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Abstract

This thesis delves into the development of Vision-Language Models (VLMs) that utilize
pre-trained backbones, aiming to make these models more efficient and accessible by re-
ducing the computational resources needed for training. With the rise of Large Language
Models (LLMs) in recent years, we have seen remarkable progress in natural language
processing, achieving near-human performance on a wide range of tasks. Meanwhile, vi-
sual recognition has remained a critical challenge in computer vision, playing a pivotal
role in fields like robotics and autonomous driving. Vision-Language Models combine
the strengths of visual and textual data, enabling them to tackle complex tasks like image
captioning and visual question answering with high accuracy.

In this research, we utilize a two-stage training approach: pre-training and fine-tuning.
During pre-training, we focus on transforming image embeddings into the text embed-
ding space using adapters. This process involves minimizing the Earth Mover’s Distance
between the image embedding distribution from the image encoder and the text embed-
ding distribution of the LLM to ensure the embeddings align well. In this way, the LLM
is not part of the training, significantly lowering computational costs. In the fine-tuning
stage, the LLM is brought back into the pipeline, and we use the quantized version of
the LLM and we apply Low-Rank Adaptation (LoRA) [  1 ] to fine-tune the model. Mean-
ing that instead of updating the whole weight matrix, we update low-rank matrices that
approximate the necessary adjustments. We explore three types of adapters: a simple
Multi-Layer Perceptron (MLP) adapter that provides a strong baseline, and two more so-
phisticated transformer-based adapters that utilize attention mechanisms to enhance per-
formance and alignment between modalities. The first one contains blocks of self-attention
and feed-forward directly to the image tokens, while the second one employs learnable
queries that learn to selectively extract the most relevant image tokens using self-attention
and cross-attention.

Our experiments, conducted on the MSCOCO [ 2 ] dataset show that these pre-trained
adapters are effective for handling visual-language tasks. However, the fine-tuning phase
is essential for refining the model’s accuracy and ability to generate well-structured re-
sponses. By omitting the LLM during pre-training, our approach makes it feasible for in-
dividuals and smaller organizations to work with multi-modal models, broadening access
to this advanced technology. The pre-training alignment facilitates a smoother and more
effective fine-tuning process, leading to faster convergence and better overall performance.
Moreover, the Food101 [ 3 ] dataset was used for finetuning our pipeline for classification
tasks in order to quantify the performance of our architecture.

In summary, this thesis addresses the challenges of scalability and accessibility in vision-
language models. We demonstrate that TerraAlign can be trained efficiently for image cap-
tioning on the MSCOCO dataset and for classification on the Food101 dataset that shows
optimistic results.
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1 Introduction

1 Introduction

The rapid advancements in artificial intelligence are transforming how we interact with
technology, making our world more connected and intelligent. At the core of these devel-
opments lies the powerful combination of language and vision—two fundamental aspects
of human experience. Language has always been central to communication, allowing us to
share ideas, emotions, and knowledge. As technology continues to evolve, there’s a grow-
ing need for machines that can not only understand but also generate human language
effectively. This demand has led to the development of increasingly sophisticated models
that bridge the gap between human communication and machine understanding, driving
progress in both natural language processing and computer vision.

Language plays an important role in facilitating communication and expression in ev-
eryday life. The need for more intense interaction with machines, let more generalized
models to be developed in order to fill this growing demand. Recently, a lot of break-
throughs have been made in this area, such as computational resources improvements and
more and more quality datasets are being published. These developments have brought
about a revolutionary transformation by enabling the creation of LLMs that can approx-
imate human-level performance on various tasks [ 4 ]. Over the last years there has been
a boom from different companies, institutions and individual contributors in the LLM
world. Notably, many new and competitive LLMs have been released to the open-source
community, aiding in the democratization of the field and providing new researchers with
the opportunity to engage in this rapidly evolving area. However, as we pre-train larger
and larger models, fine tuning all the model parameters becomes a harder task that re-
quires a significant amount of resources. Therefore, new techniques have been developed
such as LoRA [ 1 ].

Similarly, visual recognition has been a long standing challenge in computer vision re-
search and is the cornerstone of domains such as robotics [ 5 ] and autonomous driving
[ 6 ]. Recently, the novel learning paradigm of Pre-training, Fine-tuning, and Prediction has
shown significant effectiveness across various visual recognition tasks [ 7 ]. In this new
paradigm, a Deep Neural Network (DNN) model is initially pre-trained using readily
available large-scale training data, which can be either annotated or non-annotated and
then this approach still requires an additional phase of task-specific fine-tuning using la-
beled training data for each task.

However, drawing inspiration from recent breakthroughs in NLP, for instance, Llama
and Mistral are now able to solve such a large variety of tasks that their usage is becoming
more and more popular. Vision-Language Model (VLM) has gained significant interest
[ 8 ], these models leverage the strengths of both visual and textual data, aiming to enhance
performance across a variety of tasks by combining visual and language understanding
and be able to recognize the environment without requiring new labeled data every time
there is a new class. VLMs can be particularly powerful when addressing complex tasks
that require an understanding of both modalities, such as image captioning and visual
question answering. This thesis aims to explore VLMs using pre-trained backbones and to
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Object Recognition with LLMs

propose a novel training procedure that minimizes the need for extensive computational
resources.

Our work introduces an alternative approach to training Vision-Language Models by
leveraging pre-trained backbones while also highlighting the critical importance of an ini-
tial pre-training step that omits the use of LLMs. By performing this pre-training without
LLM, we streamline the alignment of visual and language representations. This alignment
step allows the fine-tuning phase of the entire pipeline to converge faster and often reach
better performance with fewer resources as shown in Figure  1 . Through this research, we
aim to advance the development of scalable and accessible VLMs, offering a more efficient
pathway for future innovations in this field.

This thesis is organized into five main sections. Section  2 explores current state-of-the-art
architectures, including transformers and vision transformers, and reviews existing VLMs
built from pre-trained backbones. Section  3 introduces a novel architecture and training
method for VLMs that reduces the requirement for extensive computational resources,
presenting two distinct architectures. Section  4 discusses and summarizes the insights
gained from the thesis and suggests directions for future research.
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1 Introduction

Figure 1: Fine-tune step - Validation loss comparison using the self attention adapter with
and without pre-training.
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2 State of the Art

2.1 Attention and Transformer

Traditional neural networks treat all parts of the input data equally when making predic-
tions. However, in many real-world tasks, certain parts of the input may be more relevant
than others. For example, in a sentence, the current word might depend more on some
previous words rather than others.

The Attention mechanism [ 9 ] focuses on different parts of the input data and assigns
varying weights to different elements, allowing the model to prioritize information in or-
der to focus on the parts of the data that matter most. By calculating how relevant each
part of the input is to the current step, attention helps the model to make better predictions
and process information more effectively. This is especially useful in tasks like translating
languages, summarizing text, and nowadays is also being used in computer vision tasks
accurately.

An attention function can be described as a hash table. For a given query, we compute
the dot product of the query with all the keys and apply softmax to obtain the attention
weights as probabilities, which effectively highlights the relevant parts of the input. Math-
ematically, this process can be formulated as

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

, where Q (query), K (keys), and V (values) are matrices representing the input data, and
dk is the dimension of the keys.

The above particular attention can be seen in the left part of Figure  2 and the authors
called it Scaled Dot-Product Attention. However, it is beneficial to perform different at-
tention layers simultaneously (Multi-Head attention) in order to capture different corre-
lations, yielding in dh output values. These are concatenated and once again projected to
result to the final value, as depicted in the right part of Figure  2 .

4



2 State of the Art

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of sev-
eral attention layers running in parallel. Image taken from [ 9 ].

Transformer-based architectures have been at the forefront on driving benchmarks in
natural language processing. Especially models like GPT-4 [ 10 ], Llama 2 [ 11 ] and Mistral
[ 12 ] have demonstrated remarkable capabilities in understanding and generating human
language.

Transformer process sequences of tokens such as (sub-)words and the architecture is
divided into two parts:

1. Encoder: This part processes the tokens from the input sequence.

2. Decoder: This part generates new tokens as output, taking into account both the
input tokens and the tokens that have already been produced.

As shown in Figure  3 , the transformer is an encoder-decoder architecture using stacked
self-attention and point-wise, fully connected layers.

5
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Figure 3: The Transformer - model architecture. Image taken from [ 9 ].

2.2 Visual Features

Images may have different scales, colors, and textures, making it challenging to capture
their semantic information, depth, and other useful attributes. For instance, an apple may
be red or green, large or small, smooth or textured. In the past, describing these features in
numerical matrices required algorithms that focused on geometric transformations, such
as different rotations and scales, and transformations in appearance, such as brightness
and contrast adjustments.

However, in recent years, deep learning has revolutionized the extraction of visual fea-
tures from images. Convolutional neural networks (CNNs), in particular, have become
the standard for processing visual data. These models learn to extract the most suitable
features for a given task through layers of convolutional filters that automatically detect
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2 State of the Art

edges, textures, shapes, and more complex patterns as the depth of the network increases.
One of the most commonly used feature extraction backbones is the idea of Residual Net-
work (ResNet) proposed by He et al [ 13 ]. One key advantage of deep learning-based fea-
tures is their exceptional generalization ability across different datasets, making them ro-
bust for various applications.

Despite these advances, traditional CNNs still face challenges in capturing long-range
dependencies and contextual information within images. This is where the attention mech-
anism comes into play. By focusing on different parts of an image and assigning varying
weights to different regions, attention mechanisms allow models to prioritize critical in-
formation and understand the image’s context more effectively.

2.3 Vision Transformers

Vision transformers (ViT) [ 14 ] is an extension of the transformer architecture that was pro-
posed for machine translation. To apply self-attention layers to an image would require
to attend each pixel of the image with each other, meaning that it will be computationally
expensive. Therefore, they split the image into patches and after flattening it, the patches
are embed into a linear projection and positional embeddings are added on top of that.
The sequence of image tokens are fed into the transformer plus the class token similar to
BERT’s approach [ 15 ]. After the final layer, since the model is designed for classification
purposes, a Multi-Layer Perceptron (MLP) head is used for assigning the probabilities to
the individual classes using the class token. The schematic of the vision transformer archi-
tecture is shown in Figure  4 .

In addition, the recent years, research community has done many improvements related
to optimizations in performance, adversarial training, as well as combining convolutional
neural networks with attention mechanism that led to a more diverse variety of transform-
ers mechanisms such as Swin Transformer [ 16 ] and Pyramid Vision Transformer [ 17 ].
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Figure 4: Vision Transformer (ViT) overview. Image taken from [ 14 ].

2.4 Mapping between modalities

Nowadays, real-world models are required to work on multiple modalities such as im-
age, text, voice, etc., and each modality has a different encoding. Multi-modal models
are designed to handle and integrate information from these diverse sources, enabling a
more comprehensive understanding and interaction with data. For instance, in applica-
tions like image captioning, models must combine visual data from images with textual
data to generate accurate descriptions. Similarly, in tasks such as video analysis, models
need to process and integrate visual frames with audio signals. The integration of multiple
modalities poses challenges, such as aligning the different types of data and ensuring that
the model can effectively leverage the complementary information.

In 2021, Radford et al. proposed the Contrastive Language Pre-Training (CLIP) [ 18 ],
widely considered a pioneer work in unifying visual and text information into a common
latent space, where cosine distances could directly compute feature similarities.

CLIP’s training process, as illustrated in Figure  5 , is centered on a contrastive learning
objective. The model simultaneously processes pairs of images and corresponding text
descriptions, learning to associate images with their matching text while distinguishing
them from non-matching pairs. By doing so, CLIP effectively learns a rich and generaliz-
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2 State of the Art

able understanding of both visual and linguistic content, making it highly versatile across
different tasks.

Figure 5: CLIP uses paired image-text inputs for training each of the text and vision
encoders. The diagonal elements become the positive samples, and the non-
diagonal elements become the negative samples for calculating the contrastive
loss across all input combinations. Image taken from [ 18 ].

Contrastive Captioner (CoCa)

Recently, a lot more similar methods have been built on top of CLIP, among the approaches
to multi-modal, the Contrastive Captioners (CoCa)[ 19 ] model, which is a minimalist de-
sign to pretrain an image-text encoder-decoder foundation model, stands out as an in-
novative approach in the field of vision-language models that combines the strengths of
both contrastive learning and caption generation. It is designed to bridge the gap between
image understanding and language generation, leveraging the principles of contrastive
learning to enhance the quality and robustness of generated captions following the work
from CLIP.

As shown in Figure  6 , CoCa consist of a visual transformer image encoder and a text
encoder that are jointly trained by contrasting the paired text against others. While the
dual-encoder approach encodes the text as a whole, the captioner approach enable to the
model to predict text tokens autoregressively.

Overall, contrastive captioner (CoCa) is similar to standards image-text encoder-decoder
architectures, encodes images using vision transformer (ViT) to a latent representation, and
decodes texts with a causal masking transformer decoder. In the decoder part, CoCa cross-
attend the uni-modal text representation in the first half of the decoder layers and cross-
attends the image tokens from the encoder for multi-modal image-text representations.

9
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Figure 6: Detailed illustration of CoCa architecture and training objectives. Image taken
from [ 19 ].

LLaVa

Auto regressive Large Language Models have shown impressive capabilities within text
domain; however, such large scale language models are ’blind’ to modalities other than
text, making it difficult to communicate visual tasks, questions or concept to them. To ad-
dress this limitation, many researchers have explored various approaches to bridge the gap
between the visual and the textual spaces. These approaches often involve techniques such
as cross-modal embeddings, where visual and textual data are mapped into a common la-
tent space, and attention mechanisms that allow the model to focus on relevant parts of the
input from different modalities. By minimizing the gap between visual and textual data,
these methods aim to enhance the ability of large language models to understand and
generate multi-modal content, thereby expanding their applicability to a broader range of
real-world tasks.

Continuing with the exploration of multi-modal integration techniques, LLaVa [ 20 ] in-
troduces the first attempt to visual instruction tuning. Especially, LLaVa tries to extend
the instruction-tuning to the multi-modal space of language and image by utilizing both
a pre-trained Large Language model and a pre-trained vision encoder. For instance, to al-
low Large Language models to answer real-world tasks and follow language instructions,
many methods have been explored for instruction-tuning such as InstructGPT [ 21 ].

The network architecture is shown in Figure  7 . Given an input image Xv into the pre-
trained vision encoder that provides the visual feature Zv = g(Xv). A simple trainable
linear projection layer is used to project the image features into the word embeddings
space. Therefore, a sequence of visual tokens Hv which Hv = W · Zv is concatenated
with the sequence of text tokens into the Language Model. In this case, LLaVa researchers
picked a pre-trained CLIP visual encoder ViT-L/14 [  18 ] and a Vicuna [ 22 ] as the Large
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Language Model.

Figure 7: LLaVa network architecture. Image taken from [ 20 ].

The training process of LLaVa involves two main stages: pre-training and fine-tuning.
During the pre-training stage, the vision encoder and the language model weights are
freezed and only the adapter is being trained. In this way the image features Hv can be
aligned to the word embedding space of the LLM. During the fine-tuning step, the visual
encoder weights are still freezed, however this time the pre-trained weights of the projec-
tion layer and the LLM are being updated. Especially, the LLaVa model was trained for
1 epoch in the pre-training step and for 3 epochs in the fine-tuning step on two different
datasets.

As shown in Table  8 , the example requires a depth image understanding. The model is
able to follow the user’s instructions and answer the questions accurately.
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Figure 8: Extreme Ironing example. Image taken from [ 20 ].

BLIP-2

BLIP-2 [ 23 ] follows the same paradigms as LLaVa, meaning that the authors try to fill the
gap between the visual embedding and the text embedding space from pre-trained back-
bones as shown in Figure  9 . In this case, BLIP-2 proposes Q-Former as the trainable adapter
to bridge the gap between a frozen image encoder and a frozen Large Language model. It
uses learned queries to extract a fixed number of features from the image encoder.

12
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Figure 9: Overview of BLIP-2’s framework. Image taken from [ 23 ].

As shown in Figure  10 , Q-Former includes two transformer submodules with shared
self-attention layers: (1) an image transformer interacting with the frozen image encoder
for visual feature extraction, and (2) a text transformer functioning as both an encoder and
a decoder. Learnable query embeddings serve as input to the image transformer, interact-
ing with each other via self-attention and with image features through cross-attention lay-
ers. Queries can also interact with text through self-attention layers, with different masks
applied based on the pre-training task. Q-Former is initialized with BERTbase weights
[ 15 ], except for the randomly initialized cross-attention layers, and contains 188 million
parameters, including the queries.

The Q-Former jointly optimizes three objectives:

1. Image-Text Contrastive Learning learns to align the image-text pairs that are similar
against those that are negative pairs.

2. Image-grounded Text Generation loss trains Q-Former to generate texts. Since the
text tokens do not communicate with the visual encoder. It uses the learned queries
to extract all the necessary information from the text and then passes the text tokens
into the self-attention layers. Thus, the queries are forced to capture visual features
that describe all the necessary information about the text.

3. Image-Text Matching aims to learn a fine-grained alignment between image and
text. Especially, it is a classification problem of whether it is a positive or negative
pair.

13



Object Recognition with LLMs

Figure 10: Model architecture of Q-Former and BLIP-2’s first-stage vision-language repre-
sentation learning objectives. Image taken from [ 23 ].

Pre-trained image encoder and LLM, as for the frozen visual encoder, the authors ex-
plored two different vision transformer models: ViT-L/14 [ 18 ] and ViT-g/14 from EVA-
CLIP [ 24 ] and for the Large Language model they explored the OPT [ 25 ] model family as
a decoder-based LLMs.

14
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3 Vision Large Language Model using pre-trained backbones

3.1 Problem Definition and Goals

Training a VLM is computationally expensive and demands substantial GPU resources.
This complexity arises from the necessity to process extensive datasets through both pre-
trained visual encoders and pre-trained LLMs. Despite leveraging these pre-trained com-
ponents, the process still involves a significant computational overhead due to the require-
ment of forwarding passes through the LLM. Consequently, a critical challenge is to devise
an efficient strategy to map visual embeddings into the text embeddings distribution with-
out relying on the entire LLM, at least during the initial training phase (pre-train step).

Our primary goal is to streamline this process by utilizing techniques that minimize the
reliance on full-scale LLM operations early in the training. By doing so, we aim to achieve a
balance between computational efficiency and model performance, enabling more feasible
training of VLMs on available hardware resources. This approach not only makes the
training process more accessible but also opens the door to more scalable and adaptable
VLM architectures, which can be fine-tuned with fewer resources while maintaining high
performance.

3.2 Methodology - TerraAlign

Our approach is based on building a Visual Language Model (VLM) using pre-trained
models, leveraging their powerful representations and transfer learning capabilities.

Similar to LLaVa and BLIP-2, our training setup consist of two different phases. While
the second phase, known as fine-tuning step, is similar to the two aforementioned mod-
els, meaning that we minimize the Cross-Entropy loss [ 26 ] on token level autoregressively,
the first training phase or pre-training step differs significantly. In this phase, we omit the
LLM and we directly learn the adapter to map the visual embeddings into the text em-
beddings space that makes the pipeline more efficient and less computational expensive.
We name our architecture TerraAlign since we aim to align the visual embeddings into the
text embeddings space and because we employ the Earth Mover’s Distance to minimize
the semantic gap between these two modalities. A high-level overview of the pre-training
step is shown in Figure  11 and of the fine-tuning step in Figure  12 .
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Figure 11: Our pre-training setup without utilizing the LLM. The blue color shows the
freezed components and the orange the trainable.
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3 Vision Large Language Model using pre-trained backbones

Figure 12: Our fine-tuning setup with the LLM. The blue color shows the freezed compo-
nents and the orange the trainable.

Visual and Text Embeddings

For the vision encoder, we utilize the CoCa model [ 19 ], which has demonstrated robust
performance in tasks involving image-text alignments. Specifically, we focus on the visual
features obtained after the attentional pooling layer of the CoCa model. These features
have a dimension of [batch,N, dim], where N represents the number of query tokens for
captioning embeddings (255 in our case), and dim is the embedding dimension (512).

For the text encoder, we utilize the quantized version of the Intstruct Mistral-7B [ 12 ],
a state-of-the-art large language model. This model has been fine-tuned for instruction-
based tasks, making it adapt at understanding and generating human-like text based on
given prompts. The quantization process reduces the model size and computational re-
quirements while maintaining high performance, making it suitable for our large-scale
multimodal tasks.

17
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Earth Mover’s Distance

The Earth Mover’s Distance (EMD) [  27 ], also known as the Wasserstein distance, is a met-
ric used to quantify the difference between two probability distributions. It does this by
calculating the minimum amount of ’work’ required to transform one distribution into
the other. Intuitively, one can imagine one distribution as a mass of earth spread across
a space and the other distribution as a set of holes in that space. The EMD represents
the least amount of work needed to fill the holes with the earth, where a unit of work is
defined as transporting a unit of earth over a unit of distance.

Originally proposed in the context of transportation theory, however, lately the EMD has
been used for image retrieval and especially to compare different images by treating each
image’s pixel distribution as a signature. For example, in content-based image retrieval,
the EMD can measure the dissimilarity between two images by computing the minimal
effort needed to transform one image’s pixel distribution to match the other’s. This ap-
proach allows for more accurate image comparisons, especially when dealing with images
that have undergone transformations such as translation, scaling, or rotation.

In conclusion, Earth Mover’s Distance is a valuable metric for comparing probabil-
ity distributions, with a wide range of applications across various domains. Recent re-
search has focused on developing approximation algorithms and data-parallel techniques
to overcome the computational challenges associated with EMD, enabling its use in prac-
tical scenarios and connecting it to broader theories in machine learning and data analysis.

LoRA - Low-Rank Adaptation

LoRA is a technique that is used for efficiently fine-tuning and updating a small portion
of the trainable parameters. It offers a significant advantage over traditional fine-tuning
methods by minimizing the number of trainable parameters, thereby reducing computa-
tional costs.

Especially, LoRA freezes the weights of the pre-trained model in order to not be changed
during the fine-tuning step. It adds rank decomposition matrices into each layer that are
smaller than the original weight matrices, reducing the trainable parameters. At the end
only the low rank matrices are being trained during the fine-tuning, and this allows the
model to learn new tasks and keeping the already known knowledge from the original pre-
trained weight matrices while reducing the memory and computational usage. A detailed
visual overview is shown in Figure  13 .
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Figure 13: LoRA’s reparametrization. Image taken from [ 1 ].

Simple Adapter

In our first experiment, we utilize a simple MLP adapter to map the visual features into
the text embeddings space similar to LLaVa. The simple projection model contains three
main components: a fully connected layer, a GELU [ 28 ] activation function, and another
fully connected layer. The architecture is defined as follows: the first fully connected layer
(fc1) takes the input visual embeddings Zv and projects them into a higher-dimensional
space of size hidden dimension. Following this projection, we apply the GELU (Gaussian
Error Linear Unit) activation function to introduce non-linearity into the model, and then
it is followed by another linear layer than outputs the transform visual features Hv.

Hv = W2 · GELU(W1 · Zv) (3.1)

The choice of GELU is motivated by its smoothness and performance benefits over other
activation functions such as ReLU [ 29 ] or Leaky ReLU [ 30 ], especially in terms of gradient
flow and learning dynamics.

The hidden layer dimension is set to two times the output dimension, which we deter-
mined to be optimal through extensive hyperparameter tuning and empirical validation.
This choice ensures that the model has sufficient capacity to capture complex mappings
from the visual domain to the textual domain, while still maintaining computational effi-
ciency.

After the non-linear transformation, the second fully connected layer (fc2) reduces the
dimensionality from hidden dimension to output dimension, effectively mapping the pro-
cessed visual features into the text embedding space. This final layer ensures that the
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output dimensions match the required size of the text embeddings, facilitating seamless
integration with subsequent natural language processing tasks.

This architecture was chosen for its simplicity and effectiveness, providing a robust
baseline for further experimentation. More architecture details of the Simple Adapter are
shown in Table  1 and Figure  14 .

Figure 14: Our simple adapter architecture

Transformer-based Adapter with self attention

To enhance the capability of our visual-to-text mapping, we employ a more advanced
adapter, replacing the simple linear projection with a transformer-based adapter. This new
adapter incorporates self-attention mechanisms, which are crucial for capturing intricate
relationships and dependencies among the image tokens produced by the vision encoder.
As shown in Figure  15 , each block within this transformer-based adapter consists of a self-
attention mechanism followed by a feed-forward neural network, collectively working
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Table 1: Architecture details of the Simple Adapter and the pre-trained backbones
Module Details

Vision Encoder CoCa ViT-B-32
Image embedding dimension [batch, 255, 512]

LLM Mistral-7B-Instruct
Text embedding dimension [batch, sequence tokens, 4096]

Adapter architecture [Linear, GELU, Linear]
layer: fc1 (512, 8192)
layer: fc2 (8192, 4096)

output dimension [batch, sequence tokens, 4096]

to refine the representations of the image tokens. These components work together to
translate the image embeddings into the text embedding space, ensuring that the visual
information is accurately translated. More information related to the architecture of the
adapter is listed in Table  2 . At the end a linear layer is used to map the image tokens into
the correct dimension, matching the text tokens.

Table 2: Architecture details of the transformer-based Adapter with self-attention and the
pre-trained backbones

Module Details
Vision Encoder CoCa ViT-B-32

Image embedding dimension [batch, 255, 512]
LLM Mistral-7B-Instruct

Text embedding dimension [batch, sequence tokens, 4096]
Adapter main query block [Self-Attention, Feed Forward]

Number of blocks 4
Number of heads 4
Output dimension [batch, 255, 4096]
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Figure 15: Our transformer-based adapter with self attention

Query transformer-based Adapter with learnable queries

To improve our adapter, we introduce a more efficient architecture utilizing and filtering
the image tokens in order to select precisely only the useful image tokens. Inspired by
the Q-Former architecture, this approach uses a query-based transformer architecture to
encode images more effectively. The core idea is to utilize learnable queries to filter and
emphasize the image tokens that capture the essential knowledge relevant to the task.

As illustrated in Figure  16 , the Query Adapter starts by selecting a fixed number of learn-
able queries, which can range from 32 to 255, in our case we use 128 as trade-off between
accuracy and efficiency. To initialize these tokens, we adopt a similar method to the BERT
model’s initialization process. Specifically, we use a normal distribution with a mean of 0.0
and a standard deviation based on BERT’s configuration, ensuring that the initial values
are set up in a way that is consistent with BERT’s training practices, promoting stable and
effective learning.
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In addition, these queries interact with each other through self-attention layers and with
the image tokens from the visual encoder via cross-attention layers. This interaction allows
the model to focus on the most pertinent visual features, thereby improving the integration
of visual and textual information.

The use of learnable queries enables the model to dynamically adjust its focus based
on the input image, providing a more flexible and powerful mechanism for visual feature
extraction compared to the simple adapter. More information about the architecture is
listed in Table  3 .

Table 3: Architecture details of the Query transformer-based Adapter and the pre-trained
backbones

Module Details
Vision Encoder CoCa ViT-B-32

Image embedding dimension [batch, 255, 512]
LLM Mistral-7B-Instruct

Text embedding dimension [batch, sequence tokens, 4096]
Adapter main query block [Self-Attention, Cross-Attention, Feed Forward]

Number of blocks 4
Number of heads 4

Number of learnable queries 128
Output dimension [batch, number of learnable tokens, 4096]

Figure 16: Our Query transformer-based Adapter with learnable queries
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3.3 MSCOCO Dataset

In our case, we utilize the COCO dataset [ 2 ] and especially the COCO captions that con-
tains captions for over 330k images for training and validation. We picked this dataset due
to its rich and diverse collection of images paired with natural language descriptions, mak-
ing it ideal for training visual-language models. A few examples can be found in Figure
 17 .

Data preparation

To prepare the dataset for training, we preprocess both the images and captions to ensure
compatibility with our model architecture. The images are transformed by applying the
necessary transformations required by the vision encoder. Captions are tokenized and
encoded into the embedding space of the LLM. This involves breaking down the text into
tokens, converting these tokens into numerical representations, and mapping them into
the LLM’s embedding space.

Figure 17: Example images and captions from the Microsoft COCO Caption dataset. Image
taken from [ 2 ].
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3.4 Training details

Our training process involves two main steps: pre-training and fine-tuning.
Pre-training Step: As previously discussed, in the pre-training phase, we simplify the

model by removing the LLM component, allowing us to focus solely on the adapter. Dur-
ing this phase, our goal is to minimize the EMD between the projected visual embeddings
and the target text embeddings. This approach helps ensure that the visual features are
well-aligned with the textual domain before we integrate the language model.

Fine-tuning Step: In the fine-tuning phase, we reintroduce the LLM and follow the
training paradigm used by current state-of-the-art models with the only difference that
we utilize LoRA and we train only the 0.0470% of the parameters due to computational
limitations. During this step, the vision encoder remains frozen, meaning its parameters
are not updated. We fine-tune the rest of the model, including both the adapter and the
LLM, to better align the visual and textual features for specific tasks.

In particular, we begin by passing a prompt message, such as ”Describe this image” or
”Provide a brief description of the given image” through the tokenizer and embedding
layer of the LLM. This processed prompt is then concatenated with the image tokens gen-
erated by the adapter. By integrating these prompt-driven embeddings with the image
tokens, we provide the LLM with contextual guidance that enhances its understanding
and generation capabilities. The LLM then generates a response, during which it aims
to minimize the Cross-Entropy loss between the predicted tokens and the ground truth
tokens. This loss function effectively guides the model to produce outputs that are more
accurate and contextually relevant

Dataset and Split: For both training steps, we use the MSCOCO dataset. We split the
dataset into 70% for training and 30% for validation and testing, ensuring a reliable vali-
dation of our model’s performance.

By structuring our training process this way, we aim to first establish a strong align-
ment between visual and textual features during pre-training, and then refine and opti-
mize this alignment during fine-tuning to improve the model’s overall performance on
visual-language tasks.

Training details - Simple Adapter

For the Simple Adapter, in the pre-training step, we train our model for four epochs to
make sure that the visual and text embeddings aligned. During the fine-tune step, we
train for another four epoch, during which we fine-tune both the adapter and the LLM by
applying Low-Rank Adaptation (LoRA). Details about the training are listed in Table  4 .

Training details - transformer-based Adapter with self attention

Similar to the simple adapter, we train in two stages. In the pre-training step, we train
our model for four epochs to make sure that the adapter is able to translate the visual
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Table 4: Training details for the simple adapter
Pre-training Details

Epochs 4
Batch size 8

Fine-tuning Details
Epochs 4

Batch size 8
LoRA r 8

LoRA alpha 32
LoRA dropout 0.1

embeddings to the text embeddings space. During fine-tuning, our adapter and the LLM
are trained together for five epochs. Details about the training are listed in Table  5 .

Table 5: Training details for the self attention adapter
Pre-training Details

Epochs 4
Batch size 8

Fine-tuning Details
Epochs 5

Batch size 8
LoRA r 8

LoRA alpha 32
LoRA dropout 0.1

Training details - Query transformer-based Adapter with learnable queries

We follow the same settings as the above transformer-based adapter with the self-attention
layer. We train for four epochs in the pre-training step, and then for five epochs in the
finetuning step. Details about the training are listed in Table  6 .

3.5 Analysis

In this section, we take a small subset of (image, text) pairs from the validation set in or-
der to visualize the alignment. Each image and text token is treated as a data point. All
image tokens are passed through the adapter to be transformed into the text embeddings
space, while all text tokens are processed through the embedding layer of the LLM, trans-
forming them into the same embedding space. To facilitate visualization, we perform a
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Table 6: Training details for the query adapter with learnable queries
Pre-training Details

Epochs 4
Batch size 8

Fine-tuning Details
Epochs 5

Batch size 8
LoRA r 8

LoRA alpha 32
LoRA dropout 0.1

Principal Component Analysis (PCA) [ 31 ], reducing the high-dimensional embeddings to
a 2D space.

Analysis - Simple Adapter

Pre-training: As shown in Figure  18 , after the first epoch of training, the image tokens
(blue) begin to move closer to the text tokens (red), indicating initial progress in align-
ment. However, this early stage of training shows that further training is necessary for
more accurate alignment. By the fourth epoch, depicted in Figure  19 , the tokens show
significantly better alignment. The image tokens are now closely aligned with the text to-
kens, demonstrating that the adapter effectively transforms the image tokens into the text
embedding space. A zoomed view of this alignment is provided in Figure  20 , highlighting
the overlap of the image and text tokens.

To further evaluate the performance of our adapter, we visualize the image tokens in
the embedding space concerning the entire vocabulary of our LLM. For this purpose, we
select a few image examples and follow the previously described procedure. The results,
shown in Figure  21 , indicate that the adapter successfully maps the image tokens into
the vocabulary space. The image tokens align predominantly with the text tokens in the
center-right part of the Figure. This concentration occurs because of the small sample and
because the adapter has been trained to transform image tokens into the text embedding
space corresponding to plain English captions, while the LLM’s vocabulary includes a
broader range of characters and tokens beyond plain English.

Fine-tuning: After fine-tuning, we examined the behavior of the image and text tokens.
Upon attempting to visualize them in a 2D space, we found that the first two principal
components captured only 15% of the variance, making meaningful analysis and visual-
ization infeasible. To better understand how much information is needed to represent the
data accurately, we calculated that the first 68 principal components are necessary to cap-
ture more than 80% of the information. This shows that the embeddings are quite complex
and high-dimensional, and reducing them to just two dimensions loses a lot of important
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details.
Therefore, we observe that, while fine-tuning improves the model’s performance, it also

increases the complexity of the embeddings, making simple 2D visualizations insufficient
for a detailed analysis.

Figure 18: Simple Adapter: PCA on image and text tokens at epoch 1

Figure 19: Simple Adapter: PCA on image and text tokens at epoch 4
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Figure 20: Simple Adapter: Zoomed-in PCA on image and text tokens at epoch 4

Figure 21: Simple Adapter: PCA Analysis with respect to the whole vocabulary in epoch 4

Analysis - Self Attention Adapter

In the self attention transformer-based adapter, during this process, we observed that vi-
sualizing the embeddings in just two dimensions is challenging. This difficulty arises due
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to the high variance present in the embedding, which leads to significant information loss
when attempting to reduce the dimensionality to such a low level.

To better understand the structure of the embeddings, we calculated the number of prin-
cipal components required to retain a substantial portion of the information. Our analysis
revealed that 14 principal components are necessary to capture more than 80% of the vari-
ance in the data. This finding highlights the complexity of the embeddings generated by
the transformer-based adapter after the pre-training step. In the fine-tuning step the em-
beddings are even more complex and high-dimensional making it infeasible to reducing
them to just two dimensions in both cases.

Analysis - Query Adapter with learnable queries

Similar to the self attention adapter, we experience a similar behavior of the embeddings.
For instance, our analysis revealed that the embeddings are even more complex and that
33 principal components are necessary to capture more than 80% after the pre-training
step.

3.6 Captioning Results

During inference, we generate captions using two approaches: first, with only the pre-
trained adapter and the already trained LLM, and second, with the finetuned adapter
alongside the finetuned LLM. In the initial approach, the pretrained adapter, having been
trained to map image tokens to text tokens, is used to generate captions. This is achieved
through carefully crafted prompts, such as ”Below is a description of an image; please cor-
rect it and re-write a caption.” This prompt is concatenated with the image tokens, which
have been transformed to resemble text tokens related to the image content, allowing the
LLM to generate a caption. Most of the time, using the pretrained approach, the model
can classify and generate high-level descriptors of the image, such as identifying whether
there is a human or animal present. However, it often fails to capture finer details and occa-
sionally produces irrelevant or nonsensical captions, missing key visual information. For
the finetuned pipeline, the captioning process is further refined. We use a simpler prompt,
”Describe the image: ”, which is also concatenated with the image tokens. In both cases,
instruction tokens like [INST] and [\INST] are included to ensure that the LLM adheres to
the intended instructions, as it was trained to follow such directives.

Simple Adapter

The following examples in Table  7 demonstrate that the pre-trained adapter can be used
for visual-language tasks, particularly for simpler cases. This indicates that the LLM can
understand the image tokens even though it has never seen them before, meaning that the
image tokens are being transformed in a way that is close to other text tokens with the
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same meaning. However, the pipeline is really sensitive in the prompt message and in dif-
ficult cases the pre-trained TerraAlign produces either low quality or non-sense captions
or endless responses. After fine-tuning, the model performs significantly better, providing
more accurate and precise answers. This improvement highlights the importance of the
fine-tuning process in enhancing the model’s capability to generate coherent and contex-
tually appropriate descriptions based on visual input.

Transformer-based Adapter with self-attention

Given the more complex architecture and the ability of the adapter to learn correlations
between the tokens using self-attention mechanisms and translate the image tokens into
the text embeddings space more accurate. This result in a significant more improved and
accurate captions, especially after finetuning our pipeline. For instance, as shown in Table

 8 the results are more accurate with less mistakes and shows that the model can capture
more information of the image.

Query transformer-based Adapter with learnable queries

This approach stands out for its efficiency, as it selectively filters the image tokens, re-
ducing the overall token count by half while maintaining high accuracy. The key to this
method’s success lies in the learnable queries, which are designed to extract only the most
relevant information from the image tokens. As a result, there is minimal information loss,
allowing the model to generate highly accurate captions despite using fewer tokens. The
results in Table  9 show that this method not only preserves crucial details but even create
more accurate captions from the self-attention-based approach.

3.7 Fine-tuning in Food101

Classification Results

Currently, there is no standardized evaluation or benchmarking method for VLMs. Tradi-
tional metrics like BLEU are limited in that they primarily measure the similarity between
the generated output and a specific ground-truth caption, without effectively capturing the
underlying meaning and reasoning capabilities of the model. Consequently, these metrics
may not fully reflect the performance of VLMs in more nuanced scenarios.

Given these limitations, a common approach to evaluating VLMs involves testing them
on specific types of questions, such as yes/no, multiple choice, or classification tasks.
For our evaluation, we chose to classify food images from the Food101 dataset [ 3 ]. The
Food101 dataset is a comprehensive collection of 101,000 images spanning 101 different
categories of food dishes. Each category contains 1,000 images, offering a balanced and
diverse set of examples for each type of dish. 100 out of the 101 classes examples can be
found in Figure  22 .
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Table 7: Examples from our test set using the simple adapter
Image Pre-trained Fine-tuned

The man in the middle
of the line.

This is a man in a tennis
outfit playing on a ten-
nis court.

A brown bear sitting
on a green grassy
meadow, with its
reflection in the water.

This is a black bear
walking through a for-
est.

The man in the street.
This is a man with a
green face and a hat.

A group of people sit-
ting around a table, en-
joying a meal.

A large pizza on a table
with a plate of food.

A man wearing a hat in
the street.

A man talking on a cell
phone while standing
in a crowd.

The given text contains
multiple errors

This is a remote control
sits on a quilted couch.
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Table 8: Examples from our test set using the transformer-based adapter with self-attention
Image Pre-trained Fine-tuned

A man is sitting on a
chair.

A man in a red shirt
playing tennis on a red
clay court.

A brown bear standing
on its hind legs.

A black bear standing
in the woods.

The man in the image is
standing in a field.

A man in a hat and tie is
smiling at the camera.

A white rabbit sits
on a green lawn, sur-
rounded by flowers
and trees.

A pizza box on a table
with a pizza in it.

The man in the street is
walking.

A man is talking on his
cell phone.

The image shows a
group of people sitting
at a table

A remote control sitting
on a couch.
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Table 9: Examples from our test set using query transformer-based adapter with learnable
queries

Image Pre-trained Fine-tuned

A man in a nearby chair
reads a book.

A man is playing tennis
on a court with a racket.

A black cat is sitting on
a white mat, licking its
paw.

A black bear standing
in the middle of a for-
est.

A man sits on a white
bench in a quiet

A man in a green hat
and a suit is standing in
a crowd.

A red boat on a blue
lake.

A pizza with a variety
of toppings is being cut
into slices.

This image depicts a
group of people sitting
on a white.

A man in a coat is talk-
ing on a cell phone.

A collection of vari-
ous chairs in an antique
store is displayed in the
image.

A remote control sitting
on top of a table.
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Figure 22: Food101 dataset examples for the 100 out of the 101 classes. Image taken from
[ 3 ].

To this end, we fine-tuned our adapters and the LLM specifically for this task. During
the fine-tuning process, we start with fixed questions in the prompt, such as, ”What type
of food is that?”. We follow the same fine-tuning approach as previously described, which
involves appending the image tokens. We finetuned for two epochs using the same setting
as before and then, the LLM is adjusted to respond by providing only the name of the food
type as shown in the Figure  23 . This fine-tuning process enabled the model to better un-
derstand and categorize the diverse range of food items present in the dataset, providing
a practical measure of the model’s classification capabilities.

User: What type of food is that?

TerraAlign: cup cakes

Figure 23: Chat-style question and answer for the Food101.

Table 10: Classification accuracy of different adapters on the Food101 Dataset.
Adapter Type Classification Accuracy (%)
MLP Adapter 81.52%
Self attention Adapter 83.56%
Query Adapter with learnable queries 82.86%

The results of our TerraAlign framework on the classification task after fine-tuning demon-
strate promising performance across different adapter architectures. Specifically, as shown
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in Table  10 the self attention adapter achieved the highest classification accuracy at 83.56%,
followed by the query transformer-based adapter with 82.56%, and the MLP adapter with
81.52%. This highlights the advantage of leveraging more sophisticated adapter architec-
tures, such as transformer-based designs, which likely capture more complex patterns in
the data.

It is important to note that the current evaluation metric was based on checking whether
the exact class name appeared in the model’s output, meaning even minor typos or vari-
ations were counted as incorrect. In comparison to traditional state-of-the-art methods,
such as EfficientNet [ 32 ], which achieves an impressive 93.0% accuracy on the Food 101
dataset, our approach shows there is room for improvement. However, the primary goal
of this evaluation was to assess TerraAlign’s performance in a classification task and quan-
tify its effectiveness. This provides a useful benchmark for measuring the impact of our
pretraining phase and the LoRA fine-tuning method, offering insights into the strengths
and areas for further development within our pipeline.

Implementation and Challenges

Through this work, we developed a flexible pipeline capable of aligning image tokens
into the text tokens latent space, enabling seamless integration of different pre-trained
image encoders and Large Language Models with minimal effort. Our implementation
was carried out in two main stages: integration of pre-trained models and the design of an
adapter architecture.

In the first stage, we integrated the CoCa model as the image encoder and the instruct-
tuned Mistral7b as the LLM into our pipeline. This setup allowed us to leverage powerful
pre-trained models for both visual and textual processing. The second stage involved im-
plementing a model component known as an adapter, which maps image embeddings
to the text embedding space. We explored three different adapter architectures: a sim-
ple multi-layer perceptron (MLP), a transformer-based decoder with self-attention, and a
query-based transformer adapter designed to filter the image tokens selectively.

During the pre-training step, our adapters were trained without involving the LLM by
minimizing the Earth Mover’s Distance between the image and text embeddings. This
approach reduced computational costs and allowed the training to be carried out on stan-
dard hardware without requiring specialized systems. In the fine-tuning step, the LLM
was introduced into the pipeline, where both the adapter and the LLM were trained si-
multaneously. We employed LoRA for the LLM, which allowed us to update only 0.047%
of the LLM’s parameters. However, this phase still demanded substantial GPU resources;
for example, fine-tuning on an NVIDIA A100 required 70 GB of GPU memory, even with
a batch size of 16.

Moreover, fine-tuning required extensive hyperparameter tuning to achieve optimal re-
sults. For instance, in our transformer-based adapters, small adjustments in the number
of heads or blocks had a significant impact on performance, indicating the sensitivity of
these models to hyperparameter changes. Similarly, the number of learnable queries in the
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third adapter required careful calibration; we settled on 128 queries as a balanced trade-off
between accuracy and efficiency.
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4 Summary, Discussion and Future Work

4.1 Summary

In section  2 , we reviewed the current state-of-the-art, beginning with transformers that
form the foundation of LLMs and concluding with multimodal models that integrate pre-
trained image encoders and LLMs, such as LLaVa and BLIP-2. In section  3 , we proposed
our methodology that follows a new way of aligning the image embeddings into the text
embedding space by minimizing the EMD without relying on LLMs.. We evaluated our
method by generating captions and in a classification task in order to quantify the evalua-
tion.

4.2 Discussion

The thesis studied the VLMs using pre-trained backbones and focused on reducing the
computational resources that are required to build such models in a multi-modal setting
and benefit from the already trained Large Language models in computer vision tasks.
The methods that were proposed are focused on using an adapter to transform the image
embeddings into the text embeddings space so as to make the LLM to understand the
content of the image. In order to tackle this challenge, two different stages of training are
required, while in the first the LLM is completely omitted from the training setup.

In the pre-training step, the adapter is trained to minimize the Earth Mover’s Distance,
meaning that it learns to map the image embeddings distribution to the text embedding
distribution. For the fine-tuning step, the approach mirrors state-of-the-art methods by
minimizing the Cross-Entropy loss on a token level autoregressively. In this work, three
different adapters are proposed

1. The first adapter is a simple MLP, is chosen for its simplicity and as a robust baseline
for further experimentation. This adapter demonstrated the fundamental capability
to map visual information into a format that LLMs can interpret.

2. The second adapter is a transformer-based model, that adds self-attention layers to
capture correlations between the image tokens and makes it a more accurate and
sophisticated solution compared to the simple MLP.

3. The third adapter is a query transformer-based model, leveraging the strengths of
attention mechanisms to more effectively capture complex relationships within the
data. This adapter employs learnable queries to focus on critical aspects of the visual
data, enabling the model to adapt dynamically to different types of visual inputs.
This adapter shows that can be more accurate because the queries learned to focus
on the rich information image tokens but also more efficient.

The MSCOCO dataset was selected for our experiments due to its extensive collection of
images paired with natural language descriptions, covering a wide range of real-world en-
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vironments, making it ideal for training visual-language models. In addition, the Food101
dataset was selected for quantifying the performance of these VLMs on a classification
task.

The most important results from the experiments were as follows:

1. The pre-trained adapter can be used for visual-language tasks, particularly for sim-
pler cases, however the fine-tuning step is essential to provide more accurate and
well-structured answers based on visual input.

2. By omitting the LLM in the first stage of training, makes it more feasible for individ-
uals and low-budget institutions to experiment with the multi-modal world.

3. Ensuring alignment between image embeddings and text embeddings in the pre-
training step is crucial for making the fine-tuning stage more efficient, resulting in
better convergence and overall performance.

4. The MLP adapter provides a simple yet effective baseline, while the transformer
adapters offers more advanced capabilities by focusing on essential features through
attention mechanisms. This progression from basic to complex adapters highlights
the trade-offs between simplicity and performance, allowing users to choose the best
approach for their specific needs and computational resources.

The results of our research on TerraAlign provide several key insights into the devel-
opment and optimization of Visual Language Models. One of the most significant con-
tributions of our approach is the improvement in computational efficiency achieved by
omitting the Large Language Model during the pre-training phase. By focusing on di-
rectly aligning visual and text embeddings using Earth Mover’s Distance, we were able
to streamline the process without compromising the quality of the alignment. The EMD’s
capability to effectively bridge the semantic gap between these two modalities proves that
a LLM is not always necessary in the early stages of training, which significantly reduces
the computational overhead.

Another critical finding is the importance of the pre-training step in the overall training
pipeline. Our experiments demonstrate that this phase not only prepares the model for
better alignment but also leads to faster convergence during the fine-tuning step. By pre-
aligning the visual and text embeddings before introducing the LLM, we observed that
the fine-tuning process not only converges more rapidly but often reaches a better minima
compared to directly training the model with the LLM unfreezed from the start. This high-
lights the role of the pre-training phase in setting a strong foundation for the integration
of the LLM.

However, our exploration of different adapter architectures revealed a trade-off between
efficiency and model complexity. While simpler adapters like the MLP are less computa-
tionally demanding, they may not fully capture the intricate relationships between visual
and textual features. Conversely, more complex architectures, such as the transformer-
based adapters, provide better alignment at the cost of increased computational resources.
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This trade-off is crucial for real-world applications, where the choice of adapter must bal-
ance performance with resource efficiency.

The fine-tuning step, despite the efficiency gains from the pre-training phase, remains
essential for achieving accurate results. During this phase, the LLM is introduced and fine-
tuned alongside the adapter, allowing the model to refine the alignment and enhance its
performance on specific visual-language tasks. The fine-tuning process not only improves
the model’s accuracy but also ensures that it can generalize effectively across different
tasks and datasets.

Lastly, while the MSCOCO and the Food101 datasets served as a valuable resource for
training and validating TerraAlign, it is important to acknowledge that this and similar
datasets may not fully capture the diversity of visual-language tasks that the model might
encounter in real-world applications.

Overall, the methods and results presented in this thesis contribute to the ongoing de-
velopment of efficient and accessible VLMs by leveraging existing language models and
reducing the computational burden typically associated with such complex models. By
systematically exploring different adapter architectures and training strategies, this re-
search lays the groundwork for future advancements in the field, promoting the integra-
tion of vision and language processing in a cost-effective manner. The TerraAlign frame-
work demonstrates the feasibility of using pre-trained models and advanced adapter ar-
chitectures to achieve effective visual-language alignment. While our approach has shown
promise, it also opens up several avenues for further research.

4.3 Future Work

There are several avenues for future research and development to further improve Ter-
raAlign:

1. Enhanced Vision Encoders: Explore using more advanced vision encoders. Varia-
tions of CLIP with higher embedding dimensions could capture more detailed infor-
mation, potentially improving the alignment and performance of the model.

2. Advanced Adapter Architectures: Investigate different and more sophisticated archi-
tectures for adapters. However, it is crucial to balance the trade-off between accuracy
and computational efficiency.

3. Improved Large Language Models: Experiment with more advanced LLMs to deter-
mine their impact on the alignment and overall performance of TerraAlign. Newer
models may offer better language understanding and generation capabilities. For
instance, bigger and newer models may be able to perform much better even with
utilizing only the pre-training step.

4. Expanded Dataset: Future work could involve training the pipeline on a more di-
verse dataset, similar to the one proposed by LLaVa, which goes beyond caption
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generation to incorporate multiple vision-language tasks, such as visual question
answering (VQA). A dataset that includes varied scenarios would better capture the
complexity of real-world applications and help improve the robustness of the model.

5. Current evaluation metrics, such as BLEU [ 33 ], are often insufficient for capturing the
nuances of visual-language tasks. Future work could involve evaluating the model’s
responses using another LLM as a judge, providing a more nuanced and contextually
aware assessment of the generated descriptions.

6. TeraAlign for Classification Tasks:: Another promising direction is adapting the VLM
for specific classification tasks. This could be achieved by replacing the final linear
layer of the LLM with one that projects the desired number of output classes. The
pipeline could then be fine-tuned on the classification task, either by training only the
last transformer block and the new linear layer or by fine-tuning the entire model.
Such an approach could tailor the VLM to a classification task, potentially yielding
higher accuracy in domain-specific tasks.

7. Extended Applications: Extend the current pipeline to additional tasks beyond im-
age captioning, such as object detection. Moreover, applying the approach to dif-
ferent modalities, like speech and language, to create more versatile multi-modal
models.
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