complex relations between the LF and HF function and keeping the
network architecture as small and lightweighted as possible. The typical bottleneck regarding
NN and MF modelling is that an NN needs more neurons and a bigger architecture, the more
complicated the LF/HF relations are. The Master Thesis investigates NN with a special focus
on CNNs.
Three different architectures were investigated in this Master Thesis: the explicit learning
MDACNN, the implicit learning MFCNN-TL and the MF-TLNN architecture which learns
the relation between the LF and HF function implicitly and explicitly. The MDACNN and
MFCNN-TL architecture represent the two mainstream architecture types (MF-DF and TLNN
architecture type) regarding MF learning implemented using NN while the MF-TLNN ar-
chitecture is a novel proposal by [10] to improve the mainstream methods. The MF-TLNN
architecture is leaning towards the TLNN architecture type.

62

5.1. CONCLUSION

The first main architecture type discussed is the MF-DF architecture type. The original MF-DF
architecture, as visualised in Figure 2.8, is a single network which learns the relation between
LF and HF implicitly. Research proved that the original implicitly learning MF-DF architec-
ture is less performing than comparable explicitly learning architectures. Explicit learning
MF-DF architectures are called multi-level MF-DFs because these architectures are designed
as composite NNs where each sub-NN learns explicitly only a single relation (each single
relation is a level). The most common multi-level MF-DF architectures are the 2-level MF-DF (
Figure 2.10) and the 3-level MF-DF (Figure 2.9). Chen et al. [2] built based on the 2-level MF-
DF a CNN whose architecture can be described as the design of the second and last model (in
the 2-level MF-DF architecture) with an upstream convolutional layer. This novel architecture
is called MDACNN. The advantage of the MDACNN architecture and its convolutional layer
against conventional 2-level MF-DF architectures is that the MDACNN architecture can use
the whole input dataset (all samples with all their LF values) to predict for a single sample
X the HF value. Figure 3.3 shows the MDACNN architecture and how the tabular input
data gets forwarded through the convolutional layer. The MDACNN architecture and its
performance were tested in two separate experiment runs: using default benchmarks and
the custom data provided by the DLR. To check its general performance, the MDACNN
architecture was first checked using the default benchmarks for MF modelling shown in
Table 4.1. The benchmarks showed that the model tends to perform better for bigger datasets
and that the normalisation must be done. Benchmarks also revealed that the architecture can
learn most of the common relationship types between two functions (LF and HF function),
but the hardest relations to learn for the architecture are those between oscillating functions
shown in Figure 4.2, Figure B.3 and Figure B.4. The experiments on the custom data provided
by the DRL show, that the MF-DF architecture (here: the MDACNN architecture) can be used
for MF modelling. The only criterion is that the MDACNN architecture needs to be adjusted
to each new dataset depending on the relation and the complexity of the relation between the
LF and HF functions it provides. In an overwhelming amount of cases, the datasets differ
in the non-linear complexity of their LF/HF relation. In the case of the provided data by
the DLR, the relation between LF and HF was more complex than those from the default
benchmarks. To prevent the inability to learn features and, therefore, underfitting, there is the
need to increase the number of neurons and layers in the non-linear branch of the MDACNN
architecture shown in Table 4.4. In general, it can be concluded from the investigation results
that the MDACNN architecture is suited for MF modelling.
The second architecture which got investigated is the MFCNN-TL architecture by Liao et
al. [9]. The MFCNN-TL architecture implicitly learns the relation behind the LF and HF
functions. The main idea behind the MFCNN-TL architecture is to apply transfer learning to
a CNN to enable MF modelling. In transfer learning, a model gets pre-trained with source
data, and later on, the unfrozen parts of the same model get fine-tuned with the task data. If
transfer learning is applied to MF modelling, then the source data gets defined through the
LF dataset, and the task dataset is the HF dataset. The MFCNN-TL architecture is a CNN,
and CNNs consist of two main blocks: a convolutional block and a fully connected block.
The convolutional block extracts features out of the input images, and the fully connected

63

5.1. CONCLUSION

block finds the relations among the extracted features and regresses out of them the output.
The MFCNN-TL architecture possesses two convolutional layers. The first layer is supposed
to catch the shape of the sand structure in the images, and the second layer is there to
extract the shape features (thickness, relative height, ...). To increase the performance of the
MFCNN-TL architecture, different architecture versions with emphasis on different features
were tested as shown in Table 4.7. The architectures which emphasise the shape extraction
(first convolutional layer) were the best-performing. The least performing were those which
emphasised the shape feature extraction (second convolutional layer). The best-performing
CNN possesses only one convolutional layer and extracts only the shape without extracting
any further shape features. But the overall best-performing, which outperformed all CNN
architectures, was a perceptron. The perceptron gets obtained by taking the best-performing
CNN architecture (Figure 3.9) and removing the only convolutional layer so that only the
average pooling, a dense and the output layer remain as visualised in Figure 3.7. A possible
explanation for the good performance of a perceptron in image processing, as shown in
Figure 4.6, could be the low amount of parameters and the high amount of training data.
Overall, the MFCNN-TL architecture is suited for MF modelling - in the form of a CNN or
perceptron.
The last remaining architecture type is the MF-TLNN architecture by Zhang et al. [10]. The
architecture combines the implicit and explicit learning of the LF and HF function to increase
the performance of the MF modelling. The combination of both learning strategies in one
model gets implemented by building a composite NN out of a implicit learning and an explicit
learning model and using their outputs to compute the actual HF value of a sample using
weighted aggregation depicted in Figure 3.10 and Figure E.3. Due to the composite character
of the architecture, the training procedure of a single MF-TLNN architecture happens in
three steps: in the first step, both models (implicit and explicit learning sub-networks) get
separately pre-trained. In the second step, both models get combined via their outputs using
the weighted aggregation. In the third and last step, the whole MF-TLNN architecture gets
fine-tuned using transfer learning. Zhang et al. [10] predefined the explicit learning model to
be an AE - they just defined that the model needs to be an autoencoder but did not define its
architecture. For the investigations got chosen a small and light-weighted autoencoder (see
Figure E.1) which has a good performance like shown in Figure 4.7b. As implicit learning
model got chosen the best-performing MFCNN-TL architecture. Two different MF-TLNN
architecture versions with two different MFCNN-TL architecture versions - the Perceptron
MFCNN-TL and the 1x24 MFCNN-TL (see Table 4.7) - were used to be able to benchmark.
Out of the good regression performances of both MF-TLNN architecture versions can be
concluded that the MF-TLNN architecture as well is also suited to be used for MF modelling.
In this Master Thesis, three different model architectures were investigated. Although the

models receive different input data - the MD-DF architecture takes tables (matrices), the
MFCNN-TL and the MF-TLNN architecture use images - all data come from the same origin
source. Therefore, the performances of the models are comparable to each other. If comparing
the model architectures with each other using the average loss of their best-performing models
it is noticeable that all three models have losses of different magnitudes. The highest loss has

64

5.2. FUTURE WORK

Table 5.1.: Average losses of the best-performing model for each architecture type. The
best-performing MF-DF model was the regularised 7x32 (see Tab. 4.4), the best
MFCNN-TL model was the 1x24 CNN (see Tab. 4.7) and the MF-TLNN model
with the lowest average loss was the Perceptron MF-TLNN (see Tab. 4.9). The
lowest average loss value is printed in bold.

MF-DF MFCNN-TL MF-TLNN
Lowest Average Loss 0.17226 0.01387 0.00782

the MF-DF and the lowest loss has the MF-TLNN architecture as shown in Table 5.1. The very
good performance of the MF-TLNN architecture can be a result of effective training due to the
combined learning types. The following conclusions can be drawn from the results, although
all three architecture types are well suited for MF modelling, the MF-TLNN architecture is
the best-performing among them all.
Based on these final conclusions, the hypothesis set out in the introduction to the master’s
thesis can be definitively answered:

1. The MF models using CNNs will outperform the MF models using perceptrons in
terms of the terramechanical data provided. Not generally true. A large, given dataset
enabled the perceptron-based Perceptron MFCNN-TL architecture to outperform the
best CNN-based 1x24 MFCNN-TL architecture, see Table 4.7. The same happened to
the MF-TLNN architecture, but here it needs to be stated that the Perceptron MF-TLNN
architecture was on average the best-performing architecture while the CNN-based 1x24
MF-TLNN architecture generated the overall best-performing models, see Table 4.9.

2. The MF-TLNN architecture will have a higher learning performance than the two
other architectures. True. The investigations showed that a combination of explicit
and implicit learning in the same architecture leads to more efficient learning and
higher performance. A performance comparison between all investigated architectures
is shown in Table 5.1 - the MF-TLNN architecture outperforms the other architectures.

5.2. Future Work

There are two issues, which would be worth to be investigated in future work: one is regarding
the MFCNN-TL and the other the MF-TLNN.
The first issue does not address the original MFCNN-TL architecture by Liao et al. [9] but
the results of the performance optimisation in Table 4.7. As a surprise, not a CNN but a
perceptron (Figure D.7) is the best-performing architecture. It is surprising because CNNs
are, in general, better suited to process images than perceptrons. CNNs learn local patterns
and reuse their weights, which reduces the number of parameters per network. Perceptrons
do not learn patterns and do not reuse their weights. Therefore, they need to learn explicitly
for each object for all possible positions in the image, how the object will look like and how
this needs to be interpreted to be effective in image processing. The most likely cause for the

65

5.2. FUTURE WORK

outstanding performance of the perceptron architecture is, therefore, the big train dataset and
that the dataset contains for all objects all possible locations so that the trained perceptron has
no blind spots for each object and is due to this effective. Future work can investigate whether
the perceptron architecture is always the best-performing architecture and whether there
are sizes of the train dataset where the CNNs start to outperform the perceptron. Another
important aspect of these investigations would be to clarify how important the size of the
train dataset is for the perceptron to outperform its opponents.
The second possible construction site for future research regards the MF-TLNN architecture.
According to the original design by Zhang et al. [10] is the composite-network-like architecture
built out of two individual networks like depicted in Figure E.3. The NNL network learns
the LF/HF relation implicitly, and the AE learns the LF/HF relation explicitly. In the paper
is the NNL not clearly defined as an architecture type, but [10] defines the explicit learning
network concrete as an AE. In future work, it can be investigated whether the performance of
the MF-TLNN architecture can be improved by using other explicit learning architectures -
like the MDACNN model by Chen et al. [2] (an MF-DF architecture). The goal would be to
increase the performance of the MF-TLNN even further and make the MF-TLNN architecture
even more attractive for MF modelling.

66

Bibliography

[1] K. Ravi, V. Fediukov, F. Dietrich, T. Neckel, F. Buse, M. Bergmann, and H.-J. Bungartz.
“Multi-fidelity Gaussian process surrogate modeling for regression problems in physics”.
In: Machine Learning: Science and Technology 5 (Oct. 2024). doi: 10.1088/2632-2153/
ad7ad5.

[2] J. Chen, Y. Gao, and Y. Liu. “Multi-fidelity data aggregation using convolutional neural
networks”. In: Computer methods in applied mechanics and engineering 391 (2022), p. 114490.

[3] F. Buse. “Development and Validation of a Deformable Soft Soil Contact Model for
Dynamic Rover Simulations”. PhD thesis. Tohoku University, 2022.

[4] F. Buse. “Fully automated single wheel testing with the DLR Terramechanics Robotics
Locomotion Lab (TROLL)”. In: 15th Symposium on Advanced Space Technologies in Robotics
and Automation, Noordwijk, Netherlands. ESA. 2019.

[5] M. Guo, A. Manzoni, M. Amendt, P. Conti, and J. S. Hesthaven. “Multi-fidelity regres-
sion using artificial neural networks: Efficient approximation of parameter-dependent
output quantities”. In: Computer Methods in Applied Mechanics and Engineering 389 (2022),
p. 114378. issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.2021.114378. url:
https://www.sciencedirect.com/science/article/pii/S0045782521006411.

[6] X. Meng and G. E. Karniadakis. “A composite neural network that learns from multi-
fidelity data: Application to function approximation and inverse PDE problems”. In:
Journal of Computational Physics 401 (2020), p. 109020. issn: 0021-9991. doi: https:
//doi.org/10.1016/j.jcp.2019.109020. url: https://www.sciencedirect.com/
science/article/pii/S0021999119307260.

[7] D. Liu and Y. Wang. “Multi-fidelity physics-constrained neural network and its ap-
plication in materials modeling”. In: Journal of Mechanical Design 141.12 (2019). Cited
by: 133. doi: 10.1115/1.4044400. url: https://www.scopus.com/inward/record.
uri?eid=2- s2.0- 85084267213&doi=10.1115%2f1.4044400&partnerID=40&md5=
a1aedd1b51dc21ac22b13876b1d7a640.

[8] M. Motamed. “A multi-fidelity neural network surrogate sampling method for uncer-
tainty quantification”. In: International Journal for Uncertainty Quantification 10.4 (2020).

[9] P. Liao, W. Song, P. Du, and H. Zhao. “Multi-fidelity convolutional neural network
surrogate model for aerodynamic optimization based on transfer learning”. In: Physics
of Fluids 33.12 (2021).

67

https://doi.org/10.1088/2632-2153/ad7ad5
https://doi.org/10.1088/2632-2153/ad7ad5
https://doi.org/https://doi.org/10.1016/j.cma.2021.114378
https://www.sciencedirect.com/science/article/pii/S0045782521006411
https://doi.org/https://doi.org/10.1016/j.jcp.2019.109020
https://doi.org/https://doi.org/10.1016/j.jcp.2019.109020
https://www.sciencedirect.com/science/article/pii/S0021999119307260
https://www.sciencedirect.com/science/article/pii/S0021999119307260
https://doi.org/10.1115/1.4044400
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084267213&doi=10.1115%2f1.4044400&partnerID=40&md5=a1aedd1b51dc21ac22b13876b1d7a640
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084267213&doi=10.1115%2f1.4044400&partnerID=40&md5=a1aedd1b51dc21ac22b13876b1d7a640
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084267213&doi=10.1115%2f1.4044400&partnerID=40&md5=a1aedd1b51dc21ac22b13876b1d7a640

Bibliography

[10] Z. Zhang, Q. Ye, D. Yang, N. Wang, and G. Meng. “A multi-fidelity transfer learning
strategy based on multi-channel fusion”. In: Journal of Computational Physics 506 (2024),
p. 112952. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2024.112952. url:
https://www.sciencedirect.com/science/article/pii/S0021999124002018.

[11] P. N. Stuart Russel. Artificial Intelligence: A Modern Approach. Pearson Education Limited,
2022.

[12] T. S. of Machine Learning AI. K-Means Clustering. https://www.ml-science.com/k-
means-clustering [Accessed: (31.07.2024)]. 2023.

[13] HMKCODE. Backpropagation Step by Step. https://hmkcode.com/ai/backpropagation-
step-by-step/ [Accessed: (01.08.2024)]. 2019.

[14] M. Reza Keyvanpour and M. B. Shirzad. “Chapter 14 - Machine learning techniques for
agricultural image recognition”. In: Application of Machine Learning in Agriculture. Ed. by
M. A. Khan, R. Khan, and M. A. Ansari. Academic Press, 2022, pp. 283–305. isbn: 978-
0-323-90550-3. doi: https://doi.org/10.1016/B978-0-323-90550-3.00011-4. url:
https://www.sciencedirect.com/science/article/pii/B9780323905503000114.

[15] L. ELSTER. Convolutional Network What is a convolutional neural network (CNN) and
how does it work? https://mriquestions.com/convolutional-network.html [Accessed:
(21.07.2024)]. 2023.

[16] B. Peherstorfer, K. Willcox, and M. Gunzburger. “Survey of Multifidelity Methods in
Uncertainty Propagation, Inference, and Optimization”. In: SIAM Review 60.3 (2018),
pp. 550–591. doi: 10.1137/16M1082469. eprint: https://doi.org/10.1137/16M1082469.
url: https://doi.org/10.1137/16M1082469.

[17] A. H. Abdelaziz, S. Watanabe, J. R. Hershey, E. Vincent, and D. Kolossa. “Uncertainty
propagation through deep neural networks”. In: Interspeech 2015. 2015.

[18] A. Tarantola and B. Valette. “Inverse problems = Quest for information”. In: Journal of
Geophysics 50.1 (1981), pp. 159–170. url: https://journal.geophysicsjournal.com/
JofG/article/view/28.

[19] A. Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM,
2005.

[20] J. Kaipio and E. Somersalo. Statistical and computational inverse problems. Vol. 160. Springer
Science & Business Media, 2006.

[21] A. M. Stuart. “Inverse problems: a Bayesian perspective”. In: Acta numerica 19 (2010),
pp. 451–559.

[22] J. A. Christen and C. Fox. “Markov chain Monte Carlo using an approximation”. In:
Journal of Computational and Graphical statistics 14.4 (2005), pp. 795–810.

[23] Y. Efendiev, T. Hou, and W. Luo. “Preconditioning Markov chain Monte Carlo simula-
tions using coarse-scale models”. In: SIAM Journal on Scientific Computing 28.2 (2006),
pp. 776–803.

68

https://doi.org/https://doi.org/10.1016/j.jcp.2024.112952
https://www.sciencedirect.com/science/article/pii/S0021999124002018
https://doi.org/https://doi.org/10.1016/B978-0-323-90550-3.00011-4
https://www.sciencedirect.com/science/article/pii/B9780323905503000114
https://doi.org/10.1137/16M1082469
https://doi.org/10.1137/16M1082469
https://doi.org/10.1137/16M1082469
https://journal.geophysicsjournal.com/JofG/article/view/28
https://journal.geophysicsjournal.com/JofG/article/view/28

Bibliography

[24] T. Cui, C. Fox, and M. O’sullivan. “Bayesian calibration of a large-scale geothermal
reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm”.
In: Water Resources Research 47.10 (2011).

[25] T. Cui, Y. M. Marzouk, and K. E. Willcox. “Data-driven model reduction for the
Bayesian solution of inverse problems”. In: International Journal for Numerical Methods in
Engineering 102.5 (2015), pp. 966–990.

[26] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset.
“A rigorous framework for optimization of expensive functions by surrogates”. In:
Structural optimization 17 (1999), pp. 1–13.

[27] A. Keane. “Wing optimization using design of experiment, response surface, and data
fusion methods”. In: Journal of aircraft 40.4 (2003), pp. 741–750.

[28] A. I. Forrester and A. J. Keane. “Recent advances in surrogate-based optimization”. In:
Progress in aerospace sciences 45.1-3 (2009), pp. 50–79.

[29] A. I. Forrester, A. Sóbester, and A. J. Keane. “Multi-fidelity optimization via surrogate
modelling”. In: Proceedings of the royal society a: mathematical, physical and engineering
sciences 463.2088 (2007), pp. 3251–3269.

[30] N. M. Alexandrov, J. E. Dennis Jr, R. M. Lewis, and V. Torczon. “A trust-region frame-
work for managing the use of approximation models in optimization”. In: Structural
optimization 15.1 (1998), pp. 16–23.

[31] N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, L. L. Green, and P. A. Newman.
“Approximation and model management in aerodynamic optimization with variable-
fidelity models”. In: Journal of Aircraft 38.6 (2001), pp. 1093–1101.

[32] A. March and K. Willcox. “Provably convergent multifidelity optimization algorithm
not requiring high-fidelity derivatives”. In: AIAA journal 50.5 (2012), pp. 1079–1089.

[33] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker.
“Surrogate-based analysis and optimization”. In: Progress in aerospace sciences 41.1 (2005),
pp. 1–28.

[34] M. Eldred, A. Giunta, and S. Collis. “Second-order corrections for surrogate-based
optimization with model hierarchies”. In: 10th AIAA/ISSMO multidisciplinary analysis
and optimization conference. 2004, p. 4457.

[35] M. C. Kennedy and A. O’Hagan. “Predicting the output from a complex computer code
when fast approximations are available”. In: Biometrika 87.1 (2000), pp. 1–13.

[36] K. Carlberg. “Adaptive h-refinement for reduced-order models”. In: International Journal
for Numerical Methods in Engineering 102.5 (2015), pp. 1192–1210.

[37] Z.-H. Han, S. Görtz, and R. Zimmermann. “Improving variable-fidelity surrogate
modeling via gradient-enhanced kriging and a generalized hybrid bridge function”. In:
Aerospace Science and technology 25.1 (2013), pp. 177–189.

69

Bibliography

[38] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transactions on
Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359. doi: 10.1109/TKDE.2009.
191.

[39] F. Chollet et al. “Keras: The python deep learning library”. In: Astrophysics source code
library (2018), ascl–1806.

[40] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

70

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191

A. Evaluating Convolutional Neural Networks
in Multi-Fidelity Modeling

Figure A.1.: Implemented API for the MDACNN architecture. Two main processes are
available: "Train+Test", where the default train and test dataset gets applied
and the model gets trained and tested, or "Performance Check", where a 10-fold
cross-validation gets performed.

71

Figure A.2.: Implemented API for the MFCNN-TL architecture. As for the MDACNN ar-
chitecture, two main processes are available: "Train+Test", where the default
train and test dataset gets applied and the model gets trained and tested, or
"Performance Check", where 10-fold cross-validation gets performed.

72

Figure A.3.: Implemented API for the MF-TLNN architecture. The "Train+Test" process looks
as follows: first, the dataset gets loaded and processed. With the prepared the
AE, and the NNL get initialized and trained. After those, the MF-TLNN gets
initialized and trained via transfer learning.

73

Figure A.4.: Implemented API for extended image preprocessing in the MFCNN-TL and
MFTLNN architecture APIs. The API is part of the process "Load Dataset" in the
Fig. A.2 and Fig. A.3.

74

B. Experiments on the MDACNN architecture

Chen et al. [2] defined the MDACNN as a representative of the MF-DF architecture. Chen et
al. [2] defined the network architecture with all its parameters and provided benchmarks to
prove that the designed MDACNN can learn all the information in the training dataset.

75

(a) Benchmark provided by [2].

(b) Benchmark after implementing the MDACNN model
and utilise the API and MDACNN architecture de-
scribed in [2].

(c) Benchmark after improving the benchmark by adding
more training data.

Figure B.1.: Benchmark: 1) continuous functions with linear relationship.

76

(a) Benchmark provided by [2].

(b) Benchmark after implementing the MDACNN
model and utilise the API and MDACNN archi-
tecture described in [2].

(c) Benchmark after improving the data pre-processing of
the API by normalizing the input data.

Figure B.2.: Benchmark: 3) continuous functions with nonlinear relationship.

77

(a) Benchmark provided by [2].

(b) Benchmark after implementing the MDACNN
model and utilise the API and MDACNN archi-
tecture described in [2].

(c) Benchmark after improving the generalisation abil-
ity of the MDACNN architecture by extending the
non-linear branch in the MDACNN architecture and
adding more neurons and layers.

Figure B.3.: Benchmark: 5) Phase-shifted oscillations.

78

(a) Benchmark provided by [2].

(b) Benchmark after implementing the MDACNN
model and utilise the API and MDACNN archi-
tecture described in [2].

(c) Benchmark after improving the generalisation abil-
ity of the MDACNN architecture by extending the
non-linear branch in the MDACNN architecture and
adding more neurons and layers.

Figure B.4.: Benchmark: 6) Different periodicity .

79

(a) Benchmark provided by [2].

(b) Benchmark after implementing the MDACNN model and utilise the API
and MDACNN architecture described in [2]. Out of all seven benchmarks,
this is the only one, where the given MDACNN architecture and the
given hyperparameters settings lead to the same result as shown in [2].

Figure B.5.: Original benchmark: 7) 50-dimensional functions

80

C. Optimization Experiments regarding the
MDACNN

Figure C.1.: Original MDACNN architecture defined by Chen et al. [2]

81

Figure C.2.: Amount of parameters and their distribution in the original MDACNN

82

Figure C.3.: 3x32 MDACNN architecture. The 3x32 MDACNN architecture is an updated
version of the original MDACNN architecture where the non-linear branch with
two layers of each neuron got replaced with three layers of each 32 neurons.

83

Figure C.4.: Amount and distribution of parameters in the 3x32 MDACNN architecture.

84

Figure C.5.: 7x32 MDACNN architecture. The 7x32 MDACNN architecture is a version of
the original MDACNN architecture where the original non-linear branch with 2
layers with each 10 neurons got replaced with 7 layers of each 32 neurons.

85

Figure C.6.: Amount and distribution of parameters in the 7x32 MDACNN architecture.

86

(a) Upper half.

Figure C.7.: Regularized 7x32 MDACNN architecture. The regularisation used the methods
of batch normalization, pooling and dropout.

87

(b) Lower half.

Figure C.7.: Regularized 7x32 MDACNN architecture. The regularisation used the methods
of batch normalization, pooling and dropout.

88

(a) Upper half.

Figure C.8.: Amount and distribution of parameters in the Regularized 7x32 MDACNN
architecture.

(b) Lower half.

Figure C.8.: Amount and distribution of parameters in the Regularized 7x32 MDACNN
architecture.

89

D. Experiments on the MFCNN-TL architecture

(a) Upper half.

Figure D.1.: Original MFCNN-TL architecture by [9]. The first CONV2D has 8 3x3 kernels
with a stride of 1 and a linear activation. The first AveragePool2D has a 2x2 kernel
with a stride of 1. The second CONV2D possesses 24 5x5 kernels with a stride of
2 and a linear activation. The second AveragePool2D possesses a 2x2 kernel with
a stride of 2. The first Dense possesses four neurons with linear activations. The
second and third Dense possess 1024 neurons with PReLU activation function.
The PReLU activation function was realised using a LeakyReLU during the
experiments. The output layer possesses a single neuron with a linear activation.

90

(b) Lower half.

Figure D.1.: Original MFCNN-TL architectur by [9]. The tensor flow through the layers is
shown. The architecture is closer described in the upper half of Fig. D.1.

Figure D.2.: Total number and distribution of parameters in the MFCNN-TL.

91

Figure D.3.: 1x8+2x24 MFCNN-TL architecture. The first Conv2D has 8 3x3 kernels with a
stride of 1 and linear activation. The second and third Conv2D have each 24 5x5
kernels with a stride of 1 and linear activation. The rest of the architecture is
similar to the original MFCNN-TL architecture.

92

Figure D.4.: Total number and distribution of parameters in the 1x8+2x24 MFCNN-TL archi-
tecture.

93

Figure D.5.: 1x24 MFCNN-TL architecture. The 1x24 MFCNN-TL architecture is a derivation
from the Original MFCNN-TL architecture by [9]. Visualised is the tensor flow
through the layers. Conv2D possesses 24 3x3 kernels with a stride of 1 and a
linear activation. AveragePooling2D utilises a 2x2 kernel with a stride of 1. The
first dense (fully connected layer) layer has 1024 neurons and the output layer
has one neuron with a linear activation.

94

Figure D.6.: Total number and distribution of parameters in the 1x24 MFCNN-TL architecture.

95

Figure D.7.: Perceptron MFCNN-TL architecture. Visualised is the tensorflow through the
layers. AveragePool2D possesses a 2x2 kernel with stride 2. The first Dense has
1024 neurons with a PReLU activation (got realised with a LeakyReLU activation).
The output layer possesses a single neuron with linear activation.

96

Figure D.8.: Total number and distribution of parameters of the Perceptron MFCNN-TL
architecture.

97

E. Experiments on the MF-TLNN architecture

Figure E.1.: Architecture of the used Autoencoder (AE).

Figure E.2.: Total amount and distribution of parameters in the used Autoencoder (AE).

98

Figure E.3.: Original MF-TLNN architecture by Zhang et al. [10].

Figure E.4.: Architecture of the used MF-TLNN designed by [10].

99

Figure E.5.: Total amount and distribution of parameters in the used MF-TLNN designed by
[10].

100

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the Art
	Neural Networks
	Convolution Neural Networks (CNNs)
	Multi-Fidelity Modelling
	Multi-Fidelity and CNNs

	Evaluating Convolutional Neural Networks in Multi-Fidelity Modeling
	Datasets
	Software
	MDACNN architecture
	MFCNN-TL architecture
	MF-TLNN architecture

	Experiments
	Experiments on the MDACNN architecture
	Performance Optimization based on default Benchmarks
	Performance Optimisation based on terramechanical Data

	Experiments on the MFCNN-TL architecture
	Experiments on the MF-TLNN architecture

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Evaluating Convolutional Neural Networks in Multi-Fidelity Modeling
	Experiments on the MDACNN architecture
	Optimization Experiments regarding the MDACNN
	Experiments on the MFCNN-TL architecture
	Experiments on the MF-TLNN architecture

