
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Guided Research

Solving least-squares problems involving
large dense matrices

Angelos Nikitaras

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Guided Research

Solving least-squares problems involving large dense
matrices

Author: Angelos Nikitaras
Examiner: Univ.-Prof. Dr. Felix Dietrich
Submission Date: October 4, 2024

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

October 4, 2024 Angelos Nikitaras

iii

Abstract

With the advent of Deep Learning, training large-scale neural networks has become a
crucial task across a wide range of applications. Typically, the training is performed using
gradient-based optimization algorithms, with the most popular being Stochastic Gradient
Descent and its variants. Random feature models offer a different method for training neu-
ral networks, where the parameters of the hidden layers are sampled from a data-agnostic
distribution, such as a normal distribution. Building on this concept, a novel approach,
known as the Sampling Where It Matters (SWIM) algorithm, was recently proposed. In
SWIM, the network parameters of the hidden layers are constructed using a data-driven
sampling scheme, followed by solving a linear least squares problem for the output layer.
This linear problem is dense and highly ill-conditioned, posing significant challenges for
traditional numerical solvers.

In this work, we investigate numerical methods for solving the least-squares problems
that arise in the context of the SWIM algorithm, with a focus on scalability and efficiency.
We propose using a recently developed iterative solver called LSRN, which leverages
randomized preconditioning to significantly improve the convergence rate. In addition,
we introduce an alternative approach that divides the problem into smaller subproblems,
which are solved sequentially. We demonstrate the effectiveness of these methods through
a series of numerical experiments, showcasing substantial improvements in training speed
and scalability.

iv

Contents

 Abstract iv

 1 Introduction 1

 2 Background 3
 2.1 Sampled Networks . 3
 2.2 Numerical methods for solving least-squares problems 3

 3 Methods 5
 3.1 LSRN . 5
 3.2 Split and Solve . 6

 4 Numerical Experiments 8
 4.1 Direct and Iterative methods . 8
 4.2 Split and Solve . 10

 5 Conclusion 18

 Bibliography 18

v

1 Introduction

Machine Learning (ML) has rapidly advanced to become a cornerstone of modern tech-
nology, driving innovations in diverse areas such as computer vision, natural language
processing, and scientific computing [11 , 17 , 22]. The primary goal of ML is to develop
algorithms that can learn patterns from data, enabling the automation of complex tasks
that are difficult to address using traditional programming techniques [2]. The recent rev-
olution in ML has been largely driven by the advancements in Deep Learning, a subfield
of ML that leverages the power of neural networks to model complex relationships in data
[13].

Neural networks are a class of models inspired by the structure of the human brain,
consisting of interconnected nodes (neurons) that process information. These networks are
composed of multiple layers that perform a series of parametrized transformations on the
input data, with the goal of learning useful representations for making predictions. Train-
ing of neural networks involves adjusting the model’s parameters, the so-called weights
and biases, to minimize a predefined loss function, which quantifies the discrepancy be-
tween the predicted and true values.

Training neural networks is challenging due to the high-dimensional, non-convex na-
ture of the optimization problem. The most popular approach for training these networks
is gradient-based optimization, with Adam and other variants of Stochastic Gradient De-
scent (SGD) being among the most widely used algorithms [12]. These first-order methods
rely solely on the gradient of the loss function, and are known for their slow convergence
rates and difficulties in escaping local minima [7]. Additionally, training requires tuning
numerous hyperparameters to achieve optimal performance, making the process both la-
borious and time-consuming.

An alternative to the gradient-based optimization, is the random sampling of the pa-
rameters of the hidden layers, which can lead to lower computational cost and in some
cases, competitive performance. Extreme learning machines and random feature models
are examples of such approaches [19 , 10]. Despite their promising results, these methods
suffer from a few important limitations. First, the hidden layer parameters are sampled
from a data-agnostic distribution, meaning the information contained in the data is not
fully exploited. Second, these models are typically shallow, with only one hidden layer,
which is incompatible with the deep architectures that have demonstrated state-of-the-art
performance in many tasks [13].

Recently, Bolager et al. [4] proposed the Sampling Where It Matters (SWIM) algorithm, a
novel approach in which all weights and biases before the last linear layer of a neural net-
work are sampled from a data-dependent probability distribution. The last, linear layer

1

1 Introduction

is then obtained by solving a least-squares problem, which is a well-studied problem in
numerical linear algebra [3]. This approach leads to a faster and more stable training pro-
cess, with significantly fewer hyperparameters to tune. In addition, deep networks can be
efficiently constructed, enabling the use of more complex architectures.

In this Guided Research, we will investigate numerical methods for solving least-squares
problems arising from the SWIM algorithm. Section 2 provides an overview of Sampled
Neural Networks and includes a brief discussion of traditional numerical methods used
for solving least-squares problems. In Section 3, we introduce two approaches tailored for
large scale applications: the LSRN algorithm, a recently developed parallel iterative solver,
and the Split and Solve method, which divides the problem into smaller subproblems that
can be solved sequentially. Section 4 presents numerical experiments evaluating the ef-
fectiveness of these methods, highlighting their main advantages and limitations. Finally,
Section 5 summarizes our findings and discusses potential future research directions.

2

2 Background

2.1 Sampled Networks

Roughly speaking, Sampled Networks are a class of neural networks, in which each pair
of weights and biases of the hidden layers is determined by two points in the input space.
In the following, we provide the formal definition [4].

Definition 2.1 (Sampled Neural Networks) Let Φ be a neural network with L hidden layers,
and X be the input space. We call Φ a sampled neural network if for each layer l ∈ {1, . . . , L},
and every neuron i ∈ {1, . . . , Nl}, the weights wl,i and the biases bl,i are determined by pairs of
data points,

(
x
(1)
0,i , x

(2)
0,i

)
, sampled from X × X . In particular, we define the weights and biases as

follows:

wl,i = s1
x
(2)
l−1,i − x

(1)
l−1,i

∥|x(2)l−1,i − x
(1)
l−1,i∥|2

, bl,i = ⟨wl,i, x
(1)
l−1,i⟩+ s2, (2.1)

where s1, s2 ∈ R are constants and x
(j)
l,i = Φl−1

(
x
(j)
0,i

)
for j = 1, 2, with Φl−1 denoting the

composition of the first (l − 1) layers of Φ. We also assume that x
(1)
0,i ̸= x

(2)
0,i . The weights

and the biases of the output layer are obtained through the minimization problem WL+1, bL+1 =
argminL

(
WL+1Φ

L (·)− bL+1

)
, where L is a designated loss function.

The constants s1 and s2 control the behavior of the activation functions, when applied to
the points x(1) and x(2). For example, for the ReLU activation function, we can set s1 = 1
and s2 = 0.

The above definition, does not specify the sampling strategy for the pairs of data points.
Bolager et al. [4] proposed the Sampling Where It Matters (SWIM) algorithm, which in-
troduces a data-dependent probability distribution for sampling the pairs of points. The
main idea of the SWIM algorithm is to prefer pairs of points which are close to each other
in the input space, but far away in the output space. After determining the weights and
biases of the hidden layers, the final layer is obtained by solving a least-squares problem,
which is the main focus of this work.

2.2 Numerical methods for solving least-squares problems

Numerical methods for solving linear least-squares problems can be divided into two main
categories: direct and iterative methods.

3

2 Background

Direct methods perform a finite number of operations to obtain a solution, often us-
ing appropriate matrix factorizations. While these methods provide a theoretically exact
solution (considering round-off errors), their computational cost can be prohibitive for
large-scale problems. The most popular direct methods for solving least-squares problems
rely on the Singular Value Decomposition (SVD) and the QR decomposition, with high-
performance implementations being available in libraries such as LAPACK [3 , 1].

In contrast, iterative methods approximate the solution by iteratively refining an initial
guess until a convergence criterion is met. These methods are particularly advantageous
for large-scale problems because they only require matrix-vector products, eliminating the
need to explicitly form the matrix. However, this advantage comes at the cost of reduced
accuracy and, in some cases, slower convergence rates. Popular iterative algorithms for
solving least-squares problems include the CGLS and LSQR [9 , 18]. The main idea behind
these methods is to apply the Conjugate Gradient (CG) algorithm to the normal equations
of the least-squares problem, with some modifications for improved stability. CG’s con-
vergence rate, however, is significantly affected by the condition number, leading to slow
convergence for ill-conditioned matrices, which are the focus of this work [20].

4

3 Methods

3.1 LSRN

Recently, randomized methods have gained popularity in the field of numerical linear al-
gebra, showcasing significant improvements over their deterministic counterparts [14 , 16].
These methods leverage random numbers to compute approximate solutions, with their
main advantage being the reduced computational cost. For solving least-squares prob-
lems, Meng et al. [15] proposed LSRN, a parallel iterative solver designed for strongly
over-determined or under-determined linear systems. LSRN computes the minimum-
norm solution of the minimization problem minx ∥|Ax−b∥|2, where A ∈ Rm×n, with m ≫ n
or m ≪ n. The requirement that m ≫ n is well-aligned with the structure of our problem,
as m, the number of data points, is typically much larger than n, the number of neurons in
the hidden layer. One of LSRN’s key advantages is that its convergence rate is unaffected
by rank deficiency, making it particularly suitable for ill-conditioned problems.

The algorithm consists of a preconditioning phase followed by the application of an
iterative solver, such as the LSQR algorithm or the Chebyshev semi-iterative method [6].
To construct the preconditioner, a random normal projection is first applied to the matrix
A, followed by an SVD decomposition of the projected matrix. The preconditioned system
is almost surely well-conditioned, enabling the subsequent iterative solver to converge
rapidly. For concreteness, pseudocode of the LSRN algorithm is provided in Algorithm 1 .

Algorithm 1 LSRN (computes x̂ ≈ A†b when m ≫ n).

1: Choose an oversampling factor γ > 1 and set s = ⌈γn⌉.
2: Generate G = randn(s,m), i.e., an s-by-m random matrix whose entries are indepen-

dent random variables following the standard normal distribution.
3: Compute Ã = GA.
4: Compute Ã’s compact SVD Ũ Σ̃Ṽ T , where r = rank(Ã), Ũ ∈ Rs×r, Σ̃ ∈ Rr×r, Ṽ ∈ Rn×r,

and only Σ̃ and Ṽ are needed.
5: Let N = Ṽ Σ̃−1.
6: Compute the min-length solution to miny ∥ANy − b∥2 using an iterative method. De-

note the solution by ŷ.
7: Return x̂ = Nŷ.

A Python 2 implementation of the LSRN algorithm is provided by Meng et al. [15]. For
our experiments, we adapted their code to ensure compatibility with Python 3. Our im-

5

3 Methods

plementation is based on the Numpy [8] and Scipy [21] libraries, with the iterative solver
being the LSQR algorithm, as implemented in Scipy. The code is compatible with the Lin-
earOperator class, an interface for performing matrix-vector and matrix-matrix products
without explicitly forming the matrix. This is particularly advantageous for large-scale
problems, where the matrix A may not fit into memory.

An important consideration in the implementation is managing the memory require-
ments for generating the random matrix G. Naively, the generation of G would require
storing s × m entries, significantly increasing the overall memory footprint. To address
this, the matrix G is generated on blocks, and the matrix-matrix product GA is computed
block-wise, reducing memory consumption. In addition, the block size is tunable, and
should be chosen based on the available memory and the architecture of the system. For
smaller problems in which memory is not a limiting factor, the full matrix G can be gener-
ated at once, which is more efficient than the block-wise approach.

3.2 Split and Solve

An alternative approach to the solution of the minimization problem is to decompose it
into smaller subproblems. The main advantage of this method is that the smaller problems
may fit into memory, enabling the use of direct methods.

In particular, we consider the least squares problem:

min
w

∥|Aw − b∥|2. (3.1)

The matrix A can be seen as column-wise concatenation of smaller matrices A1, . . . , Ak, i.e.

A =
[
A1 · · · Ak

]
. (3.2)

Similarly, the vector w can be decomposed as w =
[
w1 · · · wk

]T , where wi is a row
vector, with dimensions corresponding to the number of columns in Ai.

Given this decomposition, the minimization problem (3.1) can be written as:

min
wi

i=1,...,k

∥|
k∑

i=1

Aiwi − b∥|2 (3.3)

The key idea is to iteratively solve these subproblems. We begin by solving the first
subproblem minw1 ∥A1w1 − b∥2. Defining the residual r1 = A1w1 − b, we can rewrite the
remaining minimization problem as:

min
wi

i=2,...,k

∥|
k∑

i=2

Aiwi − r1∥|2. (3.4)

6

3 Methods

This process is repeated, resulting in a sequence of k least squares problems of the form

min
wi

∥Aiwi − ri−1∥2,

where ri = Aiwi − ri−1, and r0 = b.
In particular for our problem, the matrix A is the output of the hidden layers of the

neural network, when the input data is passed through the network. For example, for a
single hidden layer network with a tanh activation function, the matrix A is given by:

A = tanh(XWh + bh), (3.5)

where X is the input data, Wh is the weight matrix of the hidden layer, and bh is the bias
vector of the hidden layer, assuming a suitable broadcasting operation. To avoid the need
to store the whole matrix A in memory, we can generate the submatrices Ai, by partioning
the weight matrix Wh into smaller submatrices, i.e Wh =

[
W 1

h · · · W k
h

]
, and multiplying

the input data X with each submatrix W i
h.

An important insight here is that in the decomposition of the weight matrix Wh, we have
the flexibility to permute its columns, which can enhance the efficiency of solving the re-
sulting subproblems. For instance, by first sorting the columns of Wh based on their norm,
and then groupping them into k submatrices, we can achieve substantial improvements.
As we will demonstrate in the next section, the ordering of the columns can significantly
affect the accuracy of the method.

7

4 Numerical Experiments

4.1 Direct and Iterative methods

To assess the effectiveness of the proposed methods, we will consider a toy regression
problem. In particular, we will try to approximate the function

f(x, y) = sin (α(x+ y)) , (4.1)

with α ∈ R. The data points will be generated by sampling x, y from a uniform distribu-
tion in the interval [0, 1], and the corresponding labels will be obtained by evaluating the
function f at the sampled points.

In our first numerical experiment, we compare the accuracy of the direct and iterative
methods. In particular, we consider the direct solvers based on the SVD and QR factor-
izations (gelsd and gelsy routines in LAPACK, respectively), and the iterative solvers LSQR
and LSRN. We consider the problem (4.1), with α = 1 and N = 5000 training points. We
use one hidden layer with M = 1000 neurons and the tanh activation function. Given
that, the matrix A has dimensions 5000 × 1001, including the bias term. In addition, we
employ regularization, by using a cutoff value ϵ for small singular values of the matrix,
i.e we consider as zero all singular values smaller than ϵ× σmax, where σmax is the largest
singular value of the matrix. The value of ϵ is set to 10−8.

Figure 4.1 , illustrates the residual norm per iteration for the aforementioned solvers.
The dashed horizontal lines represent direct solvers, while the solid lines represent itera-
tive solvers. First, we observe the LSQR suffers from slow convergence, which is expected
given the high condition number of the matrix. Specifically, the condition number was nu-
merically estimated to be approximately 1031, indicating that the matrix is effectively rank
deficient. The LSRN algorithm though, converges rapidly, since the preconditioning step
ensures that the system to be solved is well-conditioned. We also notice that its accuracy is
comparable to the direct methods, with the QR-based solver being slightly more accurate
than the SVD-based solver.

The next step is to compare the execution time of the solvers. In Table 4.1 , we provide
the average execution time, along with the test and train Mean Absolute Error (MAE) for
each method. We notice that the SVD-based solver is the fastest, followed by the LSRN
algorithm. The QR-based solver is the slowest, but it provides the most accurate solution.
However, the deviations in both the execution time and the accuracy are relatively small.
Given that direct methods are impractical for large-scale problems that exceed available
memory, LSRN emerges as a highly promising solver for such scenarios. It is worth noting

8

4 Numerical Experiments

Figure 4.1: Comparison of the direct and iterative solvers for the regression problem (4.1).
The dashed lines represent the direct solvers, while the solid lines represent
the iterative solvers. It is evident that the randomized preconditioning enables
the rapid convergence of the LSRN algorithm, with accuracy comparable to the
direct methods.

here, that we implemented the LSRN algorithm in Python 3, following the original Python
2 implementation provided by Meng et al. [15]. However, our code is not fully optimized,
so there is room for further improvements in execution time.

Method Time (s) Test MAE Train MAE
SVD 0.84± 0.09 1.29× 10−7 1.18× 10−7

QR 1.45± 0.06 1.10× 10−7 1.01× 10−7

LSRN 1.09± 0.03 1.30× 10−7 1.19× 10−7

Table 4.1: Comparison of the standard LAPACK solvers with the LSRN algorithm. The
results are averaged over 10 runs. We observe that all solvers provide accurate
solutions, with comparable execution times.

To further investigate the scalability of LSRN, we consider a more realistic problem, the

9

4 Numerical Experiments

classification of handwritten digits from the MNIST dataset [5]. This dataset consists of
70000 images of handwritten digits, with 28×28 pixels each. We randomly sampled 63000
images for training and 7000 for testing, while we varied the number of neurons in the
hidden layer from 1000 to 20000. As before, we used the tanh activation function and
regularization, with ϵ = 10−5. The main difference with the previous experiments is that
the matrix A was not stored in memory. Instead, it was stored in the disk, and the matrix-
vector and matrix-matrix products were computed on the fly, using memory-mapped files.

In Figure 4.2 , we show the misclassification rate in the training and test sets, with respect
to the number of neurons in the hidden layer. We see that that with an increasing number
of neurons, the accuracy of the model improves significantly, with a misclassification rate
of approximately 0.2% in the training set for 20000 neurons. It is worth mentioning that
our primary interest lies in the training set accuracy, as our main objective is to obtain an
accurate solution to the optimization problem, rather than focusing on the generalization
performance of the model Nonetheless, the model’s performance on the test set is also
quite good, with a misclassification rate of approximately 2% for 15000 neurons.

As previously mentioned, the LSRN algorithm is particularly well-suited for strongly
over-determined or under-determined problems. As a final step, we examine the effect of
the ratio N/M on the algorithm’s performance, in comparison to the standard SVD-based
solver. Figure 4.3 presents the ratio of the run time of the LSRN algorithm to the SVD-based
solver is shown, with respect to N/M . It is observed that the SVD-based solver consistently
outpeforms the LSRN algorithm, though the performance gap narrows as the ratio N/M
increases. This behavior is expected, as the LSRN algorithm is designed for cases where
N ≫ M or N ≪ M . Nevertheless, even for ratios close to 1, LSRN remains competitive,
with the execution time being approximately 2 times slower than the SVD-based solver.

It is important to note that when the matrix is almost square, memory limitations may
hinder the use of LSRN due to the construction of the projected matrix Ã during the pre-
conditioning step. For the default value of γ = 2, the dimensions of Ã are 2M × M ,
potenially making it twice as large as the original matrix A. Additionally, the computation
of the SVD of Ã can be more challenging than that of the original matrix A, rendering the
preconditioning step inefficient, as it becomes more costly than directly solving the system.

4.2 Split and Solve

In the next set of experiments, we will investigate the effectiveness of the Split and Solve
approach. As described in the previous section, the main idea is to decompose the matrix
A into smaller submatrices, and solve the corresponding subproblems one by one.

As a first step, we will examine the accuracy of the method, i.e the effect of the number
of splits n on the accuracy of the solution. Again, we consider the same setup as before,
with the function f defined in (4.1), N = 5000 training points, and M = 1000 neurons
in the hidden layer. The solver used for the subproblems is the SVD-based solver, with
regularization parameter ϵ = 10−8. In Figure 4.4 , we present both the test and train MAE

10

4 Numerical Experiments

Figure 4.2: Misclassification rate with respect ot the number of neurons in the hidden layer,
for the MNIST dataset. The orange line represents the training set, while the
blue line represents the test set. As expected, the training accuracy improves
with the number of neurons.

with respect to the number of splits. Interestingly, we observe that for small values of n,
the accuracy of the method is even better than solving the full problem directly. However,
as n increases, the accuracy gradually decreases, with n = 9 splits showing essentially the
same MAE as the standard approach.

Additionally, in Figure 4.5 , we show the execution time of the method with respect to n.
Since the execution time decreases with the number of splits, this approach could be very
promising for large-scale problems, especially for small n, where the accuracy is compara-
ble to the standard approach. However, we should note here that, at least with the current
formulation, the method is inherently sequential, since the solution of each subproblem
depends on the previous one.

To further elucidate the reasons behind the effectiveness of the approach, we will repeat
the same experiment, but with different strategies for splitting the matrix A. As described
in the previous section, the splitting of A ultimately depends on the splitting of the weight
matrix W of the hidden layer. In particular, we will consider the following strategies:

11

4 Numerical Experiments

Figure 4.3: Ratio of the run time of the LSRN algorithm to the SVD-based solver, with
respect to the ratio N/M . As N/M increases, the execution times become more
comparable, though the SVD solver consistently remains faster.

(i) Ordered splitting: The weight matrix is split into k submatrices, following the prefined
order of the columns, i.e without any reordering. (ii) Sorted splitting: The columns of the
weight matrix are sorted based on their norm, and then grouped into k submatrices. This
is the strategy used in the previous experiment. (iii) Random splitting: The columns of the
weight matrix are randomly permuted, and then grouped into k submatrices.

In Figure 4.6 , we show the test and train MAE with respect to the number of splits, for
the different strategies. We see that the accuracy is increased only for the sorted splitting
strategy, while the other strategies lead to a gradual decrease, with some fluctuations. This
indicates that the ordering of the columns is an important factor for the effectiveness of the
method. However, we should note that the sorting of the columns can be computationally
expensive, especially for large-scale problems. Since the MAE of the ordered splitting is
comparable to the standard approach, there are scenarios where this strategy could be a
promising alternative.

As a next step, we will investigate how the parameter α in the function f affects the

12

4 Numerical Experiments

Figure 4.4: MAE with respect to the number of splits for the Split and Solve approach. The
orange line represents the training set, while the blue line represents the test set.
The dashed horizontal line represents the accuracy of the standard approach.
An important observation is that for a small number of splits, the method is
more accurate than the standard approach.

behavior of the Split and Solve approach. In Figure 4.7(a) we show the test and train MAE
with respect to the number of splits, for different values of α, with M = 1000 neurons
in the hidden layer. As expected, as α increases, the accuracy of the method decreases,
since the function to be approximated becomes more complex. An interesting observation
is that the phenomenon of increased accuracy for a small number of splits is dependent
on the value of α. More specifically, for α = 5, 10, we do not see any improvement in the
accuracy, compared to the standard approach. To further investigate this, we repeat the
same experiment, but with M = 10000 neurons in the hidden layer, as shown in Figure

 4.7(b) . In this case, for α = 5 but not for α = 10, we observe the same phenomenon. We
conclude that this behavior is dependent on the interplay between the complexity of the
function to be approximated and the approximation power of the model.

As a final experiment, we will consider the LSRN algorithm as the solver for the sub-

13

4 Numerical Experiments

Figure 4.5: Execution time of the Split and Solve approach with respect to the number of
splits. It is clear that the execution time decreases with the number of splits,
with significant improvements for a small number of splits.

problems, and compare its performance with the SVD-based solver. In Figure 4.8 , we show
the test and train MAE with respect to the number of splits, for the two solvers, for differ-
ent values of α. The hidden layer has M = 1000 neurons. The solutions obtained by the
two solvers are almost identical, with a few fluctuations. Since SVD tends to be the fastest
solver, it seems reasonable to use it as a default option. However, LSRN could be useful,
in case we want to keep n small, and even the subproblems do not fit into memory.

14

4 Numerical Experiments

Figure 4.6: MAE with respect to the number of splits for the Split and Solve approach, for
different splitting strategies, as described in the text. The solid lines represent
the training set, while the dashed lines represent the test set. We see that the
increase in accuracy depends on the splitting strategy, with the sorted splitting
strategy being the most effective.

15

4 Numerical Experiments

(a) M = 1000 (b) M = 10000

Figure 4.7: MAE with respect to the number of splits for the Split and Solve approach, for
(a) M = 1000 and (b) M = 10000 neurons in the hidden layer. The different
curves correspond to different values of α, with the solid lines representing the
training set, and the dashed lines representing the test set. We notice that the
phenomenon of increased accuracy for a few splits, is affected by both the value
of α and the approximation power of the model.

16

4 Numerical Experiments

Figure 4.8: MAE with respect to the number of splits, for different values of α and different
solvers. The solid lines represent the training set, while the dashed lines repre-
sent the test set. We conclude that the solutions obtained by the two solvers are
almost identical, with some expected fluctuations.

17

5 Conclusion

In this Guided Research, we explored numerical methods for solving large-scale dense and
ill-conditioned least squares problems, specifically in the context of the SWIM algorithm.
We proposed two approaches, the LSRN algorithm and the Split and Solve method, and
demonstrated their effectiveness. The LSRN algorithm, in particular, is a versatile solver,
with the potential to scale in high-performance computing environments, involving mul-
tiple nodes. In constrant, the Split and Solve method is a more specialized approach, well-
suited for small to medium-scale problems.

A potential area for future work is scaling up these methods to tackle larger problems
by leveraging supercomputing resources. This would require careful optimization of the
algorithms to align with the specific hardware architecture. Additionally, a promising
avenue is the use of Graphics Processing Units (GPUs), which have demonstrated high
efficiency in solving numerical linear algebra problems.

18

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, et al. LAPACK users’ guide. SIAM, 1999.

[2] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

[3] Å. Björck. Numerical methods for least squares problems. SIAM, 2024.

[4] E. L. Bolager, I. Burak, C. Datar, Q. Sun, and F. Dietrich. Sampling weights of deep
neural networks. Advances in Neural Information Processing Systems, 36, 2024.

[5] L. Deng. The mnist database of handwritten digit images for machine learning re-
search. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[6] G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, successive overrelax-
ation iterative methods, and second order richardson iterative methods. Numerische
Mathematik, 3(1):157–168, 1961.

[7] I. Goodfellow. Deep Learning. MIT Press, 2016.

[8] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362,
Sept. 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/
s41586-020-2649-2 .

[9] M. R. Hestenes, E. Stiefel, et al. Methods of conjugate gradients for solving linear systems,
volume 49. NBS Washington, DC, 1952.

[10] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: a new learning
scheme of feedforward neural networks. In 2004 IEEE international joint conference on
neural networks (IEEE Cat. No. 04CH37541), volume 2, pages 985–990. Ieee, 2004.

[11] A. A. Khan, A. A. Laghari, and S. A. Awan. Machine learning in computer vision: a
review. EAI Endorsed Transactions on Scalable Information Systems, 8(32):e4–e4, 2021.

19

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Bibliography

[12] D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[14] M. W. Mahoney et al. Randomized algorithms for matrices and data. Foundations and
Trends® in Machine Learning, 3(2):123–224, 2011.

[15] X. Meng, M. A. Saunders, and M. W. Mahoney. Lsrn: A parallel iterative solver for
strongly over-or underdetermined systems. SIAM Journal on Scientific Computing, 36
(2):C95–C118, 2014.

[16] R. Murray, J. Demmel, M. Mahoney, N. Erichson, M. Melnichenko, O. Malik, L. Grig-
ori, P. Luszczek, M. Dereziński, M. Lopes, et al. Randomized numerical linear al-
gebra: A perspective on the field with an eye to software (2023). DOI: https://doi.
org/10.48550/arXiv, 2302.

[17] T. P. Nagarhalli, V. Vaze, and N. Rana. Impact of machine learning in natural language
processing: A review. In 2021 third international conference on intelligent communication
technologies and virtual mobile networks (ICICV), pages 1529–1534. IEEE, 2021.

[18] C. C. Paige and M. A. Saunders. Lsqr: An algorithm for sparse linear equations and
sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1):43–71,
1982.

[19] A. Rahimi and B. Recht. Uniform approximation of functions with random bases.
In 2008 46th annual allerton conference on communication, control, and computing, pages
555–561. IEEE, 2008.

[20] J. R. Shewchuk et al. An introduction to the conjugate gradient method without the
agonizing pain. 1994.

[21] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cim-
rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.
doi: 10.1038/s41592-019-0686-2.

[22] X. Zhang, L. Wang, J. Helwig, Y. Luo, C. Fu, Y. Xie, M. Liu, Y. Lin, Z. Xu, K. Yan,
et al. Artificial intelligence for science in quantum, atomistic, and continuum systems.
arXiv preprint arXiv:2307.08423, 2023.

20

	Abstract
	Introduction
	Background
	Sampled Networks
	Numerical methods for solving least-squares problems

	Methods
	LSRN
	Split and Solve

	Numerical Experiments
	Direct and Iterative methods
	Split and Solve

	Conclusion
	Bibliography

