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Nomenclature

APS automated planning system
ALB assembly line balancing
NPV net present value
NPC net present cost
n index of a usage period
N number of usage periods
cn cost in period n
r interest rate per period
csw cost for software licenses
chw cost for hardware
corga organizational cost for introducing an APS
cmodeling cost for modeling resources
chr hourly rate of a skilled worker
R number of resources in the database
r index of a resource
b learning rate
ti time for executing task i
tc time for executing task after learning is completed
i index for performing a task
clabor labor costs

cmaintenance cost for maintaining the APS
csubscription cost for software subscription
P number of planning scenarios performed
p index of a planning scenario
tp time for one planning scenario
dauto degree of automation

1. Introduction

Manufacturing systems need to be designed and redesigned 
with increasing frequency to address the challenges posed by 
individualized production and increasingly shorter product 
cycles [1]. Planning a manufacturing system entails selecting, 
configuring, and layout planning of the resources needed for 
production and assembly [2]. Classical methods for 
manufacturing systems planning are presented by [3, 4] and [5]. 
They describe various planning steps to design, implement, and 
finally put into operation a suitable manufacturing system for 
assembling a new product. The tasks involved can be 
summarized into the following planning stages: requirements 
analysis, structural planning, layout planning, realization, and 
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operation. The use of digital tools and automated planning 
systems (APS) for designing manufacturing systems are 
promising approaches to minimize the planning efforts [6, 7]. 

1.1. Related works

Numerous methods, algorithms, and systems have been 
developed and presented to support the various planning 
decisions needed to arrive at a functioning manufacturing 
system. Some aim to look at the whole planning process [8, 9],
while others look at specific planning decisions in depth.

One planning aspect that has been intensely studied is 
assigning different tasks to the stations of a line, commonly 
referred to as assembly line balancing (ALB)[10, 11]. The 
fundamental ALB problem does not consider resources, but 
multiple authors have included resource selection into their 
ALB optimization models [12–15]. Another planning decision 
that has been addressed thoroughly is the positioning of 
production resources, especially industrial robots [16–18]. [19]
integrate ALB and resource positioning into one optimization 
problem to consider interdependencies.

However, these planning algorithms usually rely on digital 
models of the product, the process, and the used resources [20–
22]. Despite efforts to standardize data formats [23, 24] and to 
implement generally accepted databases, interoperability 
between different software systems remains a challenge [25]. 
Therefore, implementing the necessary models still falls on the 
prospective user of an APS and constitutes one of the major 
hindrances for using APSs in practice.

1.2. Structure of the paper

To address these concerns and give a guideline on 
evaluating the benefits and drawbacks of using an APS, we 
develop an evaluation method that relies on a detailed cost 
model of deploying an APS compared to manual planning.

In section 2, we develop a cost model to evaluate the 
economic efficiency of using an APS instead of a manual 
planning process. Section 3 presents multiple analyses of 
possible scenarios for the deployment of automated 
manufacturing systems planning. Finally, section 4 sums up the 
findings and gives an outlook to further research.

2. Evaluation method and cost model

For any industrial company, the primary objective is 
economic success. Therefore, any decision is viewed through 
the lens of profitability. In this section, we will explore 
different factors influencing the profitability of using an 
automated planning system and present a method to support the 
decision of a company whether to use such a system.

For the assessment of investment opportunities, multiple 
evaluation methods exist and are used in practice. The net 
present value (NPV) of an investment represents all the 
expected cash flows discounted to today. It is widely used to 
decide whether an investment should be made or to choose 
among different courses of action [26].

To assess the economic efficiency of using an APS, the NPV 
can be simplified to net present cost (NPC) since the two 
available options – manual planning and automated planning –
differ in terms of their associated costs, but positive cashflows 
are independent of the used planning method and can be 
neglected for the decision. Equation (1) shows how the NPC is
calculated.

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑐𝑐0 +∑ 𝑐𝑐𝑛𝑛
(1 + 𝑟𝑟)𝑛𝑛

𝑁𝑁

𝑛𝑛=1

(1)

The usage of an automated planning system is profitable if 
∆NPC, see equation (2), is negative, meaning that deploying 
the automated system results in reduced costs compared to 
manual planning.

∆𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (2)

In the following sections, we identify different relevant 
costs that have to be considered when calculating the NPC of 
an APS and the alternative manual planning method.

2.1. Invest

For the NPC of the manual planning alternative, no initial 
investment must be considered because it represents the status 
quo, so all of the necessary prerequisites are already in place.

The investment c0,automated of the automated system 
comprises all costs associated with its implementation, see 
equation (3).

𝑐𝑐0,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑐𝑐𝑠𝑠𝑠𝑠 + 𝑐𝑐ℎ𝑤𝑤 + 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

The most obvious costs are csw for necessary software 
licenses and chw the related hardware. Besides that, the 
investment also includes organizational efforts corga, such as 
training for the prospective users or the adaptation and 
installation of the software.

Another significant factor of the implementation effort is the 
integration of the expert knowledge that the company possesses 
into the planning system. Most of the planning systems 
presented in the literature provide a structure for the modeling 
of products, processes, and resources but leave it to the user to 
populate the databases with actual instances as a basis for the 
planning process. The product and the process need to be 
explicitly modeled for each planning scenario, but configuring 
production resources is part of the introduction effort. It is
represented by cmodelling, see equation (4).

𝑐𝑐𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐ℎ𝑟𝑟∑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖,𝑟𝑟

𝑅𝑅

𝑟𝑟=1

(4)

The time tmodeling,r required for modeling one resource 
depends on the level of the user’s experience. This correlation 
is modeled in learning curves (LC) and was first described 
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by [27]. LCs have been applied and adapted to many different 
tasks [28]. Several studies have shown that LCs are not only 
applicable to manual tasks but also cognitive tasks like 
software installation [29], information technology usage [30], 
and computer-aided design (CAD) [31].

The learning curve is traditionally represented by a log-
linear model that can be amended with a constant that 
represents the time needed for a task after the learning process 
is completed, see equation (5).

𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑐𝑐 + (𝑡𝑡1 − 𝑡𝑡𝑐𝑐)[𝑖𝑖𝑏𝑏+1 − (𝑖𝑖 − 1)𝑏𝑏+1]
with (−1 < 𝑏𝑏 < 0)

(5)

In this model, ti, the time for the ith iteration of a task, is 
calculated as a function of the first execution’s time, the 
learning rate b and the target time tc after the learning process 
is completed. The value of b lies between -1 and 0 and denotes
the learning speed, with values close to -1 representing fast 
familiarization to the task. Fig. 1 shows exemplary learning 
curves for different values of b.

Fig. 1. Learning curve for different b values with tc=100, t1=150.

The time tmodeling,r in equation (4) can be calculated by
applying equation (5) to consider the learning effect in the case 
of modeling resources.

2.2. Ongoing expenses

Besides the initial investment, both the manual planning and 
the automated planning system generate ongoing expenses over 
the considered time of their usage.

𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (6)

Arguably the most critical cost factor in both alternatives are 
labor costs for the engineers conducting the planning or using 
the APS. The labor costs associated with manually planning 
clabor,manual, see equation (7), are the baseline of the 
considerations.

𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐ℎ𝑟𝑟 ∑ 𝑡𝑡𝑝𝑝

𝑃𝑃

𝑝𝑝=1

(7)

They are defined as the hourly rate of a skilled worker 
multiplied by the sum of all the planning scenarios conducted 
in the considered time period. However, the number of 
planning scenarios in itself has no bearing on labor costs, and 
the sum of time spent on planning can also be estimated in other 
ways (e. g. based on the number of employees and their job 
profiles).

If an APS is used, the manual effort and the number of hours 
spent on planning decreases for the same output, see 
equation (8).

𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (1 − 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

with (0 < 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 1)
(8)

However, even with an automated planning system, the 
manual effort and the labor costs do not go to zero, and the 
degree of automation dauto plays a central role in the 
profitability of an APS.

The first reason for this is that the APS requires input by a 
user, for example, to specify the process to be performed and 
the requirements of the planning case. Secondly, the quality of 
the planning results has to meet the same standards independent 
from the used planning method. Many times, the automatically 
generated drafts will still need manual fine-tuning. In fact, 
today’s APSs are really planning support tools that make 
suggestions to the user who is ultimately in charge of the 
planning decisions.

The other ongoing costs again are only relevant if an APS is 
introduced. The maintenance costs cmaintenance include all efforts 
related to maintaining the necessary infrastructure of the APS 
like databases and software installations. Lastly, software 
license costs csubscription can not only be part of the initial 
investment but also of the running costs if a subscription license 
model is employed.

3. Analysis of different scenarios

Based on the cost model developed in section 2, this section 
explores how changes in different factors influence the 
profitability of APSs and under which circumstances the 
deployment of such systems is a promising endeavor.

3.1. Study 1 – Labor costs

Labor costs are one of the main factors driving decisions for 
and against automation, not only in the planning domain but in 
manufacturing in general. Therefore, we looked at the impact 
different hourly rates have on the profitability of using an APS. 
Fig. 2 shows the NPC for manual planning and three scenarios 
for APSs with a different number of resources to be modeled
in relation to the hourly rate. Table 1 gives the other assumed 
parameters for the scenarios. The total planning time tp was 
estimated by assuming one person with a 40-hour workweek, 
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working 47 weeks a year and spending 75% of their time
planning.

The slope of the NPC for using an APS depends on the 
number of resources to be modeled and the associated labor 
costs. Under the assumed conditions, using an APS instead of 
manual planning would be profitable with 200 modeled 
resources for an hourly rate of 17€ or above, with 600 modeled 
resources for an hourly rate of 19€ or above, and with 1000 
modeled resources of 21€ or above. For an hourly rate of 50€, 
which is realistic for a western European country like Germany, 
using an APS under the assumed conditions would provide a
NPC advantage between 64 and 84 thousand euros, depending 
on the number of resources to be modeled.

Fig. 2. NPC depending on the hourly rate for manual planning as well as 
planning with APS with different numbers of resources in the database.

Table 1. Parameters for study 1.
tp = 1410h csw = 20 000€ t1,modelling = 3h dauto = 50%
r = 10% chw= 10 000€ tc,modelling= 0.5h cmaintenance = 2 000€
N = 5 years corga = 5000€ bres = 0.5 csubscription = 0€

3.2. Study 2 – Planning time

Besides labor costs, other important factors for the 
profitability of an APS are the amount of planning that takes 
place and the degree of automation that can be realized. 

Fig. 3 shows the NPC for manual planning and three 
scenarios for APSs with different degrees of automation in 
relation to the yearly planning time tp. Table 2 gives the other 
assumed parameters for the scenarios.

The slope of the NPC is highly influenced by the degree of 
automation reached with the APS. Therefore, for higher 
degrees of automation, fewer planning hours are needed to 
make the APS profitable. In our example, using an APS instead 
of manual planning would be advantageous for a planning 
volume of more than 1600 hours per year with a degree of 
automation of 20%, for a planning volume of more than 640 
hours with a degree of automation of 50%, for a planning 
volume of more than 400 hours with a degree of automation of 
80%. After the break-even point compared to manual planning 
is reached, the cost savings realized by using the APS also 
increase much faster with a high degree of automation.

Fig. 3. NPC depending on the planning time per year for manual planning as 
well as planning with APS with different degrees of automation.

Table 2. Parameters for study 2.
chr = 50€ csw = 20 000€ t1,modelling = 3h 600 resources
r = 10% chw= 10 000€ tc,modelling= 0.5h cmaintenance = 2 000€
N = 5 years corga = 5000€ bres = 0.5 csubscription = 0€

4. Conclusion and outlook

In this paper, we gave an overview of the current state of the 
art in automated manufacturing systems design. We then 
presented a method to evaluate the economic efficiency of an 
APS, based on its NCP compared to the NPC of a manual 
planning process. The developed cost model considers a variety 
of cost factors. Besides typically considered costs like software 
licenses or hardware investments, it also includes the effort 
necessary to integrate expert knowledge (mainly in the form of 
resource models) into the APS. It is done by considering the 
time for modeling the resources in the cost model. The learning 
effect that takes place when a substantial number of resources 
are modeled is also considered. We then studied multiple 
deployment scenarios for an APS based on the established cost 
model and presented the results.

The presented methodology and cost model can be used to 
determine whether the implementation of an APS is 
advantageous in a given context. Moreover, the conducted 
analyses of exemplary scenarios provide the following 
conclusions:

• It could be demonstrated that the modeling of resources to 
deploy an APS requires significant effort and can hinder the 
implementation of APSs in an industrial context. 

• In our fictitious scenarios, we illuminated the effect of the 
hourly rate for a skilled worker, the number of modeled 
resources, the degree of automation, and the planning time 
per year on the economic efficiency of an APS. It could be 
shown that even for moderate hourly rates around 20€, the 
usage of an APS can be advantageous. From the evaluation,
it was also clear that the degree of automation substantially 
impacts profitability. Even though just a very conservative 
degree of automation (in our example, 20%) can be 
profitable, a higher degree of automation leads to 
significantly higher cost savings.
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• We were also able to map out the limits of a profitable use 
of APSs. If only a low amount of planning hours occurs in 
a company in a year, using an APS might not be the best
choice. The same is true for situations where the hourly rate 
of a skilled worker is very low.

Based on these conclusions, we see the need for further 
action and research in the following areas:

• The automatic generation of resource models for APSs is a 
promising endeavor for enabling the practical usage of 
APSs. Having methods and tools to automatically derive 
resource models for the database of an APS from existing 
data would significantly lower the initial effort necessary for 
implementing an APS.

• A higher degree of automation has an outsized effect on 
profitability. Therefore, improving the degree of automation 
and moving from a support tool to actual autonomous 
planning is a worthwhile endeavor.

Finally, the limits of our study have to be acknowledged: 
We focused purely on the economic effects of employing an 
APS. However, the usage of such a system also entails 
consequences that might not directly translate into euros. 
Reservations by planning engineers might decrease the 
effectiveness of an APS. Ensuring the acceptance of such 
systems by their users is, therefore, an important aspect as well.

Besides the monetary advantage of reducing labor costs, 
decreasing the need for skilled labor might also be beneficial if 
there is a shortage of skilled workers. Another positive effect is
the uncoupling of the planning results’ quality from the 
planning engineers’ skill. Using an APS also might lead to an
increase in the quality of the planned manufacturing systems
because the system relies on objective criteria and not 
subjective assessment.
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