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Abstract

This work presents an operator-informed approach to analyze patterns of crowd density
during evacuation scenarios using Dynamic Mode Decomposition (DMD) and its variants
(Extended Dynamic Mode Decomposition - EDMD) to approximate the Koopman operator.
The study aims to gain valuable insight into pedestrian behavior and optimize evacuation
strategies using mesoscopic data such as crowd density. The utilization of time delay
embedding (TDE) to construct a richer dataset from the mesoscopic data allows more accurate
approximations of the Koopman operator.

The research involves the collection of crowd behavior data of position and speed through
simulations of bottleneck scenarios within Vadere software. The position and speed data
are further mapped to a mesoscopic representation of crowd density in triangular meshes.
This cellular automata pattern or triangular meshes are constructed in the topography of the
scenario itself during simulation. This dataset serves as the foundation for constructing state
space representations, where crowd density is defined as an explicit discrete time-invariant
parameter.

The triangular meshes are chosen due to ease of quantification and computation. By
employing DMD techniques, the data is decomposed into modes, enabling the computation
and prediction of key macroscopic parameters such as the number of pedestrians evacuated
from an area and further providing reconstruction of new test cases. The results showcase
the application and efficacy of DMD and its variants (EDMD) in capturing the underlying
dynamics of crowd movement, particularly in bottleneck scenarios. This includes optimizing
the model by performing hyperparameter tuning of attributes involved in TDE and DMD. The
computed outputs offer valuable insights into the spatio-temporal evolution of crowd density,
aiding in the identification of critical congestion points and optimal evacuation routes.

The work demonstrates the applicability of DMD and EDMD as a useful tool for analyzing
complex crowd dynamics and predicting the evolution of crowd density patterns. The results
provide the importance and benefits of considering crowd density in triangular meshes or
grids within a state space framework for a better understanding of pedestrian flow and crowd
management in bottleneck scenarios.
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Kurzfassung

In dieser Arbeit wird ein operatorgestützter Ansatz zur Analyse von Mustern der Menschen-
dichte bei Evakuierungsszenarien vorgestellt, bei dem die Dynamische Modedekomposition
(DMD) und ihre Varianten (Erweiterte Dynamische Modedekomposition - EDMD) zur Annä-
herung an den Koopman-Operator verwendet werden. Die Studie zielt darauf ab, wertvolle
Erkenntnisse über das Verhalten von Fußgängern zu gewinnen und Evakuierungsstrategien
anhand von mesoskopischen Daten wie der Menschendichte zu optimieren. Die Verwendung
von Time Delay Embedding (TDE) zur Erstellung eines umfangreicheren Datensatzes aus den
mesoskopischen Daten ermöglicht genauere Annäherungen an den Koopman-Operator.

Die Forschung umfasst die Sammlung von Daten zum Verhalten von Menschenmengen
in Bezug auf Position und Geschwindigkeit durch Simulationen von Engpassszenarien mit
der Vadere-Software. Die Positions- und Geschwindigkeitsdaten werden dann auf eine meso-
skopische Darstellung der Menschendichte in Dreiecksnetzen abgebildet. Diese zellulären
Automatenmuster oder Dreiecksnetze werden während der Simulation in der Topografie
des Szenarios selbst konstruiert. Dieser Datensatz dient als Grundlage für die Konstrukti-
on von Zustandsraumdarstellungen, in denen die Menschendichte als expliziter diskreter,
zeitinvarianter Parameter definiert ist.

Die Dreiecksnetze wurden wegen ihrer einfachen Quantifizierung und Berechnung ge-
wählt. Durch den Einsatz von DMD-Techniken werden die Daten in Modi zerlegt, was die
Berechnung und Vorhersage wichtiger makroskopischer Parameter wie der Anzahl der aus
einem Gebiet evakuierten Fußgänger ermöglicht und darüber hinaus die Rekonstruktion
neuer Testfälle erlaubt. Die Ergebnisse zeigen die Anwendung und Wirksamkeit der DMD
und ihrer Varianten (EDMD) bei der Erfassung der zugrundeliegenden Dynamik der Be-
wegung von Menschenmengen, insbesondere in Engpassszenarien. Dazu gehört auch die
Optimierung des Modells durch die Abstimmung der Hyperparameter von Attributen, die
in TDE und DMD involviert sind. Die berechneten Ergebnisse bieten wertvolle Einblicke in
die räumlich-zeitliche Entwicklung der Menschendichte und helfen bei der Identifizierung
kritischer Staupunkte und optimaler Evakuierungsrouten.

Die Arbeit zeigt die Anwendbarkeit von DMD und EDMD als nützliches Instrument
für die Analyse komplexer Menschendynamiken und die Vorhersage der Entwicklung von
Menschendichtemustern. Die Ergebnisse zeigen, wie wichtig und vorteilhaft es ist, die
Menschendichte in dreieckigen Maschen oder Gittern innerhalb eines Zustandsraumrahmens
zu betrachten, um den Fußgängerfluss und das Management von Menschenmengen in
Engpassszenarien besser zu verstehen.
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1 Introduction

A generic framework of a dynamical system describes the evolution of a state that is influenced
by different domains from various fields. Physical systems like planetary motions or complex
interactive systems like disease outbreaks or crowd movements are a few such examples. Such
systems can also characterize more abstract phenomena. One such example is the iterative
learning progress of an artificial neural network [Dietrich et al. 2020]. Governing equations
perform exceptionally well at capturing human knowledge within system development or
describing the dynamical system. However, it is very research-intensive and limited by the
knowledge of domain experts. Recent advancements in hardware technologies like sensors
and the increased availability of better computational resources have led to the development
of new modeling methodologies and approaches [Lehmberg, Dietrich, and Köster 2021].

One such approach is the data-driven methodology where a model is directly developed
using large-scale time series data [Dietrich et al. 2020]. However, to make accurate predictions
of real-world scenarios, the model structures become very complex. An appropriate model
provides an increased understanding of the system and its operations. This provides infor-
mation regarding the assumptions and uncertainties involved with the model. Most of the
systems modeled using a data-driven approach usually show non-linear dynamics but only
linear systems have a well-founded mathematical theory [Lehmberg 2022]. Further challenges
include dealing with large-scale and noise-corrupted data. Acquiring real-world data for
crowd movements is not an easy task and requires lots of human and economic resources.
Furthermore, data on crowd movements for specific scenarios is even more difficult to acquire.
Thus, the solution is to use crowd simulation software to construct such scenarios and obtain
data. Even though there is a reality to the simulation gap, this is economical and feasible to
study a data-driven modeling approach for crowd dynamics before applying it to real-world
data.

An operator-informed methodology varies from statistics-based and machine-learning
(ML) modeling techniques. Current work focuses further on exploring the capabilities of this
methodology within a scientific ML setting. Since it is data-driven, only minimal a priori
system knowledge is needed. Domain-specific knowledge for which usually experts are
required is not necessary for this approach. Due to this, it is easy to transfer the methodology
to new data applications or other fields. The operator theory field studies linear operators
for functional analysis. We could think that the true operator is a very high dimensional (in
some cases infinite dimensional) matrix that captures the entire system map. However, its
structure is unknown and hidden in the data.

The goal of my thesis is to estimate and analyze crowd dynamical systems from simulated
time series data for evacuation scenarios. I pursue a data-driven approach that allows re-
searchers to predict, analyze, and understand dynamical systems. My modeling methodology
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1 Introduction

includes two core concepts: time delay embedding (TDE) and the Koopman operator. I
provide the mathematical details and explanation of these concepts along with their software
application in a crowd modeling context. Thus, the thesis work can be split into the following
tasks:

1. Construct evacuation scenarios and collect data from the simulation software

2. Extract and describe the intrinsic geometry and dynamics of the observed time series
data

3. Analyze the structure approximating the Koopman operator to understand the dynamics
of the system

There is a linear operator for every non-linear dynamical system that describes the exact
dynamics. Thus, from the perspective of Koopman operator theory, an unknown operator
shifts functions linearly forward in time. Hence, given a suitable state representation, we can
approximate the operator to compute the Koopman matrix and reconstruct the system map
with standard linear regression.

I aim to unify the two components namely TDE and Koopman operator theory to describe
the dynamic system of crowd movement obtained using the mesoscopic (crowd density) data
from simulation software. In a data-driven modeling approach, the building process and the
final model essentially depend on data and the source code. The scale of crowd simulation
data and operator-informed approach, lead to the two central research questions of my thesis:

1. Can the dynamical system for an evacuation scenario in a crowd model be described by
simply using mesoscopic data such as crowd density computed at only a few locations
instead of the entire topography?

2. Can the utilization of TDE and Koopman operator theory describe the dynamical system
and provide further insight into the model?

The first question is vital as obtaining real-world data is cumbersome, especially for
an evacuation scenario. Apart from that, obtaining real-world microscopic data is also
computationally intensive and requires lots of analysis of video footage. Such data has to be
acquired even to address simple questions or perform basic analysis tasks. Thus, there is a
need to ease data collection in real-world scenarios specifically to address questions or tasks
that might only require mesoscopic data like crowd density at a point.

The second question focuses on the analysis of the system and the efficacy of reconstructing
the system map using the Koopman operator theory. The goal is not just to perform accurate
predictions but also to try to reconstruct the time series data for further understanding and
insights. I account for different challenges within data, such as diverse temporal patterns,
high dimensional data, and out-of-sample measurements.

I divide my thesis into five main chapters. Chapter 2 mostly explains the literature review
on various research done regarding the concepts and approaches involved in answering the
research questions. I also provide a brief mathematical introduction to each concept. Chapter

2



1 Introduction

3 includes detailed mathematics (mostly that is needed for source code) and information
regarding the software packages used to perform the simulation and analysis. It also mentions
the class functions including the hyperparameters used to code the core concepts of the thesis
namely TDE and approximation of the Koopman operator using DMD and its variants.
In Chapter 4, I use a simple evacuation scenario (bottleneck scenario with one door) to
explain the methodology of data collection, preprocessing, hyperparameter tuning, and
analysis steps before proceeding to a much more complex scenario. Chapter 5 showcases
the results of the simple scenario with one door and a complex evacuation scenario with
multiple exits (bottleneck scenario with three doors). It also mentions the differences in
results from the simple scenario due to the complicated data involved. Finally, I reflect on
the contributions and value of my thesis results for advancing methods for the data-driven
analysis of dynamical systems using mesoscopic data. I also highlight directions for future
software development and research.

3



2 Literature review

In the first chapter, I introduced the motivation and research problem statement of my thesis. I
continue outlining the literature review necessary for my thesis in this chapter. The modeling
methodology combines different mathematical theories and approaches. Hence, I discuss the
mathematical details of the core concepts namely, TDE and the Koopman operator theory
utilized in the thesis. To approximate the Koopman operator, methodologies of DMD and
its variants are used. I intend to highlight the importance of all concepts involved from a
data-driven perspective.

In Section 2.1, I briefly describe the system modeling, wherein I explain the concept of
dynamic system and state space representation associated with the problem statement. The
mathematics and relevant research of these concepts with crowd modeling are also discussed
in this section. Section 2.2 mentions the basics of crowd dynamics and modeling approaches.
The differences in techniques used depending on the modeling scales are further discussed
in this section. It also mentions the requirement of crowd simulation and varied simulation
approaches along with the relevant research. In Section 2.3, I discuss the concept of TDE,
Koopman operator theory, and methods of approximating the Koopman operator, i.e. DMD
and its variants. My main focus is to provide a mathematical basis for the concepts that will
be used further and to provide insight regarding some of the associated research in the crowd
dynamics field.

2.1 System modeling

2.1.1 Dynamical systems

Dynamic systems are used to describe the intricacies or parameters of processes that are time-
dependent i.e. processes that evolve with time. Once the processes are defined mathematically,
we can analyze and predict the evolution of processes. Mathematically, it is a function
describing the time dependence of a point in ambient space. Even though time can be
considered as a system variable along with spatial coordinates, it is usually treated separately
due to the temporal phenomena of the process [Strogatz 2018]. In this section, I briefly
describe the mathematical representation and types of dynamical systems.

Two components namely a state and an evolution rule (mathematically a function) constitute
a dynamical system. The state is a point described by a tuple of real numbers or a vector
in the state space [Strogatz 2018]. The change of these states over time is the evolution rule
of the system. Usually, for a time interval, only one future state follows the current state
(deterministic system). However, due to random events, some systems can be stochastic
[Giunti and Mazzola 2012].
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2 Literature review

The system is described with a continuous and smooth function f that represents an
infinitesimal change in time as in Eq 2.1 acting as the evolution rule on the system’s state in a
numeric column vector of size N, x ∈ RN

d
dt

x(t) = f (x(t)) (2.1)

The evolution rule itself can change over time in a dynamical system but for simplicity, only
autonomous systems are considered i.e. f (x, t) = f (x) [Lehmberg 2022]. From Eq 2.1, we
can integrate to obtain future states t2 of an initial state t1 after certain time increments,
△t = t2 − t1. A flowmap maps from one state to the next. A solution can be obtained for a
given initial condition using the flow map. Initial conditions are crucial when talking about
solutions to Ordinary Differential Equations (ODEs) or even Partial Differential Equations
(PDEs). Without an initial condition, there can be no solution. Thus, we can obtain a solution
trajectory by computing flowmap at different time intervals. However, it is not possible
to obtain a closed-form solution of the flow, except for linear and a few nonlinear systems
[Lehmberg 2022].

Linear dynamical systems

The theory of linear dynamical systems is well-studied and better understood than nonlinear
systems. However, most processes or systems observed in nature have almost always nonlinear
state interactions. A common methodology to still utilize the approach of linear dynamical
systems is to approximate the nonlinear system in a smaller region of interest, such as around
an equilibrium state [Lehmberg 2022]. A vector field of a linear dynamical system has the
form

d
dt

x(t) = A · x(t) (2.2)

where, A ∈ RN×N , is a time-invariant system matrix, acting on a column-vector state x ∈ RN .
Eq 2.2 corresponds to a homogeneous linear differential equation, which has a closed-form
solution as in Eq 2.3.

x(t) = exp(At)x(t1) (2.3)

In Eq 2.3, exp(.) corresponds to the matrix exponential and x(t1) the initial condition (com-
monly t1 = 0). For any initial state, a unique solution exists. Thus, the solution trajectories
never intersect in the state space. Approximating a system from data with a linear model
requires finding the system matrix A. The discrete flow representation is better suited for
data-driven modeling because it appropriately resembles the discrete measurement events
in the time series data. The distance between two different initial conditions in the case
of A ̸= 0 will change exponentially in most cases, either diverging exponentially fast or
converging exponentially fast towards a point. In the case of divergence, linear systems are
highly dependent on initial conditions [Lehmberg 2022]. Usually, a linear system form is
used to analyze local regions of an underlying nonlinear system.
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Nonlinear dynamical systems

Most of the processes in nature show nonlinear state evolution in the system flow. Even
though simple nonlinear dynamic systems and piece-wise linear systems are fundamentally
deterministic, they can exhibit completely random behavior [Chatterjee et al. 2019]. The aim
here is not to find precise solutions to the equations of the dynamical system which is often
hopeless. Instead, it is to answer questions like "Will the system settle down to a steady
state in the long term?" or "Does the long-term behavior of the system depend on its initial
condition?" [De Canete et al. 2011].

A successful data-driven model for a non-linear dynamical system needs to capture the
intricacies in data that will answer these questions. However, the dynamic nature of nonlinear
state evolution can introduce a new phenomenon that is often difficult to comprehend.
Typically, when data-driven modeling is applied, the exact characteristics of the dynamics
are unknown and need to be extracted from the empirical data. Usually, the solution for
(almost) any nonlinear system can be approximated by an equivalent linear system near its
fixed points [Lehmberg 2022].

2.1.2 State space representation

A state-space representation is a mathematical model where the first-order differential (or
difference) equations describe a set of input, output, and control variables of a physical
system. The variables are termed as state variables. These evolve depending on their current
value and the input variable’s value. Output variables depend on this state variable and
may also depend upon the input variable. The system can be represented as a state vector
in the state space. The differential and algebraic equations can be represented in matrix
form depending on the condition that the dynamical system is linear, time-invariant, and
finite-dimensional. Thus, we can use Kronecker vector-matrix structures for the computation
of output [Vasilyev Andrey 2015]. This allows an easier and compact way to model, analyze,
and predict systems with multiple inputs and outputs. The state-space model can be applied
in different fields such as statistics, electrical engineering, neuroscience, etc [Rutten et al.
2021].

Most general state space representation of a linear system with p inputs, q outputs, and n
state variables is given by Eq 2.4 [Vasilyev Andrey 2015].

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2.4)

where x(.) is the state vector, x(t) ∈ Rn; y(.) is the output vector, y(t) ∈ Rq; u(.) is the input or
control vector, u(t) ∈ Rp; A(.) is the state matrix, dim[A(.)] = n × n; B(.) is the input matrix,
dim[B(.)] = n × p; C(.) is the output matrix, dim[C(.)] = q × n;D(.) is the feedthrough matrix,
dim[D(.)] = q × p.

A typical state space model can be observed in Fig 2.1. The time variable t can be continuous
t ∈ R or discrete like t ∈ Z. In the discrete case, the time variable k is usually used instead of
t. When data-driven modeling of crowd simulation is performed, we obtain the state space

6
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Figure 2.1: State space model diagram [Sivák and Hroncová 2012]

representation for the explicit, discrete, time-invariant case. Thus the system can be modeled
by modifying Eq 2.4 to Eq 2.5

x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C(k)x(k) + D(k)u(k)
(2.5)

State space models (SSM) are the effective choice when dealing with non-negligible measure-
ment errors. SSMs allow combining the pedestrian movement model with the observation
model involving measurement error into one data fitting methodology for statistics. Hence
it becomes easier to estimate probabilities of pedestrian movement, spatial locations, and
measurement errors [Patterson et al. 2008]. Existing methods for pedestrian mobility mostly
are based on GPS data, which are very precise [Rutten et al. 2021]. SSMs also allow analysis
of other types of data like Wi-Fi detections due to the flexibility in handling measurement
errors, thus, making the right choice for crowd modeling simulation [Gutiérrez-Roig et al.
2016].

2.2 Crowd modeling and simulation

The term ’crowd’ is used with multiple meanings across various fields. Often it is a collection
of agents that have their dynamics but also showcase mutual interactions with other agents.
A few examples include pedestrian crowds in the field of architecture, parts movement
through manufacturing processes, bird flocks in biology, drone formations in robotics, and
vehicular traffic in transportation [Bottinelli et al. 2016]. For this thesis, we will be considering
pedestrian movement or human crowds.

Crowd modeling simulation is the process of producing a simulation of entities or in our
case pedestrian movements. Usually, it is used in visual media like video games and films for
creating virtual scenarios [Chao et al. 2015]. Crowd simulation also finds its applications in
fields of architecture, urban planning, and crisis training (evacuation scenarios). Depending
on the need, one can either have a fast rendering just to obtain crowd dynamics or realistic

7
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visualizations. Different software exist that provide varied levels of visualizations and provide
parameters necessary for crowd movement analysis. Various crowd steering algorithms are
developed to simulate and analyze crowd movement for different entities like pedestrians,
cars, other vehicles, etc [Huang and Terzopoulos 2018]. Plenty of research in this field has
been done to support different entity types, varied modeling algorithms, different abstraction
levels, model agent interactions, and complex physical and social dynamics [Chao et al.
2015], [Huang and Terzopoulos 2018]. Majorly all crowd modeling methodologies operate on
different scales depending on the parameter chosen to analyze. This allows crowd simulation
to model for domain and task-specific applications.

2.2.1 Crowd dynamics

Modeling the pedestrian dynamics in large crowds is vital to understanding and avoiding
unsafe or dangerous situations arising from individual behaviors, and also predicting the
spread of epidemic diseases arising due to crowd movement. Current models of crowd
dynamics are usually used in scenarios where individual parameters or driving forces
such as ‘desired speed’ are considered constant [Goscé et al. 2014]. However, in reality,
pedestrian speed and direction vary depending on individual behavioral state. Usually,
people stay in one place for some time and change their location in one continuous movement.
Intermittent movement behavior like this typically occurs during large crowded events. Thus,
understanding the crowd behavior becomes crucial for crowd movement. Typically crowd
movement in large crowds happens in groups and hence a lot of models currently utilize
group movement of crowds. Most of these studies focus on mobility scales ranging from
intra-urban to inter-urban, involving various transportation modalities other than walking
[Rutten et al. 2021].

Currently, most of the available literature on pedestrian movement involves some form
of analysis of traffic prediction. This is because of the ease of acquiring traffic pattern data
through sensors. Prediction of traffic movement is possible through analysis of reoccurring
patterns on different time scales, such as daily, weekly, or yearly. There are multiple modes of
transport in a city. To model a city’s traffic, one can consider public transport, pedestrian,
or vehicular traffic individually for simplicity [Vlahogianni et al. 2014]. A varied array of
machine learning (ML) models, deep neural network (DNN) architectures, time-series models,
or Koopman operator-based surrogate models are used for predicting traffic states [Lehmberg
2022]. The choice of methodology depends on the scenario, available data, data size, and
available computational resources.

2.2.2 Crowd modeling scales

In reality, it is quite difficult to acquire measurements or conduct real-life experiments with
human crowds. Nonetheless, this is done, and it is necessary to do such experiments to vali-
date existing models such as Vadere. Therefore, a lot of attention is given to the development
of mathematical numerical models, based on physical and behavioral assumptions. Similar to
fluid flow cases, the physical characteristics of the crowd depend on the timescale and length
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of observation [Corbetta and Toschi 2023]. Due to this, crowd dynamics can be categorized
at five different scales as shown in Fig 2.2 Starting from the broad or coarsest scale which

Figure 2.2: Overview of crowd modeling scales [Corbetta and Toschi 2023]

addresses very large timescales and lengths and then progressively zooming to include finer
details, these five scales can be further described as follows:

• Supermacroscopic scale: At this scale, the crowd is described using different macroscopic
quantities like density or average velocity in the form of equations of state. Spatial
characteristics or high resolution are not present at this level. That is, the dynamics of a
complex environment like a city can be described over a graph [Corbetta and Toschi
2023]. The relationship between crowd flux (average number of pedestrians per unit
time per unit area) and density is reported using fundamental diagrams like Weidmann
[Weidmann 1993]. This fundamental diagram is what was computed in the context of
the tradition of running bulls in Pamplona, Spain [Parisi et al. 2021]. The computation
included tracking escaping pedestrians even for high velocities.

• Macroscopic scale: Crowd is stated as a continuum. That is the space and time-dependent
characteristics like density and velocity fields represent the coarse-grained crowd de-
scription instead of individual resolution. A similar description can also be seen in
hydrodynamics. Thus, using techniques resembling particle image velocimetry (PIV),
analysis of video camera recordings can be done to connect experimental observa-
tions [Corbetta and Toschi 2023]. Adrian and Westerweel 2011 used PIV techniques to
measure the velocity field of the crowd at the marathon.

9



2 Literature review

• Mesoscopic scale: At this scale, the individual pedestrian dynamics are described using
few degrees of freedom and in a statistical sense. Similar characteristics are observed
in the kinetic theory of gases. Thus, individual pedestrians are seen as single discrete
entities. For example, cellular automata (CA) describe the crowd dynamics moving
in discrete time steps between neighboring locations in regular 2D meshes. Such CA
models are being used in applications such as to predict the instability in balanced
counterflows, to study anticipation effects, and in evacuation context [Corbetta and
Toschi 2023].

• Microscopic scale: Observables of single individuals are used at this scale which typically
involves centimeter accuracy in space and tenths-of-a-second resolution in time. This
is similar to molecular dynamics of gases. This provides a rich description of crowd
dynamics at a single-pedestrian level. It is typically modeled using the social forces
between the pedestrians. Applications such as emergence and time statistics of a lane in
counterflows, prevention of qualitative nonphysical behavior at small densities, obstacle
avoidance, etc. are a few examples at this scale [Corbetta and Toschi 2023].

• Submicroscopic scale: Observables beyond the position as a function of time for a single
individual are considered at this scale. We can observe the intricacies or features of each
individual such as the orientation of the body and head, the presence of backpacks,
etc. Finer details such as interactions with other pedestrians and other geometrical
entities such as tables, etc are also completely visible. Crowd composition estimation is
a challenging task at this level [Corbetta and Toschi 2023].

Crowd dynamics, like dynamics of gases and other active matter, show increasing com-
plexity at the largest length and timescales. This makes consideration of the right scale
of description, a vital task. For example, if we are interested in understanding pedestrian
dynamics at an individual level, we must choose a microscopic scale of description. On the
other hand, such fine resolution can obscure the phenomenology. In such a case, we must
choose a larger scale of crowd description.

2.2.3 Crowd simulation methods

Conventional models simulate general crowd dynamics that are advantageous at the micro-
scopic and macroscopic scales. Currently, crowd simulation ranging from group simulation
to social psychology allows possible simulation of realistic situations [Yang et al. 2020]. Even
though conventional models simulate most of normal crowds, they lack the level of expres-
siveness of group dynamics for a few cases such as those required for visual effects and urban
planning applications. These features improve simulation realism but the downside is the
increase in computation cost and model optimization requirement. Although the field is
developing rapidly, the influence of locomotion, sensory abilities, and a series of psychological
factors make understanding of individual behavior complex in different situations [Yang et al.
2020]. Also, the requirement of high computational complexity limits the inclusion of realism
in crowd simulation.
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Researchers have proposed several crowd simulation techniques such as path planning,
emergency evacuation, navigation graphs, biomechanical, and hybrid models [Yang et al.
2020]. The rising need for simulating different crowd models is limited by the increasing need
for manpower and hardware resources. The field has seen the evolution from microscopic to
macroscopic models. Recently, mesoscopic crowd simulation models have come up to simulate
interactive and realistic crowds [Corbetta and Toschi 2023]. These can be divided depending
on pedestrian dynamics, socio-psychological factors, and human-computer interactions.
Collective behaviors such as group behavior, formation deformation, and emotional contagion
can be developed using the methods. The mainstream crowd simulation models proposed
recently are shown in Table 2.1

Table 2.1: Methods for crowd simulation models at different scales [Yang et al. 2020]
Models Methods
Microscopic Models Rule-based models, Force-based models,

Velocity-based models, Agent-based models,
Vision-based models

Mesoscopic Models Dynamic group behavior, Interactive group for-
mation, Social Psychological crowds

Macroscopic Models Continuum models, Aggregate dynamics, Po-
tential field-based models

Models at the microscopic scale are also termed the "Bottom-Up" methods [Yang et al. 2020].
These focus on individual features and low-level behavioral details. Individuals are discrete
objects in such models. Their motion depends on their neighbors and obstacles. Social
force is the core of a force-based model. Crowd dynamics is simulated through interactions
between individuals and obstacles. The generation of collision-free trajectories and inter-agent
avoidance is done using velocity-based models. Game engines like Unity 3D and Unreal
Game Engine use these models. Agent-based models can be seen as a combination of other
microscopic models. Vision-based models are developed to model the human vision for
interpersonal collision avoidance [Yang et al. 2020].

To simulate coarser or large-scale and dense situations, crowds can be considered as a
continuous and unified entity. Domains like potential fields or fluid dynamics govern the
crowd movements. Global problem solver controls the crowd path planning and collision
avoidance. The macroscopic models include continuum models, aggregate dynamic models,
and potential field models [Yang et al. 2020].

• Continuum Model: It is used to reflect the flow features of the crowd. It utilizes continuum
dynamics theory to simulate macroscopic crowds

• Aggregation Behavior Model: Agents are viewed as a continuous entity and the discrete
individuals are unified using the aggregate dynamic model.

• Potential Field Model: Applies various fields to direct crowd motion.
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Recently, analysis of the psychological and physiological features of crowds has become
extremely important. Thus researchers are focusing more on mesoscopic models [Yang et al.
2020]. The group simulations at this scale can be divided into:

• Dynamic Group Behavior: Focus on the social relationships among individuals.

• Interactive Group Formation: Specifically used in real-time strategy (RTS) games and
manipulating schemes

• Social-Psychological Crowds: Specifically used in emergency evacuations and parade
scenarios.

2.3 Koopman operator

The framework is named after B.O. Koopman, who authored the seminal work on transfor-
mations of Hamiltonian systems in Hilbert space. It has gained popularity recently due to its
strong foundation in dynamical systems, functional analysis, and geometry. The Koopman
operator is mostly computationally insolvable in its exact form, however, a numerical approx-
imation can be done. Koopman operator-based methods are competitive in terms of accuracy
even with popular LSTM models and require significantly reduced computation resources
[Lehmberg 2022]. In dynamical systems theory, an established alternative perspective exists
for representing a system’s flow (and similarly for vector fields). The Koopman operator
allows for interpretability of the dynamical systems which we don’t get from LSTMs. Ad-
vances in data-driven modeling and the requirement to model high-dimensional and complex
dynamical systems benefit the interpretability of data-driven models, in turn, fueling the
interest in this field [Lehmberg, Dietrich, and Köster 2021].

The Koopman operator linearly forwards a function as an element of a function space
forward in time. That is instead of modeling a state as the evolution of a finite state x ∈ RN ,
the Koopman operator advances functions ψ(x) ∈ F forward in time. We can understand
this change in perspective as a coordinate transformation of the original measurement states
x into a new function representation. For a continuous-time dynamical system, Koopman
operators {Kt}t∈R+,0: F → F acts on scalar observable functions ψ : M → C by composition
with {Ft}t∈R+

0
of the vector field f .

Kt
f ψ = ψ ◦ Ft (2.6)

on the state space M. When dealing with a map (discrete-time system) we have

KFψ = ψ ◦ F (2.7)

where ◦ represents function composition.
The nonlinear state dynamics become linear in the function space representation during

this transformation. However, there is a trade-off. The Koopman operator that captures the
full nonlinear system dynamics is usually very high-dimensional (in some cases may even
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have infinite-dimensional basis), even when the state space dimension is finite. This makes
the exact Koopman operator to be computationally unsolvable. However, the advantage of the
linear structure remains making the operator efficient to use with numerical approximation
schemes and data-driven modeling. The goal is to approximate and model the Koopman
operator in a computationally solvable finite basis function.

DMD algorithm and its variants approximate the eigenvalues and modes of the Koopman
operator [Budišić et al. 2012]. Thus, it has been used a lot recently, especially in data-driven
techniques for dynamical systems. The aim is if the approximation of the Koopman operator
is successful, we can model non-linear spatio-temporal patterns in terms of a standard linear
dynamical system. Expanding DMD to a DMD method with control, it was possible to extract
low-order control models from higher dimensional systems for Brunton et al. 2017.

2.3.1 Time delay embedding (TDE)

A major drawback in system identification is that time series states often have insufficient
temporal information which is required to perform a regression task from one state to next.
Thus, a TDE is done to the data to obtain a richer context of the current state with previous
states. When observed from the geometric perspective, the time series data provide the
underlying state space manifold. The measurement quantities create a geometry that can be
viewed as a projection from the true state space to the ambient data space. The projection
only provides a partial view of the true state space manifold in the non-Markovian dynamic
events [Lehmberg, Dietrich, and Köster 2021]. This is done by converting the current state
coordinates of the time series to eigen-time-delay coordinates. For example, eigen-time-delay
coordinates from a time-series of a single measurement x(t) by taking the SVD of the Hankel
matrix H is shown in Eq 2.8

H =


x(t1) x(t2) . . . x(tmc)

x(t2) x(t3) . . . x(tmc+1)
...

...
. . .

...
x(tmo) x(tmo+1) . . . x(tm)

 (2.8)

DMD is the go-to choice for deducing coherent flow features from data sequences or
spectral analysis as it is for representing the principal dynamics reflected in the system
identification. This change from an analysis tool to a prediction tool is further aided by
using TDE. It allows the expression of the ergodic attractors of non-linear dynamical systems.
Avila and Mezić 2020 analyzes real-world data of multi-lane highway traffic with a variant
of DMD using TDE. They uncover the intrinsic spatiotemporal traffic patterns that can be
used for system analysis and forecasting, in turn, showcasing the benefits of model-free
analysis with the Koopman operator with real-world data. Cheng et al. 2022 focused on
using TDE with a higher order DMD to forecast the origin-destination matrix of pedestrian
transitions in a metro station. Lehmberg, Dietrich, and Köster 2021 performed a TDE to
enrich the state with temporal context and subsequently projected the data using a Diffusion
map algorithm. Other examples of utilization of TDE to capture nonlinear dynamics using
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Koopman analysis include Brunton et al. 2017, Kamb et al. 2020, and Pan and Duraisamy
2020. Detailed mathematics, conceptual understanding, and the methodology to use it in the
datafold package are discussed in the following chapter.

2.3.2 Dynamic Mode Decomposition (DMD)

The central question is how do we deal with the very high dimensional (sometimes infinite)
Koopman operator based on only a finite amount of data [Schmid 2022]. The theory of the
Koopman operator offers the potential to conduct linear system identification in an observable
space (a feature space) rather than in the original state space, which is nonlinear. Koopman
operator approximation task reverts to solving a linear regression problem [Budišić et al.
2012]. This makes the framework particularly important for high-dimensional states. It is
also resilient to noise and can deal with small data regimes. The main modeling task has
changed from dealing with nonlinear dynamics to finding a suitable finite function basis.
This function has to linearize state dynamics and reconstruct the original data.

DMD to decompose high-dimensional states of time series data from fluid dynamics
was introduced by Schmid 2010. The most dominant dynamic features of the system can
be computed using numerical simulations or experiments. DMD does this by finding the
dynamic modes or eigenmodes and eigenvalues of the system. DMD relies on proper
orthogonal decomposition (POD), leveraging the computationally efficient singular value
decomposition (SVD). This allows it to scale effectively and provide efficient dimensionality
reduction in high-dimensional systems. DMD assumes that the state of a system is connected
to the next by Eq 2.9

xk+1 = Axk (2.9)

where x(t) ∈ Rn and A ∈ Rn×n is the matrix describing the state evolution in a continuous-
time manner. Detailed mathematics and methodology of applying it in the Python software
using the datafold package are mentioned in the following chapter. Initial applications of
DMD include numerical and experimental data analysis in fluid systems ranging from simple
to complex. Recently, DMD has had an impact beyond fluid systems.

Methodology rooted in Koopman operator theory was used to predict the number of
infected cases for COVID-19 and influenza cases in [Mezić et al. 2024]. DMD was used to
approximate the Koopman operator while TDE (Hankel-Takens matrix) was used to lift the
available data to a higher dimensional space. Researchers have also worked to improve the
accuracy of the Koopman operator by ’lifting’ the system’s states to a set of observables.
Exploration of DMD for highway vehicular traffic to detect temporal patterns is done in [Liu
et al. 2016]. Multiple crowd and traffic flows from noisy motion vectors in video footage
are identified using a dedicated variant of DMD by Dicle et al. 2016. Koopman mode
decomposition approximated using DMD has seen a wide expansion across many application
areas. They are used in pattern detection, reduced-order model extraction, and time series
prediction based on previous observations.

Even though several approximation approaches exist, DMD is probably the go-to choice.
Numerous extensions or variants of DMD exist. This is because of an easy-to-extend linear

14



2 Literature review

Figure 2.3: DMD variants and packages [Ichinaga et al. 2024]

representation and the availability of a broader context in a theoretical setting. Numerical
methods vary mainly to expand the problem set, tackle emerging dynamical patterns, and
enhance operator regression. Fig 2.3 provides a list of selected DMD variants available in the
PyDMD package that seek to address different applications. Further details on the individual
package or DMD type can be seen in research by Ichinaga et al. 2024. This is only mentioned
to provide information regarding DMD variants. Instead of PyDMD, the datafold package
will be used in this work. In PyDMD, only single and coherent time series are supported for
the input data. This counteracts the data structure TSCDataFrame to support the generalized
schema of dynamical systems [Lehmberg 2022]. Moreover, the approach is not isolated from
the other approaches in data-driven modeling. For example, Bayesian formulations or DNNs
can be integrated to approximate the Koopman operator [Lehmberg 2022].

2.3.3 Extended Dynamic Mode Decomposition (EDMD)

A vital and generic extension of DMD is the EDMD framework in which the usual DMD is a
special case and was developed by Williams et al. 2015. EDMD is almost the same algorithm
as DMD, however the methodology of deployment of EDMD is by using observables of the
system to create a dictionary to pass through the standard DMD algorithm. A different
approximation of the original system dynamics is then made by performing regression on
this new augmented vector containing linear and non-linear measurements [Snyder and Song
2021]. The construction of the augmented vector is as shown in Eq 2.10.

y = ΘT(x) =


θ1(x)
θ2(x)

...
θp(x)

 (2.10)
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where p is the rank of the augmented state such that p >> n. Here Θ is the collection of
measurements of the system possibly containing the original state of the system, x, as well as
nonlinear measurements. Once y is found, two data matrices are created in the same manner
as done for the DMD algorithm which are illustrated in Eq 2.11 and Eq 2.12.

X =

 | | |
x1 x2 · · · xm−1

| | |

 (2.11)

X′ =

 | | |
x2 x3 · · · xm

| | |

 (2.12)

where X′ is the time-shifted snapshot of matrix X as in Eq 2.13

X′ ≈ AX (2.13)

From here a best-fit linear operator AY is found that maps Eq 2.11 onto Eq 2.12 using Eq 2.14.

AY = arg min
AY

∥Y′ − AYY∥ = Y′Y† (2.14)

where † is the Moore-Penrose pseudoinverse.
This regression can then be written in terms of the original data matrices ΘT(x) as in Eq.

2.15

AY = arg min
AY

∥ΘT(x′)− AYΘT(x)∥ = ΘT(x′)ΘT(x)
†

(2.15)

AY is then the basis upon which we can derive the Koopman operator. However, Θ may not
necessarily span the same subspace as the Koopman operator and may consist of different
eigenvalues and eigenvectors of the Koopman operator [Snyder and Song 2021]. This is why
verifying and re-validating techniques need to be used to properly fit the EDMD model to
the actual system.

The set of selected observables is referred to as a dictionary [Williams et al. 2015] and can
be seen as a dynamic prior. It is critical for system identification as it strongly influences
the quality of the model [Li et al. 2017]. An optimal selection of the dictionary is an open
problem because the selection depends on the underlying system properties, the application,
and the available data. Research that addresses this problem can be found in Li et al.
2017 use the dictionary with a DNN and Netto et al. 2021 select linear combinations of
elementary functions. Lehmberg, Dietrich, and Köster 2021 describe a dictionary that contains
geometrically informed functions suitable for ergodic systems.

The EDMD can be seen as a higher-order Taylor series expansion near equilibrium points,
whereas the standard DMD only captures the linear term and is thus restricted to motion
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near fixed points. Research to try different functions to use for the dictionary is ongoing
for varied applications. Various approximations, such as Hermite polynomials, radial basis
functions, or discontinuous spectral elements, have been suggested [Li et al. 2017]. Also,
cross-validation methods are essential to avoid overfitting by the introduced observables. This
increased computational requirement from a larger observable space can be reduced by a
kernel trick that implicitly generates a suite of observables [Lehmberg, Dietrich, and Köster
2021]. Lehmberg, Dietrich, and Köster 2021 found a solution where the data requirement
for DMD is limited, thus, extending the DMD algorithm (EDMD). The work was done
in the context of pedestrian traffic dynamics with real-world data. A Koopman operator-
based surrogate model from simulated crowd density data utilizing the EDMD framework is
performed using time delay embedding in Lehmberg, Dietrich, and Köster 2021. Klus et al.
2020 apply gEDMD to derive coarse-grained models of high-dimensional systems, and also to
determine efficient model predictive control strategies. Detailed mathematics and the source
code methodology of the application of EDMD from datafold package are discussed in the
following chapter.
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3.1 Vadere

Data obtained from real-life, field, and laboratory experiments are necessary to understand
crowd dynamics. However, these need a significant amount of participants and non-scientific
human resources, making it cost and time-intensive. Also, generating trajectory data is
easy and often fully automated, but extracting trajectory data from video footage is still a
semi-manual process. In such situations, simulations are the solution to obtain an ample
amount of data at a marginal cost. There exists the reality-simulation gap but simulation
allows us to test our model and provide proof of concept and results that can be scaled to
real-time data further. Aside from providing practical and economic benefits, simulations
can provide data for situations that might be difficult or unethical to obtain, for example,
situations with dangerously high densities [Yang et al. 2020]. In the thesis work, we create
crowd dynamics data for different scenarios for further analysis through simulation from
Vadere.

Vadere is developed by the research group of Gerta Köster at the Department of Computer
Science and Mathematics, Munich University of Applied Sciences [Kleinmeier et al. 2019].
It is a free and open-source pedestrian simulation framework for pedestrian dynamics at
a microscopic scale. I use the software to obtain pedestrian density data for analysis at a
mesoscopic scale. Vadere was specifically conceived to compare different locomotion models.
Hence, it comes with pre-implemented locomotion models like the optimal steps model, the
gradient navigation model, and the social force model. Currently, it is used in different fields
for various applications or analyses [Kleinmeier et al. 2019]. The framework includes generic
model classes, data analysis, and visualization tools for 2D systems.

Vadere reads in simulation parameters, like the topography, source, target, measurement
area, locomotion model, or an agent’s radius, from a JSON-based text file. Simulation results
are also written in text file formats providing easy integration with third-party software.
Vadere simulation requires three steps which are illustrated in Fig 3.1. It also includes an
optional graphical user interface (GUI) with multiple features for user-friendliness. It provides
a basic overview of input and output files. Most importantly, it offers a simple drawing
program for topography definition and manipulation of topography attributes. That is we can
create scenarios directly with GUI. Also, it shows possible errors during designing scenarios
e.g. if the source is defined without a target. Lastly, it allows visualization of the simulation
run [Kleinmeier et al. 2019].
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Figure 3.1: Three steps of simulation in Vadere [Kleinmeier et al. 2019]

3.2 Python

Python is a high-level, platform-independent, object-oriented, dynamically typed, and general-
purpose programming language [Ma et al. 2016]. It addresses a large number of people
from diverse disciplines including various scientists and engineers. It is very popular for
several applications such as web development, system tools, data processing and analysis, and
scientific computing. Python is the go-to language primarily for machine learning tasks due
to its features. Programming in Python emphasizes readability and expressiveness. Majorly it
follows the KISS rule, ’keep it simple, stupid’. For example, it is possible to exchange any
object such as an attribute, function, or class easily during runtime [Lehmberg 2022]. This
allows rapid prototyping and makes Python one of the standard languages for algorithmic
prototyping and modeling.

Several libraries and packages catering to domain or task-specific applications are what
make Python powerful and easy to use. Many popular packages are organized by commu-
nities and available in the official index PyPI2. Despite being third-party to Python, this
provides quasi-standard packages for the software ecosystem [Ma et al. 2016]. Libraries such
as NumPy [Harris et al. 2020], SciPy [Virtanen et al. 2020], and Matplotlib [Hunter 2007] allow
the effective use of Python for scientific computing. Libraries like TensorFlow [Martín Abadi
et al. 2015], Keras [Chollet et al. 2015], Pytorch [Paszke et al. 2019], and scikit-learn [Pedregosa
et al. 2011] allow Python to be commonly used in artificial intelligence (AI) and ML projects
[Lehmberg 2022]. Features like modular architecture, simple syntax, and rich text processing
tools make it useful for natural language processing tasks as well. As a scripting language
with a modular architecture, simple syntax, and rich text processing tools, Python is often
used for natural language processing.

3.2.1 Pandas DataFrame

DataFrame is a 2-dimensional labeled data structure with columns containing data potentially
of different types. It is similar to a spreadsheet or SQL table [Pandas team 2020]. It is an ideal
tool for handling diverse datasets. It is the most commonly used Pandas object. DataFrame
accepts many different kinds of input: Dictionary of 1D ndarrays, lists, dictionaries, or series,
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2-D numpy.ndarray, structured or record ndarray, a series or another DataFrame [Pandas team
2020].

A Pandas DataFrame in Python is a powerful and flexible data structure majorly used for
data preprocessing, manipulation, and analysis. The structure, elements, and types of value
that are present in a DataFrame are illustrated in the sample example as illustrated in the
code below and Fig 3.2.

>>> d = {’col1’: [0, 1, 2, 3], ’col2’: pd.Series([2, 3], index=[2, 3])}
>>> pd.DataFrame(data=d, index=[0, 1, 2, 3])

col1 col2
0 0 NaN
1 1 NaN
2 2 2.0
3 3 3.0

DataFrames offer a wide range of functionalities, including data alignment, merging,
reshaping, and complex indexing, which facilitates efficient data handling and preparation
for analysis. This makes Pandas a fundamental library for data science and machine learning
workflows.

Figure 3.2: Sample example of a Pandas DataFrame [GeeksforGeeks 2021]

3.2.2 Machine learning

ML is a field of study in AI dealing with the development and study of statistical algorithms
(recently artificial neural networks) that can learn patterns from data and predict future
data or generalize unseen data. This allows the machine to perform tasks without explicit
instructions for automation [Jordan and Mitchell 2015]. ML approaches are broadly divided
into three categories depending on the data available:
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• Supervised learning: Both inputs and desired outputs (targets) are known. The aim is to
learn a general rule or function that maps inputs to outputs [Jordan and Mitchell 2015].

• Unsupervised learning: No labels are given for the data. This means that the algorithm
has to find structure in the input data. The aim is to discover some hidden pattern in
data or do feature learning for prediction [Jordan and Mitchell 2015].

• Reinforcement learning: Software agents must take actions in an environment to maximize
some notion of cumulative reward. For example, driving a vehicle. As the agent
navigates the problem space, it learns the responses of the actions and maximizes
reward [Bishop and Nasrabadi 2006].

One approach of unsupervised learning is dimensionality reduction which is used in this
work. Dimensionality reduction is the process of reducing the number of random variables
from input data by obtaining a set of principal variables. These principal variables are enough
for prediction as they have the maximum effect. In other words, it is a process of reducing
the dimension of the feature set.

An ML model is a mathematical model that, after being trained on a given dataset, can
be used to make predictions or to classify new data [Jordan and Mitchell 2015]. A learning
algorithm iteratively adjusts the model’s internal parameters for prediction error minimization
during training. A model can mean anything from a general class of models and associated
learning algorithms to a fully trained model (tuned internal parameters). Three data sets
are commonly used in different stages of the development of the model namely training,
validation, and test sets. The model is initially fit or trained on a training data set, which is a
set of examples used to fit the parameters of the model. A supervised learning method is
used in this process. Training data often consists of pairs of input vectors and corresponding
output vectors where the answer key is commonly denoted as a label or target. Results from
running the model with the training dataset are compared with the target for each input
vector in the training dataset. Consecutively, the trained model is used to predict the results
from a second dataset called the validation dataset. This provides an unbiased evaluation
of the trained model while tuning the model’s hyperparameters [Jordan and Mitchell 2015].
This may sound very simple but the procedure is quite complicated. The validation error may
fluctuate during training, producing multiple local minima. Once we identify the right set
of hyperparameters that provide minimum validation error for a trained model, we use this
model further. Finally, the test dataset is the data used for the final evaluation of the model fit.
The test dataset is analogous or used to observe the performance of using the trained model
in real-life applications. Deciding the sizes and strategies for data set division in training,
validation, and test sets is highly dependent on the problem statement and available data.

3.3 Datafold

The ease and advancement of data availability have transformed scientific data analysis. This
has led to the trend of data-driven models for scientific analysis. Advanced simulations,
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versatile sensors, and technological improvements for computational purposes have further
accelerated the trend. Unlike conventional analytical methods, data-driven models enable
the analysis of complex systems without known equations, offering fast and approximate
insights [Lehmberg, Dietrich, and Köster 2021]. The insights majorly depend on the data
availability and prediction model used. The main benefit is the reuse of the model for new
data to obtain fast results. However new data may be completely uncorrelated to the existing
data or may already exist in the input as well.

Data-driven models assume an intrinsic geometry implicitly or explicitly to extract the
essential information from available data. ML algorithms adapt to this intrinsic geometric
structure for prediction tasks. intrinsic geometry usually depends only on part of the ambient
data space i.e. it is often of lower dimension. This geometric structure encoded in the data is
referred to as a "manifold" [Lehmberg 2022].

Datafold is an MIT-licensed Python package that provides data-driven models for point
clouds to find an explicit mani-fold parametrization and to identify non-linear dynamical
systems on these manifolds [Lehmberg, Dietrich, Köster, and Bungartz 2020]. Explicit
treatment of the data manifold provides prior knowledge of the system and allows the
inclusion of domain-specific knowledge of the problem as well. It is used to identify dynamical
systems ranging from low-level data structures to high-level meta-models and infer intrinsic
geometrical structures in point clouds. Datafold, incorporating a software architecture with
three layers, is divided into three sub-packages as seen in Fig 3.3. Each layer remains open,
allowing components to utilize the functionality of the same or any of the preceding layers
[Lehmberg 2022]. In datafold these models can be used in a single processing pipeline. The

Figure 3.3: Datafold architecture overview from [Lehmberg 2022]

models are integrated into a software architecture with clear and concise modularization
[Lehmberg, Dietrich, Köster, and Bungartz 2020]. Also, an API templated from the scikit-learn
project is available. Datafold is primarily used with the following two types of data:

• Point Cloud Data: The software aims to find a low-dimensional parametrization (em-
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bedding) of the manifold directly connected to the high-dimensional and unordered
point clouds. Models often incorporate a kernel that encodes the proximity between
data points to preserve local structures. It also includes models like the Diffusion Maps
model, sparse kernel matrix representation, and out-of-sample extension in non-linear
manifold learning [Lehmberg 2022].

• Time Series Data: A data-driven model can fit and generalize the underlying dynamics
to make predictions or perform regression. Typically, we assume that the phase space of
the dynamical system, which underlies the time series observations, forms a manifold.
Datafold focuses on the algorithms DMD and EDMD for time series data [Lehmberg
2022].

3.3.1 TSCDataFrame

TSCDataFrame stands as the abbreviation for Time Series Collection DataFrame [Lehmberg,
Dietrich, Köster, and Bungartz 2020]. DataFrame’s essential feature is its storage of data in a
tabular form, enabling the attachment of meta-information to each point sample. For time
series data, the main requirement is to store time information in the format which makes it
easier to do further analysis. Pandas framework indeed provides functionality for time series,
however, its primary focus lies in handling date-based indices. TSCDataFrame additionally
provides the necessary functionality and data organization for data-driven modeling and
system identification. The class inherits from pandas.DataFrame structure and has additional
functionality for manipulating and analyzing a collection of time series. TSCDataFrame has
certain features and properties that have to be met [Lehmberg, Dietrich, Köster, and Bungartz
2020]. The following are the ones that are different compared to a general DataFrame:

• Row index must be a multi-index with two levels namely time series ID (integer) and
time values of time series (non-negative and finite numerical values)

• Column must be 1D column index containing feature names

• No duplicates in both row and column index are allowed or else an error will be raised.

• Time series values must be of numeric dtype (NaN or inf allowed)

In a mathematical notation, TSCDataFrame captures time-series collection data as in Eq 3.1.

X =
[
x(1)1 , . . . , x(1)J1

| . . . | x(I)
1 , . . . , x(I)

JI

]
=

[
X(1), . . . , X(I)

]
(3.1)

where x(i)j = [x1, . . . , xN ]
(i)
j is an N-dimensional column state (or snapshot) with associate

time indices i (ID) and j (time index);
Models in the datafold package especially DMD-based methods use data in the format of

TSCDataFrame [Lehmberg, Dietrich, Köster, and Bungartz 2020]. It is essential to convert
the input (pandas.DataFrame) to this format. A sample example of a TSCDataFrame with
three time series and two features is shown in Table 3.1. The first two time series share the
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same time values (rows). The third time series contains only a single sample similar to a
degenerated time series. In some situations, a single or degenerated time series is useful,
such as when setting up initial conditions.

Table 3.1: Sample example of a TSCDataFrame

feature sin cos
ID time

0
0.000000 0.000000 1.000000
0.063467 0.095056 0.995472
0.126933 0.189251 0.981929

1
0.000000 0.000000 1.000000
0.063467 0.189251 0.981829
0.126933 0.371662 0.928368

2 0.000000 0.000000 1.000000

3.3.2 TDE

TDE is a technique usually used to address a system with limited observations. A well-
established approach in time series modeling is the use of state space reconstruction methods,
which enhance measurement states using the temporal context within time windows [Lehm-
berg 2022]. Additionally, these methods are robust to noise and capable of reconstructing
dynamics for larger time scales. A sample example of time delay on a graph for different
delays is shown in Fig 3.4. This is different in comparison to the instantaneous change in a
time derivative of a state. During the embedding, previous states are augmented to a new
state thus reconstructing the state dynamics. A classical state space reconstruction method
represents the TDE utilization, which is expressed in its equation form in Eq 3.2.

gtd(xj; d, κ) =
[

xj, e−κxj−1, e−2κxj−2, . . . , e−dκxj−d

]
= yj (3.2)

The embedding gtd modifies a state xj by embedding information of d prior samples of the time
series. Every delayed state in the embedding is also weighted with an exponentially decaying
factor that uses the parameters delay (1, . . . , d) and κ ≥ 0. The semicolon implies the vertical
stacking of the state column vectors, resulting in a final time-delayed vector y ∈ RN(d+1)

[Lehmberg 2022]. Careful attention needs to be given to the fact that the embedding cannot
be performed on the first d states of a time series. Intuitively, the TDE separates point samples
that are incorrectly perceived as neighbors. In a successful reconstruction, intersection points
are resolved, making the embedded states Markovian [Lehmberg, Dietrich, and Köster 2021].

Classified as temporal feature extraction, the method exclusively operates on time series
data. Since few states as per user-specified delay are going to be used for embedding, all

24



3 Conceptual foundations and utilized software solutions

Figure 3.4: Sample example of Time-delay embedding method to reconstruct an attractor in
the phase space [Lau et al. 2022]

the time series must contain an equal or greater number of states than the specified delay
parameter i.e. delay + 1 states to perform embedding. A major drawback of TDE is the
increase of point dimension (M > N), but it reduces the overall number of samples in a time
series. The first d states of each time series therefore have no corresponding output state.
This also means that an initial state now needs to have d+1 measurement samples to perform
embedding for a prediction task.

In datafold, TDE is performed using the following class on time series collection data
[Lehmberg, Dietrich, Köster, and Bungartz 2020]:

class datafold.dynfold.TSCTakensEmbedding(delays=10, *, lag=0, frequency=1,
kappa=0)

Following are the parameters which affect the embedding and thus can be used as hyper-
parameters for analysis:

• delays: It is the number of time delays used for embedding. It needs to be an integer.

• lag: It is the number of time steps to lag before embedding begins. It needs to be an
integer as well.

• frequency: It is choosing how frequently embedding has to occur. For example: selecting
whether to embed every sample or every second or third. The time step frequency to
embed also needs to be an integer.
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• kappa: It is the weight of the exponential factor in delayed coordinates as mentioned in
Eq 3.2. It can be of type float.

TSCTakensEmbedding also provides the following important methods for embedding and
reconstruction:

• fit(X, y=None, **fit-params): This computes delay indices based on settings and
validate input with setting

• inverse-transform(X): This removes time-delayed feature columns of time delay em-
bedded time series collection.

• transform(X): This performs Takens TDE for each time series in the collection.

3.3.3 DMD

The basic assumption of DMD is that the states in the time series are well-defined and
describable with linear dynamics. At its core, the most basic variant of DMD initially
conducts a linear regression to solve for a system matrix U∆t and then proceeds to diagonalize
this matrix into its spectral components as mentioned in Eq 3.3

U∆t = X+X†
− (3.3)

U∆t = ΦΛΦ−1 (3.4)

where † denotes the Moore-Penrose inverse or the pseudoinverse matrix. Obtaining the two
matrices X+ and X− involves shifting all the time series within the collection [Lehmberg
2022]. The accessor of TSCDataFrame provides the corresponding operation shift_matrices.
Further, we can use the matrix U∆t and the spectral components (Φ, Λ, Φ−1) to analyze the
estimated dynamical system or to perform state interpolations or prediction tasks.

All DMD classes have DMDBase as the only base class [Lehmberg, Dietrich, Köster, and
Bungartz 2020]. DMDBase already provides various methods to predict, reconstruct, and
score that are shared by all concrete sub-classes. Hence, a new DMD class only needs to
provide the fit(X) method, which performs the decomposition of the time series data in X
[Lehmberg, Dietrich, Köster, and Bungartz 2020]. Ultimately, this is where we approximate
the Koopman operator in a matrix form. Due to linearity, each solution exists and is unique
for any given initial condition. Thus, in principle, each case is equivalent and predicts the
same solution trajectory.

During fit(X), the method decomposes the time series according to Eq 3.3 – 3.4 and sets
the necessary attributes for a case. Further, we utilize the model’s function predict(X_ic,
time_values) to evaluate multiple initial conditions in X_ic. The returned data type is a
TSCDataFrame, which contains the solution time series for each initial condition in X_ic.
The function evaluates each time series at the time_values specified in the second argument,
which consists of a sorted array of an arbitrary number of real and positive numbers. In the
reconstruct function, we reconstruct a time series collection X by evaluating the model at
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identical time values and the initial condition for each time series in X. This makes it easy to
validate the model on available data with a metric and score [Lehmberg 2022].

The thesis work is done using DMDStandard which uses DMDBase at its core. In datafold,
DMDStandard is performed using the following class on the given TSCDataFrame [Lehmberg,
Dietrich, Köster, and Bungartz 2020]:

class datafold.dynfold.DMDStandard (*, sys_mode=’spectral’, rank=None,
reconstruct_mode=’exact’, diagonalize=False, approx_generator=False,
rcond=None, residual_filter=None, compute_pseudospectrum=False)

The standard DMD computes a system matrix U∆t which can also be interpreted as
an approximation of a Koopman operator approximation as seen in Eq 3.3. The actual
decomposition contains the matrix spectral elements. When the parameter rank is set, an
economic DMD is utilized instead of DMDStandard with full rank. For economic DMD, the
data X is first represented in a singular value decomposition as seen in Eq 3.5

X ≈ PkΣkQ∗
k (3.5)

with singular values in the diagonal matrix Σ and vectors in P and Q. Instead of using all
components, only the leading k (corresponding to rank) is used. Using this representation
the system matrix is then computed with the reduced SVD coordinates as seen in Eq 3.6

U∆t = PTX′QkΣ−1
k (3.6)

where X′ denotes the time-shifted snapshot of X. Again the eigenpairs of the system matrix
are computed U∆tWk = WkΩ [Lehmberg, Dietrich, Köster, and Bungartz 2020].

Depending on the input data, application, and other needs, the user can change the
parameters for DMDStandard. Following are the parameters that affect the DMD model and
thus some of them can be used as hyperparameters for analysis [Lehmberg, Dietrich, Köster,
and Bungartz 2020]:

• sys_mode (Literal[’spectral’, ’matrix’]): Selecting a mode to evolve the linear
system with either "spectral" or "matrix" mode

– spectral: It computes the spectral components from the system matrix. The eval-
uation of acquiring valuable information about the underlying process is cheap.
Predictions may be numerically corrupted If the system matrix is badly condi-
tioned.

– matrix: It uses the system matrix directly. The evaluation is more robust but
computationally more intensive.

• rank (Optional[int]) – If it is mentioned, the economic DMD is performed. It should
be less than the number of features in the data.
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• reconstruct_mode (Literal[’exact’, ’project’]): decides on how reconstruction
has to be done. rank needs to be mentioned. The parameter is ignored if the rank is
None.

• diagonalize (bool): The right and left eigenvectors are computed to diagonalize the
system matrix if it is set to True. This affects how initial conditions are adapted for the
spectral system representation (instead of a least squares Ψ†

r x0 with right eigenvectors
it performs Ψlx0). The parameter is ignored if sys_mode = matrix.

• approx_generator (bool): Approximates the generator of the system if set to True.
Two modes are present namely,

– mode = spectral: The left and right eigenvectors remain the same. It computes
(complex) eigenvalues of the generator matrix log(λ)/∆t, with eigenvalues lambda
of the system matrix.

– mode = matrix: It computes the generator matrix with logm(K)/∆t, where logm is
the matrix logarithm.

• rcond (Optional[float]): It is the cut-off ratio value for small singular values passed
to rcond of py:method:numpy.linalg.lstsq.

• res_threshold: It is used to filter spurious spectral components. If set, this requires
sys_mode="spectral.

• compute_pseudospectrum (bool): Flag to indicate whether the method pesudospec-
trum is required. If True, then additional (internal) matrices are stored that are required
for the computations. It can be computationally intensive.

Since DMDStandard has DMDBase at its core, it has the same following methods which
are described with their syntax below:

• fit(X): This fits the model. The input taken is in the TSCDataFrame format.

• predict(X, *, U=None, time_values=None, **predict_params): This predicts time series
data for each initial condition and time values.

• reconstruct(X, *, U=None, qois=None): This reconstructs time series collection. It
extracts the same initial states from the time series in the collection and predicts the
other states with the model at the same time values.

• score(X, *, U=None, y=None, sample_weight=None): This scores the model by recon-
structing time series data. The default metric (see TSCMetric) used is mode=”feature”,
“metric=rmse” and “min-max” scaling.
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3.3.4 EDMD

EDMD is a finite matrix approximation of the operator, U∆t ≈ U∆t , based on time series data.
The computation of this matrix allows us to compute the Koopman triplet namely eigenpairs
and modes using standard linear algebra. Continuing our computation from Eq 2.15, we
approximate the Koopman operator and diagonalize Koopman matrix with eigenvalue matrix
Λ = diag(λ1, . . . , λP) and the right and left eigenvectors respectively (Φ, Φ−1) using Eq 3.4.
The dictionary is then applied for each snapshot i.e. overloading of the dictionary function
of Eq 2.10 to map the data matrix X to a feature matrix Y [Lehmberg 2022]. Ultimately,
the interest is in the measurement of state evolution i.e. x. We also compute a matrix B,
which linearly maps feature states back to the physical states (the symbol † denotes the
Moore-Penrose inverse) as illustrated in Eq 3.7.

B = XZ† (3.7)

The dictionary state representation y should be suitable for both linearly describing the dy-
namics and reconstructing the measurements. In Eq 3.4, the Koopman matrix is diagonalized,
allowing us to set up the final model [Lehmberg 2022].

xj+1 ≈ B
(

U j
∆tz1

)
(3.8)

≈ B
(

ΦΛj
∆tΦ

−1z1

)
(3.9)

≈ VΛj
∆tξ(x1) = X

P

∑
p=1

vpλ
j
pξp(x1) (3.10)

where Eq 3.10 corresponds to the Koopman Mode Decomposition. The matrix V = BΦ
contains the Koopman modes and reconstructs the states, whereas (λp, ξp(x))P

p=1 correspond
to the approximate Koopman eigenvalues and eigenfunctions. There is a unique and analytical
solution for every initial condition as Eq 3.10 describes an autonomous and finite linear
dynamical system [Lehmberg 2022].

I use the EDMD class from datafold package to utilize EDMD to approximate the Koopman
operator. The objective of the EDMD class is to twofold: (1) provide a generic and flexible
dictionary Θ(x) and (2) compute and store the Koopman triplet. Thus, the EDMD class consists
of two parts: one or many methods to describe the dictionary and a method to perform the
final mode decomposition. This is highlighted in the class diagram of Fig 3.5. Together this
leads to a dynamical system model as an operator-based approach to perform nonlinear
system identification.

In datafold, EDMD is performed using the following class on the given TSCDataFrame
[Lehmberg, Dietrich, Köster, and Bungartz 2020]:

class datafold.appfold.EDMD(dict_steps, dmd_model=None, *,
include_id_state=True, dict_preserves_id_state=’infer’,
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Figure 3.5: Class diagram for EDMD [Lehmberg 2022]

stepwise_transform=False, use_transform_inverse=False,
sort_koopman_triplets=False, memory=None, verbose=False)

The method uses a (finite) function basis and may include non-linear transformations of
the data to enhance the function space. The model is similar to sklearn.pipeline.Pipeline,
where the EDMD dictionary corresponds to the transformations in the pipeline. A DMDBase
model acts as the final estimator of the pipeline, approximating the Koopman operator using
the EDMD-dictionary time series. Unlike a scikit-learn Pipeline, this model not only maps
states forward to the EDMD dictionary but also reconstructs them to the original full-state
time series, typically via Koopman modes. dict_steps is where the function that describes
the dictionary is mentioned. List with (string_identifier, model) of models to transform the data.
The list describes the transformation pipeline and order of execution. All models in the list
accept TSCDataFrame as input in fit and output in transform [Lehmberg, Dietrich, Köster,
and Bungartz 2020]. The hyperparameters for EDMD class depend on the function basis used
for the dictionary. The following subsections are some of the dictionaries used along with the
hyperparameters and code used to define the parameter dict_steps.

EDMD-Radial Basis Functions (EDMD-RBF)

This methodology uses a radial basis function (RBF) to describe the dictionary. An RBF is a
real-valued function whose value depends only on the distance between the input and some
fixed point. Following are some of the classes of RBF as mentioned in the datafold package
[Lehmberg, Dietrich, Köster, and Bungartz 2020] that use the mathematical function including
the squared Euclidean distance matrix denoted by D :

• Gaussian Kernel:
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class datafold.pcfold.GaussianKernel(epsilon=1.0, distance=None)

K = exp(
−1
ϵ

.D) (3.11)

• MultiQuadric Kernel:

class datafold.pcfold.MultiquadricKernel(epsilon=1.0, distance=None)

K =

√
1
2ϵ

.D + 1 (3.12)

• InverseMultiQuadric Kernel:

class datafold.pcfold.InverseMultiquadricKernel(epsilon=1.0,distance=None)

K = (

√
1
2ϵ

.D + 1)−1 (3.13)

• InverseQuadratic Kernel:

class datafold.pcfold.InverseQuadraticKernel(epsilon=1.0)

K = (
1
2ϵ

.D + 1)−1 (3.14)

In all the above RBF, ϵ is the hyperparameter which is used for analysis. It is the kernel
scale and needs to be a positive float value. By using different values of ϵ, we try to find the
optimum model that provides us with a better reconstruction.

EDMD-Polynomial (EDMD-Poly)

The dict_steps mentioned is polynomial and the degree for the polynomial is described using
TSCPolynomialFeatures. It computes polynomial features from data. TSCPolynomialFeatures
is a subclass of PolynomialFeatures from scikit-learn to generalize the input and output of
pandas.DataFrames and TSCDataFrame [Lehmberg, Dietrich, Köster, and Bungartz 2020]. Fol-
lowing is a code snippet of the utilization of EDMD-Poly to fit(X) and predict(X) while
mentioning the dict_steps with a polynomial degree of two :

dict_step = [
(

"polynomial",
TSCPolynomialFeatures(degree=2),

)
]
edmd_poly = EDMD(dict_steps=dict_step, include_id_state=True).fit(X=x_tsc_train)
edmd_poly_values = edmd_poly.predict(
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x_tsc_train.initial_states(), time_values=x_tsc_train.time_values()
)

The hyperparameter that is used to obtain the optimum model while using EDMD-Poly is
the degree of polynomial. Also, time delay embedding with different values of delay affects
the reconstruction error for different values of degree. Careful analysis of different cases is
needed to avoid overfitting as well.

EDMD-Dictionary Learning (EDMD-DL)

The conventional fixed dictionary approach in EDMD can pose challenges, particularly when
dealing with high-dimensional and nonlinear systems. By combining EDMD with a trainable
ANN dictionary, the EDMD-DL can dynamically adapt the observables without the need for
preselection [Lehmberg, Dietrich, Köster, and Bungartz 2020]. The neural network is specified
in the torch [Paszke et al. 2019], which needs to be installed separately from the datafold’s
dependencies. Following is a code snippet for the utilization of EDMD-DL:

dict_steps = [("_id", TSCIdentity())]
num_rows=10

network = FeedforwardNN(
hidden_size=100,
n_hidden_layer=3,
n_dict_elements=22,
batch_size = num_rows*1251,
n_epochs=20,
sys_regularization=0.1,
learning_rate=1e-4,
random_state=1,

)
dmd = DMDDictLearning(learning_model=network)

fit_params = dict(
dmd__record_losses=True,
dmd__X_val=x_tsc_valid,
dmd__lr_scheduler=ReduceLROnPlateau,

)

edmd = EDMD(
dict_steps=dict_steps,
dmd_model=dmd,
stepwise_transform=True,
include_id_state=False,
dict_preserves_id_state=False,
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sort_koopman_triplets=False,
)
edmd.fit(x_tsc_train, **fit_params)

The foundational concept behind incorporating dictionary learning lies in the creation of a
dedicated variant of DMD, i.e. the DMDDictLearning class. This class not only learns observ-
ables from the data but also provides the mode decomposition of the system matrix. While
various learning algorithms can be included in DMDDictLearning, the primary supported
class is FeedforwardNN.

I specify the neural network with the same number of layers, width per layer, and output
size. I train the network with a relatively low number of epochs, and additional train-
ing parameters can be passed to fit_params. In this case, I set a learning rate scheduler
ReduceLROnPlateau from Pytorch and utilize x_tsc_valid as validation data. The losses are
recorded to facilitate later training vs. validation loss visualization.

Figure 3.6: Sample dictionary pipeline of EDMD-DL

The DMDDictLearning provides both a transformer as well as a DMD object for the
predictions [Lehmberg, Dietrich, Köster, and Bungartz 2020]. In this case, the dictionary
pipeline (transformers) are now TSCIdentity and FeedforwardNN as illustrated in Fig 3.6. This
means when I evaluate edmd.transform(X), I map X to the output layer of FeedforwardNN.
Finally, the estimator is a DMD class, which predicts the dictionary states forward in time.
Hyperparameter tuning for different parameters involved in FeedforwardNN is done for
different crowd simulation scenarios in the following chapters.
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In this chapter, I give a data-oriented introduction to the Koopman operator theory and a
detailed methodology to approximate the Koopman operator using DMD and its variants.
The data consists of spatial snapshots x(i)j ∈ RN (column vectors), containing mesoscopic
measurements obtained from the simulation software to describe the state at a given time
[Lehmberg, Dietrich, and Köster 2021]. Each snapshot is an element of the associated multi-
variate time series which is represented in a matrix form. A tuple of time series and index
(i, j) map to a unique time stamp t , such that the snapshots are temporally ordered, t(i)j < t(i)j+1

and each time series has a constant sampling rate, t(i)j = t(i)1 + (j − 1)∆t. Finally, the time
series matrices are vertically stacked into a single data matrix as given in Eq 4.1 [Lehmberg,
Dietrich, and Köster 2021].

X =
[
x(1)1 , . . . , x(1)J1

| . . . |x(I)
1 , . . . , x(I)

JI

]
=

[
X(1), . . . , X(I)

]
∈ RN×[∑i Ji ], (4.1)

The matrix rows account for the spatial attributes of the states and the columns describe the
evolution of the state. Data-driven understanding of complex systems is quite challenging due
to the nonlinearity of the dynamics of high-dimensional states. The model has to be robust to
noise and missing states in real-world applications. Also, it has to generalize to states not
included in the training process, i.e. x ̸∈ X to avoid overfitting and perform prediction tasks.

The Koopman operator has gained popularity among researchers in the last decades, as
it offers a framework that mitigates some of these challenges. It is better suited to identify
systems having high dimensional and nonlinear state evolution characteristics. However,
there is a trade-off. Instead of a nonlinear state evolution of finite states, the dynamics
obtained are linear but expressed in an infinite-dimensional function space [Lehmberg 2022].
While the exact system representation requires infinitely many observables, it is possible to
perform finite-dimensional approximations because of the linear structure. The aim is then
to capture the principal dynamical characteristics and utilize them to predict, control, and
interpret the dynamic structure [Lehmberg, Dietrich, and Köster 2021].

A popular choice of a numerical method for the approximation of the Koopman operator
is the DMD. It was initially applied to a single time series of high-dimensional states. Also, it
is easy to extend for different applications or systems. Thus, many variants of DMD emerged
for various applications of data-driven modeling. In the ML context, the numerical models
to approximate the Koopman operator can be supervised (in future state prediction) and
unsupervised (representation in system-intrinsic patterns) [Lehmberg, Dietrich, and Köster
2021]. In the following subsections, we describe the methodology for crowd simulation for
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data generation, data collection, data preprocessing, the numerical method to approximate
the Koopman operator, and using hyperparameter tuning to obtain an optimum model.

4.1 Description of the problem statement

It is quite difficult to obtain real-world data for various crowd modeling tasks. Hence,
we utilize crowd simulation data to construct crowd models for reconstruction, analysis,
and prediction tasks. The current problem statement is to perform crowd modeling as a
reconstruction task for an evacuation scenario using mesoscopic data. The work focuses
on the creation and simulation of evacuation scenarios ranging from simple to complex to
obtain crowd data at a mesoscopic scale. To achieve this, instead of obtaining features of
individual pedestrians, crowd density at a particular timestep is chosen. We try to reconstruct
the scenario using Koopman operator approximation and analyze the effectiveness of the
same. Hyperparameter tuning has to be performed to obtain the optimum model and ML
techniques need to be used to generalize the model.

The general idea is to check if it is possible to describe the scenario or a room in this case
with only the crowd density at specific areas at a particular timestep. Can we reconstruct the
features of the crowd dynamics with only this? How accurate is the reconstruction? Can it
be applied to new test cases for prediction tasks? Can it be used for further computation of
other parameters such as evacuation time? This is essential as obtaining microscopic data in
real-world applications is computationally and economically intensive. One has to process
lots of video camera footage just to obtain a dataset even for a simpler task like computing
evacuation task. It is quite easier to obtain mesoscopic data such as crowd density at a
particular section at a particular time with current advances in sensor technology. Thus, there
is a need to check the effectiveness of utilization of mesoscopic data for crowd modeling
tasks.

4.2 Framework for model optimization

Before proceeding to individual cases, it is better to have an overview of the steps involved to
obtain the results. The basic procedure or sequential steps followed to obtain the optimum
model for reconstruction or prediction tasks are as follows:

1. Data Collection: Construct the scenario and perform multiple simulation runs in Vadere
to collect data.

2. Data Pre-processing: Create dataset from multiple simulation runs. Pre-process the data
to obtain values of crowd density for every timestep. Ensure that the dataset has all
valid values i.e. it does not have NaN or Inf in the DataFrame.

3. Data Splitting and Conversion: Split the dataset to train, validation, and test datasets as
necessary. Finally, convert all the datasets to TSCDataFrame type for further processing.
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Identify the optimum training dataset size required for the minimum validation error.
This will allow us to reduce computational requirements down the line.

4. TDE: Apply TDE to the data to enrich its context. Use its parameters for hyperparameter
tuning to obtain the optimum model. Make sure that the final delay used for embedding
does not exceed the initial data length assumed to be given to us for the scenario.

5. DMD or its variant: Use the time delay embedded data (if used) to perform DMD (or its
variant) to approximate the Koopman operator for the reconstruction of training data.
Obtain the training and validation errors. Use the parameters of DMD (or its variant)
for hyperparameter tuning to obtain the optimum model.

6. Hyperparameter Tuning: Repeat steps 3, 4, and 5 with different sets of parameters to
obtain minimum validation error and eventually the optimum model. This might be
computationally intensive. A better idea is to perform hyperparameter tuning at each
of the steps 3, 4, and 5 individually to check its effects. This can be seen as analogous to
doing a grid search.

7. Reconstruction or Prediction Task: Once the optimum model is obtained, combine the
training and validation data and train the optimum model with this data. Use this on
new data or the test dataset to obtain the testing error and perform reconstruction or
prediction tasks as needed.

The following text showcases the hardware used for the computation for all cases:

• Processor:13th Gen Intel(R) Core(TM) i9-13900H, 2.60 GHz

• RAM: 32.0 GB

• System type: 64-bit operating system

The following subsections and the next section in this work will describe the implementation
and results of each step for different scenarios in detail. To understand the implementation of
each step, I use a very simple evacuation scenario with a single door (i.e. a single source and
a single target) before proceeding to a complicated scenario. In this chapter, I will discuss
in detail regarding this simple scenario, and in the following chapter, I will discuss a more
complex evacuation scenario with multiple doors.

4.3 Simple evacuation scenario

4.3.1 Data collection

Vadere is used as the crowd simulation software for constructing, simulating, and collecting
data for all scenarios. The topography can be constructed by directly using the Vadere GUI.
The room is constructed with a length-breadth ratio of 2. The length of the room is 66m
while the breadth is 33m. The construction of the room is done using the obstacles (areas
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(a) Topography with measurement area annotations (b) Simulation

Figure 4.1: Bottleneck evacuation scenario for a single door in Vadere. (Source: Green, Target:
Orange, Obstacles: Grey, Measurement areas: Red)

shaded in grey color in Fig 4.1) and the opening from this area is considered as the door. The
door width is chosen to be 2m as default. Source (area shaded in green color in Fig 4.1) is
assumed to take the space of the left half i.e. people spawn or travel from one side of the
room and evacuate from the door which is on the opposite side. Four measurement areas
(areas shaded in red color and annotated in Fig 4.1) are chosen of which two exist in the
source while two exist in the region between the source and the door. It is vital to have a
measurement area near the door as it is important to have the crowd density near the door. A
target (area shaded in orange color in Fig 4.1) exists on the other side of the door and it can
be assumed to exist outside the room.

Once the topography is built, the other attributes required for simulation are chosen. I only
mention the most important attributes relevant to the scenario which are as follows:

• Simulation time: 500s

• Simulation seed: To create data from multiple simulation runs for an evacuation scenario
with a single door we choose a random seed.

• Model: I chose the default setting of the model from Vadere which is the optimal steps
model.

• Number of pedestrians: 1000 (this is inputted as a parameter of source)

• Mesh density processor: For each measurement area, I choose a mesh density counting
processor. This creates a mesh (similar to cellular automata in mesoscopic modeling)
in the measurement area and measures the number of pedestrians in each face of the
mesh in each timestep.

The output of a simulation run includes the density count at each face of the measurement
area for every timestep. It is obtained in the form of a text file allowing us to process further
efficiently using Python. For detailed construction of the scenario and the attributes involved,
one can refer to the documentation of Vadere.
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4.3.2 Data pre-processing

In this step, I collate the data from multiple simulation runs to form the dataset. I perform
200 simulation runs with a random simulation seed to create the dataset. Just for analysis
purposes, I draw two cases out of this namely a dataset with only 100 simulation runs
and another dataset with 200 simulation runs. For each simulation run, there is a need
to preprocess the data before combining them. Firstly, if all the measurement areas are
not of the same size, the dataset will have NaN values. It is easier if all the NaN values
are replaced with zero. Each simulation has the crowd density data for each mesh face of
the measurement area for every timestep. The measurement of interest is the total crowd
density in the measurement area per timestep. Therefore, I sum up the values for all the
faces for each measurement area for each timestep before proceeding further. Thus, for every
simulation, I have N number of timesteps (in our case 1251) and for each timestep, I have
four measurement area values. Once this is done for every simulation, I collate data from all
simulation runs to a Pandas DataFrame. For example, for 200 simulation runs, we have a
dataset with [200 × 1251 = 250200] rows and four columns. This DataFrame forms the initial
dataset for the multiple runs of this scenario.

4.3.3 Data splitting and conversion

Initially, to understand the methodology I consider the dataset with crowd data obtained
from 100 simulation runs. To select the optimum model for reconstruction or prediction,
I need to perform hyperparameter tuning of the model. This is why there is a need to
split the dataset into training, validation, and test datasets. For simplicity, I choose the split
80-10-10 for the task at hand, i.e. training dataset will have data from 80 simulation runs, the
validation dataset will have data from 10 simulation runs and the test dataset will have data
from 10 simulation runs. Once the dataset is split to train, validation, and test data, these are
converted to the TSCDataFrame format for further processing. This is done as the datafold
package needs input data to be in this format. All the simulation runs chosen are randomly
chosen without repetition from the initial dataset created in the last step. As mentioned in the
procedure, I also perform some basic form of hyperparameter tuning in this step as well. For
computation, I choose a full-rank DMD and two cases of time delay. Here, I assume that up
to 20 initial timesteps can be chosen for TDE, i.e. I can take up to 20 initial timesteps as input
or initial states. This assumption is made keeping in mind that none of the measurement
areas completely reach the state of zero in the initial 20 timesteps.

Once the TDE and DMD are chosen, the effects of the size of the training dataset can be
studied. This is important before proceeding to complex scenarios with multiple sources and
targets. It gives an estimate as to how many simulation runs I will need for a single case to
minimize reconstruction error. I choose 1% (1 training sample) and then range from 10% to
100% (eight to 80 simulation runs with increments of eight) training dataset size in increments
of ten to study its effect on the validation error. Training, validation, and testing errors are
computed as mean square error (MSE). Fig 4.2 shows the effects of dataset size for two cases
of split (80-10-10 & 60-20-20) and two cases of delay (delay = 0 or 10) when the dataset has
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(a) Split: 80-10-10, DMD (b) Split: 80-10-10, DMD + Time Delay

(c) Split: 60-20-20, DMD (d) Split: 60-20-20, DMD + Time Delay

Figure 4.2: Training and Validation error for the case with the number of Simulations: 100

data from 100 simulation runs. Fig 4.3 is similar to Fig 4.2 with the difference being that the
dataset has data from 200 simulation runs. Key observations regarding the data splitting,
maximum dataset size, and training dataset size chosen can be made from this.

The following text discusses the case studies done to compute the kind of dataset chosen
for further computation:

• Dataset split: Comparing pairwise cases such as Fig 4.2a and Fig4.2b and other such
pairs, it can be observed that when TDE is used, the effect of which data split we
choose is not that much compared to when we do not use TDE. Since TDE is used,
the choice mainly depends on the maximum dataset size and computational resources
available. Because, for a split where more validation data is available, the computation
time increases 1.5 - 2 times (for a single computation) especially if TDE is used. For
example: when the maximum number of simulations is 100, the delay is ten, and
DMD with full rank is used, the computation time changes from 10s to 17s for a single
computation when the split is changed from 80-10-10 to 60-20-20. If I use a loop to

39



4 Methodology

(a) Split: 80-10-10, DMD (b) Split: 80-10-10, DMD + Time Delay

(c) Split: 60-20-20, DMD (d) Split: 60-20-20, DMD + Time Delay

Figure 4.3: Training and Validation error for the case with the number of Simulations: 200
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identify the optimum model utilizing this, the computation time can become twice that.
The benefit of a 60-20-20 split is that the MSE noise becomes less for all cases even with
increasing the training dataset size compared to an 80-10-10 split. Since the fluctuations
with 60-20-20 are less and the availability of more generalized validation data, I will be
working with a 60-20-20 split for further computation.

• Maximum Dataset size: When the maximum dataset size is increased from 100 to 200
it can be seen that in some cases the validation error might get higher. This might
be due to the addition of more outlier cases. It can be observed that the difference
between maximum validation error to minimum validation error becomes less while
using 200 simulation runs, especially with cases where I use 60% to 100% of the training
dataset. The choice of using a higher maximum dataset size depends on the computation
resources available. Because going from a size of 100 to 200 simulation runs, especially
while using TDE, the computation time for a single computation increases up to four -
five times. For example: when the number of simulations is 100, the split of 80-10-10, the
delay is ten, and DMD with full rank is used, the computation time is around 11s while
when the number of simulations is increased to 200 while keeping the rest same, the
computation time increases to 46s. Since the computation resources for this particular
scenario are available, I will be using the maximum size of 200 for the dataset for further
computations.

• Training Dataset size: It is observed that in all cases when less training data is used the
MSE is high which is as expected. The validation error reduces when more training
data is used but the error fluctuates a lot until atleast 50% of the training dataset size
is used. As the training dataset size is further increased from 50% to 100% it can be
observed that the fluctuation reduces and that it almost converges to some value (mean
of fluctuation results). Thus, I can use 60% to 70% of the training dataset size if the
computation resources available are limited and still obtain a good approximation.
Therefore, I will be using 70% of the training dataset instead of the full training dataset
for further computations of hyperparameter tuning of TDE and DMD.

4.3.4 Application of TDE to dataset

Continuing from the previous section, I work with the dataset which has data from 200
simulation runs and a data split of 60-20-20 for train, validation, and test datasets. Even in
the last section, a small application of TDE and its impact on the validation error compared
to when it is not used was seen. The dataset has four columns that represent the crowd
density values from the four measurement areas. Trying to identify the intrinsic geometry
within the data using just four columns is quite difficult. Since the crowd model is a time
series collection, TDE can be applied as mentioned in Section 2.3.1 and 3.3.2. This provides
additional columns which can be used to identify the intrinsic structure. It was already seen
that a simple application of using a TDE with a delay of ten almost reduces the validation
error from around 1250 to 580. In this section, I analyze the application of this phenomenon
to further optimize the model using the hyperparameters involved in TDE. I utilize the
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TSCTakensEmbedding class from the datafold package to achieve this. As mentioned in
Section 3.3.2, it can be seen that the hyperparameters involved with TDE are the delays, lag,
frequency, and kappa. From the TDE formula mentioned in Eq 3.2, it is evident that the effect
of change of kappa (i.e increasing kappa from the default value of zero) will only make the
values of the current timestep more dependent on the previous timestep only. That is, it
makes the embedding depend only on the previous timestep. Hence I will only be using the
default value of zero for kappa and focus on the effects of the rest of the hyperparameters.

During the study, I assume that the initial 20 (or 21 in certain cases) timesteps can be used
for TDE. This value is chosen using trial and error for this scenario by observing that the
values in any measurement area do not go to zero immediately after using TDE. But in the
evacuation case, this means that all the pedestrians have already left or some intermittent
timestep where the measurement areas used in sources will always be zero. It seems to be a
good choice where I make sure that all measurement areas will have values greater than zero
at some timestep during the process after the application of the embedding. Hence the value
of 20 is used. Therefore, it has to be made sure that (delays × f requency) + lag ≤ 20 for all
cases. For all cases, DMD with full rank is used for computation. In the following text, the
individual effects of each parameter on the validation error are highlighted.

• Delays: Keeping the lags to zero and frequency to one, I analyze the effect of delays from
0 to 20. The effect of delays on the validation error can be seen in Fig 4.4. A high value
of delay reduces the error which also confirms our intuition. If the current timestep can
be expressed as a relation to as many previous timesteps, it becomes possible to describe
the intricacies much better. Also, since some initial data is used, the data size reduces
as well. Thus, for the given lags and frequency, one should try to choose the highest
delay. On the other hand, as delay increases, the computational resources required also
increase. So, if it is computationally possible to use maximum delay, one should.

• Lags: Keeping the f requency = 1, I analyze the effect of lags from 0 to 10 for two cases
where delays of 1 and 10 are chosen. Fig. 4.5 shows the effect of lags for two values of
delays (= 1 or 10). In both cases, it can be seen that a high value of lag yields better
results. It reduces the error by half going from a lag of 0 to 10. Compared to the change
in delays which reduces the error by almost one-sixths this is not big enough. but
computationally it is more efficient than just increasing delay.

• Frequency: Keeping the delays = 2 and lag = 0, we analyze the effect of frequency from
1 to 10. Fig 4.6 shows the effect of frequencies as the parameter. We observe that similar
to delays and lags, a higher value of frequency allows the reduction of validation error.
The effect is similar to lags which reduces the error by half going from 1 to 10. Also,
computationally it is not that intensive.

The above results show us that we should choose the values of delays, lags, and frequency
as high as possible while keeping the assumption of using a maximum amount of 20 timesteps.
Thus, triplets that satisfy Eq 4.2 and Eq 4.3 must be found and from them, I must identify
the best choice that provides minimum validation error. It is seen that that there are 47 such
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Figure 4.4: Effect of Delays as a hyperparameter

(a) Delay = 1 (b) Delay = 10

Figure 4.5: Effect of Lags with different delay value
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Figure 4.6: Effect of Frequencies as a hyperparameter

triplets which satisfy the maximum value of 20. A snippet of the MSE results is shown in Table
4.1. Even after choosing to only find results when the maximum value is 20, it approximately
took 9 minutes to get the MSE results from just 47 runs. Thus, the hyperparameters should
be chosen in the order of delay, frequency, and then lag. An interesting observation is that
the pair delay = 10 and f requency = 2 gives better results than when the delays = 15 or 16.
This is vital when one is working with a large dataset such as traffic data of every hour for a
year. In such cases, reducing the delay value and still obtaining an optimum model is very
useful. Trying to select the maximum delay that one can and then the frequency and finally
the lag seems to be the right methodology for an efficient way to use TDE. Also, care has
to be taken as to what computational resources are available. For further computation, we
choose delays = 20, lag = 0, and f requency = 1 to apply TDE.

y = max(delays ∗ f requency + lags) (4.2)

y ≤ 20 (4.3)

4.3.5 Application of DMD and EDMD to the dataset

DMD

After careful selection of dataset size, data splitting method, and the parameters for TDE,
I analyzed which DMD model and what parameters should be chosen. To begin with, I
analyze the DMDStandard model and only its hyperparameters. Before proceeding further,
reviewing and selecting the best parameters for the dataset is vital to reduce the computation
time further. The following are the dataset characteristics or parameters:

• For this scenario, a dataset of 200 simulation runs is chosen.

• Data split of 60-20-20 is selected for train, validation, and test datasets.
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Table 4.1: Hyperparmeter tuning results for TDE

Delay Lag Frequency MSE

20 0 1 207.085
19 1 1 223.854
18 2 1 243.372
17 3 1 260.651
10 0 2 268.112
16 4 1 280.648
15 5 1 297.037
9 2 2 303.481
14 6 1 312.272

• I only choose 70% of the training dataset to reduce the computation complexity.

• For TDE, I choose the parameters concluded in the previous section which are delay =

20, lag = 0, and f requency = 1

The basic details and mathematics have already been mentioned in Sections 2.3.2 and
3.3.3. I utilize the DMDStandard class available in the datafold package as mentioned in
3.3.3. From the DMDStandard class, it is observed that for a lot of boolean hyperparameters,
MSE error does not change in our scenario, especially after the utilization of TDE. Also,
there is a drawback of increased computational time and resources without seeing any
effect on the MSE. Fig 4.7 shows the reconstruction of a sample of validation data for each
measurement area. Some noise or fluctuation in reconstruction is observed when DMD is
used without TDE, especially for measurement areas one and two which are the areas in the
source. The annotations of the measurement area for this scenario is illustrated in Fig 4.1. The
reconstruction for measurement areas one,two, and three i.e. for areas located interior or away
from the door are close to the true value compared to the reconstruction of measurement
area four i.e. the area close to the door. The MSE of measurement area four is the most
significant error that affects the reconstruction. The same is seen in Fig 4.7. That is, the
MSE for measurement areas one, two, and three is much lower compared to the MSE for
measurement area four. The utilization of TDE removes the fluctuations that are observed
before. Also, the reconstruction when TDE is used for measurement area four is much closer
to the true value and thus the reduction of MSE becomes very significant.

The hyperparameter having a significant effect on the model is the rank of DMD which we
will analyze. From Fig 4.8, it is clear that one can use a rank lower than the full rank of the
matrix to obtain the optimum model to reduce computation intensity requirements. In this
case, the noise or fluctuations reduce when a rank near 50 is chosen. Even though it may not
be the absolute minimum value obtained, it provides fewer fluctuations with an increase in
rank. That a rank of 50 provides a good approximation of the intrinsic geometry. Further,
I try out the basic versions of EDMD namely radial basis functions (RBF), polynomial, and
dictionary learning.
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(a) Crowd density at measurement area one (b) Crowd density at measurement area two

(c) Crowd density at measurement area three (d) Crowd density at measurement area four

Figure 4.7: Reconstruction of a sample from validation data using DMD with and without
TDE for each measurement area in the scenario
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(a) MSE vs Rank (one to full rank) (b) Closer look at Ranks > 20

Figure 4.8: Effect of DMD rank

(a) Without time delay (b) With time delay (delay = 20)

Figure 4.9: Effect of Epsilon in The Gaussian kernel for EDMD RBF with and without TDE

EDMD-RBF

The radial basis functions in EDMD-RBF use a Gaussian kernel from the pcfold package of
datafold. Epsilon (ϵ) is the kernel scale which must be a positive float value. It is a feature
map to transform the input data into a higher-dimensional space where linear methods can
be applied more effectively. It is the return from the callable function of the distance matrix
which then becomes the measure of pairwise distances of shape. This is the hyperparameter
which has to be tuned according to the dataset. Following are the features or importance of
the ϵ parameter:

• Standard of deviation: The parameter ϵ controls the influence of each data point in the
transformed feature space. A small ϵ results in a wider Gaussian, meaning data points
far apart in the original space can still have a significant influence on each other in the
transformed space. Conversely, a large ϵ results in a narrower Gaussian, meaning only

47



4 Methodology

(a) Crowd density at measurement area one (b) Crowd density at measurement area two

(c) Crowd density at measurement area three (d) Crowd density at measurement area four

Figure 4.10: Reconstruction of a sample from validation data using EDMD-RBF with and
without TDE for each measurement area in the scenario

nearby points have a significant influence on each other.

• Balance between local and global: Adjusting ϵ allows you to balance between local and
global characteristics in your data. A smaller ϵ focuses more on local structures, while a
larger ϵ captures more global structures.

It is also observed that in every case, the reconstruction error of training and validation
error is at the same scale. Thus, we can use either for hyperparameter tuning. From Fig 4.9,
it can be seen that the reconstruction error converges to a value close enough to what was
observed in standard DMD. However, the computation time is much less compared to DMD.
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Also, when TDE is used, the reconstruction error converges to the value for a much smaller
value of ϵ than the case when TDE is not used.

Fig 4.10 shows the reconstruction of sample validation data using EDMD-RBF with and
without TDE. The reconstructed profiles are quite close to what was seen in Fig 4.7. Thus,
similar conclusions can be drawn for this model as well. This shows that the intrinsic
geometry has much of a linear geometry which is the reason that the convergence of radial
basis functions is similar to the value that DMD provides. Other kernels for RBFs such as
MultiQuadric, InverseMultiQuadric, and InverseQuadratic were also seen. The results are
either similar to the Gaussian kernel or worse and hence are not analyzed further. This might
be due to the level of complexity of the scenario.

EDMD-polynomial

Table 4.2: MSE error in EDMD polynomial with different degrees

Delay Polynomial Degree MSE_Train MSE_Valid

1 2 41.127 40.831
1 3 107.537 107.621
1 4 37.577 38.619
1 5 30.503 32.952
2 2 38.948 39.244
2 3 109.885 121.127
2 4 38.587 43.039

For EDMD with polynomial features, the hyperparameter of polynomial degree can be
used. Table 4.2 shows the training and validation MSE in both cases where the delay is
one or two for the application of TDE. If the delay is increased further, the reconstruction
creates NaN or Inf values even for a polynomial degree of two. The MSE error reduces as the
polynomial degree increases except in the case when the degree is three. This is probably
specific to this dataset as the MSE value reduces again when the degree is taken as five. As
the degree increases, the computation time increases exponentially as well but the error does
not reduce in comparison. Thus, for a large dataset, we can take a polynomial degree of two
and a delay of either one or two as both are comparable.

The reconstruction of sample validation data for this model can be seen in Fig 4.11. It can
be seen clearly that the reconstruction of measurement area four even when EDMD-Poly is
used without TDE is a good fit for ground truth. Hence, MSE for the entire reconstruction is
quite less compared to DMD or EDMD-RBF. Basic EDMD with a polynomial degree of two
and a delay of one already brings down the MSE to one-fifth of what was obtained in DMD.
However, careful consideration of reconstruction needs to be taken as NaN or Inf values arise
for a lot of cases.
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(a) Crowd density at measurement area one (b) Crowd density at measurement area two

(c) Crowd density at measurement area three (d) Crowd density at measurement area four

Figure 4.11: Reconstruction of a sample from validation data using EDMD-Poly with and
without TDE for each measurement area in the scenario
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EDMD-Dictionary Learning

Further, I have also tried to implement a basic EDMD-Dictionary Learning (EDMD-DL)
model, leveraging the convenience of EDMD class that supports a combination of fixed
dictionary elements, such as TDE, along with dictionary learning. A feedforward neural
network (FeedforwardNN) is used as a network for dictionary learning. The hyperparameters
to be tuned are the ones that are used in the network for learning the intrinsic pattern that is
as follows:

• Number of layers and hidden sizes: These parameters have to be decided as a combination.
For a smaller hidden size, we might have to increase the number of layers to get a lower
reconstruction error. Thus, we choose the combination where the hidden size is 100 and
the number of layers is three.

• Batch-size: Number of samples processed before the model’s internal parameters are
updated. Here we decide how many simulation runs have to be taken together i.e. we
decide the batch_size = num_runs × total_timesteps. It is highly sensitive to data and
no pattern is observed. Keeping the other parameters the same, it is observed that for
num_runs = 5, we get the minimum reconstruction error. But the value is close to what
is observed in DMD or EDMD-RBF with delay = 20. Here, we do not use time delay
though.

• Number of epochs: Number of times the entire dataset is passed through the network
during training. Error is sensitive to the number of epochs as well. It is important to
stop the training once it reaches a minimum loss. For a larger number of epochs, the
reconstruction error is high due to over-fitting. It is vital to do early stopping. Hence,
the ideal number of epochs for this scenario is chosen as 20.

• Learning rate: The step size at each iteration while moving towards a minimum of the
loss function. Data provides similar results for learning rates of 10−3 or 10−4.

• System regularization: regularization term applied to the system dynamics to prevent
overfitting. If regularization is not used at all, the data overfits easily and the recon-
struction error is high. Using regularization of 0.1 immediately provides us with better
results and is ideal for this scenario.

Fig 4.12 shows the reconstruction while using EDMD-DL with and without TDE. Some
fluctuations that did not exist in DMD and EDMD-RBF can be seen when TDE is not used.
It can be seen that the reconstruction of measurement area four is better than DMD and
EDMD-RBF but not close enough to EDMD-Poly (when TDE is not used). But when TDE is
used it removes the fluctuations and the reconstruction becomes better, thus reducing the
MSE. But it is still comparable to DMD and EDMD-RBF.
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(a) Crowd density at measurement area one (b) Crowd density at measurement area two

(c) Crowd density at measurement area three (d) Crowd density at measurement area four

Figure 4.12: Reconstruction of a sample from validation data using EDMD-DL with and
without TDE for each measurement area in the scenario
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5.1 Evacuation scenario with single door

From the previous sections, I choose two types of models for comparison of test results. For
both models, I combine the training and validation data and use it for testing. One is the
DMD of rank 50 with the application of TDE having the hyperparameters of delay = 20,
lag = 0, and f requency = 1. The MSE error of 213.65 for the test data is obtained which is
comparable with the reconstruction error of combined data (training and validation) - 213.367.
Fig 5.1 shows the comparison of MSE of different models in brief.

Figure 5.1: Comparison of MSE of different models

For the second model, I take an EDMD polynomial model with degree two and apply the
TDE of degree one. The MSE error of 38.754 for the test data is observed which is comparable
with the reconstruction error of the combined data (training and validation) - 41.2. Also,
EDMD-Poly almost reduces the testing error by one-fifth and performs better. However,
careful consideration has to be taken while modeling to avoid NaN or Inf values, especially
in the case of evacuation scenarios as the data is not centered. That is, the data distribution
for a measurement area in source is different from the measurement area near the door.

Once the effects of dataset size, TDE, and choice of model are clear from a simple scenario,
we can proceed to a much more complex scenario with multiple doors (multiple sources and
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multiple targets). The procedure for analysis and hyperparameter tuning remains similar
except for the collection of data.

5.2 Evacuation scenario with multiple (three) doors

5.2.1 Splitting of crowd for multiple doors

Following the methodology mentioned for a simple evacuation scenario with one door, I
analyze the results for a much more complex scenario i.e. evacuation scenario with multiple
doors. To begin with, I choose a scenario with three doors. This means, that three sources
with three different targets will be needed for the scenario. I keep the total number of
pedestrians the same, i.e. the count of total pedestrians is set at 1000. The key difference
in methodology from the simple scenario is the process of data preparation or scenario
construction. Since three sources are available, I split the pedestrians into different values
which together constitute 1000 or as represented in Eq 5.1.

source1 + source2 + source3 = 1000 (5.1)

1000 pedestrians are split into the three sources as shown in Table 5.1 to create 20 different
simulation runs. For each scenario, 50 simulation runs with random simulation seeds are
performed. Thus, an initial dataset of a total of 20 × 50 = 1000 simulation runs is generated.
This allows us to obtain data from different scenarios and generalizes the data required for
analysis.

5.2.2 Dataset generation

Data Collection

The room is constructed with a length-breadth ratio of 2. The length of the room is 120m
while the breadth is 60m. The construction of the room is done using the obstacles (areas
shaded in grey color in Fig 5.2) and the opening from this area is considered as the door. The
door width is chosen to be 2m as default. Source (area shaded in green color in Fig 5.2) is
assumed to take the space of the left side of the room i.e people spawn or travel from one
side of the room and evacuate from the three doors which are on the opposite side. Five
measurement areas (areas shaded in red color and respectively annotated in Fig 5.2) are
chosen of which two exist in the source while three exist in the region near the doors.

Data Splitting and Conversion

Once the scenario is constructed and the sources are split according to values as in Table
5.1, I perform 50 simulations for each of the values. As 200 simulations were used for a
single scenario with random simulation runs in the case of a single door, I assume that 50
simulations of the same run should be sufficient for every run. I have 20 such cases due to
the splitting of sources. Thus, in total, I obtain 20 × 50 = 1000 simulation runs for the dataset.
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Table 5.1: Splitting 1000 pedestrians to three sources for creating 20 different simulation
scenarios

Source_1 Source_2 Source_3

100 400 500
100 500 400
100 600 300
100 200 700
100 100 800
100 800 100
200 500 300
200 400 400
200 200 600
200 600 200
200 700 100
300 200 500
300 400 300
300 300 400
300 100 600
400 200 400
400 300 300
400 100 500
500 300 200
500 200 300

(a) Scenario Topography (b) Simulation snapshot

Figure 5.2: Visualization of evacuation scenario with three doors
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(a) Without delay (b) With delay

Figure 5.3: Effect of dataset size

As discussed before, I chose a 60-20-20 data split for train, validation, and test datasets. For
validation and test datasets, I only take 15% of the dataset from the 1000 simulation runs. For
the rest 5% (50 simulation runs) dataset, I simulate the scenario with new source split values
that were not used before. In this way, I obtain some out-of-sample data for validation and
testing. Once the dataset is split to train, validation, and test data, these are converted to the
TSCDataFrame format for further processing. This generalizes the model and allows better
analysis of the model for out-of-sample data.

5.2.3 Training data size selection

In this case, as well, I assume that up to 20 initial timesteps can be chosen for time delay
embedding, i.e. up to 20 initial timesteps can be taken as input or initial states. Once the
time delay embedding and DMD are chosen, the effects of the size of the training dataset
can be studied. It is evident from Fig 5.3 that in all cases when less training data is used the
MSE is high which is as expected. The validation error reduces when more training data is
used and converges when 50% or more of the training dataset is used. Thus the fluctuation
of validation error reduces as we use 50% or more of the training dataset. When I use time
delay embedding, the validation error starts converging for an even lesser amount of training
dataset size as in Fig 5.3. Thus, 50% of the training dataset size can be used if the computation
resources available are limited and a good approximation can still be obtained. This can
be reduced further to 30% when time delay embedding is used to limit the computation
resources used.

5.2.4 Application of TDE

Trying to identify the intrinsic geometry within the data using just five columns is quite
difficult. Since the crowd model is a time series collection, TDE can be used as mentioned in
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Sections 2.3.1 and 3.3.2. This provides additional columns which can be used to identify the
intrinsic structure. A simple application of using a TDE with a delay of ten is already seen
in the previous section. Application of TDE reduces the validation error from around 1600
to 1100. Since this scenario is much more complex, the effect of TDE is lesser compared to
the simple scenario of evacuation with a single door. In this section, I analyze whether the
change in scenario results in different conclusions from what was obtained from the simple
scenario to obtain the right set of parameters for further computation. For all cases, DMD
with full rank is used for computation. In the following text, the individual effects of each
parameter on the validation error are highlighted.

• Delays: The effect of delays from 0 to 20, keeping the lags to be zero and frequency to
be one are analyzed. The effect of delays on the validation error can be seen in Fig 5.4.
The results are quite similar to what we observed in the simple scenario, which is as
expected. Thus, for the given lags and frequency, one should try to choose the highest
delay. So, if it is computationally possible to use maximum delay, one should.

• Lags: Fig 5.5 shows the effect of lags ranging from 0 to 10, for two values of delays = 1
or 10 and f requency = 1. Once again, results similar to the simple scenario are observed.
In both cases, a high value of lag yields better results. Computationally, it is much more
efficient to handle changes in lags than handling changes in delays.

• Frequency: Fig 5.6 shows the effect of frequencies as the parameter for delays = 2
and lags = 0. Results similar to the simple scenario are obtained. A higher value of
frequency allows the reduction of validation error.

Figure 5.4: Effect of delays

The above results show us that one should choose the values of delays, lags, and frequency
as high as possible while keeping the assumption of using a maximum amount of 20 timesteps.
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(a) Delay = 1 (b) Delay = 10

Figure 5.5: Effect of lags

Figure 5.6: Effect of frequency
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The effects of delay, lags, and frequency are the same as for the simple scenario. The step of
finding the optimum triplet for TDE can be skipped. Thus, delays = 20, lags = 0, f requency =

1 can be chosen for further computations.

5.2.5 Reconstruction using DMD

After the selection of dataset size, data splitting method, and the parameters for TDE, the
choice of the DMD model and its parameters has to be made. The following are the dataset
characteristics or parameters:

• For this scenario, a dataset of 1000 simulation runs is chosen.

• Data split of 60-20-20 is selected for train, valid, and test datasets.

• I choose only 50% of the training dataset to reduce the computation complexity.

• For TDE, I choose the parameters concluded in the previous section which are delay =

20, lag = 0, and f requency = 1

I utilize the DMDStandard class available in the datafold package as mentioned in Section
3.3.3. The hyperparameter having a significant effect on the model is the rank of DMD. Also,
to obtain the effects of rank on the validation error, it becomes computationally intensive
as the rank increases. Thus, to reduce the computational resources, it is a good practice to
delete the DataFrames which are not used for further computation while running the loop.
This can be done using the ’gc’ module in Python for garbage collection. It is responsible for
automatically managing memory allocation and deallocation, particularly for objects that are
no longer in use. From Fig 5.7, it is clear that we can use a rank lower than the full rank of the
matrix to obtain the optimum model to reduce computation requirements. It is also observed
that even when a rank of 30 is used, the MSE is just around 2% from the MSE obtained by
using the full rank.

Fig 5.8 shows the results of the reconstruction of a sample from validation data. The results
expected are similar to what was observed in a simple scenario. Because of the presence of
multiple sources leading to multiple scenarios, the effect of TDE is lesser than that seen in the
one door scenario. Also, I try out the basic versions of EDMD namely radial basis functions
(RBF), polynomial, and dictionary learning for the three door scenario.

5.2.6 Reconstruction using EDMD-Radial Basis Functions (RBF)

The different RBFs in EDMD-RBF use epsilon (ϵ) as the hyperparameter. Epsilon is the kernel
scale which must be a positive float value. The RBF in EDMD-RBF may use a Gaussian,
MultiQuadric, InverseMultiQuadric, or InverseQuadratic kernel from the pcfold package of
datafold. There are other kernels available in the datafold package but currently, I focus only
on these functions. I split the analysis into two cases namely using EDMD-RBF with and
without TDE. Table 5.2 shows the validation MSE values obtained by using a grid search on ϵ

for each RBF on the case without applying TDE.
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(a) MSE vs Rank (1 to full rank)

(b) MSE difference at current rank value from full rank

Figure 5.7: Effect of rank on DMD
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(a) Crowd density at measurement
area 1

(b) Crowd density at measurement
area 2

(c) Crowd density at measurement
area 3

(d) Crowd density at measurement
area 4

(e) Crowd density at measurement
area 5

Figure 5.8: Reconstruction of a sample from validation data using DMD with and without
TDE for each measurement area in the scenario
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Table 5.2: Validation MSE for EDMD-RBF without using TDE for Gaussian, MultiQuadric,
InverseMultiQuadric and InverseQuadratic kernels

Epsilon Gaussian MultiQuadric InverseMultiQuadric InverseQuadratic

0.01 1528.73 1561.05 1543.63 1528.62
0.1 1528.72 1562.19 1561.05 1529.04
1 1530.12 1564.65 1575.24 1538.72
10 1550.72 Inf 1512.57 1555.03

100 1553.54 Inf 1490.41 1734.18
1000 1644.11 Inf Inf Inf

It can be seen from Table 5.2 that all RBFs without using TDE provide results similar to
what is obtained in DMD but slightly better. The advantage is that it does not require high
computational resources which other functions like polynomial or dictionary learning might
need. It is observed that for this scenario, the InverseMultiQuadric kernel with ϵ = 100
gives the best result. However, the Gaussian kernel provides approximately the same results.
The advantage of the Gaussian kernel is it provides uniform results for different values of
ϵ whereas the other kernels may provide Inf value for different ϵ values, especially as ϵ

increases.

Table 5.3: Validation MSE for EDMD-RBF using TDE for Gaussian, MultiQuadric, Inverse-
MultiQuadric and InverseQuadratic kernels

Epsilon Gaussian MultiQuadric InverseMultiQuadric InverseQuadratic

0.01 1124.3 1108.56 1124.87 1124.3
0.1 1124.3 1107.72 1126.56 1124.3
1 3475.96 1105.01 1129.58 1124.38
10 1124.29 1095.254 1126.98 1125.5

100 1124.02 1053.24 1123.6 1124.09
1000 1121.736 945.3 1119.63 1123.43

Table. 5.3 shows the validation errors for EDMD-RBF with different kernels using TDE. In
the following text, certain observations from the analysis are made.

• EDMD-RBF with TDE is at least as effective as DMD with TDE. The MSE in all cases
is approximately close to obtained with DMD with TDE. This shows that DMD and
EDMD-RBF models provide similar intrinsic structures of data.

• TDE provides richer context to the data stabilizing the performance of each kernel. The
Inf values that existed for a few kernels in the case when TDE was not used are not
observed in this case.

• Gaussian kernel maintains stable values for all ϵ values except for values near one
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(a) Crowd density at measurement
area 1

(b) Crowd density at measurement
area 2

(c) Crowd density at measurement
area 3

(d) Crowd density at measurement
area 4

(e) Crowd density at measurement
area 5

Figure 5.9: Reconstruction of a sample from validation data using EDMD-RBF with and
without time delay embedding for each measurement area in the scenario
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where suddenly the MSE is high. The Gaussian kernel might be at a scale where it is
not quite capturing the local structure accurately but also not generalizing properly.
Also, this intermediate value (ϵ = 1 for the Gaussian kernel) could be a critical point
where the overfitting and underfitting balance shifts unfavorably. This could represent
a transition region for the kernel sensitivity in this case.

• MultiQuadric kernel did not perform well in the case without TDE. But when TDE is
used, the MultiQuadric kernel provides the minimum MSE value. This might be because
it struggled with the raw data lower dimensionality but with TDE the temporal patterns
can be more explicitly represented. It is also more effective in the high-dimensional
space.

Fig 5.9 shows the results which are similar to what was observed in DMD. This is similar to
what was seen in a one door scenario.

5.2.7 Reconstruction using EDMD-Polynomial

Figure 5.10: MSE error in EDMD polynomial with different delays

For EDMD with polynomial features, the hyperparameter of polynomial degree can be
used. Fig 5.10 shows the training and validation MSE in both cases where the delays ranges
from 0 to 10 for the application of time delay embedding. If the delay is increased further,
the reconstruction creates NaN or Inf values even for a polynomial degree of two. When the
degree is increased to three and above, either it creates Nan values or the MSE error is Inf. As
the delay increases, the computation time increases exponentially as well but the error does
not reduce as seen in the simple scenario. Thus, for a large dataset, we can take a polynomial
degree of two and a maximum delay which is applicable depending on the computational
resources.

Even with a delay of ten, an MSE which is slightly better than DMD using TDE with
delay = 20 is obtained. However, EDMD-Poly is highly dependent on the dataset and
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(a) Crowd density at measurement
area 1

(b) Crowd density at measurement
area 2

(c) Crowd density at measurement
area 3

(d) Crowd density at measurement
area 4

(e) Crowd density at measurement
area 5

Figure 5.11: Reconstruction of a sample from validation data using EDMD-Poly with and
without time delay embedding for each measurement area in the scenario
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behaves differently for different datasets. The search for the optimum model is like a grid
search and with a change in the degree of polynomial the model can overfit and provide
a large reconstruction error. This is evident from Fig 5.11 that shows the results of the
reconstruction of a sample validation data for the EDMD-Poly case. Odd fluctuations are
seen in certain measurement areas. One observation is the vast difference between ground
truth and predicted values for certain measurement areas. This may be because the sample
may be an outlier (i.e. cases where a high number of pedestrians leave from a single door).
This is seen in the measurement areas four and five where the peak values between predicted
and ground truth values are large, thus, making it an outlier sort of case.

However careful consideration of reconstruction needs to be taken as NaN or inf values
arise for a lot of cases.

5.2.8 Reconstruction using EDMD-Dictionary Learning (DL)

I also try to leverage the convenience of the EDMD class that supports a combination of
fixed dictionary elements, such as TDE, along with dictionary learning. From the simple
scenario, it was seen that the validation error is affected by two hyperparameters more than
others. These are the batch size and number of epochs. I am focusing mainly on these two
parameters while keeping the rest of the model architecture constant. If 1000 simulation runs
are used, the dataset size is 1000× 1251 = 1251000 rows and 5× (delays + 1) (105 columns for
delays = 20). Thus, the computational capacity required to use the entire training, validation,
and testing dataset is much higher and hence I scaled down the amount of each dataset
and only used 200 random simulations from the 1000 simulation runs to study the effect
of dictionary learning. To use the entire dataset, parallelization, and batch processing is
needed. My focus is to compare the efficacy of EDMD-DL with other methods. I consider
two hyperparameters in two cases i.e. with delay and without delay. Table 5.4 shows the
results of the above consideration. It is observed from Table 5.4 that without using TDE, MSE
converges close to the MSE obtained when DMD using TDE is applied. When TDE is used,
the MSE obtained is lower than any models seen before.

The following text gives a brief introduction regarding the hyperparameters in this scenario.

• Number of layers and hidden sizes: From the simple scenario analysis, I choose the
combination where the hidden size is 100 and the number of layers is three.

• Batch-size: Continuing from the simple scenario, I decide the batch_size = num_runs ∗
total_timesteps. As num_runs or batch_size increases, the MSE at lower epochs increases.
This can be seen in Table 5.4. For larger batch_size, there is a need to use a higher
number of epochs to get a minimum MSE. For both cases i.e.with and without using
TDE, larger batch_size provides lower MSE. However, the computational resources
needed increase a lot when TDE is used.

• Number of epochs: MSE is sensitive to the number of epochs as well, especially when
TDE is not used. For a larger number of epochs, the reconstruction error is high due
to over-fitting as seen in Fig 5.13. It is vital to do early stopping. For every batch_size
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(a) Crowd density at measurement
area 1

(b) Crowd density at measurement
area 2

(c) Crowd density at measurement
area 3

(d) Crowd density at measurement
area 4

(e) Crowd density at measurement
area 5

Figure 5.12: Reconstruction of a sample from validation data using EDMD-DL with and
without TDE for each measurement area in the scenario
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Table 5.4: MSE with EDMD-DL without using TDE

num_runs Epochs MSE without using TDE MSE using TDE

1 1 1596.19 1141.62
1 5 4225.94 1440.80
1 10 5042.13 1412.55
5 1 1380.34 833.64
5 5 2038.93 939.01
5 10 2791.57 1012.90
10 1 1441.52 833.81
10 5 1353.45 872.13
10 10 1660.82 982.07
20 1 1483.21 834.08
20 5 1333.74 834.00
20 10 1372.56 976.12

or num_runs chosen, there is a need to find the right number of epochs. When TDE is
used, the stability of the model over epochs increases. Using a higher level of context
allows us to get a lower MSE at a lower number of epochs. TDE removes the noise or
fluctuations over epochs.

• Learning rate: Keeping the same values as that chosen for the one-door scenario, 10−3

and 10−4 are chosen.

• System regularization: Regularization of 0.1 is chosen similarly to the one-door case.

Figure 5.13: MSE vs Epochs for num_runs = 10

The hyperparameter tuning of batch_size and num_runs is sensitive to the dataset and
dataset size. Hence, care has to be taken when trying to scale up the model. When we use
the same model with time delay embedded data, the error reduces but is still comparable
to what was obtained before. Fig 5.14 shows the comparison of MSE for different models
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Figure 5.14: Comparison of MSE of different models

summarizing the results. The MSE obtained after using TDE is better than when not used,
but the MSE reduction is not as much as would be expected. Because for some cases even
though the validation error might be less, the test error might be high. In certain cases, MSE
after the TDE application might be more than before as seen from the reconstruction case in
Fig 5.12. TDE provides better results with all measurement areas except area four in this case.
Due to this, the overall MSE becomes high. This makes the methodology prone to outlier
cases (i.e. cases where a high number of pedestrians leave from a single door). Thus, careful
application of the model needs to be considered apart from early stopping.
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6.1 Summary

The main aim of my thesis was to examine and advance an operator-informed modeling
methodology to describe crowd dynamics from time series data at a mesoscopic scale obtained
from a pedestrian dynamics simulator. In the model, I included two core components having
different purposes namely, TDE and Koopman Operator. Mesoscopic data in the form of
crowd density in desired measurement areas (instead of entire topography) was used in
the analysis. TDE was used to reconstruct partial measurement data to gain further insight
into the data while the Koopman operator was used for nonlinear system identification.
DMD and its variants (EDMD-RBF, EDMD-POLY, and EDMD-DL) were used to approximate
the Koopman operator. The final model performs predictions and reconstruction based on
the system’s intrinsic coordinates of the operator. Hyperparameter tuning of each of the
core concepts and its effects on the model were analyzed to obtain the optimum model.
The effect of the type of scenario or the dataset on the model is also observed. Methods
and approaches to perform reconstruction with effective computational resources are also
mentioned which becomes important for large-scale data. The two research questions that
were the motivation for the thesis were answered by performing Koopman operator analysis
of crowd data obtained at a mesoscopic scale.

6.2 Conclusion

In my thesis, I explored an operator informed theory to identify the intrinsic structure of
a dynamic system obtained from multivariate time series collection data at a mesoscopic
scale. Crowd density at specified measurement areas was used as the mesoscopic data.
Evacuation scenarios ranging from simple (single door) to complex (multiple doors) were
constructed in the simulation software Vadere and simulation runs were performed to collect
data. The dataset included high dimensional, and generalized data by simulating with varied
parameters. The validation and testing datasets also included some out-of-sample data. Since
the dataset included fewer columns, TDE was used to get a better insight into the intrinsic
structure of the data. DMD, EDMD-RBF, EDMD-Poly and EDMD-DL methods were used to
approximate the Koopman operator.

The work shows the possibility of using mesoscopic data like crowd density to represent
the state space of the crowd dynamic system. We observe that the Koopman operator theory
approximation using DMD and its variants provide a decent reconstruction of the time series
data at a mesoscopic scale. Even for a complex scenario, using DMD along with TDE provides
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a good approximation for reconstruction than just using DMD. This model can be made
more effective by using EDMD and its variants. However, we have to be careful using the
hyperparameters involved in them as they are highly dependent on scenarios. In simple or
similar scenarios, the effect of TDE is huge towards getting a much better model than when
dealing with dissimilar and very complex scenarios. It is always better to use TDE at some
scale and it depends on the data size and computation resources available. Dealing with
large-scale data and performing DMD and its variants can be computationally intensive. Also,
careful consideration of available computational resources has to be taken. Ultimately, my
thesis provides a framework for defining a dynamic system using mesoscopic data and allows
for data-driven modeling to increase scientific understanding for complex crowd modeling
scenarios.

6.3 Future Work

My thesis work on the analysis of dynamical systems using mesoscopic data provides much
scope for future work. I present some of the directions that i find most promising and explain
them briefly as follows:

• Extend the study to real-world crowd density data to validate and refine the models.

• Analysis of scenarios resembling pedestrian movement in a mall or city. In an evacuation
scenario, the pedestrians don’t spawn in the source again. This can be done while
simulating a scenario of a mall.

• Study the effect of functions such as manifold (TSCManifoldKernel or BaseManifoldKernel)
in EDMD and other neural network models.

• Comparison of operator-informed theory with an artificial neural network (CNNs or
LSTMs) surrogate model.

• Investigate coupled simulations that integrate environmental factors, such as weather
conditions or structural changes, with crowd dynamics.

• Parallelizing DMD or EDMD framework to reduce the requirement of computation
resources. This will allow us to run DMD and EDMD on GPU instead of CPU.
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jlović, and A. Andrejčuk (2024). “A Koopman operator-based prediction algorithm and its
application to COVID-19 pandemic and influenza cases”. In: Scientific reports 14.1, p. 5788.

Netto, M., Y. Susuki, V. Krishnan, and Y. Zhang (2021). “On analytical construction of
observable functions in extended dynamic mode decomposition for nonlinear estimation
and prediction”. In: 2021 American Control Conference (ACC). IEEE, pp. 4190–4195.

Pan, S. and K. Duraisamy (2020). “On the structure of time-delay embedding in linear models
of non-linear dynamical systems”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science
30.7.

Pandas team, T. p. d. t. (Feb. 2020). pandas-dev/pandas: Pandas. Version latest. doi: 10.5281/
zenodo.3509134. url: https://doi.org/10.5281/zenodo.3509134.

Parisi, D. R., A. G. Sartorio, J. R. Colonnello, A. Garcimartın, L. A. Pugnaloni, and I. Zuriguel
(2021). “Pedestrian dynamics at the running of the bulls evidence an inaccessible region
in the fundamental diagram”. In: Proceedings of the National Academy of Sciences 118.50,
e2107827118.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, et al. (2019). “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems 32.

Patterson, T. A., L. Thomas, C. Wilcox, O. Ovaskainen, and J. Matthiopoulos (2008). “State–
space models of individual animal movement”. In: Trends in ecology & evolution 23.2, pp. 87–
94.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay (2011). “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12, pp. 2825–2830.

77

https://doi.org/10.1109/TSA.2016.23
https://www.tensorflow.org/
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134


Bibliography

Rutten, P., M. H. Lees, S. Klous, and P. M. Sloot (2021). “State-space models reveal bursty
movement behaviour of dance event visitors”. In: EPJ Data Science 10.1, p. 35.

Schmid, P. J. (2010). “Dynamic mode decomposition of numerical and experimental data”. In:
Journal of fluid mechanics 656, pp. 5–28.

– (2022). “Dynamic mode decomposition and its variants”. In: Annual Review of Fluid Mechanics
54, pp. 225–254.

Sivák, P. and D. Hroncová (Dec. 2012). “State-Space model of a mechanical system in MAT-
LAB/Simulink”. In: Procedia Engineering 48, pp. 629–635. doi: 10.1016/j.proeng.2012.09.
563.

Snyder, G. and Z. Song (2021). “Koopman operator theory for nonlinear dynamic modeling
using dynamic mode decomposition”. In: arXiv preprint arXiv:2110.08442.

Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. CRC press.

Vasilyev Andrey, S. (2015). “Modeling of dynamic systems with modulation by means of
Kronecker vector-matrix representation”. In: Journal Scientific and Technical Of Information
Technologies, Mechanics and Optics 99.5, pp. 839–848.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
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