
Chair of Scientific Computing
TUM School of Computation, Information and Technology
Technical University of Munich

Master’s thesis in Computational Science and Engineering

Parameterized Koopman operator models for
crowd dynamics

Koichiro Hida





Master’s thesis in Computational Science and Engineering

Parameterized Koopman operator models
for crowd dynamics

Koichiro Hida





Chair of Scientific Computing
TUM School of Computation, Information and Technology
Technical University of Munich

Master’s thesis in Computational Science and Engineering

Parameterized Koopman operator models
for crowd dynamics

Koichiro Hida

Thesis for the attainment of the academic degree

Master of Science (M.Sc.)

at the TUM School of Computation, Information and Technology of the Technical University of Munich.

Examiner:
Prof. Dr. Felix Dietrich

Submitted:
Munich, 30.04.2024





I hereby declare that this thesis is entirely the result of my own work except where otherwise indicated. I
have only used the resources given in the list of references.

Munich, 30.04.2024 Koichiro Hida





ix

Abstract

There has been growing interest in crowd dynamics modeling, driven primarily by its relevance in various
fields, including urban planning, safety measures, and event management. The central objective within this
field is to understand how people behave collectively due to the interactions, movements, and responses
to environmental factors. The recent progress in machine learning also impacts crowd modeling because
it can utilize vast amounts of data from sensors, digital devices, and simulations. Data-driven methods
have demonstrated the ability to achieve flexible and precise dynamics predictions, even without knowing
the governing equation of the systems.

This thesis focuses on crowd dynamics modeling with the Koopman operator, an infinite-dimensional
linear operator that acts on functions defined on the state space of a dynamical system. The primary
objective is parameterizing the Koopman operator to accommodate variable geometries and conditions in
crowd dynamics prediction. The Koopman operator offers insights into system dynamics through eigen-
components via extended dynamic mode decomposition, which approximates the Koopman operator with
a linear combination of eigenfunctions, eigenvalues, and modes in infinite dimension.

The data on crowd dynamics is sampled using Vadere, an open-source crowd simulation software.
Through approximation of the Koopman operator, the essential components of the dynamic system are
identified and represented by eigenfunctions. It enabled successful predictions of crowd behavior. Further
investigation of the eigen-components of the Koopman operator is conducted to characterize coherent
structures in dynamic systems. The Koopman eigenfunctions reveal wave-like data intrinsic patterns and
parameter-dependent trends in crowd behaviors.
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1 Introduction

The study of crowd dynamics modeling and forecasting is crucial in urban planning, safety measures, and
event coordination. This field primarily aims to understand the collective behavior of individuals within
large gatherings, examining how crowds navigate, interact, and respond to external stimuli like obstacles,
emergencies, or changes in their environment [1, 2, 3].

Numerous modeling approaches for crowd behavior exist, where researchers try to capture the under-
lying principles of crowds. Several researchers tried to describe the crowd behavior on a micro-scale by
modeling the pedestrian’s behaviors [4]. However, it still requires bridging the gap between the local be-
haviors of pedestrians during interactions and the broader dynamics of the crowds. Moreover, external
factors such as weather conditions, natural disasters, and construction activities present additional chal-
lenges to equation-based modeling approaches. Consequently, computer simulation has emerged as a
prevalent tool for predicting crowd dynamics, offering flexibility in handling complex scenarios and manipu-
lating various factors as parameters [5]. However, a significant drawback of computer simulation is that as
scenarios grow in complexity and scale, the simulation requires considerable time to complete. Moreover,
simulations need to be repeated numerous times to account for variable parameter combinations, with the
addition of new parameters increasing the number of simulations exponentially. Recent advancements in
artificial intelligence and machine learning greatly influence crowd dynamics modeling by leveraging vast
amounts of data from sensors, digital devices, and simulations. Data-driven methods have shown the po-
tential to make more accurate predictions without relying on traditional equation-based approaches [6, 7].
One of the significant challenges in data-driven methods is that the model tends to be a black box, and the
internal process of making predictions is unclear. The Koopman operator stands out for its ability to allow
the analysis of the model, offering insights into the dynamics through the eigen-components. Utilizing oper-
ator approximation methods such as Extended Dynamic Mode Decomposition (EDMD), researchers have
successfully employed the Koopman operator to model dynamical systems even with nonlinear dynamical
patterns.

Hence, this thesis selects the Koopman operator model for investigating crowd dynamics. The objec-
tive is to construct the approximated model of the Koopman operator to provide predictions of the crowd
dynamics. To apply the Koopman operator in crowd dynamics modeling, it needs to consider that the op-
erator should be capable of representing variable conditions, such as geometries and the size of crowds.
In other words, the Koopman operator models should be dependent on some parameters. EDMD is a
data-driven method requiring only a dataset to approximate the Koopman operator model. The parameter
information should also be included within the dataset to take it into account in the model. The method
employed in this thesis is to increase the number of features in the dataset as many as the number of
parameters. The dataset is extended by adding a parameter as a column of constant value, facilitating the
operator’s prediction depending on the parameter value.

Without the approximation of the Koopman operator, the practical application of the operator in crowd
dynamics is challenging. One major obstacle is that the operator can be infinite-dimensional, which makes
the direct computation of the operator unfeasible. Additionally, no efficient computational method is avail-
able to calculate the Koopman operator directly. The emergence of approximation methods made a sig-
nificant breakthrough in the practical application of the Koopman operator. Approximation methods offer
finite dimensional approximations of the Koopman operator, making it feasible to apply to real-world prob-
lems. EDMD, an extension of the Dynamic Mode Decomposition method, is one of the methods used
to approximate the Koopman operator, which produces Koopman eigenfunctions, modes, and associated
eigenvalues [8]. These components offer a structured linear representation of nonlinear dynamics, estab-
lishing an intrinsic coordinate system where the system operates within the function space. Additionally,
Koopman eigenfunctions are linked to geometric system properties and coherent structures. EDMD offers
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greater flexibility in approximating the Koopman operator, thus attracting attention among the approxima-
tion methods in recent studies.

In this thesis, Vadere, an open-source software designed for crowd dynamics simulation [9], is employed
to acquire data on crowd dynamics. Vadere offers a platform to simulate crowd models in two-dimensional
geometry. Section 2 explains the theoretical foundations of the Koopman operator and its approximation
methods in detail. Additionally, the recent progress in crowd dynamics modeling is summarized. Section
3 presents the main project, applying the parameterized Koopman operator model for crowd dynamics.
The section is further divided into the background, methodology, results evaluation, and model analysis.
Finally, this thesis is summarized in the conclusion.
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2 State of the art

2.1 Koopman operator

The Koopman operator was first introduced by Bernard Koopman in 1931 [10]. Koopman revealed that
there is a linear operator associated with each dynamical system. In this paper, he explored the foun-
dations of Hamiltonian mechanics and investigated systems that exhibit a steady n-dimensional flow of a
fluid of positive density. He used the Hilbert spaces as spaces of observables to define the operator for the
Hamiltonian systems. A Hilbert space is a mathematical construct used to describe infinite-dimensional
vector spaces. This leads to a concept of linear transformations in Hilbert’s space, which maps one state
to another while preserving inner products and norms. The Koopman operator is a linear operator that
acts on state observables [11]. It maps an observable, a function of the systems’s state, at one time to the
same observable at a later time.

A continuous dynamical system can be defined as

dx

dt
= f(x). (2.1)

The system continuously updates state variable x by a continuous function f . A discrete-time update can
also express this

Ft(x(t0)) = x(t0 + t)

= x(t0) +
∫ t

t0
f(xt)dt,

(2.2)

where Ft is a function at time t. Here, x can be any state space, such as a manifold. The Koopman
operator K acts on the observables g of state X

Ktg = g ◦ Ft, (2.3)

where ◦ denotes the composition of the observable function g and function F . In many cases, employing
a Hilbert space F of functions is useful as the observables the Koopman operator acts on. Throughout the
thesis, we will assume this is the case. The Koopman operator updates the observable of the current state
xk one step ahead and gives the observable xk+1. Therefore, it is a linear way to advance observable
functions in time. In other words, the Koopman operator defines a new dynamical system that governs the
evolution of observables in discrete time. Even when function F is nonlinear, the Koopman operator K
is linear. The observables are usually in infinite dimensions; hence, solving an infinite dimensional linear
system of the equation is required to compute the Koopman operator directly. Therefore, it requires an
approximation of the Koopman operator in practice, using several methods described in sections 2.2 and
2.3.

Figure 2.1 shows a diagram of how the Koopman operator works. The Koopman operator provides
another way to evolve a state over time. The dynamical system defined by the function F and the one
defined by the Koopman operator K are two different parameterizations, but they represent the same fun-
damental behavior of the dynamics. The links between the two expressions are the observable function
g(x) = x. Eigendecomposition of the Koopman operator provides another form of the formulation de-
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Figure 2.1 Flow chart of time series prediction with Koopman operator. A nonlinear function is substituted by the
infinite-dimensional linear function, the Koopman operator, by representing the states with the observable functions
and updating the state as observable functions. The updated state is obtained by inversing the mapping from
observable to the state.

Figure 2.2 Flow chart of time series prediction with the Koopman operator’s eigenfunctions and eigenvalues. Koop-
man eigenfunction embeds the states, and eigenvalues update the state over time. Koopman mode is a vector that
transforms the embedded space back to the original state space.



5

fined by (µk, ϕk, vk)K
k=1, the Koopman eigenvalue, eigenfunction, and mode. The formulation of the time

evolution by the Koopman operator can be written as

F (x) = (Kg)(x)

=
K∑

k=1
vk(Kϕk)(x)

=
K∑

k=1
µkvkϕk(x).

(2.4)

Figure 2.2 shows the roles of the three components. The Koopman eigenfunction represents the state
X based on the eigenfunctions on which the eigenvalues are applied to update the state. The Koopman
modes restore the state from the eigenfunction basis. In this formulation, the links of the two expressions
are the Koopman eigenfunctions and the modes. Indeed, the full state observable g = [g1, g2, ...] can be
obtained by multiplying the two components

gi =
K∑

k=1
vikϕk. (2.5)

Consequently, state variable x can also be obtained as

x = g(x) =
K∑

k=1
vkϕk(x), (2.6)

where vk is the k-th Koopman mode and ϕk is the k-th Koopman eigenfunction.
Such representation based on eigen-components enables analysis of the operator because the eigen-

functions preserve system characteristics, and the eigenvalues determine the significance of correspond-
ing eigenfunctions.

Due to the linearity of the Koopman operator, numerical approximations are simplified, which is later
introduced as extended dynamic mode decomposition (EDMD). The linearity also provides the operator
with interpretability and explainability. The spectral components of the operator can analyze the Koopman
operator as "building blocks." It enables better interpretation of the dynamics than other methods, such as
simulations and deep learning-based methods. The approximation of the Koopman operator can be done
entirely using a data-driven approach. Hence, it does not require a governing equation of the state.

The introduction of approximation methods such as Dynamic Mode Decomposition (DMD) provided a
breakthrough for the practical application of the Koopman operator. Those approximation methods offer
finite-dimensional approximations of the Koopman operator, enabling its application to real-world problems.
In section 2.2, DMD, one of the significant methods for Koopman operator approximation, is introduced.
Also, the extension of the DMD (EDMD) is explained in section 2.3.

Koopman operator is applied to various fields due to its ability to linearize nonlinear systems and re-
veal critical geometric properties. The Koopman operator has been applied in various areas of control
theory, including observability, controllability analysis, stability, model predictive control, optimal control,
feedback stabilization, and identification. Especially the introduction of the approximation of the Koopman
operator promoted research in these fields [12]. Ian Abraham et al. explored the application of the Koop-
man operator to control theory in the field of robotics [13]. He used the Koopman operator to generate
data-driven models with utility for model-based control. The Koopman operator improved the controller
performance in various terrains. In physics, the Koopman operator is often called a compositional operator
and is frequently used, especially in dynamic systems. Stefan Klus et al. investigated the application of the
Koopman operator to Quantum systems [14]. He compares the ground-state transformation and Nelson’s
stochastic mechanics, demonstrating how data-driven methods developed for the approximation of the
Koopman operator can be used to analyze quantum physics problems. Yoshihiko Susuki et al. explored
the Koopman operator theory for power systems technology [15]. The applications include coherency iden-
tification of swings in coupled synchronous generators, precursor diagnostic of instabilities in the coupled
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swing dynamics, and stability assessment of power systems without using mathematical models. These
applications demonstrate the potential of the Koopman operator theory in addressing complex problems
in power systems technology.

2.2 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) is a data-driven technique to obtain linear reduced order models
for high dimensional complex systems [16]. DMD can also extract spatial-temporal coherent structures or
patterns that dominate the observed measurement data from that dynamical system. It is a purely data-
driven method; therefore, it does not require an underlying equation for the system. DMD was initially
introduced in fluid dynamics and later connected to the nonlinear dynamical systems theory by Peter
Schmidt [17]. DMD is later applied to the approximation of the Koopman operator by Igor Mezic et al. [12].

Given measured dataX = [x1, x2, ...], where each column is a feature or spatial information of the state.
X ′ = [xn+1, xn+2, ...] is a matrix of n time step ahead of X. Now assume an operator A which satisfy

X ′ = AX. (2.7)

In such a case, an operator A can be derived as

A = X ′X−1. (2.8)

Operator A evolves X to X ′. However, the calculation of A is often computationally too expensive as
the number of features or spatial information increases. Therefore, A is approximated with the smaller
dimensional operator. Such an approximation can be realized by approximating the leading eigenvalue-
eigenvector pairs of A without actually calculating A. In other words, DMD tries to approximate the
dominant eigenvalues and corresponding eigenvectors of matrix A. Once the leading eigenvectors are
obtained, these eigenvectors can be reshaped into the original state space. Also, these eigenvectors
show coherent time-varying dynamics such as sine and cosine waves, exponential decay, or growth. The
eigenvalues allow the prediction of the evolution of the dynamics.

The first step of DMD computes the Singular Value Decomposition (SVD) of the matrix X. Assuming
that X is a M ×N matrix, SVD is a factorization of the matrix into three matrices

X = UDV T , (2.9)

where U is M ×M matrix containing the orthonormal eigenvectors of XXT , V T is transpose of a N ×N
matrix of the orthonormal eigenvectors of XT . D is a matrix with r elements equal to the root of the
positive eigenvalues of XXT or XTX. After applying SVD to the data matrix X, the variance of X is
organized from the most significant to the least significant. Then X in 2.7 is substituted and obtain

X ′ = AUDV T . (2.10)

Then, in order to isolate matrix A, matrix V , D−1, and complex conjugate U∗ are multiplied from the right
hand side. SVD is advantageous in inverting V because it is a unitary matrix.

U∗X ′V D−1 = U∗AU

= A′.
(2.11)

Here, a large matrix A is projected onto the dominant singular vectors U∗ and U and a smaller matrix A′

is obtained. Matrix A′ has the same non-zero eigenvalues as matrix A. Therefore, the eigenvalues of A
can be computed from the eigendecomposition of A′

A′W = WΛ. (2.12)
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W contains the eigenvectors of A′ and Λ contains the eigenvalues of A′. Finally, the eigenvectors of A
are computed as follows

Φ = X ′V D−1W. (2.13)

Φ is the approximated eigenvectors of A. Φ is also called DMD mode because it shows the spatial correla-
tions between measurements. If the initial condition of X is given as X0, the future state can be predicted
by

X ′(kδt) = ΦΛtX0. (2.14)

Using equation 2.14, the future state of X can be predicted from the DMD mode and corresponding
eigenvalues. The Λ term in the equation is powered by the time t. Hence, the DMD modes of small
eigenvalues are diminished in the long-term prediction. Therefore, the analysis of the DMD modes is quite
helpful in understanding the major components that affect the prediction. Figure 2.3 shows an example
of DMD modes. This DMD mode is derived from a simple time series of sine functions with randomly
generated noise, with 200-time steps for the computation of the fitting DMD model. The DMD modes are
sorted in the descending order of their corresponding eigenvalues. In other words, the DMD modes are
sorted by the significance of the components. The heatmap visualization shows that each component of
DMD modes has a different frequency of repeating patterns, and the significant components have less
frequency. The first component represents the major component of the function, the sine function, and
the other components represent the noise terms. The DMD model comprehends the dynamics as a
composition of factors with different behaviors and then represents the factors using the DMD modes.

In many applications, DMD is used as a numerical approximation of the Koopman operator, which gives
Koopman modes and corresponding eigenvalues. As in the definition of DMD, data matrices X and Y
are defined. As long as X and Y are linearly consistent, the relationship between DMD and Koopman
modes can be defined as follows. Suppose that DMD modes are computed from X and Y and thus obtain
eigenvectors and eigenvalues that satisfy

Aϕj = λjϕj , (2.15)

where A = Y X+. + denotes a pseudoinverse. If the matrix A has a full set of eigenvectors, then each
column xk of X can be expanded as

h(zk) = xk =
n−1∑
j=0

cjkϕj (2.16)

for some constants cjk. For linearly consistent data, each column of data matrices is updated by linear
operator A, thus Axk = yk, therefore,

h(f(zk)) = yk = Axk

=
n−1∑
j=0

cjkAϕj

=
n−1∑
j=0

λjcjkϕj .

(2.17)

Recalling that the Koopman operator can be expressed as

h(f(z)) =
n−1∑
j=0

λjθj(z)ϕj , (2.18)

where θ(z) is the eigenfunction of the Koopman operator, it is seen that in the case of linearly consistent
data matrices, the DMD modes correspond to Koopman modes and the DMD eigenvalues to the Koopman
eigenvalues. Constants cjk are given as Koopman eigenfunction θj(zk) in this case. If the data arise from
a sequential time series, the modes can be scaled to subsume the constant cjk.
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Figure 2.3 Visualization of the DMD modes. The DMD model is derived from data of sine function with randomly
generated noise terms. The model is fitted with 200 time steps. The figure on the left side shows the DMD modes in
real values, and the figure on the right side shows the imaginary values of DMD modes. DMD modes are sorted in
the descending order of corresponding eigenvalues.
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DMD has been applied to various fields, especially in the fluid dynamics. P. J. Schmid applied DMD to
Schlieren snapshots of a helium jet and to time-resolved Particle Image Velocimetry measurements of an
unforced and harmonically forced jet [18]. DMD allowed the breakdown of a fluid process into dynamically
relevant and coherent structures. It aided in the characterization and quantification of physical mechanisms
in fluid flow.

DMD approximates the Koopman operator with a best-fit linear model. However, DMD is based on linear
measurements, which do not span a Koopman invariant subspace for many nonlinear systems. Also, DMD
has a limited ability to represent the Koopman operator as it is stated in 2.18, that the DMD approximates
the Koopman operator in a particular case where the Koopman eigenfunctions can be represented with
constant values.

2.3 Extended Dynamic Mode Decomposition

Extended Dynamic Mode Decomposition (EDMD) is a method that approximates the Koopman operator
and, therefore, the Koopman eigenvalue, eigenfunction, and mode based on the choice of a dictionary.
[8]. Koopman eigenvalue is the eigenvalue of Koopman operator, and Koopman eigenfunctions are cor-
responding eigenfunctions of the Koopman operator. Koopman eigenfunctions provide a principled linear
embedding of nonlinear dynamics, resulting in an intrinsic coordinate system in which the system is closed
under the action of the Koopman operator. Koopman eigenfunctions can also be associated with geometric
system properties and coherent structures [19]. Koopman mode is a vector that enables the reconstruction
of the system’s state as a linear combination of the Koopman eigenfunctions.

Several other algorithms can computationally approximate subsets of Koopman eigenfunctions, eigen-
values, and modes.

• DMD
As discussed in the previous section, DMD is a method that has been successfully used to analyze
nonlinear systems by approximating Koopman modes and corresponding eigenvalues [12].

• Generalized Laplace Analysis (GLA)
GLA can approximate both the Koopman modes and eigenfunctions. It has been used to extract
meaningful spatio-temporal structures from sensor data [20].

• Ulam Galerkin Method
Ulam Galerkin Method approximates the eigenfunctions and eigenvalues. It is used to identify coher-
ent structures and almost invariant sets based on the singular value decomposition of the Koopman
operator [8].

EDMD is developed to approximate all the components: Koopman eigenfunctions, eigenvalues, and modes
from a data set of successive snapshot pairs and a dictionary of observables that spans a subspace of the
scalar observables

EDMD is introduced by O. Williams [8]. It is an extension of DMD explained in section 2.2.
Given a pair of time series data from simulation or measurement of the dynamical systemX = [x1, x2, ...]

and X ′ = [xn+1, xn+2, ...] of the system state, where X ′ is n time ahead of X. It is written as

X ′ = F (X), (2.19)

where F is a nonlinear flow. Dictionary of observables g = ψ1, ψ2, ..., ψ spans in the finite dimensional
function space. Vector-valued observable functions can also be defined as

Ψ = [ψ1(x) ψ2(x) ... ψN (x)]. (2.20)

The finite-dimensional approximation of the Koopman operator, K, is computed based on the selection of
the dictionary. By definition, a function f can be written as

f =
L∑

l=1
alψl = Ψa, (2.21)
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where L is the number of elements in the dictionary with weights a. Since f is typically not an invariant
subspace of the Koopman operator K,

Kf = (Ψ ⊙ F )a = Ψ(Ka) + r, (2.22)

K is the approximated Koopman operator in finite dimension, and r is the residual term. To determine the
approximation of the operator K, the following minimization problem

J = 1
2

M∑
m=1

|r(xm)|2

= 1
2

M∑
m=1

|((Ψ ⊙ F )(xm) − Ψ(xm)K)a|2

= 1
2

M∑
m=1

|(Ψ(x′
m) − Ψ(xm)K)a|2

(2.23)

must be solved. Equation 2.23 is a least square problem. The solution yields K, a finite-dimensional
approximation of K, that maps f to some other f ′ by minimizing the residuals. As a result, the K that
minimizes the above is

K = G+C, (2.24)

where G+ is a pseudoinverse of

G = 1
M

M∑
m=1

Ψ(xm)Ψ(xm), (2.25)

and

C = 1
M

M∑
m=1

Ψ(xm)Ψ(ym). (2.26)

The approximation of the Koopman eigenfunctions ϕj can be derived from the obtained approximation of
the Koopman operator K. Assume νj is j-th eigenvector of K, the approximation of an eigenfunction is

ϕj = Ψνj . (2.27)

In the next step, the approximation of the Koopman modes Υ is computed. Full state observable g can be
written as

gi =
N∑

n=1
ψnbn,i, (2.28)

where bi is some appropriate vector of weights. The entire vector-valued observable can be expressed

g = BT ΨT = (ψB)T , (2.29)

where B = [b1, b2, ..., bN ]. From the equation 2.27, observable Ψ can be expressed in terms of Koopman
eigenfunction Φ as

Ψ = ΦV, (2.30)

where V = [ν1, ν2, ..., νk]. νi is the i-th eigenvector of K associated with eigenvalue µi. Therefore,
observable ψi can be written as a function of ϕi by inverting Vt. Its inverse is

V −1 = W = [w1, w2, ..., wk], (2.31)

where wi is the i-th left eigenvector of K also associated with µi. From equation 2.29 and 2.27, full state
observable can be expressed using Koopman modes Υ

g = ΥΦT =
M∑

m=1
υmϕm, (2.32)
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where the Koopman modes Υ = [υ1, υ2, ..., υm].
While DMD approximates Koopman modes and eigenvalues but not Koopman eigenfunctions, EDMD

additionally produces a better approximation of Koopman eigenfunctions. They produce the same set
of Koopman modes and eigenvalues for any set of snapshot pairs; however, they are only equivalent to
specific and restricted dictionary selection. From equation 2.19, the linear operator of DMD KDMD can be
derived as

KDMD = X ′X+. (2.33)

The DMD modes are defined as the eigenvectors of the matrix KDMD, where the j-th mode is associ-
ated with the j-th eigenvalue of KDMD, µj . Here, + denotes the pseudoinverse. The Koopman modes
computed using EDMD with a particular choice of dictionary D = e∗

1, e
∗
2, ..., e

∗
N are equivalent to the DMD

modes. Recall that the full state observable of the Koopman operator g(x) = x is a vector-valued observ-
able that can be expressed as

g(x) = [g1(x), g2(x), ..., gN (x)]
= [e∗

1x, e
∗
2x, ..., e

∗
Nx],

(2.34)

where ei is the i-th unit vector in RN . All gi is assumed to be gi ∈ FD. Because the elements of the full
state observable are the dictionary elements, B = I. The Koopman modes are expressed as

Υ = (W ∗B)T . (2.35)

Since B = I, the Koopman modes are the complex conjugates of the left eigenvectors of K. Hence,
υT

i = w∗
i . Furthermore, GT = 1

MXX∗ and AT = 1
MX ′X∗. Then

KT = ATGT +

= Y X∗(XX∗)+

= Y X+

= KDMD.

(2.36)

It reveals that DMD and EDMD approximations are identical regarding a specific dictionary choice and if
the pseudo inverse is the matrix inverse. Moreover,

KDMDvi = (vT
i K

T
DMD)T

= (w∗
iK)T

= (µiw
∗
i )T

= µivi.

(2.37)

Hence, all the Koopman modes computed by EDMD are eigenvectors of KDMD and, thus, the DMD
modes. DMD can be thought of as producing the approximation of Koopman eigenfunctions with a set of
linear monomials as basis functions. However, most of the systems are nonlinear. EDMD is an extension
of DMD that retains additional terms in the expansion, where the elements ofD determine these additional
terms [8].

EDMD offers more flexibility in approximating the Koopman operator than DMD. EDMD improved upon
the classical DMD by including a flexible choice of dictionary of observables that spans a finite-dimensional
subspace on which the Koopman operator can be approximated. However, selecting a proper dictio-
nary to approximate the Koopman operator remains challenging. This is particularly challenging for high-
dimensional and highly nonlinear systems. Qianxiao Li et al. proposed an iterative approximation algorithm
that couples the EDMD with a trainable dictionary represented by an artificial neural network to address
this issue [21]. This approach allowed the dictionary to adapt to the problem at hand, achieving good
reconstruction accuracy without choosing a fixed dictionary a priori. Furthermore, Hiroaki Terao et al. sug-
gested a method to find a dictionary using neural ordinary differential equations (NODEs) [22]. NODEs
is a neural network equipped with a continuum of layers with high parameter and memory efficiencies.
He proposed an algorithm to perform EDMD using NODEs and showed that it finds a parameter-efficient
dictionary that provides an excellent finite-dimensional approximation of the Koopman operator.
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2.4 Crowd dynamics modeling and prediction

Crowd dynamics modeling and prediction have gained attention due to their relevance in various domains,
including urban planning, safety, and event management. The main objectives of this field are to under-
stand the collective behavior of individuals in large groups and how the crowds move, interact, and respond
to external factors such as obstacles, emergencies, or changes in the environment.

Preceded research tried to understand the underlying principles of crowd behavior from governing equa-
tions. Mehdi Moussaïd et al. attempted to uncover the principles based on two modeling methods: out-
come models and process models [4]. On the one hand, outcome models describe the movements of a
pedestrian through repulsive forces or probabilities to move from one place to another. On the other hand,
process models generate movement from the bottom up by describing the underlying cognitive process
pedestrians use during navigation. However, the authors emphasized that the crowd of pedestrians is a
complex system exhibiting a variety of self-organized collective behaviors, and it requires linking the lo-
cal behavior of pedestrians during interactions and the global dynamics of the crowd at high density to
understand the dynamics. Also, external factors need to be considered reality, such as weather, natural
disasters, and constructions, which makes the equation-based modeling approach challenging.

Computer simulation is also frequently used for predicting crowd dynamics due to its reproducibility of
the results, extensivity of the scenarios to be more complex and realistic, and availability of controlling
and manipulating various factors as variables. R. A. Saeed et al. presented a simulation methodology
for pedestrian crowd movement in large and complex environments [5]. It uses a multi-group microscopic
model that tracks all individual pedestrians rather than aggregating the behaviors of crowds. Hence, it
accepts the characteristics of pedestrians, such as gender, age, position, velocity, and energy, which
can generate more realistic trajectories of pedestrians. While computer simulation is a powerful tool for
studying crowd dynamics, it suffers from the required computational resources and time for simulation as
there are more variables to be considered in the scenarios. Simulations must be repeatedly carried out to
obtain different conditions, which is time-consuming.

Artificial intelligence and machine learning advancements have opened up new possibilities for crowd
dynamics modeling. Much data is accessible from sensors, digital devices, and simulations. Data-driven
methods can leverage large amounts of data to make more accurate predictions. Furthermore, traditional
equation-based modeling often requires very strong assumptions to hold, which limits the complexity and
variability that the model can handle. Meanwhile, data-driven methods do not require the underlying equa-
tions; they can learn the dynamics from data independently. Sample data about crowd flows are generally
high-dimensional. Hence, this approach also has to deal with the increasing computational complexity.
Zhai Zhongyi et al. presented a novel method for predicting citywide crowd flows using deep learning
techniques [6]. He addressed the challenge by introducing a data reconstruction mechanism to reduce
the dimension of sample data. The mechanism also includes a spatiotemporal data-oriented prediction
model constructed based on a bottleneck residual network, which effectively reduces the computational
complexity of model training while improving the prediction accuracy of crowd flows. Marco Cardia et al.
introduced a novel solution, CrowdNet, for predicting crowd flow based on graph convolutional networks
[7]. One of the limitations most deep learning approaches face is that they cannot explain their predictions
sufficiently. CrowdNet can be used with regions of irregular shapes and provide meaningful explanations
of the predicted crowd flows. However, the explainability and interpretability of the predictions are still
challenges that should be improved because data-driven methods tend to be a black box as they lack the
governing equation of the dynamic system. The models are complex, so it is difficult to root the cause.

The Koopman operator owns a great advantage as it offers the "building blocks" like structure of the
model to be analyzed. In other words, the Koopman operator is described as a set of eigenfunctions,
eigenvalues, and modes, which are associated with one component of the linear evolution of the observ-
ables. Hence, the Koopman operator enables the dynamics analysis by eigenpair components. Lehmberg
used the Koopman operator to model the crowd dynamics on a city scale. He collected the measurement
data of the number of pedestrians across Melbourne as shown in Figure 2.4, which are influenced by
non-recurrent factors such as city layout, weather, and accidents by sensors. The Koopman operator is
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Figure 2.4 Overview of the sensor data and locations in the city map taken from [23]. Left: Schematic overview of
data selection of 11 sensors in four years. A single traffic state consists of the scalar measurements of all sensors
and describes the Melbourne pedestrian traffic state. Right: Map of Melbourne, Australia, with corresponding sensor
locations.

approximated using Extended Dynamic Mode Decomposition (EDMD) [8] with a dictionary composed of
two methods: Taken’s time-delay embedding and diffusion maps. It showed that the trained model pre-
dicts the crowd behavior quite well even though the data contains nonlinear behavior. He emphasized
the advantage of the Koopman operator by analyzing the eigenfunctions of the Koopman operator and
the diffusion maps to understand how the operator interpreted the crowd dynamics. It showed repeat-
ing patterns representing the intrinsic patterns of the geometrically dominant direction of the data-inferred
manifold [23].
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3 Parameterized Koopman operator models for
crowd dynamics

3.1 Background and objectives

Crowd simulation is one of the most commonly used methods for studying crowd dynamics since it pro-
vides the flexibility of the geometry and model parameters such as the number of pedestrians in the crowds
and walking speed. With the increasing computational ability and resources, crowd simulation has gained
popularity in this field. However, crowd simulation has significant drawbacks. Each simulation takes a long
time until it terminates. The time required grows even larger as the scenario becomes more complex and
on a larger scale. On top of that, the simulations have to be repeated as many times as the number of
combinations of the parameters. If a new parameter is added to a scenario, the number of simulations
increases exponentially. This makes the crowd simulation unpractical for scenarios with a variety of pa-
rameters. Crowd simulation has especially attracted attention in the field of city planning. The behavior of
the crowds is crucial to determining the geometry and structures of a city to make it without over-crowding
people or causing traffic jams. Hence, methodologies to simulate crowd behavior in a city-like geometry
are of great interest in this field. A city involves many parameters: the width of streets, the size of buildings,
the number of people on the streets, and the structures of the buildings. It requires simulations with the
combinations of these parameters to investigate each case. This process costs a lot of time, so using
crowd simulation in such a case is impractical.

Therefore, instead of using crowd simulations to investigate crowd dynamics, the Koopman operator
model is selected to model the behavior of the crowds in this thesis. In order to accommodate various con-
ditions and geometries that affect crowd dynamics, the Koopman operator is parameterized. The figure 3.1
shows the diagram, describing the parameterized Koopman operator. The parameterized Koopman oper-
ator should be able to model the fundamental dynamics of the crowd and provide accurate predictions of
the crowd’s behavior depending on parameters such as the width of a path and the number of pedestrians.

Figure 3.1 A diagram of a parameterized Koopman operator. The evolution of the state is based on a parameter p.
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Figure 3.2 Visualization of an example data matrix. The data matrix above is a sampled time-series data with three
feature values. Assuming that the value of feature 0 is dependent on a parameter, the parameter value is added to a
new column. The parameter value can be the width of a street and the number of population in a district. Hence, it is
a constant value over the time series. Therefore, the added parameter column contains a constant parameter value.

3.2 Methodology

In the first part, this section proposes the methodology for parameterizing the Koopman operator. Then,
the workflow is presented, from the preparation of the dataset to the prediction of future data.

3.2.1 Parameterization of Koopman operator

In this section, the method to parameterize the Koopman operator is presented. The basic idea is that the
parameter value becomes a new column of constant value, where the value is the parameter value, and
the column is added to the data matrix. Assume a data matrix X of a time-series data. The columns of
the data matrix represent the features. Suppose that a feature value is dependent on a parameter value.
The data matrix can include the parameter value as a new column in the data matrix. Figure 3.2 shows an
example of parameterization of the data matrix. The original data matrix is a time series of several feature
values. If the feature 0 depends on a parameter, the parameter value can be added as a new column, as
shown in the figure. A constant value is only for a time series, meaning that if there are multiple time series
in the data matrix, the column should contain multiple constants, one for each time series. This parameter
column provides the information of the parameter when the operator is approximated and enables the
model to provide predictions dependent on the parameter value. The modified data matrix can be handled
like the original data matrix. However, the output should only give the prediction of feature values because
the parameters are considered known and do not need to be predicted. Therefore, the parameter columns
are eliminated while reconstructing the predicted state values.
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3.2.2 Workflow

Figure 3.3 presents the research workflow. It consists of four steps: "data sampling," "data preprocessing,"
"EDMD framework," and "visualization," as described next.

1. Data sampling
First, the crowd behavior data is sampled using the simulation software Vadere. The simulation
scenario contains information such as the geometry, the number of pedestrians, walking speed,
sampling rate, and sampling method. Scenarios are created as many as the range of the parameter
values. The scenarios are then simulated on Vadere, and the target information is sampled at each
time step during the simulation.

2. Data preprocessing
Sampled data is preprocessed in this step. The sampled data contains uninterested parts, such as
waiting time. Therefore, those parts of the data are truncated. The data is then sorted and merged
into a large single data matrix.

3. EDMD framework
EDMD approximates the Koopman operator from the provided dataset. It fits the model using a
training dataset and tests the performance by predicting the test dataset with initial conditions. The
test dataset is reconstructed and compared with the original test dataset. EDMD returns the RRMSE
value as a score of the prediction.

4. Visualization
Reconstructed test data is compared visually with the original test data. The eigenfunctions of the
EDMD model are also visualized to understand how the EDMD model gives predictions by investi-
gating eigencomponents.

The following sections describe each step in detail.

3.3 Data Sampling

To obtain the crowd dynamics data, Vadere, an open-source software for crowd dynamics simulation [9],
is used to create an environment for crowd simulation and sample data. Vadere v3.0 is used in this thesis.
Vadere provides the framework for crowd simulation and other models, such as cars and granular flow.
Users can construct two-dimensional geometry in the graphical user interface, visualizing the simulation
results and offering data analysis tools. Figure 3.4 shows an example of a geometry created by Vadere.
The green rectangle on the left is the "source," which generates pedestrians represented by blue dots.
The pedestrians walk towards a target, displayed as an orange rectangle. The red area in the middle is
the measurement area, which counts the number of pedestrians at each time step. Geometry structure is
constructed with obstacles, represented by grey rectangles. The pedestrians cannot go over obstacles.

Four scenarios with different conditions and geometries are created:

• Scenario 1
A straight corridor with one gate with variable width between one source and one target. The number
of pedestrians generated in the source is constant. There is one measurement area covering the
source and the gate.

• Scenario 2
A corridor with three rooms, each room is equipped with one source and one gate with a fixed width
at the exit. The number of pedestrians is variable at each source. There are three measurement
areas. Each of them covers one whole room area and over a gate.
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Figure 3.3 A diagram of the workflow. It is composed of 4 parts: Data sampling, data preprocessing, EDMD frame-
work, and Visualization. In the data sampling, the simulation scenario is created and simulated using a simulation
software called Vadere to obtain data on crowd behavior under defined conditions. The data is preprocessed in the
next step and passed to the EDMD framework. EDMD fits the model based on the train data. Then, it reconstructs
test data with a given initial condition and computes the error with the measurement data. Finally, the reconstructed
data are visualized and compared. Additionally, the eigenfunctions are also visualized to analyze the significant edge
components of the EDMD model.

Figure 3.4 An example of a simulation scenario created using Vadere. The green rectangle is a pedestrian source,
and the orange rectangle is a target that pedestrians head toward. The red rectangle represents the measurement
area, counting pedestrians displayed as blue dots. Grey areas are objects that pedestrians cannot go through.
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Table 3.1 Table of configurations of four scenarios.

Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4

Finish time 60.0 100.0 100.0 100.0
Simulation time step length 1.0 1.0 1.0 1.0

Real-time simulation time ratio 0.1 0.1 0.1 1.0
Digits per coordinate 2 2 2 2

Use fixed speed True True True True
Model OSM OSM OSM OSM

Number of sources 1 3 3 6
Number of targets 1 1 1 1

Number of measurement areas 1 3 3 6
Number of gates 1 3 3 6

Width of the gates [1.1, 11.0] m 2.0 m [1.0, 4.0] m [1.0, 4.0] m
Event element count 50 [1, 50] [1, 50] [1, 50]

Constrains element max 50 50 50 50
Constrains time start 0.0 0.0 0.0 0.0
Constrains time end 0.0 0.0 0.0 0.0

Event position random True True True True
Event position free space True True True True

Distribution Constant Constant Constant Constant

• Scenario 3
A corridor with three rooms, each with one source and one variable gate at the exit. The number of
pedestrians is variable. There are three measurement areas. Each of them covers one whole room
area and over a gate.

• Scenario 4
A corridor connected to six rooms, three on the left and the others on the right. Each room con-
tains a pedestrian source, which generates a random number of pedestrians. Gates between the
corridor and rooms have a variable width. A measurement area overlaps each room and gate. Two
measurement areas at the same level also overlap each other.

These scenarios are created in the graphical user interface in Vadere and are outputted as JSON files. The
variation of the gate and the number of pedestrians are realized by modifying the JSON file using Python
codes. Vadere runs all scenarios and generates CSV files that store the number of pedestrians in each
measurement area at each time step. The Optimal Steps Model (OSM) is selected to model the behavior
of pedestrians, which takes an individual’s personal space into account when it updates the location of the
pedestrians. OSM uses a circle around pedestrians to determine the next step location. Each scenario
has one or more measurement areas that count the number of pedestrians in the area at each time step.
The following subsections describe the scenario settings in detail. Also, the table 3.1 summarizes the
configurations of the three scenarios.

3.3.1 Scenario 1: a simple corridor

This scenario consists of a corridor and a door in the middle. The pedestrian source is placed on the left
side of the door, and the target is placed on the other side. Generated pedestrians then walk through
the gate and reach the target. It counts the number of pedestrians in the measurement area that spans
the gate and surrounding region. The gate width w [m] is defined as w = x + 1 [m], x in [0, 10] [m],
where x is a variable. In this simulation, x takes the value at every 0.1 m, hence, 100 different values in
total. The number of pedestrians is 50 and fixed for all cases. Scenario 1 has a very simple geometry to
evaluate the effect of variable x. Figure 3.5 displays three simulation snapshots. The first picture is at the
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Table 3.2 Geometry information of scenario 1. x is a parameter of gate width w = x+ 1 [m]. The values in the table
are in [m].

X-coord Y-coord width height

Source 2.0 2.0 4.0 10.0
Target 25.0 6.0 2.0 2.0

Measurement area 0.5 0.5 16.5 13.0
Objects 15.0 7.5 + x

2 1.0 6.0 - x
2

15.0 0.5 1.0 6.0 + x
2

Table 3.3 Geometry information of scenario 2. The values in the table are in [m].

X-coord Y-coord width height

Sources 1.0 28.0 6.0 6.0
1.0 20.5 6.0 6.0
1.0 13.0 6.0 6.0

Target 16.5 1.0 8.5 3.5
Measurement areas 0.5 27.5 25.0 7.0

0.5 20.0 25.0 7.0
0.5 12.5 25.0 7.0

Objects 0.5 27.0 15.0 0.5
0.5 19.5 15.0 0.5
0.5 12.0 15.0 0.5
15.5 32.0 0.5 2.5
15.5 24.5 0.5 5.5
15.5 17.0 0.5 5.5
15.5 0.5 0.5 14.5
25.5 0.5 0.5 34.0

beginning of the simulation. The pedestrians locate the source and start walking towards the gate as they
keep their distance from each other. The second picture is when the pedestrians pass through the gate.
Some pedestrians get stuck around the gate due to its width. Therefore, the number of pedestrians who
stay before the gate depends on the gate’s width. The pedestrians reach the target in the last picture, and
the simulation terminates. Table 3.2 summarizes the detailed geometry structure.

3.3.2 Scenario 2: a corridor connected to three rooms

Scenario 2 has a more complicated geometry than scenario 1. Three sources are on the left side of the
geometry, and each source is placed in its room. Hence, there are three rooms in total. The rooms and
the corridor are connected via gates that are 2.0 m wide. The sources generate a random number of
pedestrians ranging n in [1, 50], walking towards the target at the end of the corridor. Therefore, different
groups of crowds get together in the corridor, which is supposed to create more complicated behavior in
the crowd. Measurement areas are placed over each room and gate. In this scenario, the gate width
is fixed, and the number of pedestrians is variable. Figure 3.6 shows the beginning of scenario 2 and
the middle of the simulation when the pedestrians pass through the gates. Measurement areas cover all
the rooms and the gates. Therefore, the initial value of the measurement is the number of pedestrians.
As the pedestrians exit from the rooms, the measured value starts declining in the top measurement
area. In the middle and the bottom measurement areas, the pedestrians from higher rooms flow in the
measurement areas. Therefore, the measured values either decrease or increase when the number of
incoming pedestrians exceeds that of the outgoing pedestrians. Table 3.3 describes the detailed geometry
information.
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Figure 3.5 Visualization of the geometry and pedestrian flow of scenario 1. Top: Pedestrians are generated from the
source. The number of pedestrians is 50. Middle: Pedestrians go through the gate. The width of the gate is within
the range of [1.0, 11.0], and it is different in each simulation. Bottom: Pedestrians reach the target.
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Figure 3.6 Visualization of the geometry and pedestrian flow of scenario 2. Left: Randomly generated pedestrians
at three pedestrian sources. The number of pedestrians ranges [1, 50]. Each simulation randomly determines the
number of pedestrians at each pedestrian source. Right: Pedestrians go through the gate and merge with other
groups of pedestrians in the corridor. The width of the gate is fixed, and it is 2.0 m.

3.3.3 Scenario 3: a corridor connected to three rooms with varying gates

Scenario 3 modifies scenario 2 partly, and it has both variable gate width and variable number of pedes-
trians. Its geometry is the same as scenario 2. Hence, three pedestrian sources generate pedestrians in
the range [1, 50]. The gates have the same width. Therefore, the number of variables is 4 in total. The
gate width varies in the range [1, 5]. Figure 3.7 shows the beginning and the middle of the scenario 3.
As observed in the simulations, the pedestrians get stuck at the gate when the width of the gate is small.
Therefore, the variable gate width adds slightly more complexity to the other scenarios.

3.3.4 Scenario 4: a corridor connected to six rooms

Scenario 4, displayed in figure 3.8, extends scenario 3 by creating three more rooms on the other side
of the corridor. The pedestrian sources have the same condition as scenario 3, randomly generating [1,
50] pedestrians in each source. However, the new sources in the rooms on the right are located 2.5 m
farther away from the gate than on the left. The pedestrians from the rooms on the right enter the corridor
later, creating delays compared to the other side, which provides further complexity in the dynamics. The
number of pedestrians is counted and measured in the red areas. In the corridor, the measurement areas
overlap at each level (top, middle, bottom). The gates are again variable, having the range of [1.0, 5.0] m,
and the six gates are the same width.

3.4 Dictionary setting

Dictionary choice is a key factor in successfully constructing the Koopman operator. A dictionary consists
of one or a composition of multiple observable functions gi. In this thesis, the dictionary is determined by
referring to preceding research from D. Lehmberg et al. [23], which used a composition of two observable
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Table 3.4 Geometry information of scenario 3. The values in the table are in [m].

X-coord Y-coord width height

Sources 1.0 28.0 6.0 6.0
1.0 20.5 6.0 6.0
1.0 13.0 6.0 6.0

Target 16.5 1.0 8.5 3.5
Measurement areas 0.5 27.5 25.0 7.0

0.5 20.0 25.0 7.0
0.5 12.5 25.0 7.0

Objects 0.5 27.0 15.0 0.5
0.5 19.5 15.0 0.5
0.5 12.0 15.0 0.5
15.5 32.0 + x

2 0.5 2.5 - x
2

15.5 24.5 + x
2 0.5 5.5 - x

15.5 17.0 + x
2 0.5 5.5 - x

15.5 0.5 0.5 14.5 - x
2

25.5 0.5 0.5 34.0

Figure 3.7 Visualization of the geometry and pedestrian flow of scenario 3. Left: Randomly generated pedestrians
at three pedestrian sources. The number of pedestrians ranges [1, 50]. Each simulation randomly determines the
number of pedestrians at each pedestrian source. Right: Pedestrians go through the gate and merge with other
groups of pedestrians in the corridor. The width of the gate is randomly determined within the range of [1.0, 5.0] m.
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Table 3.5 Geometry information of scenario 4. The values in the table are in [m].

X-coord Y-coord width height

Sources 1.0 28.0 6.0 6.0
1.0 20.5 6.0 6.0
1.0 13.0 6.0 6.0
37.0 28.0 6.0 6.0
37.0 20.5 6.0 6.0
37.0 13.0 6.0 6.0

Target 16.5 1.0 8.5 3.5
Measurement areas 0.5 27.5 25.0 7.0

0.5 20.0 25.0 7.0
0.5 12.5 25.0 7.0
16.0 27.5 27.5 7.0
16.0 20.0 27.5 7.0
16.0 12.5 27.5 7.0

Objects 0.5 27.0 15.0 0.5
0.5 19.5 15.0 0.5
0.5 12.0 15.0 0.5
15.5 32.0 + x

2 0.5 2.5 - x
2

15.5 24.5 + x
2 0.5 5.5 - x

15.5 17.0 + x
2 0.5 5.5 - x

15.5 0.5 0.5 14.5 - x
2

0.5 27.0 17.5 0.5
0.5 19.5 17.5 0.5
0.5 12.0 17.5 0.5
25.5 32.0 + x

2 0.5 2.5 - x
2

25.5 24.5 + x
2 0.5 5.5 - x

25.5 17.0 + x
2 0.5 5.5 - x

25.5 0.5 0.5 14.5 - x
2



25

Figure 3.8 Visualization of the geometry and pedestrian flow of scenario 4. Top: Randomly generated pedestrians
at six pedestrian sources. Three sources are located on the left and right sides of the central passage. The number
of pedestrians ranges [1, 50]. Each simulation randomly determines the number of pedestrians at each pedestrian
source. The right sources are placed 2.5 m further away from the gates. This is due to a delay in entering the
passage from the right rooms. Bottom: Pedestrians go through the gate and merge with other groups of pedestrians
in the corridor. The width of the gate is randomly determined within the range of [1.0, 5.0] m.
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Figure 3.9 Taken’s time-delay embedding of a sine curve x = sin(t). The embedding adds a delayed time series as
a new coordinate of the system, which extends the spatial dimension.

functions: Taken’s time-delay embedding g1 and Diffusion maps g2. The dictionary g is a composition of g1
and g2, g = g2 ◦ g1. Dictionary transforms the state space variables x into observable functions z = g(xt),
then Koopman operator K updates the observable functions of state space by g(xt+1) = Kz = Kg(xt).
A dictionary can be written in the form of vector values

gi = ϕi(x) = [ϕi1(x), ϕi2(x). . . ]. (3.1)

Then, ϕi must belong to a observable space under which ϕi(xt) is K-invariant for all t. This ensures
that the Koopman operator comprehensively describes the flow of the state evolution. The dictionary
components, Taken’s time-delay embedding and diffusion maps, are introduced in the following subsection.

3.4.1 Taken’s time-delay embedding

Takens’ time-delay embedding is a method for embedding a time-series into a higher dimensional space.
It reconstructs the dynamics of a system from a sequence of observations, preserving the properties of the
system that do not change under smooth coordinate changes. The basic idea is to use a delay coordinate
map, which concatenates previous outputs of a dynamical system into a vector. This vector forms a new
space known as the embedding space. Therefore, Each point of the embedded space corresponds to
observations at different times of the time series.

Suppose X is a vector of time-series data and x1, x2, . . . xn represents the state of different times. Then
the Takens time-delay embedding constructs a new vector X ′ of higher dimension k by taking k states
of different time as new space X ′

1 = [x1, x2, . . . , xk], and X ′ evolves to X ′
2 = [x2, x3, . . . , xk+1], X ′

3 =
[x3, x4, . . . , xk+2], . . . , X ′

n−k = [xn−k, xn−k+1, . . . , xn]. The reason for including time-delay embedding is
that measured states are often not dynamically closed (or Markovian). For example, if only the current
pedestrian measurements are available, the information about how the number of pedestrians changes is
missing. Time-delay embedding enriches a state with temporal context. If sufficiently many prior states are
included, the time delay embedding introduces a new geometry on the data that reconstructs the system’s
qualitatively equivalent state space, on which the dynamics are well-defined. Figure 3.9 shows an example
of the time-delay embedding of a time series data. A sine curve x = sin(t+ π△t

2 ) is extended in the spatial
dimension by adding new coordinates using five delay coordinates; each coordinate has a different number
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of time delays. As the figure shows, the time-delay embedding concatenates lags of the sine curve and
reconstructs dynamics, which have observations at different times in spatial directions.

3.4.2 Diffusion maps

Diffusion maps are a machine learning method for dimensionality reduction or identifying geometric struc-
tures. This method is beneficial for analyzing non-linear structures in high-dimensional data. Coifman first
introduces it [24]. It computes a family of embeddings of a dataset into Euclidean space whose coordinates
can be computed from the eigenvectors and eigenvalues of a diffusion operator on the data.

The algorithm is based on the concept of a random walk on a graph. Each data point is represented
as a node in the graph, and the edges between nodes represent the probability of transitioning from one
data point to another in a single step of the random walk. This probability is determined by the similarity
between data points, typically measured using a kernel function. It first computes the distance matrix of
the given data matrix X by

D(xi, xj) = ||xi − xj || (3.2)

where xi, xj are pairs of all points. A distance matrix is a square matrix whose element represents the
distance of a pair of points. A distance matrix provides the data’s geometry information. Then, this distance
matrix is transformed into an affinity matrix

A(xi, xj) = exp(−D(xi, xj)2

σ
), (3.3)

where σ is a scaling parameter that determines the width of the Gaussian. In this definition, a Gaussian
kernel is used. It returns a value between 0 and 1, where 1 indicates that the two points are identical,
and 0 indicates that they are infinitely far apart. An affinity matrix represents the affinity or similarity of
each pair of data points. An affinity matrix becomes the basis of the diffusion process. Then, take the row
normalized affinities, which is equal to degree inverse times the affinity matrix, and get the row stochastic
diffusion operator

P (xi, xj) = A(xi, xj)∑
j A(xi, xj)

= D−1A,

(3.4)

which is a Markov chain. The diffusion map is the right eigenvectors weighted by the corresponding
eigenvalues. It creates new coordinates of n-dimension for n-data points. Since the eigenvalues are one
or less than one, the magnitudes of eigenvalues are the significance of the corresponding eigenvectors.
Hence, the first several eigenvectors with the greatest eigenvalues construct new reduced-dimensional
coordinates. Figure 3.10 visualize an example of diffusion maps. The left figure is a three-dimensional
helix data, which consists of 1000 data points, and x = r sin θ, y = r cos θ, z = r, where r = [−2, 2], θ =
[−4π, 4π]. The figure on the right maps the data in two new coordinates created from diffusion maps. It
is observed that the diffusion maps extract the geometrical feature of the helix data while preserving the
relationships of each pair of data points.

One of the critical advantages of diffusion maps is that they preserve the data’s local and global geomet-
ric structure. This makes them particularly useful for dimensionality reduction methods such as manifold
learning, where the goal is to uncover the underlying low-dimensional structure of the data. Additionally,
diffusion maps are robust to noise since the random walk tends to smooth the local fluctuations.

3.5 Datafold Framework

In this thesis, the time-series data from crowd dynamics simulation is given as the input to the EDMD, a
data-driven Koopman operator approximation method. EDMD is chosen for applicability to linear dynamics
and flexibility of dictionary setting, which resulted in high accuracy in preceding research [23]. EDMD can
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Figure 3.10 Diffusion maps of three-dimensional helix data. x = r sin θ, y = r cos θ, z = r, where r = [−2, 2], θ =
[−4π, 4π]. New coordinates from diffusion maps capture the main modes of variation in the data.

also provide the Koopman eigenfunctions, eigenvalues, and modes that are useful for analyzing dynamics
vector by vector. A package called datafold is used to build the EDMD model.

Datafold is a Python package that provides a framework to construct operator-theoretic models to identify
dynamical systems from time series data and infer geometrical structures from point clouds. It is open-
source software and was introduced in the publication from Lehmberg et at. [25]. Datafold has three
layers of workflow hierarchies that enable a high degree of modularity. In this project, the dataset is
transformed to TSCDataFrame, a data frame for time series collections, and the EDMD is constructed
using datafold.appfold package.

3.5.1 Parameter setting

EDMD requires several parameters in its process, and those parameters mainly appear in the dictionaries.
In this work, the dictionary is a composition of Taken’s time-delay embedding and diffusion map, and both
algorithms have parameters to be configured. Some model parameters are determined based on the
theory and dataset, and others are obtained from grid search.

Taken’s embedding requires the number of delays as a parameter, the lag before embedding starts,
and the frequency at which the samples are embedded. In this thesis, the model is assumed to perform
prediction of the crowd dynamics from a given few data points as an initial condition, at most four data
points. Therefore, the number of time delays must be small as well to be able to apply the embedding
to the provided initial data. The number of time delays is investigated by grid search, and the outcome
is shown in figure 3.11. It compares the accuracies of the predictions using Root Mean Square Error
(RMSPE) with different numbers of time delays. 1, 2, 3, and 4 time delays are compared. Scenario 1 has
a minimum RMSPE value at the time delay 1, and increasing delays do not improve the model accuracy.
In scenarios 2 and 3, no overall linear correlations exist between the number of time delays and RMSPE
values. However, a smaller time delay maximizes the model’s ability. In scenario 4, a growing number
of time delays degrades the model’s prediction accuracies in areas 1 and 4, the top measurement areas.
However, areas 3 and 6, the bottom measurement areas, have the opposite tendency, that their RMSPE
is improved. Areas 2 and 5 seem to be independent of the number of time delays. A drawback of adding
more time delays is that it enlarges the size of the data matrix, requiring more computational cost in the
later steps. It could be a crucial issue, especially if the computational resource is limited. Therefore, one
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Figure 3.11 Comparisons of Root Mean Square Percentage Errors (RMSPE) with different numbers of time delays
for each scenario. The numbers of time delays vary from 1 to 4, incrementing by 1. RMSPEs are calculated for each
measurement area, showing the accuracies of the predictions.

time delay is chosen for scenario 4 as well. The sampled data does not require lag for the time delays,
meaning that the delayed coordinates start from time 0. Also, the embedding frequency is set to 1, which
samples every data point from the head of the data matrix. Additionally, there is a parameter k >= 0,
which is a weight of exponential factor in delayed coordinates e−dk(x−d) where d = 0, . . . , delays is the
delay index. Results from grid search showed that any positive k value k > 0 results in a larger MSE.
Hence, k = 0 is selected.

Diffusion maps need to define the connectivity based on a chosen kernel. In this thesis, the Gaussian
kernel is used, which is a function of the following form:

K(x, y) = exp(−||x− y||2

2σ ), (3.5)

where σ is a bandwidth and σ = median(||yj − yi||22). Internally, It calculates the norms of every point
to get the distance matrix. Hence, the Gaussian kernel measures how close every two points are in the
space and assigns a higher weight to nearby points. Diffusion maps also require the number of eigenpairs
to compute from the kernel matrix. This number is decided by a grid search, where the range of the grid
spans [10, 100]. Figure 3.12 compares prediction results with different numbers of eigenpairs. It evaluates
the prediction accuracies with Root Mean Square Percentage Error (RMSPE) for each measurement area.
In this thesis, the number of eigenpairs is determined as the number from which the model’s prediction
ability does not improve significantly by adding more eigenpairs. In the figures, once a plateau appears
in the graph, the number at the beginning is the optimal number of eigenpairs. By doing so, the model
minimizes computational cost while maintaining an acceptable prediction accuracy. The change of RMSPE
becomes flat at 70 eigenpairs in scenario 1. Hence, the number is set to 70 in scenario 1. In scenario 2,
RMSPE at areas 2 and 3 reaches a plateau at 60 eigenpairs, while the value in area 3 becomes flat at 70
eigenpairs. 70 is chosen for the number of eigenpairs in scenario 2 so that the model performs sufficiently
well in every measurement area. In scenario 3, the value in area 2 continuously decreases as the number
of eigenpairs grows; therefore, the number is determined by considering the other two areas, which gives
70 eigenpairs as the most suitable number. Scenario 4 shows two plateaus, from 40 to 70 and 70 to 100
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Figure 3.12 Comparisons of Root Mean Square Percentage Errors (RMSPE) with different numbers of diffusion
maps eigenpairs for each scenario. The numbers of eigenpairs vary from 10 to 100, incrementing by 10. RMSPEs
are calculated for each measurement area, showing the accuracies of the predictions.

eigenpairs. Considering the previous scenarios, more eigenpairs are thought to be required to represent
higher dimensional space. Hence, 80 eigenpairs are obtained to construct a model in scenario 4.

Table 3.6 describes the detailed parameter settings for all scenarios.

3.5.2 Dataset description

Datafold offers a specific data structure, TSCDataFrame, for the time-series data. It is a multi-indexed data
frame based on the Pandas DataFrame class. The row index must have two levels: ID and time

• ID
The time series ID. In this project, the ID number corresponds to the simulation number. Therefore,
there are as many IDs as the number of simulations in each scenario.

• time
Time values of the time series data.

Therefore, the simulation data are concatenated into a single large data matrix, and each time-series data
is labeled by adding an ID number. The detailed data description in each scenario is described in the
following sections.

Scenario 1: a simple corridor

A simulation of Scenario 1 outputs data consisting of time and the number of pedestrians counted in one
measurement area at each time for 60-time steps. This creates 60 rows and two columns of the data
matrix. A new column is added to include the gate width as a parameter in the time series. The column
has a constant value x in the range [0, 10] corresponding to the gate width. The variable x starts from
0.1 and increases by 0.1 in each simulation. Therefore, the number of simulations is 100. The training
dataset consists of 80 results randomly selected from the 100 results. The remaining results are used as
a test dataset. Therefore, there is no duplicated data in training and test datasets. Some parts of the time
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Table 3.6 Table of parameters for EDMD setup.

Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4

Time series length 39 34 34 34
Number of pedestrians 50 [1, 50] [1, 50] [1, 50]

Gate width [1.0, 11.0] 2.0 [1.0, 5.0] [1.0, 5.0]
DMD model DMDFull DMDFull DMDFull DMDFull

Include ID state False False False False
Dict preserves ID state infer infer infer infer

Stepwise transform False False False False
Sort Koopman triplets True True True True
Use transform inverse False False False False

Time-delays 1 1 1 1
lag 0 0 0 0

frequency 1 1 1 1
kappa 0 0 0 0

dmap kernel Gaussian Gaussian Gaussian Gaussian
num eigenpairs 70 70 70 80

alpha 1 1 1 1
time exponent 0 0 0 0
is stochastic True True True True

symmetrize kernel True True True True

series contain no meaningful data on dynamics. Therefore, the beginning and ending of the time series
are eliminated, and every time series is truncated to 39 time steps. Figure 3.13 shows all the results of
simulations in scenario 1. As the variable x grows, the number of pedestrians counted in the measurement
area converges to 0 earlier. This is due to the decrease in the number of pedestrians stuck at the gate
as the gate becomes wider. Furthermore, it is observed that after x reaches around 5, the results almost
stay the same even though the width of the gate grows. This is because, after a certain width of the gate,
pedestrians can pass through the gate without getting stuck around the gate. Therefore, the results with
larger gate widths show the same data trend.

Scenario 2: a corridor connected to three rooms

A simulation of scenario 2 has 100 time steps. Three measurement areas create three columns of mea-
sured pedestrian numbers. Also, the initial numbers of pedestrians at each source are the parameters.
Hence, the time series data appends three additional columns representing the parameter values. There-
fore, the data matrix consists of 7 columns: time steps, three measurement data, and three parameters.
The scenario is repeatedly simulated with different parameter values 1000 times to obtain 1000 samples.
Some parts of the time series are truncated to keep only the meaningful data, leaving 34 time steps in
each time series. All simulation results are concatenated and become one data matrix. Repeating the
same procedure, two data matrices of this shape are obtained. One is assigned as a training dataset, and
the other is assigned as a test dataset. Hence, the training and test datasets are different data from the
same scenario with randomly generated parameters. Four samples of data are visualized in figure 3.14.
The three lines represent the measured number of pedestrians in each measurement area. Area 1 is the
measurement area over the top room, area 2 is located in the middle, and area 3 is over the bottom room.
The number of pedestrians measured in area 1 decreases monotonically over time. Meanwhile, the other
two values show complicated behavior. The values in area 2 decrease in most time steps; however, some-
times they go up as the pedestrians from the top room flow in area 2. In the same way, area 3 measured
many pedestrians who came into the area in the middle of the simulations. It is observable that the values
of area 2 and area 3 depend on the change of values in area 1 and area 2. Figure 3.15 displays the
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Figure 3.13 Visualization of the simulation results from scenario 1. The y-axis shows the number of pedestrians,
and the x-axis shows the time steps. The number on the left of each figure represents the id of the simulation. Id 1
has a gate width of 1.1, and as the number of the id increases by 1, the gate width also gets larger by 0.1. Hence,
the simulation with id 100 has a gate width of 11.0.

transition of the measured values over time in 3D coordinates. Each axis represents a measured value in
an area: area 1 at the top of the geometry, area 2 in the middle, and area 3 at the bottom. The elapsed
time is visualized by color: blue represents the beginning of a simulation, while red represents the end.
The initial conditions are fixed: The number of pedestrians generated at the sources in areas 1 and 2 is
fixed at 30. Area 3 has a variable initial number, ranging between 5 to 50, and equally distanced by 5.

The Visualization describes how the state evolves. Area 1 converges to 0 first. Then, the other values
also go towards the value 0. The number counted in Area 3 increases when the initial number is small.
However, it is not observed when the initial number is large. This is because the number of incoming
pedestrians surpasses the number of leaving pedestrians when the initial number in area 3 is small. It is
observed that the values are dependent on higher area values, and the values smoothly transition over
time.

Scenario 3: a corridor connected to three rooms with varying gates

The data matrix structure in scenario 3 is similar to the one in scenario 2. Scenario 3 also has 100
time steps in each simulation. However, the data matrix of scenario 3 has another parameter column that
represents the gate’s width. Hence, the data matrix has eight columns. Scenario 3 is simulated 1000 times
with different parameters for both the training and test datasets. Unnecessary parts of the time series are
truncated, yielding a time series with 34 time steps. Figure 3.16 shows four samples of scenario 3. The
overall trend of the values is similar to those of scenario 2. However, the new parameter, the width of the
gate, changes the decreasing rate of the number of pedestrians.

Figure 3.17 describes the evolution of the data, starting from the initial value to the termination of simu-
lations, with different lines representing different gate widths. All the data have the same initial number of
pedestrians, 50, at the sources. The width of the gate is modified by adding 0.4 m for each line, starting
from 1.0 m up to 5.0 m, yielding ten lines in total. The color on the lines displays the elapsed time. The
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Figure 3.14 Visualization of the simulation results from scenario 2. The y-axis shows the number of pedestrians,
and the x-axis shows the time steps. Three lines display the number of pedestrians at each measurement area.
The initial number of pedestrians in each source is shown above each figure, where N1, N2, and N3 represent the
pedestrian numbers at the top, middle, and bottom sources, respectively.
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Figure 3.15 Visualization of several data in 3d space, where each axis represents the number of pedestrians counted
in each measurement area. Area 1 is located on the top of the region, area 2 in the middle, and area 3 in the bottom.
The number of pedestrians generated in each source is fixed: Area 1 and area 2 generate 30 pedestrians in each
source, and area 3 generates 5 to 50 pedestrians, equally distanced by 5. The color on the lines shows the elapsed
time.
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Figure 3.16 Visualization of the simulation results from scenario 2. The y-axis shows the number of pedestrians,
and the x-axis shows the time steps. Three lines display the number of pedestrians at each measurement area.
The initial number of pedestrians in each source is shown above each figure, where N1, N2, and N3 represent the
pedestrian numbers at the top, middle, and bottom sources, respectively. W represents the gate width.



36

Figure 3.17 Visualization of several data in 3d space, where each axis represents the number of pedestrians counted
in each measurement area. Area 1 is located at the top of the region, area 2 is in the middle, and area 3 is at the
bottom. The number of pedestrians generated in each source is fixed to 50, and the width of the gate is only variable.
The gate width spans 1.0 m to 5.0 m, increasing by 0.4 m for each sample. The color on the lines shows the elapsed
time.

color shows that the difference in the gate width creates the gradation of the color: The length of each
color segment is shorter for the line width narrow gate width.

Scenario 4: a corridor connected to six rooms

1000 simulations for the training dataset and another 1000 for the test dataset are carried out for scenario 4.
The same procedures as the other scenarios are applied to preprocess the data matrices. The simulations
have randomly generated different parameter values: the initial number of pedestrians at each source and
the width of all gates. Each room has one measurement area. Hence, there are six measured values:
area 1 is located on the top left, area 2 is in the middle left, area 3 is in the bottom left, and area 4, and
area 5 and area 6 are on the right side in the same order. Therefore, the pedestrians observed in area
1 and area 4 go through area 2, area 5, area 3, and area 6 after they leave the higher measurement
areas. This movement of pedestrians from one area to another creates one or several peaks in lower
measurement areas. 3.18 shows the observed crowd data from four simulations. This Visualization of
the results describes different peaks in the measurement. Areas 1 and 4 have peaks at the beginning of
the data since the crowds only leave the areas. Hence, the graphs show a monotonous decrease in the
numbers. Meanwhile, the peaks are observed after several steps in area 2, area 5, area 3, and area 6. This
is due to the incoming pedestrians from higher areas. Area 2 and area 5 have different phases from area
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Figure 3.18 Visualization of the simulation results from scenario 2. The y-axis shows the number of pedestrians,
and the x-axis shows the time steps. Three lines display the number of pedestrians at each measurement area.
The initial number of pedestrians in each source is shown above each figure, where N1, N2, and N3 represent the
pedestrian numbers at the top, middle, and bottom sources, respectively. W represents the gate width.

3 and area 6 as a result. These four values from areas 2, 3, 5, and 6 are characterized by parabolic shape
and small fluctuations due to incoming and outgoing pedestrians, creating more dynamics complexity.

3.6 Crowd dynamics prediction

3.6.1 Scenario 1: a simple corridor

Training dataset Xtrain is mapped to the dictionary representation in the training process. At first, Taken’s
time-delay embedding expands the spatial dimension using one delayed coordinate. Due to the embed-
ding, the length of the matrix is shortened by one time step. Then, the data matrix proceeds to the diffusion
map procedure, which computes the 70 eigenvectors of significant eigenvalues from the Gaussian kernel
of the data matrix’s diffusion operator. This process yields a data matrix with 70 columns. Each column
is a new coordinate created using diffusion maps. Different samples are assigned different IDs, so the
training treats each sample as a different time series. Xtrain is then passed to a method that approxi-
mates the Koopman operator by solving a least square problem, and also, the Koopman mode, which is
the inverse map from dictionary states to the original states, is set up. After the model fits the given training
data matrix, the model performance is tested with test data Xtest. Xtest is also transformed to the dictio-
nary representation by the sequence of time-delay embedding and diffusion map. Hence, the Koopman
eigenfunction, which maps the original state to the dictionary state, is computed for the test data matrix.
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Table 3.7 Performance evaluation of the model in scenario 1. From the top, Mean Absolute Error (MAE), Mean Ab-
solute Percentage Error (MAPE), Root Mean Square Error (RMSE), Root Mean Square Percentage Error (RMSPE),
R2.

Measurement area Area 1

MAE 0.65
MAPE 1.40 %
RMSE 1.22

RMSPE 2.65 %
MBE 0.07

MBPE 0.16 %
R2 0.99

Table 3.8 Performance evaluation of the model in scenario 2. From the top, Mean Absolute Error (MAE), Mean Ab-
solute Percentage Error (MAPE), Root Mean Square Error (RMSE), Root Mean Square Percentage Error (RMSPE),
R square.

Measurement area Area 1 Area 2 Area 3

MAE 0.66 1.19 1.64
MAPE 2.20 % 3.12 % 4.00 %
RMSE 0.93 1.59 2.13

RMSPE 3.10 % 4.19 % 5.20 %
MBE -0.01 0.01 0.05

MBPE -0.03 % 0.02 % 0.13 %
R2 0.99 0.99 0.99

The Koopman operator reconstructs the test data matrix from the initial condition. In this test, the initial
condition is the first row of the Xtest in dictionary representation.

The reconstructed test data is compared with the original test data from the simulations in figure 3.19.
The two values overlap most of the time except for noisy regions. The result shows that the model accu-
rately predicts the test data with a relative root mean squared error of 2.65 %. The high R2 value proves
that it captures the primal trend of the data. Also, it is observed that there is no phase shift between the
prediction and true values.

3.6.2 Scenario 2: a corridor connected to three rooms

The training of the Koopman operator for scenario 2 is similar to that of scenario 1. The number of time
delays is set to 1, which creates six new coordinates: 3 coordinates for the measurement data at t = 1
and the others for the number of initial pedestrian numbers, which are constant parameter values. The
number of diffusion map eigenpairs stays the same as in scenario 1, which yields 70 new coordinates from
the eigenvectors of the diffusion operator.

Figure 3.20 compares the predicted and the original values. It is observed that for all three measurement
data, the predictions capture the dynamics with low errors. Measurement at the bottom area shows a
larger up and down of the number of pedestrians over time, but the prediction follows such nonlinear
behavior quite well. Relative root mean squared error shows that all three predictions have a 3 to 5 %
error, which is a maximum three pedestrians difference, meaning it is not a significant error. It also shows
that predicting values at the bottom measurement area yields a more significant error than the other two.
This is because the bottom area involves the most significant complexity of the crowd dynamics due to
the incoming pedestrians from the above two areas. R2 scores show that all three predictions are highly
accurate.



39

Figure 3.19 Comparison of the measured pedestrian number and prediction in scenario 1. 10 test samples are
visualized. Blue lines show the measured values, while the orange lines represent predictions.

3.6.3 Scenario 3: a corridor connected to three rooms with varying gates

The training process of the Koopman operator for scenario 3 is based on the process used in scenario 2.
The same parameters for the EDMD are used. Therefore, the number of delays is again 1, which creates
seven new columns in this case, as scenario 3 has the width of the gate as an additional parameter.
Figure 3.21 shows the prediction results for several cases and the corresponding original values. The
results show that gate width is also well parameterized since the gate width does not affect the prediction
accuracy compared to the results from scenario 2. Relative root mean square error is also nearly the same
as that of scenario 2, which implies that the variable gate width does not degrade the prediction quality in
this model.

Table 3.9 Performance evaluation of the model in scenario 3. From the top, Mean Absolute Error (MAE), Mean Ab-
solute Percentage Error (MAPE), Root Mean Square Error (RMSE), Root Mean Square Percentage Error (RMSPE),
R square.

Measurement area Area 1 Area 2 Area 3

MAE 0.75 1.30 1.66
MAPE 2.49 % 3.53 % 4.14 %
RMSE 1.12 1.76 2.16

RMSPE 3.74 % 4.75 % 5.39 %
MBE 0.07 -0.01 0.04

MBPE 0.24 % -0.04 % 0.10 %
R2 0.99 0.99 0.99
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Figure 3.20 Comparison of the measured pedestrian number and prediction in scenario 2. The first row is the
values measured in area 1, located on the top of the geometry. The second and third rows are area 2 and area 3,
respectively. Area 2 is in the middle of the corridor, and area 3 is the nearest measurement area to the target. N1,
N2, N3 represent the initial number of pedestrians in each pedestrian source. The respective prediction values are
displayed in the same figures.
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Figure 3.21 Comparison of the measured pedestrian number and prediction in scenario 3. Likewise, in scenario 2,
each row represents a measurement area: area 1 in the first row, area 2 in the second, and area 3 in the third. Also,
the initial number of pedestrians at each source is represented as N1, N2, and N3, respectively.
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Table 3.10 Performance evaluation of the model in scenario 4. From the top, Mean Absolute Error (MAE), Mean Ab-
solute Percentage Error (MAPE), Root Mean Square Error (RMSE), Root Mean Square Percentage Error (RMSPE),
R square.

Measurement area Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

MAE 1.50 2.25 2.80 1.56 2.39 2.84
MAPE 4.30 % 4.90 % 5.49 % 4.09 % 4.78 % 5.27 %
RMSE 2.12 2.94 3.61 2.12 3.13 3.67

RMSPE 6.05 % 6.40 % 7.07 % 5.58 % 6.26 % 6.80 %
MBE 0.00 0.01 -0.03 -0.02 0.04 0.03

MBPE 0.00 % 0.02 % -0.06 % -0.05 % 0.08 % 0.06 %
R2 0.98 0.98 0.99 0.98 0.98 0.99

3.6.4 Scenario 4: a corridor connected to six rooms

The time delay is set to the same number of delays, 1, as the other scenarios. Therefore, the time-
delay embedding creates 14 columns of the data matrix. The number of diffusion maps eigenfunctions
is set to 80, representing the state space with 80 eigenfunctions. 1000 simulation data are given as a
training dataset, and the same number of simulation data, 1000 data, are also sampled with different
parameter values for the test. EDMD model is trained on the training dataset, and the Koopman operator
is approximated. The model is then given the first two steps as the initial condition due to the one time
delay. The operator updates the value in the space created on the Koopman eigenfunctions up to the 34th
time step. Then, it reconstructs the original state space to obtain the predicted test data.

The predicted test values are compared with the measured test values from the simulation. Figure 3.22
compares three test cases. Each row represents one measurement area. The parameter values of each
test case are displayed at the top of each column. It reveals that the predicted values overlap the actual
values overall. It ignores small fluctuations of the values and returns smooth lines, which will approximate
the actual behavior of the dynamics. It means that the model is robust to the noise in the data. The
dynamics are different in each layer of the measurement area. However, the Koopman operator captures
the phase difference well. It results in 6-7 % of RRMSE, meaning that the predictions produce an error
of 2-3 pedestrians count on average, which is relatively small considering that the maximum number of
pedestrians at one source is 50.

3.7 Model analysis

One of the critical features of the Koopman operator is its building block-like structure of eigenfunctions
and corresponding eigenvalues. The Koopman eigenfunctions are vector values that lift the state space
into the observable function basis, and the eigenvectors update the state in the observable function basis.
Therefore, the eigenfunctions reveal how the Koopman operator maps the state space into the observables
and describes it in a linear system.

In this section, the eigenfunctions are investigated to analyze the model. Diffusion maps are selected as
a dictionary component in this thesis. Hence, the eigenfunctions from the diffusion maps are also explored.
The eigenfunctions are visualized using heatmaps, which show the values along time on the x-axis and
parameters on the y-axis.

3.7.1 One Parameter Scenario

Figure 3.23 visualizes two eigenfunctions of the model in scenario 1: the eigenfunctions of the diffusion
maps on the top of the figure and the Koopman eigenfunctions on the bottom. The color in the figure
shows the magnitude of the values. The Y-axis is the simulations’ ID number, representing the parameter
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Figure 3.22 Three comparisons of the measured pedestrian numbers and predicted numbers in scenario 4. Each
row represents a measurement area: area 1 in the first row, area 2 in the second, area 3 in the third, area 4 in
the fourth, area 5 in the fifth, and area 6 in the last row. Also, the initial number of pedestrians at each source is
represented as N1, N2, N3, N4, N5, and N6 respectively. The width of the gate is represented by parameter W.
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values. Small IDs represent narrower gate widths, and the gate width becomes wider as the number of
IDs grows. When ID is 0, the width of the gate is 1.0 m, and when 100, the gate width is 11.0 m.

Diffusion maps arrange the eigenfunctions by the order of the corresponding eigenvalues. Hence, the
first eigenfunctions remain for the long term since the eigenvalues are close to 1, and the latter eigenfunc-
tions shrink as time passes by, leaving tiny influences in the long term. Therefore, the first 20 eigenfunc-
tions are displayed in the figure to observe the dominant components. The first eigenfunction is a constant
containing no meaningful information about the model. From the second eigenfunction, it is observable
that there is a pattern that appears in almost all eigenfunctions. Along the x-axis, there is a point where the
value suddenly changes. The point depends on the ID; as the ID grows, the point appears earlier. It draws
a form like a logarithmic function in the heatmaps. This pattern corresponds to the trend in data seen in
figure 3.13, where small ID simulations show a slow transition of the values, while the larger parameters
lead to faster convergence. This reveals that the diffusion maps’ eigenfunctions capture a data trend. Fur-
thermore, the eigenfunctions show that these forms have different frequencies. Eigenfunctions ϕ2 and ϕ3
have only one point where the value changes. Meanwhile, The values change twice in ϕ4 and ϕ5. The
number of points increases further in the latter eigenfunctions. The difference in the number of points
represents the frequency of the feature that the eigenfunction describes. The first few eigenfunctions have
small frequencies, describing a long-term trend of the data. Meanwhile, the latter eigenfunctions contain
higher frequencies, meaning that those eigenfunctions represent small fluctuations in the data, such as
noises. Moreover, there is a point where the value transitions in the vertical direction in some eigenfunc-
tions, such as ϕ7, ϕ8, ϕ10. This transition describes another characteristic in the data. The data does
not change depending on the width after a certain width, around width = 6.0 m. The vertical transition
represents where the data becomes independent of the width.

Several Koopman eigenfunctions are selected and displayed at the bottom of the figure. The first row
visualizes the real values of the eigenfunctions, and the imaginary values are shown in the second row.
Complex conjugates are placed next to each other. Similarly to diffusion maps, eigenfunctions capture
the data’s intrinsic behaviors. The first two eigenfunctions represent when the values start decreasing in
the data. The latter eigenfunctions correspond to the diffusion maps; they describe the repeating patterns
in the horizontal direction. Also, different frequencies are visible in ϕ30, ϕ31, ϕ47, ϕ48. The similarity be-
tween the diffusion maps eigenfunctions and the Koopman eigenfunctions is because the derivation of the
Koopman eigenfunctions is based on the dictionary as equation 2.27 states.

3.7.2 Multiple Parameters Scenarios

Scenarios 2, 3 and 4 have multiple parameters that affect the dynamics. In order to visualize the eigen-
functions, only one parameter changes, and the other parameters are fixed specific values. Scenario 2
has three dimensions of freedom: the number of generated pedestrians. The parameters for areas 1 and
2 are fixed to 30, and the parameter for area 3 remains variable. ID number corresponds to the number of
pedestrians in area 3. For example, if ID is 5, the initial number of pedestrians in area 3 is 5. This way, the
variation is limited to one axis, and thereby, the influence of one parameter is observable.

Figure 3.24 shows the eigenfunctions of diffusion maps and eigenfunctions of the approximated Koop-
man operator. 18 eigenfunctions of diffusion maps are selected and visualized in the top figure. In eigen-
functions ϕ7, ϕ22, ϕ26, ϕ31, there are points where the pattern changes in the vertical direction, around ID
20 to 30. The relationship between incoming and outgoing pedestrians causes this. The number of incom-
ing pedestrians surpasses that of outgoing from area 3 for IDs smaller than 30. However, the inequality
is reversed for IDs larger than 30. This creates the transition from behaviors with ups and downs to a
monotonic decrease of the number measured in area 3. The eigenfunctions capture this transition as the
patterns change along the ID number. Additionally, some eigenfunctions, such as eigenfunctions ϕ5, ϕ18,
represent the overall behaviour of the data in the horizontal direction, starting from an initial number, de-
creasing, and converging to 0. Eigenfunctions also tend to be noisy compared to scenario 1 due to the
increased uncertainty created by multiple pedestrian sources.

The Koopman eigenfunctions also describe the same trend, the transition in the vertical direction. It is
represented in the eigenfunctions ϕ18, ϕ47, ϕ48, ϕ54, ϕ55, ϕ56.
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Figure 3.23 Visualization of the diffusion maps eigenfunctions (Top) and the Koopman eigenfunctions (Bottom) of the
model in scenario 1. Eigenfunctions are ordered according to the decreasing order of the corresponding eigenvalues.
Top: 20 most significant eigenfunctions are displayed. The Y-axis represents the ID number, an identifier for each
simulation. In scenario 1, the IDs are ordered along with the value of parameter x. Hence, ID = 0 means x = 0.0, and
x = 10.0 when ID = 100. The X-axis shows the time steps. Bottom: The figure shows 8 Koopman eigenfunctions,
the real values on the first row and the imaginary values in the second row. Also, the eigenvalues are displayed on
the top of each plot.
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Figure 3.24 Visualization of the diffusion maps eigenfunctions (Top) and the Koopman eigenfunctions (Bottom) of the
model in scenario 2 under the condition where the initial condition of two pedestrian sources are fixed. Eigenfunctions
are ordered according to the decreasing order of the corresponding eigenvalues. Top: 20 eigenfunctions are selected
and displayed. The Y-axis represents the ID number, an identifier for each simulation. The X-axis shows the time
steps. Bottom: The figure shows 14 Koopman eigenfunctions, the real values on the first row and the imaginary
values in the second row. Also, the eigenvalues are displayed on the top of each plot.
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Scenario 3 has four parameters: the width of the gates and the number of generated pedestrians.
Therefore, the model is equipped to describe the influence of the width of the gates on the number of
pedestrians measured in three measurement areas. The initial number of pedestrians at three sources is
fixed at 50 to visualize the effects of the gate width as a parameter in the y-axis. ID represents the gate
width from 1.0 m to 5.0 m: If ID is 15, the gate width is 2.5 m. Figure 3.17 shows the eigenfunctions of
diffusion maps and Koopman eigenfunctions. The eigenfunctions show a little variance along the y-axis.
This is mainly visible in eigenfunctions ϕ4, ϕ6, ϕ15, ϕ31, ϕ32, ϕ55. These patterns in the vertical direction
represent the influence of the variable gate width. Also, the eigenfunctions can be classified into three
types: the ones with the highest or lowest values at the beginning, such as ϕ5, ϕ9, ϕ11, ϕ12 and ϕ24, the
ones with the highest or lowest values in the middle of the simulation around Time = 12 such as ϕ14, ϕ41,
ϕ42 and ϕ57, and the ones without any pattern along the time axis such as ϕ55. The first ones represent a
monotonic decrease of the values observed mostly in area 1. In contrast, the second ones are observed
in areas 2 and 3, where the values once increase due to the incoming pedestrians from higher areas and
then start decreasing. The last one does not contain information depending on parameters, that is, in this
case, the effect of the variable gate width.

The Koopman eigenfunction in the bottom figure shows similar trends.
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Figure 3.25 Visualization of the diffusion maps eigenfunctions (Top) and the Koopman eigenfunctions (Bottom) of
the model in scenario 3 under the condition where the initial number of pedestrians is fixed. Eigenfunctions are
ordered according to the decreasing order of the corresponding eigenvalues. Top: 20 eigenfunctions are selected
and displayed. The Y-axis represents the ID number, an identifier for each simulation. The X-axis shows the time
steps. Bottom: The figure shows 12 Koopman eigenfunctions, the real values on the first row and the imaginary
values in the second row. Also, the eigenvalues are displayed on the top of each plot.
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4 Conclusions

The primary objective of this thesis is to construct a parameterized Koopman operator specifically for crowd
dynamics modeling. The parameterized Koopman operator is designed to capture the intrinsic dynamics
of the crowd behavior with variable parameters, including the crowd’s size and the environment’s geometry.
The model’s performance is assessed, and further analysis is conducted on the eigen-components of the
operator to comprehend the dominant components of the dynamics and the model’s ability to represent
crowd behaviour.

The Koopman operator acts on observables of the state, which is usually defined in an infinite dimen-
sional space. Infinite dimensionality imposes challenges in computing and using the operator in prac-
tice. Several approximation methods have been developed to address this difficulty. One such method
is EDMD, characterized by its capability to effectively approximate subsets of Koopman eigenfunctions
based on data and dictionary selection. In this thesis, EDMD is selected to compute the approximation
of the Koopman operator. EDMD requires data on the crowd dynamics and a dictionary. The data is
sampled from crowd simulation results. This thesis exploited four scenarios of different conditions about
crowds’ geometry and size. Sampled data consists of multiple time series, whose values are the number
of pedestrians counted in measurement areas. A dictionary is a set of observable functions that span the
space in which the Koopman operator is approximated. It lifts the state space to the space described by
observables. This thesis employs a combination of two techniques as a dictionary: Taken’s time delay em-
bedding and diffusion maps. Time delay embedding enriches the dataset with time-dependent information
by introducing delayed coordinates, extending the spatial dimension. Diffusion maps extract the leading
eigen-components of the diffusion operator of the data matrix, yielding new coordinates that encapsulate
significant information about the data.

The four scenarios introduce different crowd dynamics with different levels of complexity. The first sce-
nario is designed to demonstrate the simplest crowd behaviour, equipped with a corridor and a gate with
variable width, which blocks the flow of the crowd along the corridor, with one source of pedestrians, one
target, and one measurement area. The second scenario tests the model’s ability to adjust to another type
of parameter, the size of crowds, and the capability of dealing with more dimensions. The geometry is
extended to have three sources of crowds and three measurement areas covering each source, creating
three parameters in total. The third scenario adds one more degree of freedom, the gate width, to the sec-
ond scenario. The last scenario expands it further, having six pedestrian sources, six measurement areas,
and a variable gate width, increasing the dimensions to test the model’s capability. The model predictions
result in high accuracy, with R2 scores close to 1 in all scenarios, meaning that the model fits quite well to
the ground truth.

Scenario 1 demonstrates the model’s ability to learn monotonic tendencies in data, revealing that the
model adjusts the decreasing rate of the pedestrians in the measurement area by the parameter values.
Monotonic increase or decrease is simple and can be regressed by a linear model. Therefore, the other
scenarios integrate more variability in the data by having multiple pedestrian sources, requiring modeling
of the nonlinear curves. The results in scenarios 2 and 3 show that the model can capture the nonlinear
behavior of the dynamics with high accuracy. Moreover, it is robust to the noise, as it follows the long-term
trend of the data even though the data contains small fluctuations. Scenario 4 examines the model’s ability
to increase dimensions. The number of samples is the same as in scenarios 2 and 3, meaning the data
matrix becomes sparser. Although a slight drop in accuracy is observed from the statistical analysis, the
model can still provide accurate forecasting in all dimensions.

The operator’s eigenfunctions, the model’s building blocks, are analyzed further in depth. The heat
maps of selected eigenfunctions displayed that the eigenfunctions preserve intrinsic dynamics patterns.
The patterns indicate the transition of the states, such as the beginning of an increase and decrease in
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the measured values. Some patterns have some frequencies; Significant eigenfunctions have lower fre-
quencies, implying that the major trends are preserved for the long term. Small fluctuations are considered
noise and diminished after several time steps, multiplied by small eigenvalues. Hence, the eigenfunctions
capture the overall tendencies of the dynamics over time and extract the characteristics.

This thesis shows that the parameterized Koopman operator can model crowd dynamics, which involves
several variable factors, such as geometrical structures and the conditions of the crowds. Successful pre-
diction of multi-variable situations such as scenario 4 tells that the models can be further extended to more
complicated scenarios, where more variables are involved in a larger space. It proves that the param-
eterized Koopman operator models can be applied to the research in city planning in the future thesis.
Additionally, the Koopman operator models offer an in-depth analysis of the crowd dynamics in city plan-
ning. It enables a better understanding of the tendency of crowd behavior in the city in the long-term and
short-term from the Koopman eigenfunctions. Deep learning-based models are attracting attention in this
field; however, the significant drawback of deep learning models is their "black-box" nature, which makes
it difficult to root out the cause of the outcomes. The parameterized Koopman operator can supplement
the lack of interpretability of deep learning-based models, providing insights into the models and allowing
humans to comprehend the prediction-making mechanisms.

However, this thesis is still limited to restricted and ideal scenarios. In reality, it deals with numerous
variables which determine crowd behaviors. Future research is supposed to extend the scenarios to be
more complicated, with an increasing number of variables. Furthermore, utilising an actual city map as the
simulation geometry would provide more realistic modeling of the crowd dynamics in a city.
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