
Department of Mathematics
TUM School of Computation, Information and Technology
Technical University of Munich

Explaining Transformers through
Dynamical Systems Theory

Nikita Okorokov

Thesis for the attainment of the academic degree

Master of Science

at the TUM School of Computation, Information and Technology of the Technical University of Munich

Examiner:
Prof.Dr.Felix Dietrich

Submitted:
Munich, May 15th, 2024

I hereby declare that this thesis is entirely the result of my own work except where otherwise indicated. I

have only used the resources given in the list of references.

Munich, May 15th, 2024 Nikita Okorokov

v

Abstract

This thesis explores the operations of Transformer blocks through the lens of Koopman Operator theory,

aiming to provide a deeper understanding of their inner dynamics. Leveraging Koopman Operator the-

ory, we conceptualize Transformer operations as dynamical processes, uncovering underlying structures

governing the processing of sequential data. Our investigation begins with the decoder blockof the Trans-

former model, treating the self-attention mechanism as a dictionary function and the feed-forward layer as

an inverse function. We identify the first weight matrix in the feed-forward layer as a Koopman Operator

responsible for transitioning the system to the next state in the dictionary space. Extending our inquiry,

we explore the encoder-decoder architecture, incorporating parametric Koopman Operator theory to elu-

cidate information flow dynamics within the Transformer model. Empirical validation through practical

experiments demonstrates alignment of Transformer operations with Koopman Operator theory, particu-

larly in the machine translation task using the Anki dataset. Despite initial discrepancies, refinements in

model architecture and loss functions successfully realign Transformer operations without compromising

performance, as evidenced by sustained BLEU scores for machine translations.

This research bridges the gap between machine learning and dynamical systems theory, laying the

groundwork for a deeper understanding of Transformermodels and the development of more interpretable

and controllable machine learning architectures in NLP.

vi

Acknowledgement

I begin by expressing my deepest gratitude to Prof. Felix Dietrich for providing me an opportunity to work

on this thesis and for his invaluable guidance and feedback throughout its development. His mentorship

has been instrumental in shaping my understanding and approach.

I extend my heartfelt appreciation to my wife, Tatyana, whose unwavering support and belief in me

have been a constant source of strength. Her encouragement has been a guiding light, enabling me to nav-

igate through challenges with resilience and determination. To my newborn son, Artem, I am endlessly

grateful for the pure love and joy he brings into our lives. His presence has imbued me with newfound

motivation and purpose, spurring me onward in my academic and professional pursuits.

I am indebted to my friends and family for their support and encouragement. Their belief in my abilities

has been a source of inspiration, fueling my aspirations and propelling me toward success.

Lastly, to each and every individual who has played a part in my journey, whether through encourage-

ment, support, or simply being there, I offer my heartfelt thanks. Your unwavering belief in me has been

the cornerstone of my personal and academic growth.

vii

Contents

1 Introduction 1

2 Theoretical Background 5
2.1 Evolution of Natural Language Processing . 5

2.1.1 Rule-Based Methods, Statistical Models and Word Embeddings 5

2.1.2 Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU) . 8

2.1.3 Attention and Transformers . 12

2.2 Dynamical Systems . 15

2.2.1 Basic Concepts of Dynamical Systems . 15

2.2.2 Nonlinear Dynamical Systems . 17

2.2.3 Koopman Operator . 18

2.2.4 Approximating Koopman Operator . 20

2.3 Related Work . 23

3 Explaining Transformer Operations Through Koopman Operator Theory 27
3.1 Explaining Decoder architecture through Koopman Operator Theory 27

3.2 Explaining Encoder-Decoder Architecture through Parametric Koopman Operator 31

3.3 Experiments and Results . 38

3.3.1 Dataset . 38

3.3.2 Model Architecture . 41

3.3.3 Evaluation Methods . 42

3.3.4 Results and Discussion . 44

4 Conclusion 51

Bibliography 53

1

1 Introduction

Natural Language Processing or NLP for short is a branch of artificial intelligence focused on enabling com-

puters to interpret, analyze and generate human language. Main tasks of language modeling are machine

translation, sentiment analysis, summarization, question answering and text classification. Traditional

approaches to natural language processing often relied on handcrafted features and statistical models.

However, the advent of deep learning marked a watershed moment in NLP.

One of the most significant developments in recent years is the introduction of the Transformer model, a

type of architecture that has revolutionized the way we approach tasks in natural language processing and

beyond. The Transformer model, introduced by Vaswani et al. in the paper "Attention is All You Need",

has become a cornerstone in the field due to its ability to handle long-range dependencies in sequence

data, outperforming previous state-of-the-art models in a wide range of NLP tasks [47].

Tasks like language translation, sentiment analysis, text summarization, and named entity recognition

have witnessed significant advancements due to the transformer’s ability in handling sequential data. Pre-

trained transformer models, such as BERT (Bidirectional Encoder Representations from Transformers) and

GPT (Generative Pre-trained Transformer), have become benchmarks in the field. Despite its popularity in

language modeling, Transformer architecture has been successfully applied in fields like computer vision

[20], modeling of graph-structured data [51], music generation [15] and numerous other domains.

Transformer model consists of an encoder and a decoder, each of which is made up of multiple identical

layers. Each layer in the encoder processes the input sequence and generates a continuous representation

of the sequence. This representation is then passed to the decoder, which generates the output sequence.

The Transformer model is based on the concept of attention mechanism, which scores the importance or

relevance of each input in relation to the others. This allows the model to focus on different parts of the

input sequence when producing each element of the output sequence, thereby capturing the dependencies

between elements regardless of their distance in the sequence. Despite its success, the operations of the

Transformer model, particularly its self-attention mechanism, are often considered as a black box due to

their complex nature.

Dynamical systems theory is an area of mathematics that studies the behavior of systems that change

over time. These systems can be anything from simple pendulums to complex networks of interacting

particles. Theory of dynamical systems provides a framework for understanding how such systems evolve

over time and under different conditions. It is widely used in various fields such as physics, engineering,

economics and computer science.

Dynamical systems, especially nonlinear ones, exhibit a richness of behaviors that often pose significant

challenges in understanding and predicting their dynamics. These systems, characterized by sensitivity

to initial conditions and nonlinearity, can display chaotic behavior or intricate patterns that resist simple

analytical solutions. Understanding and modeling such systems demand sophisticated mathematical tools

and computational approaches. The Koopman operator provides a powerful lens, aiming to uncover un-

derlying structures in these seemingly complex and unpredictable systems.

Developed by Bernard Koopman in the 1930s, the Koopman operator provides a powerful mathematical

tool for analyzing the evolution of nonlinear dynamical systems [21]. It operates in an infinite-dimensional

function space, offering a linear perspective on the dynamics of nonlinear systems. By transforming the

1 Introduction

2

dynamics of a system into linear operations, the Koopman operator facilitates analysis, prediction, and

comprehension of the underlying structure and behavior of these systems [4].

In addition to its theoretical importance, the Koopman operator also has practical applications in the

fields of control, data analysis and machine learning. For instance, it can be used to learn models from

complex, real-world data sets, enabling state-of-the-art prediction and control. The greater interpretability

and lower computational costs of these models, compared to traditional machine learning methodologies,

make Koopman learning an especially appealing approach. The Koopman Operator has been successfully

applied in various fields, including fluid dynamics, power systems and robotics, to analyze and control

complex systems. In the context of machine learning, the Koopman Operator can potentially provide a

theoretical basis for understanding the operations of complex models based on neural networks.

Operations of transformer block can also be considered as a dynamical system, where next state is com-

puted with the help of attention mechanism and feed-forward layer neural networks. In this thesis we will

try to employ the Koopman operator to describe the operations of transformer block and provide a deeper

understanding of the transformer models as dynamical systems. The main challenge will be to express the

action of a transformer block as an evolution of a function in Hilbert space, exactly as in the Koopman

operator setting.

The expected outcome of this research is a mathematical explanation of the transformer block’s opera-

tions using the Koopman operator. By representing the operations of the Transformer block through the

Koopman Operator framework, we can gain insights into how the model processes and transforms the

input data, and how it learns to focus on different parts of the input sequence. Potentially this can lead to

new optimization techniques or improvements in transformer models.

In conclusion, this thesis aims to bridge the gap between the fields of machine learning and dynamical

systems by applying the Koopman Operator theory to the Transformer model. We believe that this inter-

disciplinary approach can lead to a deeper understanding of the Transformer model and contribute to the

development of more interpretable and controllable machine learning models.

Thesis text is divided into three chapters and has the following structure.

Chapter 2 This foundational chapter lays the groundwork for understanding the theoretical underpin-
nings of our research. It begins with a comprehensive overview of the evolution of language modeling,

tracing its journey from rule-based systems to the sophisticated architectures of transformers. Specifically,

Section 2.1 delves into the historical progression, starting with rule-basedmodeling in subsection 2.1.1, and

culminating in the introduction of transformer architectures in subsection 2.1.3. This section sets the stage

for the exploration of transformers as a pivotal development in natural language processing. Following

this, Section 2.2 delves into the core concepts of dynamical systems, providing a solid foundation for the

subsequent chapters. It introduces the Koopman operator, a powerful mathematical tool that linearizes

nonlinear dynamical systems, thereby enabling their analysis and manipulation. This introduction to the

Koopman operator is crucial for understanding its application in machine learning and deep learning, as

discussed in Section 2.3. This section further explores the application of the Koopman operator across

various subfields, with a particular emphasis on its role in neural networks. By the end of this chapter,

readers will have a robust understanding of the theoretical background necessary for grasping the novel

approach of applying Koopman operator theory to transformer models.

Chapter 3 Chapter 3 transitions from theory to practice, focusing on the operational aspects of trans-

former blocks through the lens of the Koopman operator. This chapter is structured to bridge the gap

between theoretical knowledge and practical application. It begins by outlining the operations of trans-

former blocks, detailing how these components function within the architecture. This theoretical under-

3

standing is then tested through a series of experiments, as described in this chapter. The experiments aim

to determine whether the operations within the decoder block of transformers can be aligned with the

principles of Koopman operator theory. Additionally, this chapter explores the potential for modifying

the training process of transformers to achieve alignment with Koopman operator theory. Through these

experiments, we seek to validate the applicability of Koopman operator theory to transformer models,

providing empirical evidence of its effectiveness.

Chapter 4 The final chapter of this thesis, Chapter 4, encapsulates the conclusions drawn from the re-

search and outlines potential future work. This chapter serves as a summary of the findings, highlighting

the key contributions of the thesis to the field. It also identifies areas where further research is needed,

suggesting directions for future studies. By synthesizing the theoretical and practical aspects of the re-

search, this chapter provides a comprehensive overview of the thesis’s impact and its implications for the

broader field of machine learning and natural language processing. This chapter is crucial for readers to

understand the significance of the research and its potential to advance the field.

5

2 Theoretical Background

This opening chapter introduces essential concepts crucial for the subsequent sections of the thesis. Pri-

marily, it comprises a thorough analysis of findings from existing literature, organized and presented to

enhance the clarity of the underlying theory.

2.1 Evolution of Natural Language Processing

In this section, we provide a comprehensive exploration of the evolutionary trajectory of Natural Lan-

guage Processing (NLP). From early linguistic theories to modern deep learning approaches, this research

illuminates the dynamic evolution that has propelled NLP to the forefront of artificial intelligence and

language understanding.

2.1.1 Rule-Based Methods, Statistical Models and Word Embeddings

In this subsection, we delve into the multifaceted landscape of Natural Language Processing (NLP), ana-

lyzing three distinct approaches that have played pivotal roles in shaping the field: Rule-Based Methods,

Statistical Models, and Word Embeddings. Rule-Based methods, based on linguistic principles, have been

foundational in structuring language understanding systems. Statistical Models introduced a paradigm

shift by leveraging vast corpora to extract patterns and relationships. The emergence ofWord Embeddings

revolutionized NLP by capturing semantic nuances and contextual intricacies. Through a nuanced exam-

ination of these approaches, we aim to research their individual contributions, strengths, and limitations,

providing a comprehensive background for understanding the dynamic evolution of NLP methodologies.

Rule-Based Methods

Rule-based methods in Natural Language Processing were among the earliest approaches used to pro-

cess and understand language. These methods relied on predefined linguistic rules, heuristics and pattern

matching to analyze and interpret textual data. Linguists and experts meticulously crafted sets of rules

based on linguistic principles and grammatical structures. These rules aimed to codify the syntax, seman-

tics and morphology of language.

One of the most popular examples from this period is the natural language processing system called

"Eliza". It was developed by Joseph Weizenbaum in 1966 [48]. Eliza represented a basic chatbot designed

to mimic discussions with a psychotherapist. Although Eliza’s replies were scripted in advance, individ-

uals found the interaction unexpectedly captivating and believed they were engaging with a real human

being.

Despite their structured approach and interpretability, rule-basedmethods face notable challenges. They

were labor-intensive, requiring expertise in linguistics and continual refinement of rules for different lan-

guages and domains. Scalability was a significant issue, as accommodating new linguistic patterns or

adapting to variations in language proved cumbersome. These systems often struggled with ambiguity,

context sensitivity and the inherent dynamism of language. These limitations forced the development of

more sophisticated approaches, such as statistical methods and word embeddings.

Statistical Methods

2 Theoretical Background

6

In the 1990s statistical approaches emerged in languagemodeling to overcome the drawbacks of rule-based

systems. These techniques employ statistical models such as N-grams language models, Markov Models,

Naive Bayes, SVM and Logistic Regression for the analysis and generation of human language. One of

the main applications of statistical methods in NLP involves predicting a word’s probability based on its

context. Additionally, these methods played a crucial role in machine translation, facilitating the creation

of models that could translate text between languages.

N-grams language modeling N-grams are a sequence of N contiguous words or characters extracted

from a text corpus. They are widely used in language modeling, capturing the probability of word se-

quences occurring together [18]. For instance, in a bigram model (2-grams), the probability of the word

"good" following "very" might be learned from the frequency of the phrase "very good" in the corpus.

N-grams provide context-based information about word sequences and are instrumental in predicting the

likelihood of a word given its context [45].

MarkovModels The idea that a word’s probability depends only on a small number of preceding words

is called a Markov assumption [18]. Markov models encompass the group of probabilistic models that pro-

pose the ability to anticipate the likelihood of the future word without looking too far into the previous

text. Markov models, especially Hidden Markov Models (HMMs), are prevalent in speech recognition,

part-of-speech tagging and named entity recognition. For instance, in part-of-speech tagging, an HMM

might learn the probability of a word being a noun, verb or adjective based on its context and the sequence

of parts of speech observed in the corpus [38].

Naive Bayes It is a probabilistic classifier based on the Bayes theorem and the assumption of feature

independence. Despite its "naive" assumption of independence between features, it performs remarkably

well in text classification tasks like sentiment analysis, spam filtering and document categorization. Naive

Bayes classifiers are extensively used in text classification, especially when dealing with large volumes of

text data. They are efficient, easy to implement and provide decent accuracy in tasks where independence

assumptions hold reasonably well [37].

Logistic Regression Despite its name, logistic regression is a classification algorithm that models the

probability of a binary outcome. In NLP, it is applied to text classification tasks, assigning a probability to

each class and making predictions based on these probabilities. Logistic regression is used in sentiment

analysis, document classification and spam detection. It is valued for its simplicity, interpretability and

capability to handle linearly separable problems in text classification [18].

Support Vector Machine SVM is a powerful supervised learning algorithm used for classification and

regression tasks. In language modeling, it is predominantly applied to text classification tasks by finding

the optimal hyperplane that separates classes in a high-dimensional space. SVMs are employed in text

classification tasks such as sentiment analysis, text categorization and document classification. They are

valued for their ability to handle high-dimensional data efficiently and find complex decision boundaries

in text [18].

These statistical methods played a crucial role in various NLP tasks, providing methods to model lan-

guage, classify text and extract meaningful insights from textual data. However, they do not take into

account a sequential nature of texts and may struggle with capturing complex patterns in data that can be

better modeled by more sophisticated architectures like neural networks.

Word Embeddings

2.1 Evolution of Natural Language Processing

7

To applymachine learning algorithms for textual data, we need to encode text into numeric representation.

Two of the main popular methods for it are One-Hot-Encoding and term frequency-inverse document

frequency (TF-IDF).

In the case of One-Hot-Encoding we start by creating a vocabulary, containing all unique words from

the text corpus. Each word in the vocabulary is represented as a unique binary vector, where all elements

are 0 except for one element corresponding to the index of that word, which is set to 1.

TF-IDF is a numerical statistic used to evaluate the importance of a word in a document relative to a

collection of documents (corpus). It measures the relevance of a word by balancing its frequency within

a document (TF) against its frequency across all documents (IDF) [41]. These statistics are computed as

follows

𝑇𝐹 (𝑡, 𝑑) =
Number of times the term t appears in the document d

Total number of terms in the document d
, (2.1)

𝐼𝐷𝐹 (𝑡, 𝐷) = log

(
Total number of documents in corpus D

Number of documents in the corpus containing the term t

)
, (2.2)

where t represents a term (word), d represents a specific document and D represents the entire corpus

(collection of documents). Finally, the TF-IDF score is obtained by multiplying TF and IDF for each term

in a document.

However, these methods have significant limitations when it comes to creating word embeddings. They

provide basic representations of words, but lack the ability to encode semantic meaning, context or re-

lationships between words, which are crucial aspects for various Natural Language Processing tasks. To

address these issues more advanced techniques like Word2Vec, Doc2Vec and Glove were developed.

Word2VecWord2Vec, introduced by a team at Google, learns word embeddings by predicting surround-

ing words in a context window. It operates on two architectures: Continuous Bag-of-Words (CBOW) and

Skip-gram. CBOW predicts a target word based on its context (surrounding words), while Skip-gram

predicts surrounding words given a target word. Word2Vec learns vector representations that capture se-

mantic relationships between words. It encodes similarity, such that words with similar meanings have

similar vector representations [30, 31].

Doc2Vec Doc2Vec, also known as paragraph embeddings or paragraph vectors, is an extension of

Word2Vec that allows the generation of fixed-length feature representations for variable-length pieces

of texts, such as sentences, paragraphs or documents. The fundamental idea behind Doc2Vec is to extend

theWord2Vec model to learn continuous representations not only for words but also for entire documents.

This technique aims to capture the semantic meanings and contextual information of entire documents in

fixed-length vectors [22].

GloVe Global Vectors for Word Representation (GloVe) is an unsupervised learning algorithm for gen-

erating word embeddings, developed by researchers at Stanford University. GloVe constructs word em-

beddings by leveraging global word-word co-occurrence statistics across the entire corpus. It emphasizes

global context relationships. It assigns vectors to words based on the probability of word co-occurrences

in a global context, emphasizing word relationships beyond local contexts [36].

In essence, statistical models and basic machine learning techniques, complemented by word embeddings,

marked a significant shift towards data-driven approaches in NLP, enabling better semantic representation

and understanding of language.

2 Theoretical Background

8

2.1.2 Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU)

In this subsection, we provide a detailed exploration of three foundational neural network approaches for

language modeling: Recurrent Neural Networks (RNNs), Long Short-TermMemory (LSTM) networks, and

Gated Recurrent Unit (GRU) networks. RNNs, characterized by their ability to process sequential data, are

instrumental in capturing temporal dependencies within text data. LSTM networks, a variant of RNNs,

address the vanishing gradient problem by incorporating memory cells, enabling them to retain long-term

dependencies. Similarly, GRU networks offer a streamlined architecture with gatedmechanisms, providing

an efficient alternative for modeling sequential data. Through an in-depth analysis of these architectures,

we aim to elucidate their unique functionalities, strengths and limitations for language modeling, laying

the groundwork for subsequent discussions on advanced language processing techniques.

Texts and natural language has a temporal or sequential relationship between the words. However, ba-

sic machine learning models process each input independently, disregarding the order in which the data is

presented. Therefore, they struggle to capture dependencies or patterns based on the sequence of words.

To overcome this limitation, Recurrent Neural Networks and their variants such as Long Short-TermMem-

ory and Gated Recurrent Unit neural networks were developed.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks designed for handling sequential data

by retaining information in memory across time steps [39]. They process sequences of inputs while main-

taining an internal state that captures information about previous inputs. The architecture of a simple

Recurrent Neural Network consists of the following elements:

1. Inputs. At each time step t, an RNN receives an input vector 𝑥𝑡 .

2. Hidden State. RNN maintains a hidden state ℎ𝑡 at each time step t, which acts as the memory cap-

turing information from previous inputs. This hidden state is updated at each time step.

3. Output. RNN produces output 𝑦𝑡 based on the current input vector 𝑥𝑡 and the hidden state ℎ𝑡 .

The calculation of the hidden state ℎ𝑡 and output 𝑦𝑡 in a basic RNN can be represented by

ℎ𝑡 = activation(𝑊ℎ𝑥 · 𝑥𝑡 +𝑊ℎℎ · ℎ𝑡−1 + 𝑏ℎ), (2.3)

𝑦𝑡 = 𝑊ℎ𝑦 · ℎ𝑡 + 𝑏𝑦, (2.4)

where 𝑥𝑡 is the input vector at timestamp 𝑡 , ℎ𝑡 is the hidden state at timestamp 𝑡 , 𝑦𝑡 is the output at times-

tamp 𝑡 ,𝑊ℎ𝑥 is the learnable weight matrix for the input,𝑊ℎℎ is the learnable weight matrix for the hidden

state,𝑊ℎ𝑦 is the learnable weight matrix for the output, 𝑏ℎ and 𝑏𝑦 are bias terms, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is some acti-

vation function. Figure 2.1 shows a cell structure in RNN block.

Figure 2.2 shows an architecture of the simple RNN.

This recurrent nature of using the previous hidden state to calculate the current hidden state allows

RNNs to retain information across time steps and process sequential data. However, basic RNNs can

struggle capturing long-range dependencies due to the vanishing and exploding gradient problems. More

advanced architectures like LSTMs and GRUs were developed to address these issues [43].

Long Short-Term Memory Network

2.1 Evolution of Natural Language Processing

9

Figure 2.1 RNN cell structure. Taken from [52].

Figure 2.2 Vanilla RNN architecture. Taken from [32].

2 Theoretical Background

10

Long Short-Term Memory networks (LSTMs) were developed to overcome issues with vanishing and ex-

ploding gradients in recurrent neural networks by introducing a more sophisticated cell structure. Figure

2.3 shows structure of LSTM cell.

Figure 2.3 LSTM cell structure. Taken from [46].

The key innovation lies in the architecture of the LSTM cell, which includes specialized mechanisms

known as gates. Their names are forget gate, input gate and output gate. These gates play a crucial role in

controlling the flow of information through the cell, allowing for the effective management of gradients

during the training process [14].

Forget Gate The forget gate decides what information from the previous cell state should be discarded.

It takes into account both the previous hidden stateℎ𝑡−1 and the current input vector 𝑥𝑡 . Then by applying a
sigmoid function, the forget gate outputs values between 0 and 1, indicating the proportion of information

to forget (0 - completely discard, 1 - keep complete information). This is done by

𝑓𝑡 = 𝜎 (𝑊𝑓 𝑥 · 𝑥𝑡 + 𝑏 𝑓 𝑥 +𝑊𝑓 ℎ · ℎ𝑡−1 + 𝑏 𝑓 ℎ), (2.5)

where 𝑥𝑡 is the current input vecor, ℎ𝑡−1 is the previous hidden state,𝑊 and 𝑏 represent learnable weights

and biases.

Input Gate The input gate determines what new information will be stored in the cell state. It consists

of a sigmoid layer and a tanh layer. The sigmoid layer decides which values will be updated and the tanh

layer creates new candidate values that could be added to the state. This process is described as

𝑖𝑡 = 𝜎 (𝑊𝑖𝑥 · 𝑥𝑡 + 𝑏𝑖𝑥 +𝑊𝑖ℎ · ℎ𝑡−1 + 𝑏𝑖ℎ), (2.6)

𝑔𝑡 = tanh(𝑊𝑖𝑔 · 𝑥𝑡 + 𝑏𝑖𝑔 +𝑊ℎ𝑔 · ℎ𝑡−1 + 𝑏ℎ𝑔), (2.7)

where 𝑥𝑡 is the current input vecor, ℎ𝑡−1 is the previous hidden state,𝑊 and 𝑏 represent learnable weights

and biases.

Cell State Update The cell state is updated based on the decisions from the input and forget gates.

It forgets the information as decided by the forget gate and adds the new candidate values scaled by the

importance values from the input gate. The update process of the cell state is represented by

𝑐𝑡 = 𝑓𝑡 · 𝑐𝑡−1 + 𝑖𝑡 · 𝑔𝑡 , (2.8)

where 𝑓𝑡 is the result of forget gate, 𝑖𝑡 and 𝑔𝑡 are results of input gate and 𝑐𝑡−1 is the cell state from previous

step.

2.1 Evolution of Natural Language Processing

11

Output Gate Finally, the output gate determines what information is required for the current hidden

state. This process is described by

𝑜𝑡 = 𝜎 (𝑊𝑜𝑥 · 𝑥𝑡 + 𝑏𝑜𝑥 +𝑊𝑜ℎ · ℎ𝑡 + 𝑏𝑜ℎ), (2.9)

ℎ𝑡 = 𝑜𝑡 · tanh(𝑐𝑡), (2.10)

where 𝑥𝑡 is the current input vector, ℎ𝑡 is the current hidden state, 𝑐𝑡 is the current cell state,𝑊 and 𝑏

represent learnable weights and biases.

Gated Recurrent Unit

Gated Recurrent Unit is another improvement over Recurrent Neural Networks, introduced by Kyunghyun

Cho in 2014 [7]. GRU is very similar to LSTM. Both utilizes gates to control the flow of information, but

GRUs have simpler architecture and some improvements over LSTMs while offering similar capabilities

to handle long-range dependencies in sequential data. GRU architecture consists of two gates - the update

gate and the reset gate. Figure 2.4 shows the architecture of Gated Recurrent Unit.

Figure 2.4 Gated Recurrent Unit (GRU). Taken from [1].

Update Gate (Long Term Memory) Decides how much of the information from the current input

vector and previous hidden state to consider to update the current hidden state. The update gate is defined

by

𝑧𝑡 = 𝜎 (𝑊𝑥𝑧 · 𝑥𝑡 +𝑊ℎ𝑧 · ℎ𝑡−1 + 𝑏𝑧), (2.11)

where 𝑥𝑡 is the current input vector, ℎ𝑡−1 is the previous hidden state,𝑊 and 𝑏 represent learnable weights

and biases.

Reset Gate (Short TermMemory)Manages how much of the previous hidden state to forget or reset.

This is done by

𝑟𝑡 = 𝜎 (𝑊𝑥𝑟 · 𝑥𝑡 +𝑊ℎ𝑟 · ℎ𝑡−1 + 𝑏𝑟), (2.12)

where 𝑥𝑡 is the current input vector, ℎ𝑡−1 is the previous hidden state,𝑊 and 𝑏 represent learnable weights

and biases.

Finally, the output of the GRU is computed, using update and reset gates

ℎ′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ · 𝑥𝑡 +𝑊ℎℎ (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ), (2.13)

ℎ𝑡 = (1 − 𝑧𝑡) · ℎ𝑡−1 + 𝑧𝑡 · ℎ′𝑡 , (2.14)

2 Theoretical Background

12

where 𝑥𝑡 is the current input vector, ℎ𝑡−1 is the previous hidden state, 𝑟𝑡 is the output of reset gate, 𝑧𝑡 is

the output of update gate,𝑊 and 𝑏 represent learnable weights and biases.

RNNs, LSTMs and GRUs have transformed a landscape of sequential data modeling, particularly in natural

language processing, time series analysis and various other fields [13, 40].

2.1.3 Attention and Transformers

In this subsection we describe two groundbreaking advancements in the field of Natural Language Pro-

cessing: Attention mechanism and Transformers. Attention mechanism, inspired by human cognitive

processes, enable models to focus on relevant parts of the input sequence, revolutionizing tasks such as

machine translation and text summarization. Transformers, based on attention mechanism, introduce a

novel architecture that eschews recurrent connections in favor of self-attention mechanisms, facilitating

parallel computation and enabling the modeling of long-range dependencies more effectively. By delving

into the intricacies of attention mechanism and transformers, we aim to describe their concepts and ad-

vantages over recurrent models.

Attention

Attention mechanism was introduced in 2016 in the seminal paper "Neural Machine Translation by Jointly

Learning to Align and Translate" by Bahdanau et al. It revolutionized the landscape of neural machine

translation. The attention mechanism, a fundamental component of sequence-to-sequence models, over-

came the limitations of traditional models by enabling dynamic alignments between source and target

sequences during translation [3].

RNN encoder-decoders was state-of-the-art approaches for the task of Neural Machine Translation

(NMT) before attention. The encoder reads and encodes a source sentence into a fixed-length vector.

A decoder then generates a translation from the encoded vector. The whole encoder-decoder system is

jointly trained to maximize the probability of a correct translation given a source sentence. However, the

fixed-length vector from the encoder is the bottleneck of such systems, because it needs to contain all

information from the source text. Therefore, authors developed an attention mechanism to address this

issue. Figure 2.5 shows an architecture of the system for NMT proposed by authors.

Figure 2.5 Illustration of the proposed system during generation of the target word 𝑦𝑡 based on the source sentence

(𝑥1, ..., 𝑥𝑇). Taken from [3]

Encoder Encoder reads an input sequence of tokens 𝑥 , starting from the first token 𝑥1 to the last token

𝑥𝑇 . However, here authors instead of standard RNN used a bidirectional RNN (BiRNN) [44] to take into

account information not only from the previous words, but also from the following words. BiRNN con-

sists of forward RNN and backward RNN. Forward RNN reads input sequence from 𝑥1 to 𝑥𝑇 and computes

hidden states (−→ℎ1, ...,
−→
ℎ𝑇). Backward RNN goes through the sequence in the reverse order from 𝑥𝑇 to 𝑥1 and

2.1 Evolution of Natural Language Processing

13

outputs hidden states (←−ℎ1, ...,
←−
ℎ𝑇). Finally, the hidden state for each token 𝑥𝑖 is obtained by concatenating

corresponding forward and backward hidden states, i.e. ℎ𝑖 = [
−→
ℎ 𝑇𝑖 ,
←−
ℎ 𝑇𝑖].

Decoder Decoder is used to predict next word 𝑦𝑖 based on the context vector 𝑐𝑖 and all the previously

predicted words (𝑦1, ..., 𝑦𝑖−1). The context vector 𝑐𝑖 is computed based on weighted sum of the hidden

states from encoder, so that

𝑐𝑖 =

𝑇∑︁
𝑗=1

𝛼𝑖 𝑗ℎ 𝑗 , (2.15)

where 𝛼𝑖 𝑗 are attention weights and ℎ 𝑗 are hidden states from encoder for word 𝑗 . Attention weights are

calculated based on

𝛼𝑖 𝑗 =
𝑒𝑥𝑝 (𝑒𝑖 𝑗)∑𝑇
𝑘=1

𝑒𝑥𝑝 (𝑒𝑖𝑘)
, (2.16)

where 𝑒𝑖 𝑗 is the alignment model which scores how the input words around index 𝑗 and the output at index

𝑗 match. This score is computed based on the RNN decoder hidden state 𝑠𝑖−1 and encoder hidden state ℎ 𝑗
by

𝑒𝑖 𝑗 = ℎ 𝑗 · 𝑠𝑖−1. (2.17)

The likelihood 𝛼𝑖 𝑗 determines the importance of the annotation ℎ 𝑗 concerning the preceding hidden

state 𝑠𝑖1 in generating next state 𝑠𝑖 and output 𝑦𝑖 . This establishes an attention mechanism within the de-

coder. This approach enables the decoder to determine specific segments of the source sentence to focus

on. By incorporating an attention mechanism into the decoder we relieve the encoder from the task of en-

coding all details from the source sentence into a static, predefined vector. This updated method allows the

information to be distributed across the sequence of annotations, which can then be selectively accessed

by the decoder.

Transformers

In this section we describe in details the architecture of Transformers. Transformer architecture intro-

duced in the paper "Attention is All You Need" by Vaswani et al. revolutionized sequence-to-sequence

learning using self-attention mechanisms without recurrent or convolutional layers — a key breakthrough

in transformer models. Self-attention allows a model to directly access and utilize information from expan-

sively large contexts, without the necessity of routing it through the recurrent connections, like in RNNs.

The model consists of encoder and decoder components, each comprising multiple layers [47]. Figure 2.6

shows an architecture of Transformer.

Encoder Encoder block is consists of a stack of 𝑁 = 6 identical layers. Each layer has two sub-layers:

multi-head self-attention mechanism and position-wise fully connected feed-forward network. In addi-

tion, authors employed the residual connection around each sub-layer, following by layer-normalization.

The output of each sub-layer is computed in the following way: 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 (𝑥)),
where 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟 (𝑥) is the operations performed by sub-layers.

Positional Encoding To incorporate sequence order information, positional encodings are added to the

input embeddings. They provide the model with information about the position of tokens in the sequence.

A commonly used positional encoding approach for position 𝑝𝑜𝑠 and dimension 𝑖 is represented by

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/10000(2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)), (2.18)

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠/10000(2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)), (2.19)

where 𝑑𝑚𝑜𝑑𝑒𝑙 = 512.

2 Theoretical Background

14

Figure 2.6 Architecture of Transformer model. Taken from [47].

Multi-Head Self-Attention The Multi-Head Self-Attention mechanism in Transformers allows the

model to focus on different parts of the input sequence in parallel, therefore capturing various types of

contextual dependencies between words. Authors found it beneficial to perform ℎ = 8 times self-attention

function. Each self-attention function computes the attention scores between all positions in the input

sequence. This is done by

𝑄𝑖 = 𝑋𝑊𝑄𝑖
, (2.20)

𝐾𝑖 = 𝑋𝑊𝐾𝑖
, (2.21)

𝑉𝑖 = 𝑋𝑊𝑉𝑖 , (2.22)

𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾

𝑇
𝑖√

𝑑𝑚𝑜𝑑𝑒𝑙
)𝑉𝑖 , (2.23)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻𝑒𝑎𝑑1, ..., 𝐻𝑒𝑎𝑑ℎ)𝑊𝑂 , (2.24)

where 𝑋 is the input sequence after positional encodeing,𝑊 are learnable weight matrices and 𝑑𝑚𝑜𝑑𝑒𝑙 =

512. Architectures of scaled dot-product attention and multi-head attention are presented on Figure 2.7.

Feed-ForwardNeuralNetwork (FFN)The output of themulti-head self-attention layer passes through

a position-wise feed-forward neural network, which consists of fully connected layers. This is described

by

𝐹𝐹𝑁 (𝑥) =𝑚𝑎𝑥 (0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2, (2.25)

where 𝑥 is the output of multi-head self-attention layer,𝑊 and 𝑏 are learnable weight matrices and biases.

Decoder The decoder block also consistst of a sequence of 𝑁 = 6 identical layers. Alongside the two

sub-layers present in encoder block, the decoder introduces an additional third sub-layer, which performs

2.2 Dynamical Systems

15

Figure 2.7 (left) Operations of Scaled Dot-Product Attention. (right) Operations of Multi-Head Attention. Taken

from [47].

the multi-head self-attention over the output from the encoder block to focus on relevant parts of the

input sequence. As in the encoder block, authors incorporated residual connections around each of the

sub-layers and normalization layers. In addition, authors modified the self-attention layer to prevent po-

sitions to attend subsequent positions. This approach is called Masked Multi-Head Self-Attention. This

masking, coupled with the displacement of output embeddings by one position, guarantees that predic-

tions for a particular position 𝑖 are exclusively rely only on the known outputs at positions less than 𝑖 .

This is implemented inside of scaled dot-product attention by seting to −∞ all values in the input of the

softmax which correspond to illegal connections.

Finally, outputs from the decoder block additionally passes through the linear and softmax layer to out-

put final probabilities.

Transformers have emerged as a paradigm-shifting architecture, revolutionizing sequence-to-sequence

learning by leveraging self-attention mechanisms. Their ability to efficiently capture long-range depen-

dencies without recurrent connections has significantly enhanced the performance of various natural lan-

guage processing tasks. The transformative impact of Transformers lies in their their capability to handle

extensive contextual information, making them a cornerstone in modern machine learning and language

understanding.

2.2 Dynamical Systems

In this section we explore theory and basic concepts of dynamical systems. Dynamical systems theory

provides a powerful framework for understanding the evolution of complex systems over time, offering

insights into the behaviors and patterns that emerge from underlying dynamics.

2.2.1 Basic Concepts of Dynamical Systems

In this subsection, we describe fundamental concepts that constitute the backbone of dynamical systems

theory. Dynamical systems, as a theoretical framework, offer a profound understanding of how systems

evolve over time. Here we list the fields where dynamical systems can be applied and explain basic con-

cepts such as state space, evolution law, fixed points, linear and nonlinear dynamical systems.

Dynamical systems are mathematical models used to describe the time-dependent evolution of systems

governed by certain rules. They are used in a multitude of scientific fields frommathematics and physics to

biology, chemistry, engineering, economics and even medicine. Some examples of the dynamical systems

are:

2 Theoretical Background

16

1. Pendulum System: A simple pendulum is a classic example of a dynamical system. The state of

the pendulum at any given time can be described by its angle and angular velocity. The evolution

of the system is governed by the second law of motion and the gravitational force [5].

2. PopulationDynamics: In biology dynamical systems are used to model the growth and interaction

of populations. For instance, the Lotka-Volterra equations model the interaction of two species:

a predator and its prey. The state of the system is given by the sizes of the predator and prey

populations and the evolution of the system is determined by the birth and death rates of both

species [17].

3. Economic Systems: In economics dynamical systems can be used to model the evolution of eco-

nomic indicators over time. For example, a simple macroeconomic model might treat the inflation

rate and unemployment rate as the state of the system with the evolution of the system determined

by monetary policy and aggregate demand [11].

4. Fluid Dynamics: In fluid dynamics, the motion of a fluid can be modeled as a dynamical system.

The state of the system can be described by the velocity and pressure at each point in the fluid, and

the evolution of the system is governed by the Navier-Stokes equations [26].

5. Neural Networks: In neuroscience and artificial intelligence the activity of a neural network can

be modeled as a dynamical system. The state of the system is given by the firing rates of the neurons

in the network and the evolution of the system is determined by the connections between neurons

and their activation functions [16].

The basic concepts of dynamical systems theory revolve around the idea of determinism, which suggests

that the future behavior of a system can be fully determined by its current state. A deterministic dynamical

system is typically described by two main components: the phase space and the evolution law. The phase

space 𝑋 contains vectors that quantitatively determine all possible states of the system. The states of the

system are usually described by a 𝑑-dimensional vector 𝑥 ∈ 𝑋 , whose 𝑑 components 𝑥1, .., 𝑥𝑑 are called as

degrees of freedom pf the system. The evolution law 𝑓 : 𝑋 → 𝑋 is a rule that allows us to determine the

state of the system at a future time given its current state. This is usually represented by

𝑥𝑡+1 = 𝑓 (𝑥𝑡), (2.26)

where 𝑥𝑡 ∈ 𝑋 is 𝑑-dimensional vector which represents the state of the system at time step 𝑡 and 𝑓 is an

arbitrary map [6]. For each initial state 𝑥0 ∈ 𝑋 the map 𝑓 provides us with the new state of the system

after one step of time or one application of the mapping 𝑓

𝑥1 = 𝑓 (𝑥0) . (2.27)

As 𝑥1 ∈ 𝑋 we can again apply the map 𝑓 to the state 𝑥1 and obtain the new state 𝑥2 = 𝑓 (𝑥1) which is the

state of the system from 𝑥0 after two time steps or two applications of the mapping 𝑓 . In general, we can

apply mapping 𝑓 any number of times and we can define the 𝑛’th iterate of 𝑓 by

𝑓 𝑛 = 𝑓 ⊙ ... ⊙ 𝑓 , (2.28)

where ⊙ is the composition of maps 𝑓 . Thus, starting from the initial state of the system 𝑥0 ∈ 𝑋 , the state
of the system after 𝑛 time steps can be obtained by

𝑥𝑛 = 𝑓 𝑛 (𝑥0) . (2.29)

Figure 2.8 shows an example of dynamical system, where 𝑃 is a map and 𝑃 (1), 𝑃 (2) and 𝑃 (3) are the
states of the system at time steps 1,2 and 3.

Theory of dynamical systems have concepts of fixed and periodic points. 𝑥0 is a fixed point if 𝑓 (𝑥0) = 𝑥0.
It is clear that if 𝑥0 is a fixed point of the system then 𝑥1 = 𝑓 (𝑥0) = 𝑥0 and therefore 𝑥𝑛 = 𝑓 𝑛 (𝑥0) = 𝑥0 for

2.2 Dynamical Systems

17

Figure 2.8 Example of dynamical system. Taken from [6].

all 𝑛 ∈ ℕ. 𝑥0 is a periodic point for period 𝑘 ≥ 1 if 𝑥𝑘 = 𝑓 𝑘 (𝑥0) = 𝑥0.

Dynamical systems can be divided into linear and nonlinear ones. Linear dynamical systems can be

described by

𝑥𝑡+1 = 𝐴𝑥𝑡 , (2.30)

where 𝐴 is the constant matrix. These systems obey superposition and homogeneity. More generally,

nonlinear systems can be described by

𝑥𝑡+1 = 𝑓 (𝑥𝑡), (2.31)

where 𝑓 is the nonlinear mapping. These systems encompass intricate behavior that often defies direct

analytical solutions.

2.2.2 Nonlinear Dynamical Systems

In this subsection, we explore nonlinear dynamical systems, a critical dimension within the framework

of dynamical systems theory. Unlike their linear counterparts, nonlinear dynamical systems exhibit intri-

cate behaviors that arise from complex interactions and feedback loops among system components. This

subsection aims to delve into the fundamental principles governing nonlinear systems and describe their

challenges.

Nonlinear dynamical systems represent a vast spectrum of phenomena where relationships between

variables exhibit nonlinear interactions, challenging the traditional linear modeling approaches. These

systems, prevalent in nature and various disciplines, unveil rich and complex behaviors that go beyond

the predictable patterns of linear systems.

Nonlinear dynamical systems find applications across diverse domains, such as weather forecasting,

population dynamics, neuroscience, and economics. However, modeling nonlinear systems poses signif-

icant challenges due to the complexity and lack of simple analytical solutions. Understanding nonlinear

dynamical systems not only provides insights into natural phenomena but also poses challenges and oppor-

tunities for modeling and predicting complex real-world systems. Despite their challenges, these systems

remain a crucial area of study, uncovering intricate behaviors and shaping various scientific and engineer-

ing fields.

Nonlinear dynamical systems are characterized by nonlinear equations governing their behavior, often

described as 𝑥𝑡+1 = 𝑓 (𝑥𝑡), where 𝑥𝑡 represents the state of the system at time step 𝑡 . The function 𝑓 in-

troduces nonlinear terms, leading to intricate system dynamics that can be described by straightforward

analytical solutions.

2 Theoretical Background

18

The inherent complexity of nonlinear systems gives rise to diverse behaviors, including bifurcations,

chaos, and sensitive dependence on initial conditions, commonly known as the "butterfly effect." Small

alterations in initial states can lead to vastly different outcomes, rendering long-term predictions chal-

lenging. Bifurcations in nonlinear systems signify qualitative changes in their behavior as system pa-

rameters vary. These changes often lead to the emergence of new stable states, limit cycles, or chaotic

regimes. Phase space portraits aid in visualizing system trajectories, revealing attractors and their basin

of attractions. Chaotic behavior, a hallmark of nonlinear systems, manifests as seemingly random yet de-

terministic trajectories, bounded within a deterministic system. The Lorenz system is a classic example

exhibiting chaotic behavior, illustrating the system’s sensitivity to initial conditions [49].

Understanding nonlinear systems often involves numerical simulations to capture their behaviors com-

prehensively. Tools like bifurcation diagrams, Poincaré maps and Lyapunov exponents aid in characteriz-

ing the system’s behavior, identifying stability regions, chaotic regimes, and bifurcation scenarios.

2.2.3 Koopman Operator

In this subsection we provide a detailed exploration of the Koopman operator, a powerful mathematical for

the analysis and modeling of nonlinear dynamical systems. The Koopman operator offers a unique per-

spective by transforming the evolution of observables in a dynamical system into an infinite-dimensional

linear operator, facilitating the study of complex nonlinear dynamics in a linear framework. This subsec-

tion aims to describe the theoretical foundations of the Koopman operator, including its eigenfunctions,

spectral properties and challenges. By delving into the intricacies of the Koopman operator, we aim to

provide readers with a comprehensive understanding of its utility and significance in analyzing nonlinear

dynamical systems.

Non-parametric Koopman Operator

The Koopman operator was named after Bernard O. Koopman, a mathematician known for his contribu-

tions to mathematical physics and control theory. In 1931, Koopman, along with mathematician John von

Neumann, introduced what is now referred to as the Koopman–von Neumann theory. This theory laid

the foundation for the Koopman operator, which is fundamental in the analysis of dynamical systems,

particularly in nonlinear dynamics and control theory. The Koopman operator is a powerful mathematical

tool used to analyze and understand the behavior of nonlinear dynamical systems. It provides an alter-

native perspective by mapping functions of the state space to functions that evolve linearly in a higher-

dimensional space [21].

The Koopman operator linearizes the dynamics of the system in the function space, providing a linear

representation of the evolution of observables. This linear perspective enables the analysis of nonlinear

systems through linear methods. The Koopman operator has several important properties:

1. It is linear. This property is a direct consequence of the definition of the Koopman operator and it is

what allows for powerful analytical techniques to be applied to the analysis of nonlinear dynamical

systems.

2. It operates on the infinite-dimensional space. While the original dynamical system might live in a

finite-dimensional state space, the operator acts on the infinite-dimensional space of observables.

This is one of the key challenges in practical applications of Koopman theory.

3. Its eigenfunctions and eigenvalues provide valuable insights into the dynamics of the system. In

particular, each eigenfunction defines a coherent structure in the system and the corresponding

eigenvalue gives the frequency of oscillation or decay rate of that structure.

Consider a dynamical system described by 𝑥𝑡+1 = 𝑓 (𝑥𝑡), where 𝑥𝑡 ∈ 𝑋 represents the state of the system

at time step 𝑡 , 𝑋 is the state space of the system and 𝑓 is nonlinear function. The Koopman operator 𝕂

2.2 Dynamical Systems

19

is an infinite-dimensional linear operator that acts on observables or functions Φ(𝑥) defined on the state

space

𝕂Φ(𝑥𝑡) = Φ(𝑓 (𝑥𝑡)) . (2.32)

As 𝑥𝑡+1 = 𝑓 (𝑥𝑡), we can rewrite above equation as

𝕂Φ(𝑥𝑡) = Φ(𝑓 (𝑥𝑡)) = Φ(𝑥𝑡+1) . (2.33)

This operator 𝕂 maps functions from the state space 𝑋 to functions Φ(𝑥) that evolve linearly in a

higher-dimensional function space, providing an alternative linear perspective to the dynamics of nonlin-

ear systems. Fig 2.9 shows an example of such transformation.

Figure 2.9 Φ(𝑥) transforms the state space to the higher-dimensional observable space, where dynamics becomes

linear. Adapted from [2].

The Koopman operator𝕂 possesses eigenfunctions 𝜙𝑖 (𝑥) and associated eigenvalues 𝜆𝑖 , forming a spec-

tral decomposition

𝕂𝜙𝑖 (𝑥) = 𝜆𝑖𝜙𝑖 (𝑥). (2.34)

These eigenfunctions serve as a basis in the function space, enabling the representation of nonlinear

dynamics as a linear combination of these functions.

The Koopman operator finds applications in various fields, including control theory, nonlinear system

identification, and data-driven modeling. Its ability to linearize nonlinear systems offers advantages in

analyzing and predicting complex dynamical behaviors.

Despite its advantages, estimating the Koopman operator fromdatamay face challenges in high-dimensional

systems, noisy observations and computational complexity due to the infinite-dimensional nature of the

operator. In practice, estimating the Koopman operator from data involves learning the dynamics of the

system by observing trajectories. Techniques like Dynamic Mode Decomposition (DMD) and Extended

Dynamic Mode Decomposition (EDMD) approximate the Koopman operator from data, extracting eigen-

functions and eigenvalues to understand the system’s behavior.

In summary, Koopman operator provides a powerful mathematical framework for understanding the be-

havior of complex nonlinear dynamical systems by linearizing their dynamics in an infinite-dimensional

function space, offering insights and analytical tools for studying nonlinear systems from a linear perspec-

tive. Its eigenvalues and eigenfunctions provide key insights into the dynamics of the system and practical

methods such as DMD allow for its computation from data.

2 Theoretical Background

20

Parametric Koopman Operator

In the case of parametric Koopman Operator, dynamical system additionally depends on some set of static

or time-varying parameters 𝑢 [12]. By incorporating parameters, the dynamics can be represented more

flexibly, allowing for better modeling of complex systems. Our dynamical system will be defined as

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢), (2.35)

where 𝑥𝑡 ∈ 𝑋 is 𝑑-dimensional vector which represents the state of the system at time step 𝑡 and 𝑢𝑡 ∈ 𝑈
is a static 𝑞-dimensional vector. Or in the case where 𝑢𝑡 changes dynamically in discrete steps

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡), (2.36)

where 𝑥𝑡 ∈ 𝑋 is𝑑-dimensional vector which represents the state of the system and𝑢𝑡 ∈ 𝑈 is 𝑞-dimensional

vector at time step 𝑡 .

The observation function can be outlined as follows

Φ(𝑥𝑡 , 𝑢𝑡) = [𝜙1(𝑥𝑡), ..., 𝜙𝑘 (𝑥𝑡), 𝑢𝑡], (2.37)

where 𝜙𝑖 is 𝑖-th component of the observation function [23].

The Koopman Operator 𝕂 approximates dynamics of the lifted system in the linear form as

𝕂Φ(𝑥𝑡 , 𝑢𝑡) = Φ(𝑥𝑡+1, 𝑢𝑡+1) . (2.38)

We can also incorporate parameter 𝑢 to approximate Koopman operator 𝕂 as in [12]

𝕂(𝑢𝑡)Φ(𝑥𝑡) = Φ(𝑥𝑡+1), (2.39)

where we want to minimize the loss of the form

𝕃 = | |Φ(𝑥𝑡+1) −𝕂(𝑢𝑡)Φ(𝑥𝑡) | |2. (2.40)

2.2.4 Approximating Koopman Operator

In this subsection, we research methodologies aimed to approximate the Koopman operator. The Koop-

man operator, while offering powerful insights into the dynamics of complex systems, often requires ap-

proximation methods to handle high-dimensional and nonlinear systems efficiently. We delve into three

prominent approaches: Dynamic Mode Decomposition (DMD), Extended Dynamic Mode Decomposition

(EDMD) and Neural Network-based methods. DMD extracts dominant modes of system behavior from

data, EDMD extends this approach to handle nonlinearities and Neural Network methods leverage the

capacity of deep learning models for learning complex system dynamics. Through a nuanced examination

of these techniques, we aim to elucidate their principles, strengths and limitations.

Dynamic Mode Decomposition

Dynamic Mode Decomposition was introduced by Peter Schmid in 2010. Dynamic Mode Decomposition

is a data-driven method used to extract spatial and temporal coherent structures and modes from high-

dimensional and time-varying data. It approximates the modes of the Koopman operator, which represents

nonlinear dynamics, and computes eigenvalues and eigenvectors of a linear model that approximates the

underlying dynamics [42].

The step-by-step process of DMD is decribed in Algorithm 1.

2.2 Dynamical Systems

21

Algorithm 1: Dynamic Mode Decomposition

Data: Snapshot data 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁], where 𝑥𝑖 represents the state of the system at time step 𝑡𝑖

Step 1: Snapshot Data Collection. Arrange snapshots into a data matrix 𝑋 ;

Step 2: Construct Data Matrices. Divide snapshots into two consecutive matrices 𝑋1 and 𝑋2 by

extracting consecutive snapshots;

𝑋1 = [𝑥1, 𝑥2, ..., 𝑥𝑁−1] and 𝑋2 = [𝑥2, 𝑥3, ..., 𝑥𝑁];
Step 3: Singular Value Decomposition (SVD) of 𝑋1. Compute SVD of 𝑋1 = 𝑈 Σ𝑉𝑇 , where𝑈 and

𝑉 contain left and right singular vectors, and Σ is a diagonal matrix of singular values;

Step 4: Compute Matrix 𝐴.Matrix 𝐴 is approximated by linear mapping from 𝑋1 to 𝑋2 using

least-squares method: 𝐴 = 𝑋2𝑋
+
1
, where 𝑋 +

1
is the Moore-Penrose pseudo-inverse of matrix 𝑋1;

Step 5: Eigenvalue Decomposition of Matrix 𝐴. Compute eigenvalues Λ = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑁) and
eigenvectors𝑊 = [𝑤1, ...,𝑤𝑁] of matrix 𝐴: 𝐴𝑊 = Λ𝑊 ;

Step 6: Reconstruction of Dynamics. Reconstruct dynamics using the equation:

𝑥𝑘 ≈ 𝐴𝑘𝑥1 = (𝑊Λ𝑊 −1)𝑘𝑥1 =𝑊Λ𝑘𝑊 −1𝑥1 =𝑊Λ𝑘𝑏, where 𝑏 =
∑𝑁
𝑗=1 𝜆𝑘𝑏 𝑗𝑣 𝑗 , and 𝑏 =𝑊 −1𝑥1 [20].

Dynamic Mode Decomposition (DMD) offers several advantages in the analysis of dynamic systems.

A data-driven approach, it applicable to handle high-dimensional and noisy datasets without requiring

prior knowledge of the governing equations of the system. DMD excels in capturing the dominant modes

and coherent structures inherent in dynamical systems, providing a clear representation of their essential

features. Additionally, it stands out for offering valuable insights into system dynamics without relying on

explicit model equations, making it particularly useful in scenarios where obtaining precise mathematical

formulations may be challenging.

However, it is crucial to consider the limitations of DMD. Its effectiveness can be sensitive to the choice

of snapshots and parameters, potentially impacting the accuracy of the extracted modes. Interpreting the

extracted modes accurately may require domain knowledge, necessitating users to possess a certain level

of understanding of the specific field or system under investigation. Furthermore, DMD assumes linearity

in the relationship between snapshots, constraining its applicability to scenarios where the snapshots are

already linearly related and limiting its effectiveness in capturing nonlinear dynamics.

Dynamic Mode Decomposition is a valuable tool for extracting spatial and temporal patterns and un-

derstanding the dominant modes governing the dynamics of complex systems. Its ability to analyze data-

driven systems without a priori models makes it widely applicable in various scientific fields. However,

careful consideration of parameters and interpretation of results are crucial for its effective application.

Extended Dynamic Mode Decomposition

Extended Dynamic Mode Decomposition is an extension of Dynamic Mode Decomposition. It was in-

troduced in 2015 by M.O. Williams. Standard Dynamic Mode Decomposition works if the snapshots are

already linearly related. EDMD addresses this limitation of standard DMD by incorporating nonlinear

observables or features derived from the state variables. By transforming the state space into a higher-

dimensional feature space, EDMD can linearize nonlinear dynamical systems [50].

Extended Dynamic Mode Decomposition is represented in Algorithm 2.

Extended Dynamic Mode Decomposition (EDMD) emerges with distinctive advantages in nonlinear dy-

namical systems analysis. Still a data-driven approach, EDMD operates efficiently without demanding a

prior understanding of the governing equations of the system. Notably, it excels in enhancing accuracy

2 Theoretical Background

22

Algorithm 2: Extended Dynamic Mode Decomposition

Data: Snapshot data 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁], representing the state of the system at different time

instances.

Step 1: Snapshot Data Collection. Gather a sequence of snapshot data 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁];
Step 2: Feature Engineering.Map the state space 𝑋 to a higher-dimensional space by defining

nonlinear observables or features: Φ(𝑋) = [𝜙 (𝑥1), 𝜙 (𝑥2), ..., 𝜙 (𝑥𝑁)];
Step 3: Construct Data Matrices. Construct two matrices Φ1 and Φ2 using the transformed

feature vectors: Φ1 = [𝜙 (𝑥1), 𝜙 (𝑥2), ..., 𝜙 (𝑥𝑁−1)] and Φ2 = [𝜙 (𝑥2), 𝜙 (𝑥3), ..., 𝜙 (𝑥𝑁)];
Step 4: Linear Mapping in Feature Space. Approximate the linear mapping matrix 𝐴 by linearly

relating Φ1 to Φ2 using a least-squares approach: 𝐴 = Φ2Φ
+
1
, where Φ+

1
is the Moore-Penrose

pseudo-inverse of matrix Φ1;

Step 5: Eigenvalue Decomposition of Matrix 𝐴. Compute eigenvalue Λ = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑁) and
eigenvectors𝑊 = [𝑤1, ...,𝑤𝑁] of matrix 𝐴: 𝐴𝑊 = Λ𝑊 ;

Step 6: Reconstruct Dynamics in Feature Space. Reconstruct dynamics using the equation:

𝜙 (𝑥𝑘) ≈ 𝐴𝑘𝜙 (𝑥1) = (𝑊Λ𝑊 −1)𝑘𝜙 (𝑥1) =𝑊Λ𝑘𝑊 −1𝜙 (𝑥1) =𝑊Λ𝑘𝑏, where 𝑏 =
∑𝑁
𝑗=1 𝜆𝑘𝑏 𝑗𝑣 𝑗 , and

𝑏 =𝑊 −1𝜙 (𝑥1);
Step 7: Reconstruct Dynamics in State Space. If required, transform the reconstructed

dynamics 𝜙 (𝑥𝑘) back to the original state space using the inverse transformation 𝜙−1

when capturing nonlinear dynamics, marking a significant improvement in its applicability to systems

manifesting complex nonlinearities. This signifies EDMD as a robust choice for scenarios where tradi-

tional methods may fall short.

Nevertheless, it is essential to acknowledge the challenges associated with EDMD. The selection of

nonlinear features proves critical and a suboptimal choice can lead to inaccurate results, emphasizing the

importance of careful consideration during the modeling process. Additionally, EDMD may become com-

putationally expensive when applied to high-dimensional systems or when dealing with large dictionaries

of observables, potentially posing constraints on its scalability. Users may also find that expertise in feature

selection and engineering becomes a prerequisite for maximizing the effectiveness of EDMD in practical

applications. These considerations underscore the need for a balanced evaluation of its advantages and

limitations in specific analytical contexts.

EDMD extends the capabilities of DMD by incorporating nonlinear features, enabling a more accurate

approximation of nonlinear dynamical systems. While it offers significant advantages in capturing com-

plex dynamics, it requires careful selection and engineering of nonlinear features and involves increased

computational complexity compared to traditional DMD.

Neural Network Approaches

One of the disadvantages of Extended Dynamic Mode Decomposition is that it requires manual feature

engineering and selection. Approximating the Koopman operator using neural network approaches offers

several advantages compared to Extended Dynamic Mode Decomposition:

1. Neural network approaches are inherently designed to capture and represent nonlinear dynamics

more effectively [24].

2. Neural networks provide flexibility in feature representation. Thesemethods can automatically learn

and extract relevant features from the data, enabling adaptive representations that might be more

descriptive of the system’s behavior than manually chosen features in EDMD.

2.3 Related Work

23

3. Neural networks have the capacity to learn complex mappings between state spaces, allowing for

more accurate approximations of the Koopman operator compared to DMD and EDMD methods.

For instance, one of the improvements over EDMD is Extended Dynamic Mode Decomposition with dic-

tionary learning. In this approach Extended Dynamic Mode Decomposition is combined with a trainable

dictionary represented by artificial neural network. Authors used a simple feed-forward 3-layer neural

network as the approximator for Φ. Figure 2.10 shows an architecture of this neural network.

Figure 2.10 Architecture of neural network which approximates trainable dictionary Φ(𝑥). Taken from [24].

This neural network is described by

Φ(𝑥) =𝑊𝑜𝑢𝑡ℎ3 + 𝑏𝑜𝑢𝑡 , (2.41)

ℎ𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊𝑘ℎ𝑘 + 𝑏𝑘), 𝑘 = 0, 1, 2, (2.42)

where ℎ0 = 𝑥 ,𝑊 and 𝑏 are trainable parameters. This approach enables a minimal set of refined dictionary

functions to cover a linear subspace where an accurate approximation of the Koopman operator can be

achieved.

An extension of [24] is parametric Koopman decomposition with neural networks (PK-NN). PK-NN

applies previous algorithm to the parametric case where 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡) and Φ(𝑥𝑡+1) = 𝐾 (𝑢𝑡)Φ(𝑥𝑡). Here
𝑈 ⊆ 𝑅𝑁𝑢

is a set of parameters and 𝑢𝑡 ∈ 𝑈 can remains static or changes dynamically with time steps.

The observable functions Φ is defined as a neural network and the parameters are tuned with training

data to achieve high prediction accuracy [12]. Figure 2.11 shows a graphical representation of the PK-NN

algorithm.

Here both the projected Koopman operator and the state dictionary are parameterized using neural

networks. Both of these components are trained simultaneously using trajectory data. This allows to

handle high-dimensional and strongly nonlinear data, making it particularly suitable for large-scale data-

driven prediction and control problems.

2.3 Related Work

In this section, we research the application of the Koopman operator in the analysis of neural networks.

The Koopman operator, traditionally employed in dynamical systems theory, finds innovative utility in

deciphering the underlying dynamics of neural networks. By leveraging the Koopman operator, we aim to

unravel the intricate transformations and representations within neural networks, shedding light on the

underlying mechanisms that govern their functionality. This section delves into practical implications of

utilizing the Koopman operator to analyze neural network behavior, offering a unique perspective that en-

hances our understanding of the complex dynamics inherent in these sophisticated learning architectures.

2 Theoretical Background

24

Figure 2.11 Architecture of neural network in the PK-NN algorithm. Trainable parameters of Koopman operator

𝐾 (𝑢,𝑊𝑘) are learned via 𝑁𝑁𝐾 neural network and network 𝑁𝑁Φ is used to obtain dictionaries Φ(𝑥 ;𝑊𝜙). Taken from
[12].

Through this exploration, we seek to bridge the realms of dynamical systems theory and neural networks.

Recently there were a lot of approaches to describe neural networks as dynamical systems via Koopman

operator. In [8] authors represent training process of neural network as a discrete dynamical flow with

the number of iterations acting as the discrete time parameter. In this flow the loss function 𝐿 (or its

independent parts) and the individual weights of the neural network are some of the dynamical quantities

of interest. The aim of the training process of neural network is to find a set of weights that minimize

the loss 𝐿 to the best possible value. From the prospective of dynamical systems theory the value of loss

function 𝐿 is depends on the evolution of different weights of neural network (state space parameters) as

the number of training iterations increases (temporal parameter of the system). The goal is to describe

the standard training process as dynamical system using tools of Koopman Operator theory. Let 𝐹 be

the discrete mapping governing the dynamics of weights𝑤 with the training iteration 𝑡 being a temporal

parameter. Therefore, the training rule𝐾 for a neural network is a discrete dynamical map on 𝐿, describing

the evolution of loss value during training process

𝐿(𝑡) = 𝐾𝑡𝐿(𝑤0) = 𝐿(𝐹 𝑡 (𝑤0)), (2.43)

where 𝑤0 is the set of weights for the neural network at first iteration and 𝑡 is the number of training

iterations from the original point. Also the values of weights𝑤 at each iteration 𝑡 of the training proccess

can be governed by some training rule 𝐾 . Let now 𝐾 represent the discrete map for weights 𝑤 and 𝐹

discrete mapping describing the dynamics of loss 𝐿. We have

𝑤 (𝑡) = 𝐾𝑡𝑤 (𝐿0) = 𝑤 (𝐹 𝑡 (𝐿0)), (2.44)

where 𝐿0 is the original value of the loss component at the beggining of training process. These equations

clearly demonstrate that the training of the neural network can be represented as dynamical system and

its evolution can be described via Koopman operator theory.

In [25] authors address the problem of credit assignment (CAP) of neural networks from a linear dy-

namics perspective via Koopman operator theory. The credit assignment problem in neural networks deals

with determining the contribution of each component of the network to the final outputs. This involves

assessing how much each part of the network impacts the end results. Authors define a general neural

network 𝑁 with 𝑙 layers. This neural network can be described by the composition of transformation of

each layer

𝑓 (𝑥) = 𝑓𝑙 ◦ 𝑓𝑙−1 ◦ ... ◦ 𝑓2 ◦ 𝑓1(𝑥) = 𝜎𝑙 (𝑊𝑙 · · · 𝜎2(𝑊2𝜎1(𝑊1𝑥 + 𝑏1) + 𝑏2) · · · +𝑏𝑙), (2.45)

2.3 Related Work

25

where𝑊𝑖 and𝑏𝑖 areweightmatrices and biases of the 𝑖-th layer and𝜎𝑖 represents nonlinear activation func-

tion, such as ReLU, Sigmoid, Tanh or other. This neural network is partitioned into𝑚 blocks 𝐵1, 𝐵2, ..., 𝐵𝑚 ,

where 1 ≤ 𝑚 ≥ 𝑙and each block contains the mappings represented by a network layer or composition of

layers. Suppose the block 𝐵𝑖 contains the 𝑗-th to 𝑘-th layers, the function of block 𝐵𝑖 is be defined as

𝑓𝑖 = 𝜎𝑘 (𝑊𝑘 · · · 𝜎 𝑗 (𝑊𝑗𝜎 𝑗−1(𝑊𝑗−1𝑥 𝑗−1 + 𝑏 𝑗−1) + 𝑏 𝑗) · · · +𝑏𝑘) . (2.46)

Each block 𝐵𝑖 can be viewed as dynamical subsystem and each corresponding transformation function

𝑓𝑖 can be linearized via Koopman operator by

𝑦𝑘+1 = 𝑓𝑖 (𝑦𝑘), (2.47)

𝑦𝑘+1 ≈ 𝐾𝑖𝑦𝑘 , (2.48)

where 𝑦 (𝑘) is the output of block 𝐵𝑖−1 and 𝐾𝑖 is the Koopman operator for a block 𝐵𝑖 , obtained via DMD.

Thus, the transformation of all blocks can be defined as

𝐾 = 𝐾𝑚𝐾𝑚−1 · · · 𝐾2𝐾1. (2.49)

Finally, we need to measure the contribution of each 𝐾𝑖 to 𝐾 . By employing backward propagation and

the Jacobian matrix, we can calculate the partial derivative of 𝐾 with respect to 𝐾𝑖 . The absolute value of

its determinant may be interpreted as the block sensitivity of𝐾𝑖 , which quantifies the impact of the change

of 𝐾𝑖 on K and can be represented as follows

𝐵𝑆𝑖 = 𝑎𝑏𝑠

(���� 𝜕𝐾𝜕𝐾𝑖
����) . (2.50)

This approach provides a credit assessment of specific layers of neural network or its modules.

In [9] Koopman operator was also employed to predict the evolution of weights and biases for neural

networks. In this case neural network was represented as discrete dynamical system

𝑤𝑡+1 = 𝑓 (𝑤𝑡), (2.51)

where 𝑤𝑡 are weights and biases of neural network at iteration 𝑡 and their evolution is governed by a

dynamical map 𝑓 . The Koopman operator 𝐾 was utilized to predict values of weights and biases for the

next iteration 𝑡 + 1

𝑤𝑡+1 = 𝐾𝑤𝑡 . (2.52)

Through several experiments authors verified that Koopman training is able to correctly approximate

the action of standard training algorithms such as gradient descent. Morevover, the analysis of complexity

showed that Koopman training is much faster, making it a compelling alternative to conventional opti-

mization techniques.

In [27] authors also considered a process of training neural network as discrete dynamical system and

successfully applied Koopman operator and Dynamic Mode Decomposition to determine when to termi-

nate training, prune network weights without losing performance and determine the required number of

layers in Hierarchical SVR model for a mulitscale signal.

Koopman theory was utilized in [33] for analysis of neural networks. Particularly, authors investigated

sequential neural models via Koopman operator and its practical applications. Their technique employs

a hidden state representation that reduces dimensionality and calculates a linear mapping from the cur-

rent to the next hidden state. Authors determined linear estimates of the hidden state paths through basic

2 Theoretical Background

26

matrix-vector multiplications. Furthermore, they pinpoint the main characteristics of the dynamic system

and analyze their influence on inference and prediction. Their findings on sentiment analysis task and

ECG classification challenge offer straightforward yet precise explanations of the underlying dynamics

and behavior of the recurrent neural models.

A new point of view on language modeling was presented in [29]. LLMs are considered as dynamical

systems, where the next state depends on the previous states. Techniques such as One-Hot-Encoding are

used to represent each words as a unit vector in a space whose dimension is matching the vocabulary

size. In the Koopman operator framework, these vectors become indicator observables for a set of words.

These observables-features are combinations of time-delayed indicator observables. The transformer block

in LLMs works on a time-ordered feature matrix, sequentially transforming individual feature sequences.

Finally, these transformed sequences are nonlinearly combined.

This aligns precisely with the Koopman operator framework’s principles: embedding abstract elements

into a Euclidean space and identify functions within this embedding to efficiently predict how the dynam-

ical system evolves over time. For instance, employing time-delayed observables, a common approach

in LLMs, allows for filtering and creating linear combinations of these observables, mirroring the initial

phase in the transformer model. The subsequent stage aims for a nonlinear transformation of these ob-

servables, resulting in a linear representation when discrete spectrum eigenvalues are identified and a

nonlinear representation for continuous spectra. Unlike LLMs, Koopman operator-based architectures of-

ten maintain computational efficiency due to some predefined transformations, contrasting with learned

transformations in LLMs.

27

3 Explaining Transformer Operations Through
Koopman Operator Theory

In this chapter, we discuss the exploration of Transformer operations through Koopman Operator the-

ory. We analyze the language sequence as a time-ordered set of tokens, akin to a state space evolving

over discrete time steps. The transition between tokens mirrors state transitions in dynamical systems,

encapsulating inherent dependencies and relationships. Our focus lies on the decoder block within the

Transformer architecture. First, we explore its operations in a next token prediction task using Koopman

Operator theory. Specifically, we investigate whether the self-attention mechanism can be viewed as a

dictionary function, and the Multi-Layer Perceptron (MLP) layer as a potential inverse function. Subse-

quently, we extend our analysis to the encoder-decoder architecture in a basic sequence-to-sequence task,

leveraging parametric Koopman Operator theory. We then describe practical experiments conducted to

validate our theoretical framework, focusing first on training the modified Transformer model on a spe-

cific task and evaluating alignment with the Koopman Operator framework. Results provide insights into

modification effectiveness and performance impact. Following this, we detail experiments aimed at refin-

ing modifications to better align with Koopman Operator theory. Through iterative experimentation and

parameter adjustment, we aim to improve model performance while maintaining fidelity to the theoret-

ical framework. We conclude with a discussion of limitations and future work, contributing to ongoing

research on understanding and enhancing Transformer capabilities through Koopman Operator theory.

3.1 Explaining Decoder architecture through Koopman Operator Theory

In this section, we delve into the operations of the decoder block through the lens of Koopman Operator

theory. Our focus on the decoder architecture stems from its pivotal role in generating output sequences

in sequence-to-sequence tasks, making it a crucial component of many natural language processing and

machine translation models. Unlike the encoder, which primarily focuses on encoding input sequences

into fixed-length representations, the decoder operates in a conditional manner, dynamically generating

each output token based on previous predictions and encoded input representations. This dynamic nature

introduces unique challenges and opportunities for analysis, as the decoder’s behavior is intricately tied to

its interactions with both the input sequence and previously generated output tokens. By examining the

decoder’s operations within the framework of Koopman Operator theory, we aim to uncover fundamental

insights into its dynamic behavior and information processing mechanisms.

Model Simplifications

In this section we assume that we have only decoder block from the Transformer model. We also simplify

the decoder block by following considerations:

1. We remove normalization layers from the decoder block. This simplification is justified by the obser-

vation that normalization layers do not fundamentally alter the topology of the data manifold being

processed. While in practice, normalization layers contribute to stabilizing training and improving

convergence by controlling the scale and mean values of activations, their removal in our simplified

model is motivated by the desire to streamline the architecture without the added complexity of

normalization.

2. We remove residual connections in the decoder block. The rationale behind this simplification lies

in the theoretical equivalence between directly learning the mapping 𝑔(𝑥) and approximating it as

3 Explaining Transformer Operations Through Koopman Operator Theory

28

𝑥 + 𝑓 (𝑥). While residual connections facilitate gradient flow and ease the optimization process,

particularly in deeper architectures, their exclusion simplifies the model by reducing parameter de-

pendencies and computational overhead.

3. We have only one attention head in the first self-attention block. We opt for a single attention head

to simplify the attention mechanism and reduce parameter overhead. While multi-head attention

offers increased modeling capacity and facilitates capturing diverse interaction patterns, a single

attention head suffices for basic sequence modeling tasks and helps maintain model simplicity.

4. We remove the second self-attention block from the decoder. This simplification is based on the

consideration that in original architecture in the second self-attention block the result from the

encoder acts as keys and values. In our settingswe do not have encoder block, therefore it is sufficient

to keep only first self-attention block in the decoder, which encodes input sequence.

5. All the weights of the self-attention and feed-forward layers are shared between each stack of the

decoder. Thus, the operations inside decoder block will act in a recurrent way. This is necessary

to describe the dynamics inside decoder block through Koopman Operator theory. Thus, we need

same dictionary function and same inverse function across all stacks of decoder.

6. We omitted the bias term before the nonlinearity in the feed-forward layer of the decoder block.

This simplification reduces the number of parameters in the model and allows us to focus on the core

operations of the feed-forward layer without the additional complexity introduced by bias terms.

Hence, in our decoder we have a single-head self-attention, represented by equations 2.20 - 2.24 follow-

ing by feed-forward layer, represented by equation 2.25. Figure 3.1 shows architecture of our decoder block.

Figure 3.1 Decoder block.

3.1 Explaining Decoder architecture through Koopman Operator Theory

29

Exploring Dynamics inside Decoder Block through Koopman Operator Theory

From the dynamical system point of viewwe have a following problem setting for the next token prediction

task:

1. At each time step 𝑠 our state space 𝑥𝑠 is defined by the sequence of 𝑘 tokens 𝑥𝑠 = (𝑡1, ..., 𝑡𝑘)

2. Our goal is to predict the next state space of the system 𝑥𝑠+1 which is also defined by a sequence of

𝑘 tokens 𝑥𝑠+1 = (𝑡2, ..., 𝑡𝑘+1), where 𝑡𝑘+1 is the next token and we need to predict this token.

Thus, we will have a sequence of 𝑘 preceding tokens 𝑥𝑠 = (𝑡1, ..., 𝑡𝑘) at each time step 𝑠 as input to our

decoder block. Each token in the sequence is initially represented as a vector through an embedding layer.

This layer maps each token to a high-dimensional vector space, allowing the model to capture semantic

relationships between tokens. We assume that each token is encoded into 𝑑-dimensional vector via em-

bedding layer. In our Transformer model, devoid of recurrence and convolutional layers, leveraging the

sequential order of tokens within the input sequence poses a unique challenge. Without these traditional

architectural elements that inherently encode sequential information, such as hidden states in recurrent

networks or convolutional filters in convolutional neural networks, our model lacks explicit knowledge of

token order. Consequently, to enable our model to effectively utilize the order of the sequence, we must

inject positional information about the relative or absolute position of tokens. To address this requirement,

we incorporate "positional encodings" into the input embeddings at the bottoms of both the decoder block.

These positional encodings are designed to augment the embeddings with information regarding the po-

sition of each token in the sequence. Crucially, the positional encodings possess the same dimensionality

as the embeddings, facilitating seamless integration by simply summing the two vectors. Thus, after the

embedding and positional encoding layers each token 𝑡𝑖 is mapped to a higher-dimensional vector in 𝑅𝑑 .

These steps aligns with the lifting of initial state of dynamical system to a higher-dimensional state space

in Koopman Operator theory. Thus, embedding and positional encoding layers can be considered as a

lifting function Φ1, mapping tokens to a dictionary space. This can be represented by

Φ1 = Embed(𝑡𝑖) + PE(𝑖), (3.1)

where 𝐸𝑚𝑏𝑒𝑑 is the embedding layer and 𝑃𝐸 is positional encoding layer, described by equation 2.18. Thus,

we have 𝑧𝑠 = Φ1(𝑥𝑠), where 𝑧𝑠 ∈ 𝑅𝑘×𝑑 .

In the next step we input our state of the system 𝑧𝑠 into single-head self-attention mechanism. Our

self-attention mechanism processes input

𝑧𝑆𝐻𝐴 = softmax(𝑧𝑠𝑊𝑄𝑊
𝑇
𝐾 𝑧

𝑇
𝑠)𝑧𝑠𝑊𝑉 , (3.2)

where 𝑧𝑠 ∈ 𝑅𝑘×𝑑 is state of our system in a higher-dimensional space and𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ 𝑅𝑑×𝑑 are learnable
weight matrices. It is easy to see that 𝑧𝑆𝐻𝐴 ∈ 𝑅𝑘×𝑑 as

zs

𝑘×𝑑
WQ

𝑑×𝑑
= Q

𝑘×𝑑
, (3.3)

W
T

K

𝑑×𝑑
z
T

s

𝑑×𝑘
= K

T

𝑑×𝑘
, (3.4)

Q

𝑘×𝑑
K
T

𝑑×𝑘
= QK

T

𝑘×𝑘
, (3.5)

zs

𝑘×𝑑
WV

𝑑×𝑑
= V

𝑘×𝑑
, (3.6)

softmax(QKT)
𝑘×𝑘

V

𝑘×𝑑
= zSHA

𝑘×𝑑
. (3.7)

Self-attention mechanism operates on a sequence of input embeddings, assigning varying degrees of

importance to each token embedding based on its relevance to the context. We can see self-attention

3 Explaining Transformer Operations Through Koopman Operator Theory

30

mechanism as another lifting function Φ2. The main aim of the lifting function in the Koopman Operator

Theory is to expand the dimensionality of the state space. This expansion allows for a more comprehen-

sive representation of the system’s dynamics, capturing complex relationships and interactions among

variables. The lifting function may enhance interactions between variables by introducing higher-order

terms or transformations. This enhancement enables the representation of nonlinear dynamics and de-

pendencies that may be present in the system. This is what self-attention mechanism actually does. The

primary function of the self-attention mechanism is to enhance and supress interactions between differ-

ent tokens in the input sequence. This is done by assigning attention weights to each token based on its

relevance to other tokens in the input sequence.

By attending to different parts of the input sequence, the self-attention mechanism enables tokens to

interact and exchange information. Moreover, the attention scores computed by the self-attention mecha-

nism are non-linear functions of token embeddings. By attending to different parts of the input sequence

with varying degrees of emphasis, the self-attentionmechanism introduces nonlinear transformations that

capture complex relationships and dependencies among tokens. Self-attention mechanism does not alter

the underlying temporal or sequential structure of the input sequence, but rather enhances interactions

and dependencies between tokens. Thus,

Φ2(𝑧𝑠) = softmax(𝑧𝑠𝑊𝑄𝑊
𝑇
𝐾 𝑧

𝑇
𝑠)𝑧𝑠𝑊𝑉 (3.8)

and 𝑧𝑆𝐻𝐴 ∈ 𝑅𝑘×𝑑 will be a representation of 𝑧𝑠 in the "lifted" space.

Next we have a feed-forward layer

𝑧𝐹𝐹𝐿 =𝑚𝑎𝑥 (0, 𝑧𝑆𝐻𝐴𝑊1)𝑊2 + 𝑏2, (3.9)

where 𝑧𝑆𝐻𝐴 ∈ 𝑅𝑘×𝑑 and𝑊1 ∈ 𝑅𝑑×𝑑𝑓 and𝑊2 ∈ 𝑅𝑑𝑓 ×𝑑 are learnable weight matrices.

If we consider 𝑧𝑆𝐻𝐴 as the initial state of our system in the dictionary space lifted by Φ2(𝑧𝑠) and write

it as 𝑧0
𝑆𝐻𝐴

, we can see the dot product of 𝑧0
𝑆𝐻𝐴

and𝑊1 as the prediction of the future state of the system in

the dictionary state space. This can be described by

𝑧0𝑆𝐻𝐴𝑊1 = 𝑧
1

𝑆𝐻𝐴 . (3.10)

However, we need to notice that the result of dot product of the 𝑧0
𝑆𝐻𝐴

and𝑊1 will be in 𝑅
𝑘×𝑑𝑓

z
0

SHA

𝑘×𝑑
W1

𝑑×𝑑𝑓
= z

1

SHA

𝑘×𝑑𝑓
. (3.11)

To align with the theory of Koopman Operator, we need 𝑧0
𝑆𝐻𝐴

and 𝑧1
𝑆𝐻𝐴

to be in the same dictionary space.

Therefore, we need 𝑑 equals to 𝑑𝑓 . In this case 𝑧0
𝑆𝐻𝐴
∈ 𝑅𝑘×𝑑 and 𝑧1

𝑆𝐻𝐴
∈ 𝑅𝑘×𝑑 .

Given that, we can consider the rest of the equation 3.9 as Ψ2(𝑧𝑆𝐻𝐴) =𝑚𝑎𝑥 (0, 𝑧1𝑆𝐻𝐴)𝑊2 + 𝑏2. This is the
inverse function of Φ2(𝑧𝑠), mapping 𝑧1

𝑆𝐻𝐴
back to the original state space 𝑧𝑠 ∈ 𝑅𝑘×𝑑 .

In terms of Koopman Operator theory we have a following dynamical system inside decoder block

𝑧𝑖+1𝑠 = 𝑓𝑑𝑒𝑐 (𝑧𝑖𝑠), (3.12)

Φ2(𝑧𝑖𝑠)𝑊1 = Φ2(𝑓𝑑𝑒𝑐 (𝑧𝑖𝑠)) = Φ2(𝑧𝑖+1𝑠), (3.13)

𝑧𝑖+1𝑠 = Ψ2(Φ2(𝑧𝑖𝑠)𝑊1), (3.14)

where 𝑧0𝑠 = Φ1(𝑥𝑠).

3.2 Explaining Encoder-Decoder Architecture through Parametric Koopman Operator

31

If we have N stacks of decoder then

𝑧𝑁𝑠 = 𝑓𝑑𝑒𝑐

𝑁𝑡𝑖𝑚𝑒𝑠︷︸︸︷
⊙...⊙ 𝑓𝑑𝑒𝑐 (𝑧0𝑠), (3.15)

where 𝑧0𝑠 = Φ1(𝑥𝑠). And evolution inside the decoder block through Koopman Operator theory is repre-

sented in Algorithm 3.

Algorithm 3: Evolution inside decoder block through Koopman Operator theory

𝑖 ← 0;

𝑧𝑖𝑠 ← Φ1(𝑥𝑠);
while 𝑖 < 𝑁 do

𝑧𝑖
𝑆𝐻𝐴
← Φ2(𝑧𝑖𝑠);

𝑧𝑖+1
𝑆𝐻𝐴
← 𝑧𝑖

𝑆𝐻𝐴
𝑊1;

𝑧𝑖+1𝑠 ← Ψ2(𝑧𝑖+1𝑆𝐻𝐴);
𝑖 ← 𝑖 + 1

end

After 𝑁 iterations of decoder we are transforming our state 𝑧𝑁𝑠 into original state space by applying

affine and softmax layers to it. This is represented by

𝑧linear𝑠 = Linear(𝑧𝑁𝑠) = 𝑧𝑁𝑠 𝑊linear + 𝑏linear, (3.16)

where𝑊linear ∈ 𝑅𝑑×𝑣 and 𝑣 is the size of vocabulary and

(𝑧softmax

𝑠)𝑖 𝑗 =
𝑒 (𝑧

linear

𝑠)𝑖 𝑗∑𝑣
𝑗=1 𝑒

(𝑧linear𝑠)𝑖 𝑗
, (3.17)

where 𝑧linear𝑠 ∈ 𝑅𝑘×𝑣 is the matrix obtained after the final affine layer.

Finally, we are going to the next state in the initial state space

(𝑥𝑠+1)𝑖 = argmax

𝑗

((𝑧softmax

𝑠)𝑖 𝑗) (3.18)

where 𝑧softmax

𝑠 ∈ 𝑅𝑘×𝑣 is the matrix obtained after the softmax layer.

Therefore, equations 3.16 - 3.18 can be considered as the Ψ1 - inverse function of Φ1.

In other words here we have two dynamical systems:

1. The outer dynamical systems which acts in the state space of token sequences 𝑥𝑠 = (𝑡1, ..., 𝑡𝑘) with
lifting function to a higher dimensional space Φ1

2. The inner dynamical system which acts inside decoder block in the state space of token embeddings

𝑧𝑠 ∈ 𝑅𝑘×𝑑 with lifting function Φ2(𝑧𝑠)

After 𝑁 steps of inner dynamical function we go back to the state space of outer dynamical function.

The evolution of the decoder block through Koopman Operator theory is described in Algorithm 4.

3.2 Explaining Encoder-Decoder Architecture through Parametric
Koopman Operator

In this section, we embark on an exploration of the encoder-decoder architecture within the Transformer

model through the lens of Koopman Operator theory. The encoder-decoder architecture lies at the heart

3 Explaining Transformer Operations Through Koopman Operator Theory

32

Algorithm 4: Evolution for the next token prediction through Koopman Operator theory

Assume we want to predict𝑚 future tokens.

𝑥𝑠 ← (𝑡1, ..., 𝑡𝑘) - is the state of outer dynamical system at time step 𝑠 , described by 𝑘 preceding

tokens. 𝑘 - is the context window of the model;

while 𝑠 < (𝑠 +𝑚) do
𝑧0𝑠 ← Φ1(𝑥𝑠) - is the initial state of inner dynamical system;

𝑖 ← 0.

while 𝑖 < 𝑁 do
𝑧𝑖
𝑆𝐻𝐴
← Φ2(𝑧𝑖𝑠);

𝑧𝑖+1
𝑆𝐻𝐴
← 𝑧𝑖

𝑆𝐻𝐴
𝑊1;

𝑧𝑖+1𝑠 ← Ψ2(𝑧𝑖+1𝑆𝐻𝐴);
𝑖 ← 𝑖 + 1.

end
𝑥𝑠+1 ← Ψ1(𝑧𝑁𝑠);
𝑠 ← 𝑠 + 1.

end

of the Transformer model, enabling it to perform a wide array of sequence-to-sequence tasks, including

machine translation, text summarization, and question answering. While the Transformer architecture

has proven to be remarkably successful in capturing long-range dependencies and contextual information

through self-attention mechanisms, understanding the dynamics of information flow between the encoder

and decoder remains a challenging yet crucial endeavor. By applying Koopman Operator theory to analyze

the encoder-decoder interactions, we can gain deeper insights into the underlying principles governing

the transformation of input sequences to output sequences.

In various tasks employing the Transformer model, the encoder and decoder modules are fundamental

components for processing input data and generating output sequences. Initially, the encoder receives the

input data and transforms it into a sequence of high-dimensional vectors. These vectors encode the se-

mantic and contextual information of the input data through self-attention mechanisms and feed-forward

neural networks. Subsequently, these encoded representations are passed to the decoder, which is re-

sponsible for generating the output sequence. Leveraging the information from the encoder and its own

previously generated tokens, the decoder predicts each token in the output sequence sequentially. This

prediction process is facilitated by a masked multi-head attention mechanism, allowing the decoder to fo-

cus on relevant parts of the input sequence while generating the output. By ensuring that predictions rely

solely on preceding tokens within the sequence, this mechanism maintains coherence during generation.

This iterative process continues until the entire output sequence is generated, with the decoder’s attention

mechanism facilitating an understanding of complex relationships within the data, thereby enabling the

generation of accurate and contextually relevant outputs.

Therefore, we have a following problem setting in the realm of dynamical system theory:

1. At each time step 𝑠 our state space 𝑥
target

𝑠 is defined by 𝑘 preceding tokens in the output sequence

𝑥
target

𝑠 = (𝑡1, ..., 𝑡𝑘) generated by decoder and a sequence of tokens 𝑥 source𝑠 = (𝑡1, ..., 𝑡𝑙) from the input

sequence.

2. Our goal is to predict the next state space of the system 𝑥
target

𝑠+1 which is also defined by a sequence

of 𝑘 tokens 𝑥
target

𝑠+1 = (𝑡2, ..., 𝑡𝑘+1), where 𝑡𝑘+1 is the next token in the target sequence and we want to

predict this token.

Model Architecture

3.2 Explaining Encoder-Decoder Architecture through Parametric Koopman Operator

33

In this section we have encoder-decoder blocks architecture of the Transformer model. We simplify

encoder and decoder blocks as earlier by following considerations:

1. We remove normalization layers from the encoder and decoder blocks. This decision is supported by

the understanding that normalization layers do not inherentlymodify the underlying structure of the

data manifold under consideration. Although in practical scenarios, normalization layers play a role

in enhancing training stability and facilitating convergence by regulating activation scale and mean

values, their omission in our simplified model is driven by the intention to simplify the architecture

without introducing the additional intricacies associated with normalization.

2. We remove residual connections from the encoder and decoder blocks. This decision is based on the

conceptual equivalence between directly learning themapping𝑔(𝑥) and approximating it as 𝑥+𝑓 (𝑥).
Although residual connections aid in maintaining smooth gradient flow and simplifying optimiza-

tion, especially in deeper architectures, their removal simplifies the model by reducing dependencies

on parameters and computational complexity.

3. We have only one attention head in the self-attention layers of the encoder and decoder blocks.

This choice is made to simplify the attention mechanism and decrease the number of parameters

required. While employingmultiple attention heads enhances themodel’s ability to capture complex

interaction patterns and increases modeling capacity, using a single attention head is adequate for

basic sequence modeling tasks and contributes to maintaining the simplicity of the model.

4. We remove the first self-attention block from the decoder block. Removing the first self-attention

layer in the decoder aligns with the principle of focusing computational resources on the most rel-

evant and informative parts of the model architecture. In many cases, the encoder’s self-attention

layers are sufficient for capturing the contextual information necessary for generating high-quality

output sequences. By eliminating redundant self-attention computations in the decoder, we optimize

the model’s efficiency and improve training and inference speed without sacrificing performance.

5. The weights within both the self-attention and feed-forward layers are shared across each stack of

the decoder. Consequently, the operations within the decoder block exhibit a recurrent behavior.

This sharing of weights is essential for characterizing the dynamics within the decoder block using

Koopman Operator theory. Therefore, it is imperative to have consistent dictionary and inverse

functions across all stacks of the decoder to effectively analyze its dynamics.

6. We excluded the bias term preceding the nonlinearity in the feed-forward layer of the decoder block.

This simplification decreases the model’s parameter count and enables a more concentrated exam-

ination of the fundamental operations of the feed-forward layer, free from the added intricacies

associated with bias terms.

Thus, our encoder and decoder blocks have single-head self-attention layers, represented by equations

2.20 - 2.24 following by feed-forward layers, represented by equation 2.25. The result of the encoder block

serves as the keys and values to the self-attention mechanism in the decoder block. Figure 3.2 shows ar-

chitecture of our simplified Transformer model.

Investigating Encoder-Decoder Block Dynamics via Parametric Koopman Operator Theory

In the Transformer model utilized for various tasks, both the encoder and decoder blocks are responsible

for handling input sequences. The encoder block of the Transformer model receives an input sequence,

which is tokenized into individual units. These tokens undergo transformation through an embedding

layer, converting them into high-dimensional vectors to capture semantic relationships. Subsequently,

positional encodings are incorporated into the token embeddings to denote each token’s position within

the sequence. The encoder block then processes this amalgamation of token embeddings and positional

encodings to generate contextualized representations for each token. Through self-attention mechanisms,

3 Explaining Transformer Operations Through Koopman Operator Theory

34

Figure 3.2 Reduced architecture of the Transformer model.

the encoder captures dependencies and interrelations between tokens within the input sequence, creating

a comprehensive contextualized representation. This robust encoding of the input sequence is pivotal for

subsequent processing in various tasks, as it enables the model to approximate and comprehend semantic

nuances and contextual information necessary for accurate processing and generation.

The Transformer model operates on input text by sequentially processing each token. Initially, the

encoder segments the input text into individual tokens and encodes them into a higher-dimensional space

using embedding and positional encoding layers by

𝑢𝑠 = Φ𝑒𝑛𝑐 (𝑥 source𝑠) = Embed(𝑥 source𝑠) + PE(𝑥 source𝑠), (3.19)

where Embed is the embedding layer and PE is positional encoding layer, described by equation 2.18.

Therefore, after these steps we have a representation 𝑢𝑠 ∈ 𝑅𝑙×𝑑 of our input text in a higher-dimensional

space.

Next we have 𝑁 stacks of self-attention mechanism and feed-forward layers, where output from one

layer serves as input to the other layer. The final result of the encoder block is represented by

𝑢enc𝑠 = 𝑓𝑒𝑛𝑐

𝑁𝑡𝑖𝑚𝑒𝑠︷︸︸︷
⊙...⊙ 𝑓𝑒𝑛𝑐 (𝑢𝑠), (3.20)

where 𝑢𝑠 = Φ𝑒𝑛𝑐 (𝑥 source𝑠) and 𝑓𝑒𝑛𝑐 is described by equations 2.20-2.25. As a result we have a hidden state

𝑢enc𝑠 ∈ 𝑅𝑙×𝑑 of the input text which aids the decoder in comprehending the nuanced meaning and contex-

tual details necessary for producing accurate outputs during each iteration.

3.2 Explaining Encoder-Decoder Architecture through Parametric Koopman Operator

35

In the subsequent phase, the decoder commences processing the previously generated text. Similar to

the encoder, the initial step involves mapping the input text to a higher-dimensional vector space using

embedding and positional encoding layers by

𝑧𝑠 = Φ𝑑𝑒𝑐 (𝑥 target𝑠) = Embed(𝑥 target𝑠) + PE(𝑥 target𝑠), (3.21)

where 𝑥
target

𝑠 = (𝑡1, ..., 𝑡𝑘) is the sequence of already generated 𝑘 preceding tokens, 𝐸𝑚𝑏𝑒𝑑 is the embedding

layer and 𝑃𝐸 is positional encoding layer, described by equation 2.18. Therefore, after this step we have a

sequence of already processed tokens embedded into a higher-dimensional space 𝑧𝑠 ∈ 𝑅𝑘×𝑑 .

In the following phase of the decoder block, we employ a single-head self-attention mechanism. How-

ever, it differs in that it receives two inputs: the encoded representation of the input text, denoted as 𝑢enc𝑠 ,

and the encoded representation of the already generated text, denoted as 𝑧𝑠 . In this configuration, 𝑢enc𝑠

serves as the keys and values, whereas 𝑧𝑠 serves as the queries. Consequently, the self-attention mecha-

nism within the decoder processes inputs by

𝑧𝑆𝐻𝐴 = softmax(𝑧𝑠𝑊𝑄𝑊
𝑇
𝐾 𝑢

enc
𝑇

𝑠)𝑢enc𝑠 𝑊𝑉 , (3.22)

where 𝑧𝑠 ∈ 𝑅𝑘×𝑑 is state of our system in a higher-dimensional space,𝑢enc𝑠 ∈ 𝑅𝑙×𝑑 is additional parameter in

our system at time step 𝑠 and𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ 𝑅𝑑×𝑑 are learnable weight matrices. Again, it’s straightforward

to confirm that 𝑧𝑆𝐻𝐴 ∈ 𝑅𝑘×𝑑

zs

𝑘×𝑑
WQ

𝑑×𝑑
= Q

𝑘×𝑑
, (3.23)

W
T

K

𝑑×𝑑
u
enc

T

s

𝑑×𝑙
= K

T

𝑑×𝑙
, (3.24)

Q

𝑘×𝑑
K
T

𝑑×𝑙
= QK

T

𝑘×𝑙
, (3.25)

u
enc

s

𝑙×𝑑
WV

𝑑×𝑑
= V

𝑙×𝑑
, (3.26)

softmax(QKT)
𝑘×𝑙

V

𝑙×𝑑
= zSHA

𝑘×𝑑
. (3.27)

We employ the encoder block’s output as keys and values in the self-attention layer of the decoder block

for several pivotal reasons. Initially, the encoder block captures contextual information from the input text,

which is crucial for comprehending the subtleties within the input sequence. By utilizing these outputs

as keys and values, the decoder can effectively focus on pertinent segments of the input sequence, facili-

tating precise predictions. Additionally, leveraging the encoder’s outputs facilitates information exchange

between the encoder and decoder, fostering coherence and alignment between the input and target se-

quences. In essence, integrating the encoder’s output as keys and values enhances the decoder’s capacity

to generate coherent and contextually precise predictions.

As in the previous part, we can see the self-attention layer as the lifting function for 𝑧𝑠 , but now it is

also parameterized by the output of the encoder block 𝑢𝑠 . Hence, in our case lifting function is described

by

Φ1(𝑧𝑠 , 𝑢enc𝑠) = softmax(𝑧𝑠𝑊𝑄𝑊
𝑇
𝐾 𝑢

enc

𝑠
𝑇)𝑢enc𝑠 𝑊𝑉 . (3.28)

In the next stage feed-forward layer processes output from the self-attention mechanism

𝑧𝐹𝐹𝐿 =𝑚𝑎𝑥 (0, 𝑧𝑆𝐻𝐴𝑊1)𝑊2 + 𝑏2, (3.29)

where 𝑧𝑆𝐻𝐴 ∈ 𝑅𝑘×𝑑 and𝑊1 ∈ 𝑅𝑑×𝑑𝑓 and𝑊2 ∈ 𝑅𝑑𝑓 ×𝑑 are learnable weight matrices.

3 Explaining Transformer Operations Through Koopman Operator Theory

36

As in the previous subsection, here we can again view 𝑧𝑆𝐻𝐴 as the initial state of our system in the

dictionary space lifted by Φ1(𝑧𝑠 , 𝑢enc𝑠) and rewrite it as 𝑧0𝑆𝐻𝐴. From the point of view of Koopman Operator

theory, the dot product of 𝑧0
𝑆𝐻𝐴

and𝑊1 is the prediction of the future state of the system in the dictionary

state space. This evolution of the system is described by

𝑧0𝑆𝐻𝐴𝑊1 = 𝑧
1

𝑆𝐻𝐴 . (3.30)

Once again, we must pay attention that the result of the dot product of 𝑧0
𝑆𝐻𝐴

and𝑊1 will be in 𝑅
𝑘×𝑑𝑓

z
0

SHA

𝑘×𝑑
W1

𝑑×𝑑𝑓
= z

1

SHA

𝑘×𝑑𝑓
. (3.31)

And to stay within the frames of Koopman Operator Theory we must have 𝑧0
𝑆𝐻𝐴

and 𝑧1
𝑆𝐻𝐴

in the same

dictionary space. Thus, we need𝑊1 to be in 𝑅𝑑×𝑑 .

We define the rest of the equation 3.29

Ψ1 =𝑚𝑎𝑥 (0, 𝑧1𝑆𝐻𝐴)𝑊2 + 𝑏2 (3.32)

as the inverse function of Φ1(𝑧𝑠 , 𝑢enc𝑠), mapping 𝑧1
𝑆𝐻𝐴

back to the original state space 𝑧𝑠 ∈ 𝑅𝑘×𝑑 . Therefore,
in the realm of Koopman Operator theory, we encounter a following dynamical system within the decoder

block represented by

𝑧𝑖+1𝑠 = 𝑓𝑑𝑒𝑐 (𝑧𝑖𝑠 , 𝑢enc𝑠), (3.33)

Φ1(𝑧𝑖𝑠 , 𝑢enc𝑠)𝑊1 = Φ1(𝑓𝑑𝑒𝑐 (𝑧𝑖𝑠 , 𝑢enc𝑠)) = Φ1(𝑧𝑖+1𝑠 , 𝑢enc𝑠), (3.34)

𝑧𝑖+1𝑠 = Ψ1(Φ1(𝑧𝑖𝑠 , 𝑢enc𝑠)𝑊1), (3.35)

where 𝑧0𝑠 = Φ𝑑𝑒𝑐 (𝑥 target𝑠).

With 𝑁 stacks of decoder block we have

𝑧𝑁𝑠 = 𝑓𝑑𝑒𝑐

𝑁𝑡𝑖𝑚𝑒𝑠︷︸︸︷
⊙...⊙ 𝑓𝑑𝑒𝑐 (𝑧0𝑠 , 𝑢enc𝑠), (3.36)

where 𝑧0𝑠 = Φ𝑑𝑒𝑐 (𝑥 target𝑠). Evolution inside the decoder block through parametric Koopman Operator the-

ory is represented in Algorithm 5.

Algorithm 5: Evolution inside decoder block through parametric Koopman Operator

𝑢enc𝑠 ← Encoder(𝑥 source𝑠);
𝑖 ← 0;

𝑧𝑖𝑠 ← Φ𝑑𝑒𝑐 (𝑥 target𝑠);
while 𝑖 < 𝑁 do

𝑧𝑖
𝑆𝐻𝐴
← Φ1(𝑧𝑖𝑠 , 𝑢enc𝑠);

𝑧𝑖+1
𝑆𝐻𝐴
← 𝑧𝑖

𝑆𝐻𝐴
𝑊1;

𝑧𝑖+1𝑠 ← Ψ1(𝑧𝑖+1𝑆𝐻𝐴);
𝑖 ← 𝑖 + 1

end

After completing 𝑁 iterations of decoding, we again convert our state 𝑧𝑁𝑠 back to the original state space

by employing affine and softmax layers to obtain next token prediction for the target sequence from the

model. This process is expressed by

3.2 Explaining Encoder-Decoder Architecture through Parametric Koopman Operator

37

𝑧linear𝑠 = Linear(𝑧𝑁𝑠) = 𝑧𝑁𝑠 𝑊𝑙𝑖𝑛𝑒𝑎𝑟 + 𝑏𝑙𝑖𝑛𝑒𝑎𝑟 , (3.37)

where𝑊linear ∈ 𝑅𝑑×𝑣 and 𝑣 is the size of vocabulary of the target sequence, and

(𝑧softmax

𝑠)𝑖 𝑗 =
𝑒 (𝑧

linear

𝑠)𝑖 𝑗∑𝑣
𝑗=1 𝑒

(𝑧linear𝑠)𝑖 𝑗
, (3.38)

where 𝑧linear𝑠 ∈ 𝑅𝑘×𝑣 is the matrix obtained after the final affine block.

After that we generate next token in the target sequence

(𝑥 target
𝑠+1)𝑖 = argmax

𝑗

((𝑧softmax

𝑠)𝑖 𝑗), (3.39)

where 𝑧
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
𝑠 ∈ 𝑅𝑘×𝑣 is the matrix obtained after the softmax layer.

Hence, equations from 3.37 to 3.39 can be viewed as the inverse function Ψ𝑑𝑒𝑐 of Φ𝑑𝑒𝑐 .

We are again dealing with two dynamical systems:

1. The external dynamical system operates within the realm of token sequences, denoted as 𝑥
target

𝑠 =

(𝑡1, ..., 𝑡𝑘) with lifting function to a higher dimensional space Φ𝑑𝑒𝑐 .

2. The internal dynamic system operates within the decoder block, functioning in the space of token

embeddings 𝑧𝑠 ∈ 𝑅𝑘×𝑑 and is elevated by a lifting function Φ1.

After𝑁 steps of the internal dynamic function, we return to the space governed by the external dynamic

function to obtain next token prediction for the target sequence. The complete procedure for our simplified

Transformer architecture is represented in Algorithm 6.

Algorithm 6: Evolution of the encoder-decoder Transformer architecture through Koopman Op-

erator theory

Assume we have an input sequence 𝑥 and wish to generate an output sequence 𝑦.

𝑥 ← (𝑡 source
0

, ..., 𝑡 source
𝑙

) - Sequence of tokens representing the input data;
𝑡
target

0
← [𝐵𝑂𝑆] - Beginning of sequence token, initializing the state of the outer dynamical system

at time step 0;

while 𝑡𝑠 ≠ [𝐸𝑂𝑆] do
𝑢 ← Φ𝑒𝑛𝑐 (𝑥) - Representation of input tokens in a higher-dimensional space;

𝑢𝑒𝑛𝑐 ← 𝑓𝑒𝑛𝑐

𝑁 times︷︸︸︷
⊙...⊙ 𝑓𝑒𝑛𝑐 (𝑢) - Parameter for the internal dynamical system;

𝑦 ← (𝑡 target
0

, ..., 𝑡
target

𝑠−1) - State of the dynamical system at time step 𝑠 , defined by the sequence of

already generated tokens;

𝑧0 ← Φ𝑑𝑒𝑐 (𝑦) - Initial state of the internal dynamical system;

while 𝑖 < 𝑁 do
𝑧𝑖𝑆𝐻𝐴← Φ1(𝑧𝑖 , 𝑢𝑒𝑛𝑐);
𝑧𝑖+1𝑆𝐻𝐴← 𝑧𝑖𝑆𝐻𝐴𝑊1;

𝑧𝑖+1 ← Ψ1(𝑧𝑖+1𝑆𝐻𝐴).
end
𝑡𝑠 ← Ψ𝑑𝑒𝑐 (𝑧𝑁).

end

3 Explaining Transformer Operations Through Koopman Operator Theory

38

3.3 Experiments and Results

This section presents the results of the experiment validating the connection between operations inside

Transformer block and Koopman operator theory. It starts by outlining the dataset employed in this ex-

periment, underscoring its significance and unique attributes. Following that, it clarifies the quantitative

measures and qualitative validation techniques utilized to check the correctness of the proposed method.

Afterward, it presents the experimental setup and procedure, providing a detailed account of the steps

taken to evaluate the method. Finally, it presents the outcomes of this experiment and an analysis of the

results. The section concludes with a discussion of the limitations of the method.

3.3.1 Dataset

The Anki English-French dataset is a comprehensive collection of bilingual sentence pairs designed to

facilitate language learning and translation tasks between English and French [28]. Compiled from var-

ious sources, this dataset encompasses a diverse range of linguistic contexts, covering everyday phrases,

idiomatic expressions, and specialized vocabulary. With a total of 232,736 sentence pairs, the dataset pro-

vides ample data for training and evaluating machine translation models, as well as for linguistic analysis

and research purposes. In our experiments we will use a modified version of this dataset, which consists

of 175,621 sentence pairs [19].

Data Composition and Characteristics

The Anki English-French dataset comprises a rich collection of bilingual sentence pairs, meticulously cu-

rated to facilitate language learning and translation tasks between English and French. Each sentence pair

encapsulates a diverse range of linguistic contexts, covering various topics, styles, and grammatical struc-

tures.

Characteristics:

1. Bilingual Content. The dataset consists of parallel sentences in English and French, fostering

bidirectional translation tasks between these two languages. This bilingual nature enables learners

and researchers to explore language dynamics and nuances across English and French.

2. Sentence Variability. Spanning a wide spectrum of sentence lengths and complexities, the dataset

encapsulates both simple, everyday phrases and more intricate linguistic constructs. This variability

challenges translation models to handle diverse linguistic patterns and capture nuanced meanings

effectively.

3. Real-World Relevance. The sentence pairs in the dataset are derived from real-world language us-

age, ensuring authenticity and relevance to practical communication scenarios. As a result, learners

and researchers can glean insights into natural language usage and cultural nuances in both English

and French.

4. QualityAssurance. The dataset undergoes rigorous quality assurancemeasures to ensure accuracy

and coherence in the sentence pairs. Each sentence pair is carefully reviewed and curated tomaintain

linguistic fidelity and alignment between English and French counterparts.

5. Data Diversity. Covering a broad spectrum of topics, including everyday conversations, academic

discourse, and specialized domains, the dataset encapsulates diverse linguistic contexts. This diver-

sity enriches the learning and research experience, catering to a wide range of language learners

and application domains.

Usage and Impact

3.3 Experiments and Results

39

The Anki English-French dataset has been utilized in various research projects, particularly in the field

of machine translation and language learning technologies. One notable example is a project on GitHub,

where the dataset was used for training a deep learning model for language translation [34]. This project

aimed to translate English to French, leveraging the Anki dataset to enhance the model’s understanding

and translation capabilities between the two languages.

Additionally, the Anki English-French dataset has been instrumental in the development of educational

tools and applications designed to aid in the learning process. For instance, the French B2 Vocabulary

Anki Deck, which is part of the broader Anki dataset, has been used to create a personalized practice

experience for learners. This deck contains 3172 flashcards across various chapters, including pronouns,

conjunctions, prepositions, and determiners, providing a comprehensive resource for learning French B2

vocabulary. The deck’s structure, which includes images, IPA notation, and audio files, has been designed

to enhance memory retention and pronunciation accuracy, making it an effective tool for memorizing and

understanding French vocabulary in context [10].

These examples highlight the Anki English-French dataset’s significance in both academic research and

practical applications, showcasing its impact on the field of language learning and technology.

Data Exploration

The Anki English-French dataset comprises two columns: the first column contains text in English, and

the second column contains the corresponding French translations. In total, the dataset consists of 175,621

pairs of bilingual sentence pairs. Table 3.1 shows a ten randomly sampled bilingual sentence pairs. To

explore the statistics of the text, we tokenized the sentences using the spacy package, which provides pre-

trained word embeddings for various languages, including English and French.

English text French text

I wonder what all of them have in common. Je me demande ce qu’ils ont tous en commun.

There are only three options. Il n’y a que trois options.

You take the money. Prends l’argent.

The soccer game will be played, even if it rains. Le match de foot sera disputé, même s’il doit pleuvoir.

Are you sure that you want to do this? Êtes-vous sûr de vouloir faire cela?

Can anyone here speak French? Quelqu’un ici sait-il parler français?

I was ten minutes late for school. Je suis arrivé 10 minutes en retard à l’école.

He will end up in jail. Il finira en prison.

Don’t you ever get tired? Tu ne te fatigues jamais?

Why are you so cheerful? Pourquoi es-tu si joyeux?

Table 3.1 Example of 10 randomly chosen bilingual sentence pairs

Figure 3.3a illustrates the distribution of tokens for English texts in the dataset. The mean number of

tokens for English sentences is 7.6, with a standard deviation of 2.66, indicating that the texts are relatively

short yet varied. The distribution ranges from a minimum of 2 tokens to a maximum of 51 tokens, show-

casing the diversity in sentence lengths. Table 3.2a provides detailed statistics on token counts, including

minimum, maximum, median, and quartile values, offering a comprehensive overview of the dataset’s to-

ken distribution. Additionally, Figure 3.4a showcases the top 20 most frequent tokens in the English sen-

tences, shedding light on the vocabulary composition and prevalent linguistic patterns within the dataset.

Figure 3.3b demonstrates the distribution of tokens within French texts. The average number of tokens

per French sentence is 8.4, with a standard deviation of 3.12, suggesting that French translations are gen-

3 Explaining Transformer Operations Through Koopman Operator Theory

40

(a) Token distribution for English texts. (b) Token distribution for French texts.

Figure 3.3 Token frequencies for English and French sentences.

(a) Top 20 most frequent tokens for English sentences. (b) Top 20 most frequent tokens for French sentences.

Figure 3.4 Top 20 most frequent tokens for English and French sentences.

3.3 Experiments and Results

41

Value

Min 2.0

25th percentile 6.0

Mean 7.6

Median 7.0

75th percentile 9.0

Max 51.0

Std 2.66

(a) Token statistics for English texts.

Value

Min 2.0

25th percentile 6.0

Mean 8.4

Median 8.0

75th percentile 10.0

Max 63.0

Std 3.12

(b) Token statistics for French texts.

Table 3.2 Detailed token statistics for English and French sentences.

erally concise yet varied in length, ranging from a minimum of 2 tokens to a maximum of 63 tokens per

sentence. Table 3.2b provides detailed statistics on token counts, including minimum, maximum, median,

and quartile values, offering a comprehensive overview of the dataset’s token distribution in French texts.

Additionally, Figure 3.4b presents top 20 most popular tokens in the French sentences, providing insights

into the prevalent linguistic patterns and vocabulary composition within the dataset.

Data Preparation

For data preparation in model training and evaluation, we initially refrained from conducting any data

cleaning procedures as the dataset was already curated and prepared. With a focus on training and evalu-

ating the model effectively, we partitioned the dataset into two subsets: 90% of the data was allocated for

model training, while the remaining 10% was reserved for model evaluation. This division ensures that

the model learns from a sufficiently large portion of the data while also allowing for robust evaluation of

its performance on unseen data.

3.3.2 Model Architecture

Figure 3.2 illustrates the comprehensive architecture of our proposed model. Our custom Transformer

model begins its journey with an Embedding layer, responsible for generating 192-dimensional token em-

beddings for both the source and target languages. These embeddings serve as rich representations of

individual tokens, crucial for subsequent processing.

Following the embedding stage, a positional encoding layer injects positional information into the em-

beddings, facilitating the model’s understanding of token positions within sequences. This step is partic-

ularly vital in preserving the sequential order of input tokens, which is essential for capturing contextual

relationships effectively.

Moving forward, the model features an encoder block comprising three layers, each equipped with six

heads in its self-attention mechanism. This design allows each token in the sequence to attend to multi-

ple positions, capturing diverse contextual dependencies. The multi-headed attention mechanism enables

the model to efficiently process and encode information from various perspectives, enhancing its ability

to capture intricate patterns within the data. Subsequently, the output of the self-attention mechanism

traverses through fully connected feed-forward layers. The result of the encoder block serves as keys and

values for the self-attention mechanism in the decoder block.

Transitioning to the decoder block, a similar architecture is employed, albeit with a single head in its

self-attention mechanism. This adjustment ensures that the decoder can selectively focus on relevant por-

3 Explaining Transformer Operations Through Koopman Operator Theory

42

tions of the input sequence while generating output, a crucial aspect in sequence-to-sequence tasks such

as translation. The decoder block utilizes a masked self-attention layer, allowing tokens in the output se-

quence to attend only to previous positions, preventing information leakage from future tokens during

training. Furthermore, the decoder layers share weights and biases across all layers, a design choice moti-

vated by the need to align the dynamics within the decoder block with Koopman Operator theory. In our

experiment, the self-attention mechanism viewed as the dictionary function, capturing the system’s state

evolution, while the first matrix in the feed-forward layer acts as the Koopman operator matrix, encoding

the system’s transition dynamics and the rest of feed-forward layer considered as inverse of the dictio-

nary function. By sharing weights and biases across layers, we ensure consistency in these transformation

functions throughout the decoder block, facilitating the application of Koopman Operator theory to ana-

lyze the model’s behavior. In a departure from traditional transformer architectures, the first self-attention

block in the decoder block is omitted, streamlining the model’s processing pipeline. Furthermore, normal-

ization layers are excluded from the decoder, aligning with the model’s overarching goal of simplicity and

efficiency.

Throughout both the encoder and decoder blocks, the attention and feed-forward layers maintain a con-

sistent dimensionality of 192× 192, ensuring uniformity in the model’s representation and transformation

capacities. This coherence facilitates seamless information flow and transformation across different layers,

enhancing the model’s overall performance and robustness.

In summary, our custom Transformer model embodies a carefully crafted architecture tailored to the

specific requirements of description operations inside decoder block through parametric Koopman Oper-

ator theory. By incorporating strategic design choices and parameter configurations, the model strikes a

balance between complexity and effectiveness, offering a potent framework for various natural language

processing applications.

3.3.3 Evaluation Methods

In our study, our primary objective is to examine whether operations inside the decoder block of our cus-

tom Transformer model align with the Koopman Operator theory. Specifically, we aim to determine if the

self-attention mechanism, as depicted in equation 3.28, operates as a dictionary function, with the subse-

quent multi-layer perceptron from equation 3.29, excluding the first weight matrix, serving as its inverse.

Additionally, we seek to explore the role of the first matrix in the feed-forward layer as a potential Koop-

man Operator matrix, facilitating transition to the next state within the dictionary space.

To conduct our investigation, we utilize the Anki English-French dataset for training and evaluation,

allocating 10% of the dataset for hypothesis testing. Our experimental design begins with training an end-

to-end implementation of our custom Transformer model on the Anki English-French dataset, focusing

specifically on the task of machine translation. Our primary evaluation metric will be the cross-entropy

loss for the translated tokens.

Cross-Entropy Loss

Cross-entropy loss measures the dissimilarity between the predicted probability distribution and the actual

distribution of the target labels. Mathematically, it is defined as

CrossEntropyLoss = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log(𝑝𝑖), (3.40)

where 𝑁 is the number of samples, 𝑦𝑖 is the true label, and 𝑝𝑖 is the predicted probability of the corre-

sponding class. Lower cross-entropy loss indicates better model performance in classification tasks.

3.3 Experiments and Results

43

Subsequently, we plan to evaluate the functionality of the self-attentionmechanism and the feed-forward

layer as dictionary and inverse functions, along with the first matrix of the feed-forward layer being a

Koopman Operator matrix by mean squared error.

Mean Squared Error (MSE) Loss

Mean squared error is a measure of the average squared difference between the predicted values and the

actual values. In the context of our investigation, we utilize MSE to quantify the discrepancy between

embeddings before and after specific transformations within the decoder block. Mathematically, it is ex-

pressed as

MSE(𝑦,𝑦) = 1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2, (3.41)

where𝑦 represents the true values,𝑦 denotes the predicted values, and𝑛 is the number of samples. A lower

MSE indicates that the predicted values are closer to the true values, signifying better model performance.

To assess whether the feed-forward layer acts as an inverse to the self-attention mechanism, during

training and evaluation stages we will capture the embeddings prior to the self-attention mechanism ap-

plication. Following this, we will apply both the self-attention mechanism and the feed-forward layer

(excluding the first matrix) to these embeddings. We will then compute the mean squared error between

the initial embeddings and the embeddings after the application of both mechanisms, evaluating if they

are sufficiently close. In other words, for each layer of the decoder block, we will compute the following

mean squared error

𝑀𝑆𝐸 (𝑧𝑖 ,Ψ1(Φ1(𝑧𝑖 , 𝑢𝑒𝑛𝑐))), (3.42)

where 𝑧𝑖 is the embedding matrix which acts as the input to the 𝑖th layer of the decoder block, 𝑢𝑒𝑛𝑐 is the

result of the encoder block, Φ1 is the dictionary function from equation 3.28, and Ψ1 is the inverse function

from equation 3.32. In the case if Ψ1 is the inverse function of Φ1(𝑧𝑖 , 𝑢𝑒𝑛𝑐), this mean squared error should

be close to zero.

In order to examine the function of the initial matrix in the feed-forward layer as a Koopman Operator,

we will first capture the embeddings after the self-attention mechanism and the𝑊1 matrix have been ap-

plied during both the training and evaluation phases. Additionally, we will record embeddings solely after

the self-attention mechanism has been applied. Subsequently, we will calculate the mean squared error

between the first embeddings and the second embeddings of the following layer to assess the effectiveness

of the first matrix in the feed-forward layer in transitioning to the next state within the dictionary space.

This process is defined by

𝑀𝑆𝐸 (Φ1(𝑧𝑖 , 𝑢𝑒𝑛𝑐)𝑊1,Φ1(𝑧𝑖+1, 𝑢𝑒𝑛𝑐)), (3.43)

where 𝑧𝑖 is the embedding matrix which acts as the input to the 𝑖th layer of the decoder block, 𝑢𝑒𝑛𝑐 is the

result of the encoder block, and Φ1 is the dictionary function from equation 3.28.

BLEU Score

Additionaly we will track BLEU score of our predicted translations. BLEU (Bilingual Evaluation Under-

study) score is a metric commonly used to evaluate the quality of machine-translated text by comparing

it to one or more reference translations [35]. It computes the precision of n-grams (contiguous sequences

of n items, such as words or tokens) in the candidate translation compared to the reference translations.

Mathematically, BLEU score is represented by

BLEU = BP × exp
(
𝑁∑︁
𝑛=1

1

𝑁
log𝑝𝑛

)
, (3.44)

3 Explaining Transformer Operations Through Koopman Operator Theory

44

where 𝐵𝑃 is the brevity penalty to account for short translations, 𝑁 is the maximum order of n-grams

considered, and 𝑝𝑛 is the precision of n-grams. Higher BLEU scores indicate better agreement between

the candidate and reference translations.

In the case that our initial experiment indicates the inefficacy of the Koopman framework within the

decoder block, we propose to modify our approach. Specifically, we will augment our loss function with

the two mean squared errors discussed above. This adjustment aims to compel the feed-forward layer

to effectively serve as an inverse to the self-attention mechanism and the first matrix in the feed-forward

layer as a Koopman Operator. Additionally, it will be intriguing to compare the BLEU scores of predictions

from both the first and second experiments to ensure that the modifications do not result in a performance

drop in translations during the second experiment.

Through these investigations, we aim to deepen our understanding of the Transformer model architec-

ture and its alignment with the theoretical underpinnings of the Koopman framework.

3.3.4 Results and Discussion

First experiment. Basic training of Transformer model.

Here we detail the initial experiment conducted to investigate the alignment of the operations within the

decoder block of our custom Transformer model with the theoretical framework of the Koopman Operator

theory. The primary objective was to explore whether the self-attention mechanism and the feed-forward

layer functioned as dictionary and inverse functions, respectively, and if the firstmatrix in the feed-forward

layer acted as a Koopman Operator matrix.

The experiment utilized the Anki English-French dataset for training and evaluation, with 10% of the

dataset reserved for hypothesis testing. An end-to-end implementation of our custom Transformer model

was trained on this dataset, focusing specifically on the task of machine translation. Training was per-

formed for 500 epochs with batch size 192 on a Tesla V100 32 GB GPU, with each epoch taking approxi-

mately 115 seconds.

The experiment commenced with a notably higher cross-entropy loss on the training set, approximately

around 6, gradually diminishing to 0.68 as the training progressed. Similarly, the cross-entropy loss on

the validation set started at around 4.5 and decreased to approximately 1.43 by the end of the training

period. Despite this reduction, the validation loss remained comparatively higher, suggesting potential

room for further optimization. Figure 3.5 illustrates the dynamic evolution of the cross-entropy loss for

both the training and validation datasets over the course of training. This trend highlights the progressive

convergence of the model’s predictions towards the ground truth labels, albeit with some fluctuations and

residual error on the validation set.

We reject the hypothesis that the feed-forward layer serves as the inverse function for the self-attention

mechanism in the decoder block, as the mean squared error (MSE) between the initial embedding and

its inverted computation consistently fell within the range between 200 to 400 across both the training

and validation sets. Figure 3.6 presents the fluctuating changes in the mean squared error loss for both

the training and validation datasets throughout the training process. This MSE observation, averaging

around 300 during both training and validation stages, signifies a notable departure from the anticipated

results according to the Koopman Operator theory. Such findings underscore a misalignment between the

operations within the decoder block of the Transformer model and the theoretical framework originally

hypothesized.

We also dismiss the hypothesis regarding the first matrix of the feed-forward layer functioning as the

Koopman Operator matrix, as the mean squared error (MSE) between the multiplication of this matrix

with current state in the dictionary space and the next state in the dictionary space consistently ranged

3.3 Experiments and Results

45

Figure 3.5 Dynamics of the Cross-Entropy loss

Figure 3.6 Dynamics of the Mean Squared Error loss for the inverse function.

3 Explaining Transformer Operations Through Koopman Operator Theory

46

between 100 and 250 across both the training and validation sets. Figure 3.7 depicts the dynamics of the

mean squared error loss concerning both the training and validation datasets throughout the training

process. This MSE observation suggests a departure from the expected outcomes based on the Koopman

Operator theory. Therefore, it appears that the first matrix in the feed-forward layer does not effectively

facilitate the transition to the next state within the dictionary space, as initially proposed.

Figure 3.7 Dynamics of the Mean Squared Error loss for the next state prediction in the dictionary space.

Table 3.3 presents detailed metrics for train and validation data at the end of the experiment.

Dataset CE Loss MSE Inverse MSE Next State BLEU

Train Dataset 0.68 318.52 192.08 24.3

Valid Dataset 1.43 318.02 192.29 18.07

Table 3.3 Metrics for train and validation data at the end of the training.

The initial experiment provided valuable insights into the behavior of the Transformer model’s decoder

block in relation to the Koopman Operator theory. Despite the observed misalignment between theoretical

expectations and empirical results, the experiment lays the groundwork for future investigations aimed

at refining the training process of the Transformer model. Through continued experimentation and iter-

ative refinement, we aim to bridge the gap between theory and practice, advancing our understanding of

Transformer model through point of view of dynamical systems.

Second experiment. Adjusted training of Transformer model.

In this experiment, we aimed to refine the operations within the decoder block of our custom Transformer

model to align with the theoretical framework of the Koopman Operator theory. Specifically, we enforced

the feed-forward layer to act as the inverse function of the self-attention mechanism and the first weight

matrix in the feed-forward layer to facilitate transition to the next state in the dictionary space. This was

achieved by designing a complex loss function comprising cross-entropy loss and two mean squared er-

rors, which optimized the desired behavior during backpropagation.

The training process resulted in significant improvements. The cross-entropy loss for the training data

decreased from approximately 7.0 to 0.68 after 500 epochs. Similarly, the validation cross-entropy loss

decreased from around 5 to nearly 1.4 over the training period. Figure 3.8 depicts the dynamics of the

cross-entropy loss for both the training and validation datasets throughout the training stage. This pat-

3.3 Experiments and Results

47

tern underscores the gradual alignment of the model’s predictions with the ground truth labels, although

occasional fluctuations and residual errors were also observed, particularly on the validation set. This ob-

servation was consistent with our findings in the first experiment.

Figure 3.8 Dynamics of the mean Cross-Entropy loss per epoch.

Remarkably, there was a substantial reduction in the mean squared error associated with the inverse

function, decreasing significantly from above 20 to 0.012 for both the training and validation datasets, and

this reduction persisted consistently throughout the training process. The initial sharp decline in the mean

squared loss of the inverse function can be attributed to its initial disparity compared to the cross-entropy

loss. Consequently, during backpropagation, the optimizer prioritized optimizing the mean squared error

over the cross-entropy loss. The variation in the mean squared error for the inverse function across the

training and validation datasets is depicted in Figure 3.9, providing a visual representation of its dynamic

changes during training. This outcome underscores the feed-forward layer’s effectiveness in accurately

mapping the system state from the dictionary space back to the original state space.

Figure 3.9 Dynamics of the mean MSE loss per epoch for the inverse function.

Moreover, there was a significant decrease in the mean squared error associated with the next state

transition in the dictionary space, plummeting from around 15 to 0.012 for both the training and valida-

tion datasets, and this reduction remained consistent throughout the training phase. The fluctuation in the

mean squared error for the next state transition in the dictionary space across the training and validation

datasets is illustrated in Figure 3.10, offering a visual representation of its dynamic changes during train-

3 Explaining Transformer Operations Through Koopman Operator Theory

48

ing. This outcome emphasizes the effectiveness of the weight matrix in facilitating accurate transitions

between states within the dictionary space.

Figure 3.10 Dynamics of the mean MSE loss per epoch for the next state prediction in the dictionary space.

The detailed metrics for train and validation data are presented in Table 3.4. Additionally, it is notewor-

thy that with the adjusted training approach, we also achieved slightly higher BLEU scores for translations

in the second experiment.

Dataset CE Loss MSE Inverse MSE Next State BLEU

Train Dataset 0.68 0.0127 0.01528 24.55

Valid Dataset 1.48 0.0128 0.01526 18.21

Table 3.4 Metrics for train and validation data at the end of the training.

Overall, these results demonstrate the successful training of our custom Transformer model with the

feed-forward layer acting as the inverse function of the self-attention mechanism and the first weight ma-

trix serving as a transition to the next state in the dictionary space. Importantly, these modifications were

achieved while maintaining the cross-entropy loss at a level comparable to that of the initial experiment.

Furthermore, it is noteworthy that with the adjusted training approach, we also observed elevated BLEU

scores for translations in the second experiment. This success paves the way for further exploration and

refinement, enhancing our understanding of Transformer model dynamics through the lens of the Koop-

man Operator theory.

Limitations and Future Work

The experiments conducted to investigate the alignment of the operations within the decoder block of our

custom Transformer model with the Koopman Operator theory have provided valuable insights into the

model’s behavior. However, several limitations and areas for future research have been identified, which

warrant further exploration and refinement.

Limitations:

1. Simplified Model Dynamics. The experiments were conducted using a simplified representation

of the Transformer model architecture. While this approach allowed for a targeted analysis, it may

not fully capture the complex interactions and dynamics present in the entire model. Future re-

3.3 Experiments and Results

49

search could explore the integration of the proposed modifications within the entire Transformer

architecture to assess their impact comprehensively.

2. Assumption of Linearity. The Koopman Operator theory relies on the assumption of linearity,

which may not hold true for all aspects of the Transformer model’s operations. The observed de-

viations from theoretical expectations in both experiments suggest potential nonlinearities or com-

plexities that need to be accounted for in future investigations.

3. Limited Dataset and Task. The experiments were conducted using the Anki English-French

dataset for the task of machine translation. While this dataset served as a suitable starting point,

its size and complexity may have constrained the generalizability of the findings. Future research

could explore the applicability of the proposed modifications across different datasets and tasks to

assess their robustness and effectiveness under varying conditions.

4. Lack of Exploration in Hyperparameter Space. The experiments were conducted with a fixed

set of hyperparameters, limiting the exploration of themodel’s performance across different configu-

rations. Future research could explore a wider range of hyperparameter settings to understand their

impact on the effectiveness of the proposed modifications and to identify optimal configurations for

improved performance.

5. LimitedAnalysis ofModelRobustness. The experiments focused primarily on training dynamics

and performance metrics, with limited analysis of the model’s robustness to variations in input

data or perturbations in model parameters. Future research could investigate the robustness of the

modified Transformer model through techniques such as adversarial testing or input perturbation

analysis to assess its resilience to unforeseen challenges.

Future Work:

1. Model Refinement. Building upon the insights gained from the experiments, future work could

focus on refining the proposed modifications to enhance their effectiveness and applicability. This

could involve exploring alternative loss functions, regularization techniques, or architectural ad-

justments to better align the model’s behavior with the theoretical expectations of the Koopman

Operator theory.

2. Evaluation on Real-World Tasks. Extending the evaluation of the model to real-world tasks and

applications could provide further insights into its practical utility and effectiveness. Future research

could explore the performance of the modified Transformer model on a diverse range of tasks, such

as natural language understanding, generation, or multimodal tasks, to assess its versatility and

generalization capabilities.

3. Theoretical Investigations. Delving deeper into the theoretical underpinnings of the observed

model behaviors could provide valuable insights into the relationship between neural network ar-

chitectures and dynamical systems theory. Future research could explore theoretical frameworks

and methodologies to formalize and analyze these relationships, advancing our understanding of

complex neural architectures like the Transformer model.

In conclusion, while the experiments have shed light on the alignment of the Transformer model’s oper-

ations with the Koopman Operator theory, there remain several avenues for future research to explore and

refine these findings. Addressing the identified limitations and pursuing the suggested future work could

contribute to the development of more effective and theoretically grounded neural network architectures.

51

4 Conclusion

Throughout this thesis, we have embarked on a journey to elucidate the operations of Transformer blocks

from the perspective of Koopman Operator theory, aiming to provide a deeper understanding of their

dynamics. The advent of the Transformer architecture has reshaped the landscape of natural language

processing, revolutionizing various tasks such as machine translation, sentiment analysis, and text sum-

marization. Despite their remarkable performance, the inner workings of Transformermodels, particularly

their self-attention mechanisms, have often been regarded as opaque due to their complex nature.

Motivated by the desire to demystify these operations, we turned to Koopman Operator theory, a pow-

erful mathematical framework for analyzing the evolution of nonlinear dynamical systems. By casting the

operations of Transformer blocks in the language of Koopman Operators, we sought to uncover underly-

ing structures and dynamics that govern the processing of sequential data.

In our exploration, we first delved into the operations of the decoder Transformer block, treating the self-

attention mechanism as a dictionary function and the feed-forward layer as an inverse function. Through

meticulous analysis, we identified the first weight matrix in the feed-forward layer as a KoopmanOperator,

responsible for transitioning the system to the next state in the dictionary space. Building upon this foun-

dation, we extended our investigation to the encoder-decoder architecture, incorporating the encoder’s

output as an additional parameter in the self-attention mechanism. Leveraging parametric Koopman Op-

erator theory, we elucidated the dynamics of information flow within the Transformer block, shedding

light on how it processes input sequences and generates output sequences.

Notably, our theoretical conjectures were not merely speculative; they underwent empirical validation

via practical experiments by training our Transformer model for the task of machine translation using the

Anki dataset comprising English-French sentence pairs. While the initial experiment involving the basic

training of our Transformer model highlighted a divergence in the operations within the decoder block

from the Koopman Operator theory, subsequent endeavors were directed towards resolving this incon-

sistency. By devising custom loss functions and meticulously adjusting model parameters, we effectively

realigned the operations of Transformer blocks with the tenets of Koopman Operator theory. Importantly,

these refinements did not compromise performance, as evidenced by the sustained preservation of the

BLEU score for machine translations. This achievement underscores the efficacy and feasibility of our

methodology in augmenting the interpretability and controllability of Transformer models.

Looking ahead, there are several promising avenues for future research. Firstly, our exploration has

primarily focused on understanding Transformer blocks in the context of machine translation tasks. Ex-

tending this analysis to other NLP tasks, such as text summarization or question answering, could provide

further insights into the versatility and applicability of Koopman Operator theory in natural language pro-

cessing. Additionally, investigating the implications of our findings on model optimization techniques and

architectural design choices could lead to the development of more efficient and interpretable Transformer

variants.

In conclusion, this thesis represents a step towards bridging the gap between machine learning and dy-

namical systems theory. By leveraging Koopman Operator theory to unravel the dynamics of Transformer

blocks, we have laid the groundwork for a deeper understanding of these ubiquitous architectures. We be-

lieve that this interdisciplinary approach holds great promise for advancing the field of natural language

processing and paving the way for the development of more interpretable and controllable machine learn-

4 Conclusion

52

ing models.

53

Bibliography

[1] S. Abdulwahab, M. Jabreel, and D. Moreno. “Deep Learning Models for Paraphrases Identification”.

In: (Sept. 2017).

[2] H. Arbabi. “Introduction to Koopman operator theory of dynamical systems”. In: 2018.

[3] D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly Learning to Align and

Translate”. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. 2015.

[4] P. Bevanda, S. Sosnowski, and S. Hirche. “Koopman operator dynamical models: Learning, analysis

and control”. In: Annual Reviews in Control 52 (2021), pp. 197–212. issn: 1367-5788.

[5] H. Broer and F. Takens. Dynamical Systems and Chaos. Vol. 172. Jan. 2011. isbn: 978-1-4419-6869-2.

[6] P. Castiglione et al. Chaos and Coarse Graining in Statistical Mechanics. Cambridge University Press,

2008.

[7] K. Cho et al. “Learning Phrase Representations using RNN Encoder–Decoder for Statistical Ma-

chine Translation”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Ed. by A. Moschitti, B. Pang, and W. Daelemans. Doha, Qatar: Association for

Computational Linguistics, Oct. 2014, pp. 1724–1734.

[8] A. S. Dogra. Dynamical Systems and Neural Networks. 2020. arXiv: 2004.11826 [math.DS].

[9] A. S. Dogra and W. Redman. “Optimizing Neural Networks via Koopman Operator Theory”. In: Ad-
vances in Neural Information Processing Systems. Ed. byH. Larochelle et al. Vol. 33. CurranAssociates,
Inc., 2020, pp. 2087–2097.

[10] French B2 Vocabulary Anki. Accessed: 2024-04-21. 2024.

[11] G. Gandolfo. Economic Dynamics. Springer Berlin Heidelberg, 2010. isbn: 9783642038716.

[12] Y. Guo et al. Learning Parametric Koopman Decompositions for Prediction and Control. 2023. arXiv:
2310.01124 [math.OC].

[13] H. Hewamalage, C. Bergmeir, and K. Bandara. “Recurrent Neural Networks for Time Series Fore-

casting: Current status and future directions”. In: International Journal of Forecasting 37.1 (2021),

pp. 388–427. issn: 0169-2070.

[14] S. Hochreiter and J. Schmidhuber. “Long Short-TermMemory”. In:Neural Comput. 9.8 (1997), 1735–1780.
issn: 0899-7667.

[15] C.-Z. A. Huang et al. “Music Transformer”. In: International Conference on Learning Representations.
2019.

[16] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The
MIT Press, July 2006. isbn: 9780262276078.

[17] T. Jackson and A. Radunskaya. Applications of Dynamical Systems in Biology and Medicine / edited
by Trachette Jackson, Ami Radunskaya. eng. 1st ed. The IMA Volumes in Mathematics and its Appli-

cations, 158. New York, NY: Springer New York : Imprint: Springer, 2015. isbn: 1-4939-2781-7.

[18] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. 1st. USA: Prentice Hall PTR, 2000.

isbn: 0130950696.

[19] C. Kelly. Language Translation (English-French). 2020.

https://arxiv.org/abs/2004.11826
https://arxiv.org/abs/2310.01124

Bibliography

54

[20] S. Khan et al. “Transformers in Vision: A Survey”. In: ACM Comput. Surv. 54.10s (2022). issn: 0360-
0300.

[21] B. O. Koopman. “Hamiltonian Systems and Transformation in Hilbert Space”. In: Proceedings of the
National Academy of Sciences 17.5 (1931), pp. 315–318. eprint: https://www.pnas.org/doi/
pdf/10.1073/pnas.17.5.315.

[22] Q. Le and T. Mikolov. “Distributed Representations of Sentences and Documents”. In: Proceedings
of the 31st International Conference on International Conference on Machine Learning - Volume 32.
ICML’14. Beijing, China: JMLR.org, 2014, II–1188–II–1196.

[23] C. Lee, K. Park, and J. Kim. Parameter-Varying Koopman Operator for Nonlinear System Modeling and
Control. 2023. arXiv: 2309.10278 [eess.SY].

[24] Q. Li et al. “Extended dynamicmode decompositionwith dictionary learning: A data-driven adaptive

spectral decomposition of the Koopman operator.” In: Chaos 27 10 (2017), p. 103111.

[25] Z. Liang et al. “Credit Assignment for Trained Neural Networks Based on Koopman Operator The-

ory”. In: Front. Comput. Sci. 18.1 (2023). issn: 2095-2228.

[26] G. Łukaszewicz and P. Kalita. Navier–Stokes Equations: An Introduction with Applications. Advances
in Mechanics and Mathematics. Springer International Publishing, 2016. isbn: 9783319277585.

[27] I.Manojlovic et al. “Applications of KoopmanModeAnalysis toNeural Networks”. In:ArXiv abs/2006.11765
(2020).

[28] ManyThings.org. Tab-delimited English-French Bilingual Sentence Pairs. Accessed: 2024-04-20. 2024.

[29] I. Mezić. Operator is the Model. 2023. arXiv: 2310.18516 [math.DS].

[30] T. Mikolov et al. “Distributed Representations ofWords and Phrases and their Compositionality”. In:

Advances in Neural Information Processing Systems. Ed. by C. Burges et al. Vol. 26. Curran Associates,
Inc., 2013.

[31] T. Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”. In: 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings. 2013.

[32] Y. Ming et al. “Understanding Hidden Memories of Recurrent Neural Networks”. In: (Oct. 2017).

[33] I. Naiman and O. Azencot. “An Operator Theoretic Approach for Analyzing Sequence Neural Net-

works”. In: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on
Educational Advances in Artificial Intelligence. AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023. isbn:
978-1-57735-880-0.

[34] OValery16. Language-Translation-with-deep-learning-. Accessed: 2024-04-21. 2024.

[35] K. Papineni et al. “Bleu: a Method for Automatic Evaluation of Machine Translation”. In: Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics. Ed. by P. Isabelle, E.

Charniak, and D. Lin. Philadelphia, Pennsylvania, USA: Association for Computational Linguistics,

July 2002, pp. 311–318.

[36] J. Pennington, R. Socher, and C. Manning. “GloVe: Global Vectors for Word Representation”. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Ed. by
A. Moschitti, B. Pang, and W. Daelemans. Doha, Qatar: Association for Computational Linguistics,

Oct. 2014, pp. 1532–1543.

[37] D. Phuc and N. T. K. Phung. “Using Naïve Bayes Model and Natural Language Processing for Clas-

sifying Messages on Online Forum”. In: 2007 IEEE International Conference on Research, Innovation
and Vision for the Future. 2007, pp. 247–252.

[38] L. Rabiner and B. Juang. “An introduction to hidden Markov models”. In: IEEE ASSP Magazine 3.1
(1986), pp. 4–16.

https://www.pnas.org/doi/pdf/10.1073/pnas.17.5.315
https://www.pnas.org/doi/pdf/10.1073/pnas.17.5.315
https://arxiv.org/abs/2309.10278
https://arxiv.org/abs/2310.18516

Bibliography

55

[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-propagating

errors”. In: nature 323.6088 (1986), pp. 533–536.

[40] H. Salehinejad et al. “Recent Advances in Recurrent Neural Networks”. In: CoRR abs/1801.01078

(2018). arXiv: 1801.01078.

[41] “TF–IDF”. In: Encyclopedia of Machine Learning. Ed. by C. Sammut and G. I. Webb. Boston, MA:

Springer US, 2010, pp. 986–987. isbn: 978-0-387-30164-8.

[42] P. J. SCHMID. “Dynamic mode decomposition of numerical and experimental data”. In: Journal of
Fluid Mechanics 656 (2010), 5–28.

[43] R. M. Schmidt. “Recurrent Neural Networks (RNNs): A gentle Introduction and Overview”. In: CoRR
abs/1912.05911 (2019). arXiv: 1912.05911.

[44] M. Schuster and K. Paliwal. “Bidirectional recurrent neural networks”. In: IEEE Transactions on Signal
Processing 45.11 (1997), pp. 2673–2681.

[45] E. Shareghi et al. “Show Some Love to Your n-grams: A Bit of Progress and Stronger n-gram Lan-

guage Modeling Baselines”. In: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Ed. by J. Burstein, C. Doran, and T. Solorio. Minneapolis, Minnesota: Association for

Computational Linguistics, June 2019, pp. 4113–4118.

[46] S. Varsamopoulos, K. Bertels, and C. Almudever. “Designing neural network based decoders for

surface codes”. In: (Nov. 2018).

[47] A. Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Processing Systems.
Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.

[48] J. Weizenbaum. “ELIZA—a Computer Program for the Study of Natural Language Communication

between Man and Machine”. In: Commun. ACM 9.1 (1966), 36–45. issn: 0001-0782.

[49] S. Wiggins. Introduction To Applied Nonlinear Dynamical Systems And Chaos. Vol. 4. Jan. 2003. isbn:
0-387-00177-8.

[50] M.Williams, I. Kevrekidis, and C. Rowley. “AData-DrivenApproximation of the KoopmanOperator:

Extending Dynamic Mode Decomposition”. In: Journal of Nonlinear Science 25 (Aug. 2014).

[51] S. Yun et al. “Graph Transformer Networks”. In: Advances in Neural Information Processing Systems.
Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[52] D. Zhang et al. “Simulating Reservoir Operation Using a Recurrent Neural Network Algorithm”. In:

Water 11 (Apr. 2019), p. 865.

https://arxiv.org/abs/1801.01078
https://arxiv.org/abs/1912.05911

57

List of Figures

2.1 RNN cell structure. Taken from [52]. 9

2.2 Vanilla RNN architecture. Taken from [32]. 9

2.3 LSTM cell structure. Taken from [46]. 10

2.4 Gated Recurrent Unit (GRU). Taken from [1]. 11

2.5 Illustration of the proposed system during generation of the target word 𝑦𝑡 based on the

source sentence (𝑥1, ..., 𝑥𝑇). Taken from [3] . 12

2.6 Architecture of Transformer model. Taken from [47]. 14

2.7 (left) Operations of Scaled Dot-Product Attention. (right) Operations of Multi-Head Atten-

tion. Taken from [47]. 15

2.8 Example of dynamical system. Taken from [6]. 17

2.9 Φ(𝑥) transforms the state space to the higher-dimensional observable space, where dy-

namics becomes linear. Adapted from [2]. 19

2.10 Architecture of neural network which approximates trainable dictionaryΦ(𝑥). Taken from
[24]. 23

2.11 Architecture of neural network in the PK-NN algorithm. Trainable parameters of Koopman

operator𝐾 (𝑢,𝑊𝑘) are learned via 𝑁𝑁𝐾 neural network and network 𝑁𝑁Φ is used to obtain

dictionaries Φ(𝑥 ;𝑊𝜙). Taken from [12]. 24

3.1 Decoder block. 28

3.2 Reduced architecture of the Transformer model. 34

3.3 Token frequencies for English and French sentences. 40

3.4 Top 20 most frequent tokens for English and French sentences. 40

3.5 Dynamics of the Cross-Entropy loss . 45

3.6 Dynamics of the Mean Squared Error loss for the inverse function. 45

3.7 Dynamics of the Mean Squared Error loss for the next state prediction in the dictionary

space. 46

3.8 Dynamics of the mean Cross-Entropy loss per epoch. 47

3.9 Dynamics of the mean MSE loss per epoch for the inverse function. 47

3.10 Dynamics of the mean MSE loss per epoch for the next state prediction in the dictionary

space. 48

59

List of Algorithms

1 Dynamic Mode Decomposition . 21

2 Extended Dynamic Mode Decomposition . 22

3 Evolution inside decoder block through Koopman Operator theory 31

4 Evolution for the next token prediction through Koopman Operator theory 32

5 Evolution inside decoder block through parametric Koopman Operator 36

6 Evolution of the encoder-decoder Transformer architecture throughKoopmanOperator the-

ory . 37

61

List of Tables

3.1 Example of 10 randomly chosen bilingual sentence pairs 39

3.2 Detailed token statistics for English and French sentences. 41

3.3 Metrics for train and validation data at the end of the training. 46

3.4 Metrics for train and validation data at the end of the training. 48

	1 Introduction
	2 Theoretical Background
	2.1 Evolution of Natural Language Processing
	2.1.1 Rule-Based Methods, Statistical Models and Word Embeddings
	2.1.2 Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
	2.1.3 Attention and Transformers

	2.2 Dynamical Systems
	2.2.1 Basic Concepts of Dynamical Systems
	2.2.2 Nonlinear Dynamical Systems
	2.2.3 Koopman Operator
	2.2.4 Approximating Koopman Operator

	2.3 Related Work

	3 Explaining Transformer Operations Through Koopman Operator Theory
	3.1 Explaining Decoder architecture through Koopman Operator Theory
	3.2 Explaining Encoder-Decoder Architecture through Parametric Koopman Operator
	3.3 Experiments and Results
	3.3.1 Dataset
	3.3.2 Model Architecture
	3.3.3 Evaluation Methods
	3.3.4 Results and Discussion

	4 Conclusion
	Bibliography

