
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Consensus-Based Optimization of Sampled
Neural Networks

Melek Walha

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Consensus-Based Optimization of Sampled
Neural Networks

Konsensbasierte Optimierung von gesampelten
neuronalen Netzen

Author: Melek Walha
Supervisor: Prof. Dr. Felix Dietrich
Submission Date: 15.09.2024

I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.09.2024 Melek Walha

Acknowledgments

First and foremost, I dedicate this work to the memory of my beloved father, who always
believed in me. Though he is no longer with us, his spirit continues to guide me, his words
continue to inspire me and I owe any success to his enduring influence.

I would like to extend my deepest gratitude to my advisor, Prof. Dr. Felix Dietrich, for his
invaluable advice and support throughout the course of this thesis. His insights and expertise
have been instrumental in shaping my research and have greatly enriched this work.

I am also profoundly grateful to my family -my mother, my brother and my aunt- for their
endless encouragement and love. Their constant support has been my foundation and I could
not have reached this point without them.

Finally, I see this thesis as just the beginning of my journey. I look forward to the
challenges and opportunities that lie ahead and I am hopeful that this is only the first of
many accomplishments to come.

Abstract

This thesis presents a novel approach to neural network training, integrating the Sample
Where It Matters (SWIM) algorithm with Consensus-Based Optimization (CBO) to create a
derivative-free training methodology. SWIM strategically initializes network parameters by
sampling regions of the data space that are most likely to contain optimal solutions, which
effectively reduces the number of training epochs needed. The CBO method then refines these
parameters by guiding multiple candidate solutions towards consensus through a combination
of deterministic and stochastic updates. This combined SWIM-CBO approach is rigorously
evaluated across various tasks, including regression and classification, using a simple sine
function, a more oscillatory and complicated function and a simplified MNIST dataset. The
results demonstrate that the combined method significantly improves convergence times and
achieves lower final losses compared to the CBO-only approach. Moreover, the analysis of
hyperparameter sensitivity highlights the importance of careful tuning to achieve optimal
performance, offering insights into the potential of derivative-free optimization techniques in
neural network training.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 State of the Art 3
2.1 SWIM and sampled networks . 3

2.1.1 Sampled Networks . 3
2.1.2 SWIM . 4

2.2 Particle Optimization Methods . 6
2.2.1 Key Principles of Particle Optimization 7
2.2.2 Consensus-Based Optimization (CBO) 8

3 Consensus-Based Optimization of Sampled Neural Networks 11
3.1 Motivation and problem definition . 11
3.2 Combined SWIM-CBO Approach . 11

3.2.1 Converting a Sampled Network to a Neural Network (nn.Module) . . . 12
3.2.2 Reinitializing Particles with the _reinitialize_particles Function 13

3.3 Evaluation and Validation . 13
3.3.1 Assessment of Approach Effectiveness 13
3.3.2 Hyperparameter Tuning . 14
3.3.3 Regularization . 16

3.4 Computational Experiments . 16
3.4.1 Sine Function . 17
3.4.2 A More Complicated Function . 17
3.4.3 Simplified MNIST Dataset . 18
3.4.4 Results . 19

4 Conclusion 29
4.1 Summary . 29
4.2 Discussion . 29
4.3 Future Work . 31

List of Figures 32

List of Tables 33

v

Contents

Bibliography 34

vi

1 Introduction

Machine learning has emerged as one of the most influential technologies of the modern era,
with applications spanning across various domains such as healthcare, finance, transportation
and beyond. Its capability to learn from data and make informed decisions without explicit
programming has revolutionized tasks like image recognition, natural language processing
and predictive analytics. Within the broad spectrum of machine learning techniques, neural
networks have attracted significant attention due to their ability to model complex, non-linear
relationships, making them particularly powerful in solving challenging problems [1].

Neural networks, inspired by the neural structure of the human brain [2], consist of layers
of interconnected artificial neurons that process input data to produce an output. These
networks have demonstrated remarkable effectiveness in a wide range of applications, from
simple regression tasks to more sophisticated classification problems. However, training
neural networks, especially those with deep architectures, poses substantial challenges.
The traditional approach to training neural networks relies on gradient-based optimization
methods, such as stochastic gradient descent (SGD) or more advanced variants like Adam [3].
These methods iteratively adjust the network’s parameters -namely weights and biases- to
minimize a loss function, which quantifies the discrepancy between the predicted outputs
and the actual data [4].

While gradient-based methods are effective, they come with significant drawbacks. These
methods are highly sensitive to the initial parameter settings and often struggle with local
minima in the optimization landscape, particularly in the context of deep, non-convex net-
works. Moreover, the computation of gradients can be computationally expensive, especially
for large-scale neural networks, making these methods resource-intensive. To address these
challenges, alternative approaches, such as derivative-free optimization methods, have been
explored, offering a promising solution to the limitations of gradient-based training.

In this thesis, we introduce a novel approach to neural network training that combines two
derivative-free methods: the Sample Where It Matters (SWIM) algorithm [5, 6] and Consensus-
Based Optimization (CBO) [7]. The SWIM algorithm provides an informed initialization by
sampling network parameters in regions of the data space that are likely to contain optimal
solutions, thereby positioning the network closer to the target. Following this initialization,
the CBO method refines these parameters by guiding multiple candidate solutions (particles)
towards a consensus through a combination of deterministic and stochastic updates.

Our research primarily focuses on three training strategies within the combined SWIM-CBO
framework. The first strategy, referred to as "all", involves initializing the parameters of all
layers using SWIM and then training them using the CBO method. The second strategy,
"lin", trains only the parameters of the final linear layer using CBO, under the assumption
that SWIM has effectively optimized the earlier layer. The third strategy, "rand-lin", involves

1

1 Introduction

a combination where the dense layer is initialized using SWIM while the linear layer is
initialized randomly and subsequently trained with CBO.

To thoroughly evaluate the proposed approach, we apply it to a diverse set of problems,
including regression and classification tasks. These tasks are represented by a simple Sine
function, a more oscillatory and complicated function and a simplified MNIST dataset. These
experiments were chosen to test the robustness and adaptability of the SWIM-CBO approach
across different problem types and complexities.

The results from these experiments demonstrated that the combined SWIM-CBO method
significantly improved convergence times and achieved lower final losses compared to the
CBO-only approach. This indicates that the SWIM-CBO approach not only accelerates training
but also enhances the overall accuracy of the models, highlighting its potential for solving
complex optimization problems in neural network training.

This thesis is organized in two main parts: The first part provides a comprehensive overview
of the current state-of-the-art in neural network training methodologies, including in-depth
explanations of sampled networks, SWIM and CBO as one of particle optimization methods.
The second part delves into the proposed combined SWIM-CBO approach, offering insights
into the underlying motivations and problem definition, implementation details and then
presents the results of our computational experiments, highlighting the performance of our
approach.

2

2 State of the Art

2.1 SWIM and sampled networks

Training a neural network has always been a challenging task, not only is it time consuming
but also computationally expensive. The training process generally uses iterative, gradient-
based methods such as Adam and the resulting parameters (weights and biases) are hard
to interpret, which is why a neural network is often referred to as a black box [8]. This
opacity is a significant drawback, especially in critical applications where interpretability
and transparency are crucial. In this section, we will introduce the concept of sampled
networks and the SWIM algorithm, which offer an alternative approach by constructing the
network parameters directly from data point pairs, thereby eliminating the need for iterative
optimization.

2.1.1 Sampled Networks

Sampled networks represent an innovative approach to constructing neural networks by
linking the model parameters directly to specific data points from the input space. Unlike
traditional neural networks, which rely on iterative optimization methods to adjust weights
and biases, sampled networks determine each pair of weight and bias of all its hidden layers
by two points from the input space [5]. This approach ensures that the network is inherently
tied to the given dataset, providing a more intuitive and transparent model structure.

This method offers several benefits [5], from which we highlight the following:

• Efficiency and Accuracy: By avoiding the need for extensive iterative optimization,
sampled networks can be constructed more rapidly. This data-driven method also
provides a more precise and width-efficient approximation compared to traditional
sampling methods that do not consider the dataset structure.

• Interpretability: With weights and biases directly derived from data points, sampled
networks offer a clearer and more understandable connection between the model’s
parameters and the training data. This transparency aids in elucidating the model’s
decision-making processes and overall functionality.

3

2 State of the Art

Figure 2.1: Random feature models choose weights in a data-agnostic way, compared to
sampling them where it matters: at large gradients. The arrows illustrate where
the network weights are placed. Figure taken from [5].

Definition:
In a sampled network, each neuron’s weight vector and bias are determined by two distinct
data points from the input space. Specifically, the weight is calculated as the normalized
difference between these two points, divided by the squared distance between them. The bias,
on the other hand, is computed as the inner product of this weight vector with one of the
data points. This systematic approach ensures that the network’s structure is directly linked
to the training data, forming the foundation for sampled networks.

Formally, a neural network Φ with L hidden layers and an input space X ⊆ RD is defined
as a sampled network if, for each layer l from 1 to L and each neuron i from 1 to Nl , the
weights and biases are determined by pairs of data points (x(1)0,i , x(2)0,i) sampled from X × X.
The weight and bias are given by

wl,i = s1
x(2)l−1,i − x(1)l−1,i

∥x(2)l−1,i − x(1)l−1,i∥2
, bl,i =

〈
wl,i, x(1)l−1,i

〉
+ s2,

where s1 and s2 are scalar constants, x(1)l−1,i and x(2)l−1,i represent the transformed data points in

the l − 1 layer and x(1)l−1,i ̸= x(2)l−1,i. For the output layer, the weights WL+1 and biases bL+1 are
chosen to minimize a specific loss function L.

The values of s1 and s2 depend on the activation function used. For the ReLU activation
function, s1 is set to 1 and s2 to 0, mapping x(1) to zero and x(2) to one. In the case of the tanh
activation function, s1 is set to twice s2, with s2 being ln(3)

2 , which maps x(1) and x(2) to − 1
2

and 1
2 respectively, with their midpoint mapping to zero.

2.1.2 SWIM

2.1.2.1 Overview of the SWIM Algorithm

The "Sample Where It Matters" (SWIM) algorithm is a method proposed to create sampled
networks efficiently. The algorithm focuses on sampling the input space in regions that are
critical for learning. For each hidden layer l, a conditional probability distribution P(l) over
pairs (x(1), x(2)) from X× X is constructed. This distribution prioritizes pairs of points that

4

2 State of the Art

are close in the representation space in the l-th layer but exhibit significant differences in their
true output values.

The SWIM algorithm can be summarized in the following steps:

1. Compute Probability Distribution: For each hidden layer l, compute the probability
distribution P(l) based on the representations of the input points in the previous layer
and their true output values.

2. Sample Data Pairs: Using the computed probability distribution, sample pairs of data
points (x(1), x(2)).

3. Compute Weights and Biases: For each neuron in the hidden layer, compute the weight
vector as the normalized difference between the sampled points and compute the bias
as the inner product of the weight vector with one of the sampled points.

4. Optimize Output Layer: Once all hidden layers are processed, optimize the weights
and biases of the output layer to minimize a loss function L, typically the Mean Squared
Error (MSE), between the actual output values and those predicted by the network. This
is a linear least-squares optimization problem that has a closed form solution and can
be solved quickly and efficiently.

Algorithm 1 A possible implementation of the SWIM Algorithm for an activation function ϕ

and a loss function L
Input: X = {xi : xi ∈ RD, i = 1, 2, . . . , M}, Y = {yi : yi ∈ RNL+1 , i = 1, 2, . . . , M}
Output: {Wl , bl}L+1

l=1
Constant: L ∈N>0, {Nl ∈N>0}L+1

l=1 and s1, s2 ∈ R;
Φ(0)(x) = x;
for l = 1 to L do

P(l) = ComputeProbabilityDistribution(Φ(l−1), X, Y);
Wl ∈ RNl−1,Nl , bl ∈ RNl ;
for i = 1 to Nl do

Sample (x(1), x(2)) from X× X, with probability proportional to P(l);
x(1)l−1,i, x(2)l−1,i ← Φ(l−1)(x(1)), Φ(l−1)(x(2));

Wi,: = s1
x(2)l−1,i−x(1)l−1,i

∥x(2)l−1,i−x(1)l−1,i∥2
;

bi = ⟨Wi,:, x(1)l−1,i⟩+ s2;
end for
Φ(l)(·)← ϕ(Φ(l−1)Wl(·)− bl);

end for
WL+1, bL+1 ← arg minL(Φ(L)(X)WL+1 − bL+1, Y);
return {Wl , bl}L+1

l=1 ;

5

2 State of the Art

2.1.2.2 Implementation: Training a Sampled Network in Python

To illustrate how the SWIM algorithm can be used to train a neural network, we provide a
practical example using Python. Below is a simple code snippet that demonstrates the process
of defining and training a sampled network.

Listing 2.1: Training a sampled network using the SWIM algorithm in Python [6]

from sklearn.pipeline import Pipeline

from swimnetworks import Dense, Linear

Define the SWIM model

steps = [

("dense", Dense(layer_width=512, activation="tanh",

parameter_sampler="tanh",

random_seed=42)),

("linear", Linear(regularization_scale=1e-5))

]

model = Pipeline(steps)

Train the model

model.fit(x_train, y_train)

Predict with the trained model

pred = model.transform(x_test)

As shown in Listing 2.1, a Python implementation is provided to demonstrate the model’s
architecture and training process of the SWIM algorithm. The model consists of a Dense

hidden layer followed by a linear output layer. Specifically, the dense layer uses the Tanh
activation function and contains 512 neurons, defining the core architecture. A sample seed
is used for sampling data points during training, ensuring reproducibility and consistent
behavior across different training runs.

The model is then trained using the fit method on the training dataset (x_train and
y_train), which computes the parameters based on the provided data.

Once training is complete, the model can be used to make predictions on new data, by
applying the transform method on x_test for example for evaluating performance.

2.2 Particle Optimization Methods

Particle optimization methods have gained significant attention due to their effectiveness
in addressing complex, high-dimensional and nonconvex optimization problems. These
challenges often prove difficult for traditional optimization techniques, which may struggle
with issues such as local minima or the computational demands of high-dimensional search
spaces.

One of the key advantages of particle optimization methods is their decentralized and
distributed nature, which enhances the robustness of the approach [9]. In such systems, the

6

2 State of the Art

failure of individual agents typically has minimal impact on the overall performance, making
the methods resilient to disruptions. Furthermore, these methods are inherently scalable,
enabling them to handle large-scale optimization tasks efficiently. The parallelism inherent
in particle-based algorithms allows for the effective utilization of computational resources,
particularly in high-dimensional spaces where traditional methods may falter.

Additionally, particle optimization methods strike a balance between exploration and
exploitation, which is crucial for thoroughly searching the solution space and refining
promising regions. This balance helps to reduce the risk of becoming trapped in local minima,
thereby increasing the likelihood of converging towards a global optimum. Another important
aspect is the simplicity and ease of implementation of many particle optimization algorithms.
These methods do not require gradient information or other complex mathematical constructs,
making them accessible and practical for a wide range of applications.

Due to these attributes, particle optimization methods have proven to be powerful tools
for solving diverse real-world optimization problems across various fields, including finance,
engineering and robotics [10].

2.2.1 Key Principles of Particle Optimization

Particle optimization methods are inspired by self-organization and collective behavior in
nature or human society [11]. This concept can be seen in the swarming of the birds, the
schools of fish, bacterial growth, ant colonies foraging and many more. The key principles of
a particle optimization method include:

• Decentralization: The control is distributed among all agents in the swarm, meaning
that there is no central authority dictating the actions of individual agents.

• Self-Organization: Agents in the swarm interact locally with each other and with their
environment, which leads to the emergence of global behavior from simple local rules.

• Adaptation: Agents are allowed to modify their behavior based on feedback from the
environment and/or other agents.

• Collaboration: Agents work together to explore the solution space, share information
and converge towards optimal solutions.

7

2 State of the Art

Figure 2.2: Depiction of particles (in red) and velocities (black arrows) according to particle
swarm optimization algorithm. The minimum of the cost function is located in
the center of the image (red star).

2.2.2 Consensus-Based Optimization (CBO)

Consensus-Based Optimization (CBO), being one of the particle optimization methods we
discussed earlier, follows its guiding principles, such as decentralization, self-organization
and collaboration, but it is of a much simpler nature and more amenable to theoretical
analysis. CBO is a derivative-free, population-based optimization method designed to
globally minimize nonconvex and non-smooth functions in high-dimensional spaces [12].

CBO uses N particles V1, ..., VN ,which are independently initialized according to some law
ρ0 ∈ P(Rd), to explore the domain and to form a global consensus about the minimizer v∗ as
time passes. The dynamics of each particle are governed by a combination of deterministic
and stochastic components, which guide the particles towards a consensus point while
allowing for sufficient exploration of the solution space. This consensus point is a weighted
average of the particles’ positions and represents the collective opinion of the particle swarm
about the location of the global minimum.

2.2.2.1 Dynamics and Formulation

The CBO method is described by the following stochastic differential equation (SDE) for each
particle i at time t

dVt
i = −λ(Vt

i − vα(ρ
N
t))dt + σD(Vt

i − vα(ρ
N
t))dBt

i , (2.1)

where Vt
i represents the position of particle i at time t.

The term −λ(Vt
i − vα(ρN

t)) in the SDE above is a drift term that promotes the convergence
towards lower objective function values, meaning that λ controls the strength of this drift
and influences the convergence speed of the particles. This ensures that particles are guided

8

2 State of the Art

towards the consensus point, vα(ρN
t), which is a weighted average of the particles’ positions

and is computed as

vα(ρ
N
t) :=

∫
v

ωα(v)
∥ωα∥L1(ρ

N
t)

dρN
t (v), with ωα(v) := exp(−αE(v)), (2.2)

where α > 0 determines the sharpness of the weighting and E(v) is the objective function.
In order to avoid the particles getting stuck in local minima, the diffusivity term σD(Vt

i −
vα(ρN

t)) is incorporated into the dynamics, which introduces randomness into the dynamics
through independent standard Brownian motions

((
Bi

t
)

t≥0

)
i=1,...,N

, allowing particles to

explore the solution space and to explore the energy landscape of E . The two commonly
studied diffusion types are isotropic [12] and anisotropic [11, 13] diffusion with

D
(

Vi
t − vα(ρ̂

N
t)

)
=

{
∥Vi

t − vα(ρ̂N
t)∥2Id, for isotropic diffusion,

diag
(
Vi

t − vα(ρ̂N
t)

)
, for anisotropic diffusion,

where Id ∈ Rd×d is the identity matrix and diag(.) maps a vector onto a diagonal matrix with
the vector as its diagonal. The term’s scaling σ controls the intensity of the diffusion and
encourages in particular particles far from vα(ρ̂N

t) to explore larger regions.

2.2.2.2 Implementation: Training a Neural Network using Consensus-Based Optimization

To demonstrate how CBO can be applied to train a neural network, we present a simplified
Python code snippet. This example illustrates the process of defining a neural network,
setting up the CBO optimizer and executing the training loop.

Listing 2.2: Training a neural network using CBO in Python [7]

from cbo import Optimizer, Loss

Define a neural network by extending nn.Module

class MyNeuralNet(nn.Module):

def __init__(self):

Define the architecture of the network

def forward(self, x):

Define the forward pass of the network

Initialize the model, CBO optimizer and loss function

model = MyNeuralNet()

optimizer = Optimizer(model, n_particles=100, alpha=50, sigma=0.4**0.5,

l=1, dt=0.1, anisotropic=True, eps=1e-2, device='cuda')

loss_fn = Loss(F.nll_loss, optimizer)

9

2 State of the Art

Training loop

for epoch in range(100):

for X, y in train_dataloader:

loss_fn.set_batch(X, y)

optimizer.step()

As shown in Listing 2.2, the Python implementation provides an overview of how Consensus-
Based Optimization (CBO) is applied to train a neural network. The MyNeuralNet class
extends nn.Module, where the neural network structure and forward pass are defined.

The Optimizer class is initialized with the CBO dynamics, including important parameters
such as n_particles (number of particles), alpha, sigma, and dt. These parameters control
how the CBO optimizer guides particles toward a consensus solution.

The training loop follows a structure similar to traditional gradient-based methods, iterating
over a specified number of epochs. For each batch of training data, the optimizer updates the
model parameters based on the CBO dynamics, allowing the model to learn from the data
without the need for gradient calculations.

10

3 Consensus-Based Optimization of Sampled
Neural Networks

3.1 Motivation and problem definition

In the context of optimizing neural networks, the combination of Consensus-Based Optimiza-
tion and the SWIM algorithm presents a compelling approach to address several challenges
associated with high-dimensional, nonconvex optimization tasks.

CBO, being a derivative-free optimization method, has already shown promise by achieving
around 97% accuracy in the MNIST dataset of handwritten digits after few epochs with just
100 particles [13]. However, one can easily notice that the effectiveness of CBO is significantly
influenced by the initial distribution of its particles.

To enhance the initialization process and improve the performance of CBO, we propose
using the SWIM algorithm, which is also a derivative-free method, that samples weights
and biases more strategically based on the underlying data distribution. By initializing the
particles with SWIM, the method ensures that the optimization starts from a more informed
position, potentially closer to the global minimum and giving it a head start compared to
randomly distributed particles. This combination might not only accelerate the convergence
but also improve the overall robustness of the training process, particularly in challenging
scenarios such as nonconvex and high-dimensional spaces.

In this thesis we aim to address the challenge of linking both algorithms and efficiently
training neural networks in a way that both explores the solution space effectively and
converges rapidly to a high-quality solution. The combined SWIM-CBO approach seeks to
optimize this process by leveraging its derivative-free nature, strategically initializing network
parameters and then refining them through the robust consensus-driven dynamics of CBO.
This method is particularly useful in scenarios where traditional gradient-based methods
may struggle, such as in the presence of noisy gradients or complex loss landscapes. By
integrating SWIM with CBO, we aim to overcome these challenges, providing a more effective
and theoretically grounded approach to neural network optimization. The following sections
will delve into the details of this combined approach, its implementation and the results of
computational experiments demonstrating its efficacy.

3.2 Combined SWIM-CBO Approach

In this section, we present the combined SWIM-CBO approach for optimizing neural networks.
For that we will use a model that consists of:

11

3 Consensus-Based Optimization of Sampled Neural Networks

• A dense (fully connected) layer that maps the input to a high-dimensional hidden space.

• A Tanh activation function to introduce non-linearity.

• A linear output layer that maps the hidden representation to the final output.

This architecture seems to work well with sampled network and it allows for flexible initial-
ization and optimization, making it ideal for exploring different strategies in the combined
SWIM-CBO approach.

We will explore the following three cases:

• Case 1: Reinitialize each particle’s model parameters for both layers using SWIM, with
a different random seed For each particle. Then, train all parameters in both layers
using CBO.

• Case 2: Similar to Case 1, but train only the parameters of the final layer (linear layer)
using CBO after reinitializing both layers with SWIM.

• Case 3: Reinitialize only the dense layer using SWIM, leaving the particles in the linear
layer randomly distributed. Then, use CBO to train only the parameters of the final
linear layer.

Remark: The term "reinitialize" is used here because the particles’ parameters in CBO
algorithm are initially randomly distributed, as can be seen in the code snippet below.

Listing 3.1: Particle Initialization in CBO [7]

class Particle(nn.Module):

def __init__(self, model):

"""

Represents a particle in the consensus-based optimization.

Stores a copy of the optimized model.

:param model: the underlying model.

"""

super(Particle, self).__init__()

self.model = deepcopy(model)

for p in self.model.parameters():

with torch.no_grad():

p.copy_(torch.randn_like(p))

3.2.1 Converting a Sampled Network to a Neural Network (nn.Module)

In this subsection, we describe the Python code developed to convert a sampled network,
generated using the SWIM algorithm, into a neural network from PyTorch’s nn.Module so
that it is compatible with CBO algorithm.

The conversion process involves two main classes:

12

3 Consensus-Based Optimization of Sampled Neural Networks

• SwimNet Class: This class defines the neural network architecture, which con-
sists of a dense layer, a Tanh activation function, and a linear output layer. The
load_params_from_swim method in this class imports the weights and biases derived
from the SWIM algorithm into the model’s layers.

• FirstPartModel and SecondPartModel Classes: These classes are used to split the main
model into two separate parts, one containing the dense layer and the other containing
the linear output layer. This split allows for the cases where only the final linear layer is
to be trained using CBO, while the dense layer parameters remain fixed.

The converted model can then be utilized in the CBO framework, where it can be trained and
optimized as part of a particle optimization, leveraging the strengths of both SWIM and CBO.

3.2.2 Reinitializing Particles with the _reinitialize_particles Function

The _reinitialize_particles function plays a crucial role in the combined SWIM-CBO
approach by reinitializing each particle’s model parameters based on different training
strategies. This function allows for flexibility in how particles are initialized, whether fully or
partially and significantly impacts the effectiveness of the optimization process.

The function supports the three main strategies discussed earlier for initializing particles,
that can be specified using the train_strategy parameter with one of the following:

• all: In this strategy, since all parameters will be trained, the main model and particles
are instances of the ‘SwimNet‘ class. We iterate over the particles and for each particle
we create a sampled network using SWIM algorithm with a different random seed.
Then, we use the load_params_from_swim method to load the parameters in both dense
and linear layers.

• lin: In this strategy, the main model is composed of ’FirstPartModel’ (dense layer) and
’SecondPartModel’ (linear layer). Since only the parameters of the linear layer will
be trained using CBO, the particles are instances of ‘SecondPartModel‘. We create a
sampled network using SWIM, convert it to ’FirstPartModel’ and load the parameters.
Afterwards, we reinitialize the linear layer of each particle.

• rand-lin: Similar to the ‘lin‘ strategy, the main model is composed of ’FirstPartModel’
and ’SecondPartModel’. Here only the ’FirstPartModel’ is trained using SWIM, leaving
the particles randomly distributed in the linear layer.

3.3 Evaluation and Validation

3.3.1 Assessment of Approach Effectiveness

To evaluate the effectiveness of the combined SWIM-CBO approach or any neural network
optimization method in general, we consider several key factors that indicate whether the
method is performing well.

13

3 Consensus-Based Optimization of Sampled Neural Networks

One of the primary indicators is the evolution of the loss function over the course of
training, in our case the Mean Squared Error (MSE) loss. Monitoring how the loss decreases
over time gives insight into how well the model is learning. A steady reduction in MSE
suggests that the model is fitting the data increasingly well, while any plateau or increase
may signal issues such as overfitting or insufficient training.

Convergence time is another critical aspect. This refers to how quickly the model reaches a
point where further training does not significantly improve performance. Ideally, the model
should converge in a reasonable number of epochs, indicating that the optimization process
is efficient. A model that requires fewer epochs to achieve a low MSE is considered more
effective, as it demonstrates that the approach is making the most of each training iteration.

In addition to loss and convergence, it is essential to assess the model’s robustness. This
involves testing the SWIM-CBO approach across different datasets, initial conditions and
various types of tasks, such as regression and classification. The method should consistently
perform well across these scenarios, not just in specific cases or with a particular loss function.
Robustness is crucial in a neural network because it demonstrates that the approach is not
only effective under ideal conditions but also reliable in more challenging and varied contexts.

Finally, practical considerations like computational efficiency are also important. This
includes evaluating the time required for training and how well the approach scales with
more complex models or larger datasets. In fact, the paper "Large Scale Distributed Deep
Networks" [14] discusses the trade-offs between model performance and computational
resources and emphasizes the importance of computational efficiency in large-scale neural
network training. Achieving a balance between low loss, quick convergence, robustness across
tasks and computational efficiency is key to determining the overall success and applicability
of the method. Ensuring that the method remains practical and scalable while delivering
strong performance across different scenarios is essential for its adoption in real-world
applications.

3.3.2 Hyperparameter Tuning

Hyperparameters play a crucial role in determining how effectively a model will be trained
and how well it will predict. Even a small adjustment to one of these parameters can
significantly impact the model’s performance. Given their importance, we will discuss in
this subsection each of the hyperparameters used in our approach in detail, examining their
potential individual effects on the training process [12, 11].

• The Number of Particles controls how thoroughly the solution space is explored. More
particles allow for a more comprehensive search, increasing the chances of finding the
global minimum. However, too many particles can lead to increased computational
overhead and slower training, while too few may result in insufficient exploration,
potentially causing the model to converge to a local minimum.

• The Number of Neurons in the Hidden Layer affects the model’s capacity to capture
complex patterns in the data. A larger number of neurons allows the model to learn
more intricate relationships, potentially improving accuracy. However, using too many

14

3 Consensus-Based Optimization of Sampled Neural Networks

neurons can lead to overfitting, where the model performs well on the training data
but poorly on unseen data. Therefore, it is important to find a balance between having
enough neurons to capture the complexity of the data without making the model overly
complex.

• The Alpha (α) parameter controls the weight of the consensus term. Higher values
of this parameter make the particles converge faster to the consensus point. However,
if set too high, it can lead to instability and premature convergence to suboptimal
solutions. In practice, α needs to be carefully tuned to balance the trade-off between
rapid convergence and maintaining diversity among particles.

• The Sigma (σ) parameter governs the amount of noise in the updates of particle
positions. Introducing noise is essential for ensuring that particles can explore the
solution space and avoid getting trapped in local minima. However, too much noise can
lead to divergence and erratic behavior, while too little noise might prevent sufficient
exploration, leading to poor optimization. Since the particles are already well-initialized
with the SWIM algorithm, σ should be kept at a moderate level to prevent losing the
benefits of the initial setup.

• The Lambda (λ) parameter dictates the strength of the consensus term, which encour-
ages particles to stay close to the consensus point. A higher λ value results in particles
clustering more tightly around the consensus, which can accelerate convergence but
might also reduce the ability to explore diverse areas of the solution space. Choosing
the right value for λ is crucial for maintaining a balance between exploitation of known
good regions and exploration of new ones.

• The Time Step (dt) determines the rate at which particle positions are updated. A
smaller dt allows for finer updates and smoother trajectories, potentially leading to
more stable convergence. However, this might also slow down the overall training
process. Conversely, a larger dt can speed up convergence but may risk overshooting
optimal solutions, especially if combined with high σ values.

• The Epsilon (ϵ) parameter sets the threshold for applying random drift. Smaller values
of ϵ mean that random drift is applied more frequently, which can help the particles
escape local minima and explore the solution space more thoroughly. However, if
applied too frequently, it could disrupt convergence. Careful tuning of ϵ is necessary to
ensure that random drift is used effectively to enhance exploration without hindering
overall convergence.

The objective is to find a set of hyperparameters that lead to the best possible performance
in terms of loss minimization, convergence speed and model stability. It is also important to
validate the tuning process on a separate validation set or through cross-validation to ensure
that the chosen parameters generalize well to unseen data.

15

3 Consensus-Based Optimization of Sampled Neural Networks

3.3.3 Regularization

In this subsection, we will talk briefly about regularization, a technique used when training
neural networks to prevent overfitting, ensuring that models generalize well to unseen data.
Overfitting occurs when a model learns not only the underlying patterns in the training data
but also the noise, leading to poor performance on new data. Regularization adds a penalty
to the loss function during training, which discourages the model from becoming too complex
and overly fitted to the training data.

One of the most commonly used regularization methods, which will also be used later in
the experiments, is L1-regularization. Introduced by Robert Tibshirani [15] and also known as
Lasso (Least Absolute Shrinkage and Selection Operator), L1-regularization adds a penalty
term to the loss function that is proportional to the sum of the absolute values of the model’s
weights:

Ltotal = Loriginal +
λ√
N

∑
i
|wi|

Here, Ltotal represents the total loss, Loriginal is the original loss (such as Mean Squared
Error), wi denotes the model’s weights, λ is the regularization parameter that controls the
strength of the penalty and N stands for the number of neurons. The division by

√
N helps

to normalize the regularization term relatively to the size of the model.
One of the benefits of L1 regularization is that it encourages sparsity in the model pa-

rameters by shrinking some of the weights to zero. And by driving some of the weights to
zero, it inherently performs a feature selection, excluding less important features from the
model [16]. This is especially useful in high-dimensional datasets where many features may
be irrelevant or redundant. Additionally, after training, the neurons corresponding to the
weights that have been shrunk to zero are inactive and can be removed, leading to a simpler
and more efficient model. To ensure consistency across our analysis and effectively leverage
this sparsity, a fixed value of λ = 0.01 was applied for L1 regularization in all experiments
that will be discussed later in this thesis.

3.4 Computational Experiments

In this section, we describe three different computational experiments, that we conducted and
were designed to evaluate the effectiveness of the combined SWIM-CBO approach. These
experiments span a range of complexities, from a simple sine function to a modified MNIST
dataset for binary classification. Then, we will go over the numerical results and compare
them to assess the performance of the SWIM-CBO method across different tasks and datasets.

As discussed earlier, each experiment will be tested using three different training strategies:

1. Reinitializing all model parameters for each particle using SWIM and training them
using CBO.

2. Reinitializing both layers with SWIM and training only the linear layer using CBO.

16

3 Consensus-Based Optimization of Sampled Neural Networks

3. Reinitializing only the dense layer with SWIM, leaving particles in the linear layer
randomly distributed and training only the linear layer using CBO.

3.4.1 Sine Function

The first experiment involves predicting the sine of a given input, starting with sin(x) and
progressively increasing the frequency by considering sin(2x), sin(3x) and so on, to evaluate
the model’s ability to generalize across varying frequencies. We generate 100 data points over
the interval [−π, π] and split them into training and test sets using the train_test_split

method from sklearn.model_selection. We opted for a 60% test split to challenge the model
with more test data and evaluate its performance under less training data. However, typical
splits often involve around 2/3 of the data for training and 1/3 for testing.

• Data Generation: The data is generated starting with a simple sine function sin(x) and
then progressively using higher frequencies to observe the effect on model performance.

• Model Configuration: A neural network with an input dimension of 1, a hidden layer
with 15 neurons and an output dimension of 1 is configured.

3.4.2 A More Complicated Function

The second experiment tests the approach on a more oscillatory function defined as
sin(2x1) · cos(3(x1 + x2)). This function introduces more complexity to assess how well the
model handles multiple input features and intricate patterns.

• Data Generation: We generate 10,000 data points by creating a grid over the interval
[−π, π] for two variables x1 and x2, then apply the combined sine-cosine function.

• Model Configuration: The neural network model is adjusted to an input dimension of
2, with a hidden layer of 750 neurons and an output dimension of 1.

−3 −2 −1 0 1 2 3
x1

−3

−2

−1

0

1

2

3

x2

Heatmap of the Function

−3
−2

−1
0

1
2

3

x1

−3
−2

−1
0

1
2

3

x2

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

y

3D Plot of the Function

Figure 3.1: 3D Plot and Heatmap of the Function sin(2x1) · cos(3(x1 + x2)).

17

3 Consensus-Based Optimization of Sampled Neural Networks

3.4.3 Simplified MNIST Dataset

The third experiment applies the SWIM-CBO method to a simplified version of the MNIST
dataset, focusing on binary classification between the digits 1 and 8. This experiment is
intended to evaluate the approach on categorical data and classification tasks.

• Data Preparation: The MNIST dataset is filtered to include only the digits 1 and
8 and the labels are one-hot encoded for binary classification. We again used the
train_test_split function, allocating 60% of the data to the test set to emphasize
model evaluation under limited training conditions.

• Model Configuration: The model is defined with an input dimension of 784, a hidden
layer with 400 neurons and an output dimension of 2.

The following code snippet demonstrates the data generation process:

Listing 3.2: Data Generating in Simplified MNIST Dataset

from sklearn.datasets import fetch_openml

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import OneHotEncoder

import numpy as np

Fetch the MNIST dataset

mnist = fetch_openml('mnist_784', version=1)

X, y = mnist["data"], mnist["target"].astype(np.int8)

Filter out only the digits 1 and 8

mask = (y == 1) | (y == 8)

x_dataset = np.array(X[mask]).astype(np.float32)

y_dataset = np.array(y[mask]).astype(np.int64)

One-hot encode the labels

onehot_encoder = OneHotEncoder(sparse_output=False)

y_dataset = onehot_encoder.fit_transform(y_dataset.reshape(-1, 1))

Split the data into training and testing sets

x_train, x_test, y_train, y_test = train_test_split(x_dataset, y_dataset,

test_size=0.6, random_state=123)

As shown in Listing 3.2, this Python implementation outlines the data preparation process
for a simplified MNIST dataset, focusing solely on the digits 1 and 8.

The fetch_openml function retrieves the full MNIST dataset, which includes all digits from
0 to 9. We then filter the dataset to keep only the digits labeled as 1 and 8 by applying a
mask. This selective filtering reduces the complexity of the classification task, enabling a
more focused binary classification between these two digits.

18

3 Consensus-Based Optimization of Sampled Neural Networks

Next, the OneHotEncoder is used to transform the labels into a one-hot encoded binary
format, where each label is represented by a binary vector.

Finally, the dataset is split into training and testing sets using the train_test_split

function, with 60% of the data allocated to testing. This higher testing proportion is designed
to challenge the model more rigorously and provide a robust evaluation compared to the
standard 1/3 testing split. The random seed ensures reproducibility in the dataset splitting
process.

3.4.4 Results

All computational experiments described earlier were conducted on a system equipped with
an AMD Ryzen 7 7840HS CPU 3.80 GHz, 32 GB of DDR5 RAM and an NVIDIA GeForce
RTX 4070 Mobile GPU with 8 GB RAM and CUDA support utilized in the CBO algorithm.

The following subsections will detail the results obtained from the various experiments
conducted using the three different training strategies.

3.4.4.1 Reinitialization Impact

In this subsection, we aim to compare the impact of different reinitialization strategies on
the optimization process across the three experiments. We used the same hyperparameters
across the CBO-only, all, lin and rand-lin strategies to observe the general tendencies of each
approach under consistent conditions.

Hyperparameter
Value Used in
Sine Function

Value Used in
Complicated

Function

Value Used in
Simplified MNIST

Number of Epochs 10 10 25
Neurons in Hidden Layer 18 750 400
Number of Particles 30 75 100
Batch Size 7 100 200
Alpha (α) 50 50 75
Sigma (σ) 5e-6 5e-6 5e-7
Lambda (λ) 1 1 1
Time Step (dt) 1e-3 5e-3 5e-3
Epsilon (ϵ) 1e-3 1e-3 1e-3

Table 3.1: Hyperparameters Values Used Across Different Experiments.

19

3 Consensus-Based Optimization of Sampled Neural Networks

Experiment Strategy Final MSE Loss Reinitialization Time Training Time

Sine Function

CBO-only 0.7582 0s 1.431s
all 0.00904 0.0142s 1.282s
lin 6.91e-7 0.009s 0.975s

rand-lin 0.2503 0.0011s 0.9721s

Complicated
Function

CBO-only 1.672168 0s 17.524s
all 0.001635 34.707s 18.437s
lin 0.026376 30.348s 11.858s

rand-lin 7.952826 0.0015s 11.7787s

Simplified
MNIST

CBO-only 6.5949 0s 58.567s
all 0.023731 19.7s 64.0818s
lin 0.012755 14.285s 32.884s

rand-lin 0.23454 0.0324s 29.663s

Table 3.2: Combined Results for All Experiments: Final MSE Loss, Reinitialization and Train-
ing Time.

Sine Function Experiment

2 4 6 8 10
Epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Lo
g
Lo
ss

Log Loss History for Different Strategies

All
CBO-Only
Linear
Random Linear

Figure 3.2: Log Loss Evolution Comparison for Sine Function Experiment.

Discussion: The results in Table 3.2 clearly demonstrate the significant impact of the
SWIM-CBO approach on both training efficiency and model accuracy. The "all" and "lin"
reinitialization strategies, in particular, achieved final losses several orders of magnitude lower
than the CBO-only approach. This is due to SWIM’s effectiveness in initializing the network
parameters close to the optimal solution. The "rand-lin" strategy, while not as effective as the

20

3 Consensus-Based Optimization of Sampled Neural Networks

others, still outperforms CBO-only in both final loss and time efficiency.
The log loss evolution graph (Figure 3.2) further illustrates this point, showing a rapid drop
in loss for the "all" strategy right from the first epoch, indicating that these models are already
near-optimal at initialization. The "rand-lin" strategy and especially the "lin" strategy show a
better starting point than CBO-only approach, which starts with a much higher initial loss
and converges more slowly. This highlights the impact of the reinitialization using SWIM for
a more efficient optimization.

Complicated Function Experiment

2 4 6 8 10
Epochs

10−3

10−2

10−1

100

101

Lo
g
Lo
ss

Log Loss History for Different Strategies

All
CBO-Only
Linear
Random Linear

Figure 3.3: Log Loss Evolution Comparison for Complicated Function Experiment.

Discussion: The results in Table 3.2 once again highlight the impact of the SWIM reinitial-
ization on the final model performance. The "all" and "lin" strategies yielded significantly
lower final MSE losses compared to the CBO-only approach, showcasing the effectiveness of
SWIM in providing a more informed initialization.

Although the "rand-lin" strategy started with a better initial loss compared to CBO-only,
as it can be seen in the log loss evolution graph (Figure 3.3), it ended up with a higher final
loss after 10 epochs. This suggests that while SWIM reinitialization provides a good starting
point, it is not always sufficient on its own without adequate training epochs. The "all" and
"lin" strategies on the other hand show from the beginning a constant low loss and maintain
it consistently throughout the training process.

21

3 Consensus-Based Optimization of Sampled Neural Networks

Simplified MNIST Dataset Experiment

0 5 10 15 20 25
Epochs

10−2

10−1

100

101

102

Lo
g

Lo
ss

Log Loss His ory for Differen S ra egies
All
CBO-Only
Linear
Random Linear

Figure 3.4: Log Loss Evolution Comparison for Simplified MNIST Dataset Experiment.

Predicted
1 8

A
ct

ua
l 1 3440 1268

8 1987 2127
(a) CBO-only Strategy

Predicted
1 8

A
ct

ua
l 1 4673 35

8 79 4035
(b) All Strategy

Predicted
1 8

A
ct

ua
l 1 4674 34

8 37 4077
(c) Lin Strategy

Predicted
1 8

A
ct

ua
l 1 4453 255

8 1411 2703
(d) Rand-Lin Strategy

Figure 3.5: Confusion Matrices for Training Strategy Used in The Simplified MNIST Dataset
Experiment: True labels vs. Predicted labels for digits 1 and 8.

Discussion: As with the previous experiments, the results in Table 3.2 show that the SWIM-
CBO approach achieves significantly better outcomes compared to the CBO-only strategy.
Both the "all" and "lin" strategies produced much lower final MSE losses, highlighting the
effectiveness of the SWIM algorithm in providing a well-informed initialization.

The log loss evolution graph in Figure 3.4 further supports this observation, showing that

22

3 Consensus-Based Optimization of Sampled Neural Networks

the SWIM-CBO approaches start with a much lower loss than the CBO-only method. This
improved start is crucial in setting the trajectory for more effective training.

To quantify the performance in terms of classification accuracy, we use the following
formula

Accuracy =
True Positives + True Negatives

Total Samples

- **CBO-only**: Accuracy = 3440+2127
8822 ≈ 63.11%

- **All**: Accuracy = 4673+4035
8822 ≈ 98.71%

- **Lin**: Accuracy = 4674+4077
8822 ≈ 99.19%

- **Rand-Lin**: Accuracy = 4453+2703
8822 ≈ 81.12%

These results clearly demonstrate that the SWIM-CBO strategies, particularly "all" and
"lin", yield higher classification accuracy compared to the CBO-only and "rand-lin" strategies,
highlighting the advantage of SWIM reinitialization. By effectively skipping the initial struggle
of finding a good starting point, the "all" and "lin" strategies achieve excellent results in fewer
epochs, demonstrating their efficiency in reaching optimal solutions more rapidly.

3.4.4.2 Number Of Epochs And Convergence Time

While the SWIM-CBO approach demonstrated superior performance with the specific hy-
perparameters used in the previous experiments, this might not be universally true across
all scenarios. Each experiment and training strategy may require different hyperparameter
configurations to achieve optimal results. Therefore, to ensure a fair comparison, we will train
each strategy with its optimal hyperparameters until convergence. We will then compare the
time required, the number of epochs and the overall efficiency of the training process.

Since this analysis requires substantial computational resources and time, we will focus
solely on the complicated function experiment with the model described in Section 3.2 using
750 neurons in the hidden layer.

23

3 Consensus-Based Optimization of Sampled Neural Networks

Strategy Optimal Hyperparameters Time Spent
Number of

Epochs
Final MSE

Loss

CBO-only
Particles: 100, Alpha: 50
Sigma: 5e-2, Lambda: 1

dt: 0.2, Epsilon: 1e-2
166.022s 75 0.2345

all
Particles: 75, Alpha: 75
Sigma: 5e-6, Lambda: 1
dt: 5e-3, Epsilon: 1e-3

40.184s 5 0.001629

lin
Particles: 75, Alpha: 50
Sigma: 5e-2, Lambda: 1

dt: 0.2, Epsilon: 1e-2
35.507s 5 0.02638

rand-lin
Particles: 100, Alpha: 50
Sigma: 3e-2, Lambda: 1

dt: 0.5, Epsilon: 1e-2
222.127s 120 0.1996

Table 3.3: Optimal Hyperparameters, Time Spent, Number of Epochs and Final Loss for Each
Strategy in the Complicated Function Experiment.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) CBO-only Strategy

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b) All Strategy

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(c) Lin Strategy

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(d) Rand-Lin Strategy

Figure 3.6: Final Heatmap of The Predicted Functions for Each Training Strategy under
Optimal Conditions in the Complicated Function Experiment.

24

3 Consensus-Based Optimization of Sampled Neural Networks

0 20 40 60 80 100 120
Epochs

10−2

10−1

100

Lo
g

Lo
ss

Log Loss Histo y fo Diffe ent St ategies
All
CBO-Only
Linear
Random Linear

Figure 3.7: Log Loss Evolution Comparison for Each Training Strategy under Optimal Condi-
tions in the Complicated Function Experiment.

Discussion: The results confirm that the SWIM-CBO approach consistently outperforms the
CBO-only strategy, even under optimal conditions for each training strategy. This conclusion
is supported by the data presented in Table 3.3, where both "all" and "lin" strategies achieved
significantly lower MSE losses compared to both the CBO-only and "rand-lin" strategies,
though "rand-lin" still benefits from the SWIM reinitialization but was less effective than the
other combined approaches.

Analyzing the results further, the heatmaps in Figure 3.6 visually illustrate the superior
performance of the combined approaches. The "all" and "lin" strategies not only maintained a
low loss and required fewer epochs but produced heatmaps that more closely resemble the
true function. As seen in Figure 3.7, their loss remained stable and almost constant, indicating
that additional epochs would be unnecessary as the models had already efficiently converged.

However, it is important to note that the "rand-lin" strategy exhibited a slower start
compared to CBO-only, requiring more time and epochs to converge. Despite this initial
lag, it ultimately produced better results than CBO-only, as evidenced in both the heatmaps
and the final MSE losses. This suggests that even with the same number of particles, the
random linear strategy benefits from the SWIM reinitialization and eventually surpassing the
CBO-only approach in performance.

Interestingly, the CBO algorithm on the "lin" strategy did not show further improvement
after reinitialization, resulting in a final loss similar to that achieved by SWIM alone. This
suggests that SWIM already provides a strong approximation and since the "lin" strategy only
refines the linear layer, there is limited room for further enhancement.

Overall, the combined SWIM-CBO approaches, particularly "all" and "lin", demonstrate
a more efficient optimization process, reaching optimal solutions more rapidly and with

25

3 Consensus-Based Optimization of Sampled Neural Networks

fewer resources compared to CBO-only and "rand-lin." This confirms the robustness and
effectiveness of SWIM reinitialization across different configurations.

3.4.4.3 Hyperparameter Sensitivity and Loss Evolution

Since each scenario is unique and requires its own set of optimal hyperparameters, we explore,
in this subsection, the role of individual hyperparameters by varying them one at a time
while keeping the others fixed, in order to observe their impact on the model’s performance.
In other words, we will analyze how specific changes in hyperparameters affect the loss
evolution and, consequently, the overall effectiveness of the training strategy.

Impact of Sigma on Convergence and Loss

We begin our sensitivity analysis by focusing on the σ parameter in the Complicated Function
Experiment using the "all" training strategy. σ is chosen because it directly influences the
amount of noise introduced during the training process, playing a critical role in preventing
the particles from getting trapped in local minima and affecting the exploration of the solution
space. To observe its impact on the model performance, we will fix all other hyperparameters
at their optimal values, as determined in Subsection 3.4.4.2, but with an increased number of
epochs to better observe the loss evolution. We will vary σ across a range of values {10−1,
10−2, 10−3, 10−4, 10−5, 10−7}.

0 5 10 15 20 25 30
Epochs

10−3

10−2

10−1

100

101

102

103

Lo
g
Lo
ss

Log Loss Evolution for Different Sigma Values

σ=10−1
σ=10−2
σ=10−3
σ=10−4
σ=10−5
σ=10−7

Figure 3.8: Log Loss Evolution Comparison for Different Sigma Values in the Complicated
Function Experiment.

26

3 Consensus-Based Optimization of Sampled Neural Networks

Impact of Number of Particles on Convergence and Loss

We now shift our focus to analyzing the impact of the number of particles in the Com-
plicated Function Experiment using the "all" training strategy. The number of particles is a
crucial parameter as it determines the extent to which the solution space is explored. We
expect that a higher number of particles lead to more thorough exploration and potentially
faster convergence or better final results. To evaluate its impact, we will maintain all other
hyperparameters at their optimal values, as determined in Subsection 3.4.4.2, while varying
the number of particles across a range {50, 75, 100, 150, 200}.

Number of Particles Reinitialization Time Training Time
50 21.529s 20.174s
75 31.744s 24.676s
100 40.965s 32.527s
150 63.894s 45.736s
200 91.422s 61.332s

Table 3.4: Reinitialization and Training Times for Different Numbers of Particles in the Com-
plicated Function Experiment.

0.0036100

0.0036125

0.0036150

0.0036175

0.0036200

0.0036225

0.0036250

Lo
ss

n_particles = 50
n_particles = 75
n_particles = 100
n_particles = 150
n_particles = 200

2 4 6 8 10 12 14
Epochs

0.001628

0.001630

0.001632

0.001634

0.001636

0.001638

0.001640

Lo
ss

Loss Evolution for Different Numbers of Particles

Figure 3.9: Loss Evolution Comparison for Different Numbers of Particles in the Complicated
Function Experiment.

27

3 Consensus-Based Optimization of Sampled Neural Networks

Discussion: The results demonstrate that increasing the number of particles initially leads to
better performance, as seen ine the Figure 3.9 when comparing 50 and 75 particles. The model
with 75 particles outperformed the one with 50, indicating that a greater number of particles
allows for more thorough exploration of the solution space, resulting in faster convergence.
However, this trend did not continue with higher particle counts. The performance with 100,
150 and 200 particles was nearly the same as with 75 particles and in some cases, particularly
with 200 particles, the results were worse. This suggests that beyond a certain point, adding
more particles does not necessarily improve the model’s performance. Instead, it increases
the computational cost and time, leading to inefficient training without significant gains in
accuracy.

As shown in Table 3.4, the reinitialization and training times increased substantially with
the number of particles. Therefore, while a sufficient number of particles is essential for
effective optimization, there is a point of diminishing returns where more particles do not
contribute to better results but instead waste computational resources. The goal should be to
find a balanced number of particles that provides efficient training and optimal performance
without unnecessary overhead.

28

4 Conclusion

4.1 Summary

This thesis explored the challenges of optimizing neural networks, particularly in complex,
high-dimensional, nonconvex spaces and proposed a solution by combining two derivative-
free approaches, leveraging the strength of both Sample Where It Matters (SWIM) and the
Consensus-Based Optimization (CBO) to enhance the training of neural networks.

In the first part of the thesis, we provided an overview of the current state-of-the-art in
neural network training methodologies, including sampled networks, SWIM and CBO as one
of the particle optimization methods. The second part focused on the proposed combined
SWIM-CBO approach, offering insights into the underlying motivations, problem definition,
implementation details and presenting the results of computational experiments to evaluate
the performance of the approach.

Three distinct training strategies -"all", "lin" and "rand-lin"- were presented in Section 3.2
and examined throughout the thesis. In the subsequent section, we assessed the effectiveness
of the approach and conducted a detailed analysis of the hyperparameters to understand
their impact on the model’s performance.

The experiments and results were presented in Section 3.4, where the SWIM-CBO approach
was evaluated across various tasks, including regression and classification. The results
consistently demonstrated the effectiveness of the SWIM-CBO methods compared to the
CBO-only approach, showing significant improvements in convergence time, final loss and
overall performance. Additionally, we analyzed the sensitivity of the model to changes in
hyperparameters, such as the number of particles and the noise parameter σ, highlighting
their critical role in the optimization process.

4.2 Discussion

The combined SWIM-CBO approach has demonstrated its potential to improve the opti-
mization process when compared to the CBO-only method. Results from the computational
experiments consistently highlighted the key strengths of this approach, particularly in terms
of reduced convergence time and lower final loss, particularly in cases where noisy gradients
or complex loss landscapes hinder performance, in which traditional methods often face
difficulties.

A key insight from this work is the critical role played by SWIM in providing a more
informed initialization and better initial conditions. By strategically sampling the parameter
space, SWIM allowed the model to begin optimization from a more advantageous starting

29

4 Conclusion

point, leading to faster convergence. Both the "all" and "lin" strategies, which fully reinitialize
the parameters using SWIM, clearly outperformed the CBO-only approach in terms of
convergence speed and final loss values. This advantage is especially pronounced in high-
dimensional problems, where random initialization often struggles to provide an optimal
starting point for optimization. The promising results from these experiments suggest that
SWIM’s impact is not problem-specific but could be generalized to a wider range of tasks.

The performance of the "rand-lin" strategy, while an improvement over CBO-only, under-
scored the importance of effectively initializing all layers of the network. Leaving the linear
layer randomly initialized introduced variability that hindered the overall performance of the
model. This suggests that SWIM’s advantage extends across both non-linear and linear layers
and and initializing all layers could be beneficial in more complex neural networks. However,
the extent to which this holds in deeper and more complex networks remains to be explored.

Beyond initialization, the analysis of hyperparameters revealed key trade-offs that must
be managed to achieve optimal performance. Increasing the number of particles in the CBO
algorithm improves exploration of the solution space by allowing for a more exhaustive
search, thereby reducing the risk of becoming trapped in suboptimal solutions. However, this
benefit comes with higher computational costs. As seen in the experiments, beyond a certain
threshold, increasing the number of particles resulted in diminishing returns, with increased
training times and minimal improvement in final loss. This highlights that while particle
count is crucial for exploration, there is a point where the computational cost outweighs the
benefits. Achieving the right balance between particle number and computational efficiency
is essential, depending on the problem at hand.

The noise parameter σ also plays a crucial role in determining the effectiveness of the
optimization process. Noise helps promote exploration and prevents particles from getting
stuck in local minima, but excessive noise can disrupt the optimization process, leading to
inefficient or unstable convergence. Tuning σ is therefore essential for balancing exploration
and exploitation during training.

These findings reinforce the importance of careful hyperparameter tuning. Each hyperpa-
rameter has a distinct impact on the model’s performance and the combined SWIM-CBO
approach shows that optimal hyperparameters must be tailored to the specific task. In
real-world applications, where problem complexity and data characteristics vary widely,
careful tuning is crucial to balance the trade-offs between exploration, convergence and
computational cost.

In conclusion, the SWIM-CBO approach presents a promising method for improving neural
network training, particularly in terms of convergence speed and final performance. However,
its full potential has yet to be realized, as more extensive testing is required on larger models
and more challenging datasets. The method’s scalability and effectiveness in more demanding
scenarios remain areas for future exploration.

The next section will outline potential directions for future work, including ways to further
test and improve the SWIM-CBO approach, as well as its potential application to more
complex neural network architectures and broader optimization challenges.

30

4 Conclusion

4.3 Future Work

Building on the findings of this thesis, several promising avenues for future research could
further enhance and extend the SWIM-CBO approach. One significant direction involves
extending the SWIM-CBO method to larger and more complex neural architectures. While
this study focused on relatively simple models to demonstrate the approach’s effectiveness,
future work could explore its application to more intricate models. This exploration is crucial
because mastering SWIM-CBO’s scalability and efficiency in complex architectures would lay
the foundation for its application to real-world datasets, which often involve high complexity
and large-scale data.

Further research should also consider a deeper investigation into the impact of additional
hyperparameters. While this thesis analyzed the sensitivity of a select few, other parameters
such as timestep, L1-constant or alpha could also play a significant role in optimizing
the SWIM-CBO approach. Understanding the influence of these parameters could lead to
improved guidelines for their selection, thereby enhancing the robustness and effectiveness of
the combined optimization method.

Additionally, experimenting with different activation functions in the combined approach
could yield valuable insights. Activation functions play a crucial role in determining the
output of neural networks and testing the SWIM-CBO method across various activation
functions could reveal which combinations are most effective in different scenarios.

Another important area for future research is the exploration of alternative regularization
techniques. This thesis employed L1 regularization to encourage sparsity in model parame-
ters, aiding in feature selection. However, future studies could investigate the effects of L2
regularization, which penalizes the square of the weights or elastic net regularization, which
combines both L1 and L2 penalties. Such an investigation could provide valuable insights
into the trade-offs between sparsity and generalization, leading to more comprehensive
hyperparameter tuning strategies that are better suited to specific tasks.

Ultimately, the work on more complex neural architectures and the deeper understand-
ing of hyperparameters are crucial preparatory steps for applying the SWIM-CBO approach
to real-world datasets. Testing this method on complex, noisy and large-scale datasets from
domains such as natural language processing, computer vision, and bioinformatics would
validate its practical utility and assess its performance across diverse scenarios. Addressing
these real-world challenges would not only demonstrate the approach’s robustness but could
also identify areas for further refinement, contributing to the broader field of derivative-free
optimization in machine learning.

31

List of Figures

2.1 Random feature models choose weights in a data-agnostic way, compared to
sampling them where it matters: at large gradients. The arrows illustrate where
the network weights are placed. Figure taken from [5]. 4

2.2 Depiction of particles (in red) and velocities (black arrows) according to particle
swarm optimization algorithm. The minimum of the cost function is located in
the center of the image (red star). 8

3.1 3D Plot and Heatmap of the Function sin(2x1) · cos(3(x1 + x2)). 17
3.2 Log Loss Evolution Comparison for Sine Function Experiment. 20
3.3 Log Loss Evolution Comparison for Complicated Function Experiment. 21
3.4 Log Loss Evolution Comparison for Simplified MNIST Dataset Experiment. . . 22
3.5 Confusion Matrices for Training Strategy Used in The Simplified MNIST

Dataset Experiment: True labels vs. Predicted labels for digits 1 and 8. 22
3.6 Final Heatmap of The Predicted Functions for Each Training Strategy under

Optimal Conditions in the Complicated Function Experiment. 24
3.7 Log Loss Evolution Comparison for Each Training Strategy under Optimal

Conditions in the Complicated Function Experiment. 25
3.8 Log Loss Evolution Comparison for Different Sigma Values in the Complicated

Function Experiment. 26
3.9 Loss Evolution Comparison for Different Numbers of Particles in the Compli-

cated Function Experiment. 27

32

List of Tables

3.1 Hyperparameters Values Used Across Different Experiments. 19
3.2 Combined Results for All Experiments: Final MSE Loss, Reinitialization and

Training Time. 20
3.3 Optimal Hyperparameters, Time Spent, Number of Epochs and Final Loss for

Each Strategy in the Complicated Function Experiment. 24
3.4 Reinitialization and Training Times for Different Numbers of Particles in the

Complicated Function Experiment. 27

33

Bibliography

[1] J. Kufel, K. Bargieł-Łączek, S. Kocot, M. Koźlik, W. Bartnikowska, M. Janik, Ł. Czogalik, P.
Dudek, M. Magiera, A. Lis, I. Paszkiewicz, Z. Nawrat, M. Cebula, and K. Gruszczyńska.
“What Is Machine Learning, Artificial Neural Networks and Deep Learning?—Examples
of Practical Applications in Medicine”. In: Diagnostics 13.15 (2023). issn: 2075-4418. doi:
10.3390/diagnostics13152582. url: https://www.mdpi.com/2075-4418/13/15/2582.

[2] M. Islam, G. Chen, and S. Jin. “An overview of neural network”. In: American Journal of
Neural Networks and Applications 5.1 (2019), pp. 7–11.

[3] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.
6980 [cs.LG]. url: https://arxiv.org/abs/1412.6980.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-
propagating errors”. In: Nature 323.6088 (1986), pp. 533–536. doi: 10.1038/323533a0.
url: https://doi.org/10.1038/323533a0.

[5] E. L. Bolager, I. Burak, C. Datar, Q. Sun, and F. Dietrich. Sampling weights of deep neural
networks. 2023. arXiv: 2306.16830 [cs.LG]. url: https://arxiv.org/abs/2306.16830.

[6] F. Dietrich. swimnetworks. https : / / gitlab . com / felix . dietrich / swimnetworks.
Python code repository. 2023.

[7] I. Tukh. cbo-in-python. https://github.com/Igor-Tukh/cbo-in-python. Python code
repository. 2022.

[8] J. E. Dobson. “On Reading and Interpreting Black Box Deep Neural Networks”. In:
International Journal of Digital Humanities 5.2 (2023), pp. 431–449. doi: 10.1007/s42803-
023-00075-w. url: https://doi.org/10.1007/s42803-023-00075-w.

[9] A. Gad. “Particle Swarm Optimization Algorithm and Its Applications: A Systematic
Review”. In: Archives of Computational Methods in Engineering 29 (Apr. 2022), pp. 2531–
2561. doi: 10.1007/s11831-021-09694-4.

[10] C.-H. Chen, T.-K. Liu, and J.-H. Chou. “A Novel Crowding Genetic Algorithm and Its
Applications to Manufacturing Robots”. In: IEEE Transactions on Industrial Informatics 10
(Aug. 2014). doi: 10.1109/TII.2014.2316638.

[11] M. Fornasier, T. Klock, and K. Riedl. “Convergence of Anisotropic Consensus-Based
Optimization in Mean-Field Law”. In: Lecture Notes in Computer Science. Springer Inter-
national Publishing, 2022, pp. 738–754. isbn: 9783031024627. doi: 10.1007/978-3-031-
02462-7_46. url: http://dx.doi.org/10.1007/978-3-031-02462-7_46.

34

https://doi.org/10.3390/diagnostics13152582
https://www.mdpi.com/2075-4418/13/15/2582
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://arxiv.org/abs/2306.16830
https://arxiv.org/abs/2306.16830
https://gitlab.com/felix.dietrich/swimnetworks
https://github.com/Igor-Tukh/cbo-in-python
https://doi.org/10.1007/s42803-023-00075-w
https://doi.org/10.1007/s42803-023-00075-w
https://doi.org/10.1007/s42803-023-00075-w
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.1109/TII.2014.2316638
https://doi.org/10.1007/978-3-031-02462-7_46
https://doi.org/10.1007/978-3-031-02462-7_46
http://dx.doi.org/10.1007/978-3-031-02462-7_46

Bibliography

[12] M. Fornasier, T. Klock, and K. Riedl. Consensus-Based Optimization Methods Converge
Globally. 2024. arXiv: 2103.15130 [math.NA]. url: https://arxiv.org/abs/2103.
15130.

[13] M. Fornasier, H. Huang, L. Pareschi, and P. Sünnen. Anisotropic Diffusion in Consensus-
based Optimization on the Sphere. 2021. arXiv: 2104.00420 [math.OC]. url: https://
arxiv.org/abs/2104.00420.

[14] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, A. Ranzato, A.
Senior, P. Tucker, K. Yang, and A. Ng. “Large Scale Distributed Deep Networks”. In:
Advances in neural information processing systems (Oct. 2012).

[15] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 58.1 (1996), pp. 267–288. issn: 00359246. url:
http://www.jstor.org/stable/2346178 (visited on 08/25/2024).

[16] I. Nusrat and S.-B. Jang. “A Comparison of Regularization Techniques in Deep Neural
Networks”. In: Symmetry 10.11 (2018). issn: 2073-8994. doi: 10.3390/sym10110648. url:
https://www.mdpi.com/2073-8994/10/11/648.

35

https://arxiv.org/abs/2103.15130
https://arxiv.org/abs/2103.15130
https://arxiv.org/abs/2103.15130
https://arxiv.org/abs/2104.00420
https://arxiv.org/abs/2104.00420
https://arxiv.org/abs/2104.00420
http://www.jstor.org/stable/2346178
https://doi.org/10.3390/sym10110648
https://www.mdpi.com/2073-8994/10/11/648

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the Art
	SWIM and sampled networks
	Sampled Networks
	SWIM

	Particle Optimization Methods
	Key Principles of Particle Optimization
	Consensus-Based Optimization (CBO)

	Consensus-Based Optimization of Sampled Neural Networks
	Motivation and problem definition
	Combined SWIM-CBO Approach
	Converting a Sampled Network to a Neural Network (nn.Module)
	Reinitializing Particles with the _reinitialize_particles Function

	Evaluation and Validation
	Assessment of Approach Effectiveness
	Hyperparameter Tuning
	Regularization

	Computational Experiments
	Sine Function
	A More Complicated Function
	Simplified MNIST Dataset
	Results

	Conclusion
	Summary
	Discussion
	Future Work

	List of Figures
	List of Tables
	Bibliography

