
ScienceDirect

Available online at www.sciencedirect.com

www.elsevier.com/locate/procedia 
Procedia CIRP 111 (2022) 810–815

2212-8271 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the international review committee of the12th CIRP Conference on Photonic Technologies [LANE 2022]
10.1016/j.procir.2022.08.089

© 2022 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the international review committee of the12th CIRP Conference on Photonic Technologies [LANE 2022]

Keywords: laser beam welding; bipolar plates; fuel cells; process monitoring; sensor data fusion; machine learning

1. Introduction

In order to further advance the transition from fossil fuel-
based mobility to electric mobility, innovative manufacturing 
processes are needed to bring new technologies into series pro-
duction. The objective is to further enhance the quality and
safety of components while reducing manufacturing costs. La-
ser beam welding is used in many applications in the field of 
electromobility, e.g., for contacting battery cells [1], in the pro-
duction of fuel cells for hydrogen-based mobility, or energy 
generation. A core component of low-temperature polymer 

electrolyte membrane fuel cells (PEMFC) are bipolar plates. 
Since the production of bipolar plates accounts for approxi-
mately 20 – 30 % of the total costs of fuel cells, there is 
particular potential for cost and material savings in terms of 
manufacturing [2]. Therefore, various materials are being con-
sidered for the fabrication of bipolar plates, including metallic, 
non-porous graphite, and composite materials. As coated stain-
less-steel foils (e.g., AISI 316L) show numerous advantages
over other materials, such as a high thermal and electrical con-
ductivity as well as superior mechanical properties, their 
application is favored for bipolar plates [3]. Depending on the 
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Abstract

Laser beam welding is the state-of-the-art technology for joining micro-formed metal foils in the manufacturing of bipolar plates for proton 
exchange membrane fuel cells. However, the process is limited in the achievable welding speed since humping and undercut effects can occur at 
high feed rates. These effects significantly reduce the weld seam quality, causing scrap or subsequent failure during operation. As a result, higher 
manufacturing costs arise and additional quality assurance is needed. In this work, welding experiments, including a photodiode-based sensor 
system, were conducted on AISI 316L metal foils to evaluate the capability of this sensor for inline and online quality assurance. Based on the 
results, an intelligent laser beam welding architecture is proposed, representing a holistic approach for a multi-sensor-based and self-improving 
quality assurance system. The theoretical architecture combines a novel laser beam welding concept with different optical and acoustic sensors
for determining the current weld state. It considers sensor data fusion for relevant information on the process behavior via dedicated algorithms 
applying deep neural networks. The approach is an idea of a predictive weld state determination for a precise and real-time capable weld seam
quality assurance.
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material and the application, the metal foils have a thickness of 
approx. 50 – 150 µm [3]. In order to join two metal foils in the 
manufacturing of bipolar plates so that they are gas-tight, laser 
beam welding is used as the state-of-the-art joining process. An 
observable process instability when welding thin metal foils is 
the humping effect. With the aforementioned material thick-
nesses, it occurs at welding speeds above 700 mm/s [4],
depending on the material thickness, the welding speed, and the 
optical setup [5]. At high welding speeds, the melt pool velocity 
exceeds the welding speed, accelerating the melt pool around 
the keyhole [5]. Additional melt pool turbulences in back of the 
keyhole further accelerate the melt pool towards the weld seam 
center [6]. In the rear area of the melt pool, the melt jet is slowed 
down by solidification processes, resulting in periodic humps.
Another challenge is the clamping situation, which is crucial for 
a reproducible positioning and achieving a zero gap between 
both foils [7] . With numerous sensor technologies available,
there is still substantial research and development needed for 
applications in the field of laser material processing. Therefore, 
a lack of a comprehensive and qualified inline quality inspec-
tion for the welding of metallic bipolar plates was identified.
For this process, one monitoring system is not sufficient to fully 
detect different types of defects, such as undercut, burn through, 
lack of fusion, and humping, as each sensor is only able to de-
tect specific quality characteristics of the weld seam [8]. Thus, 
a method for combining different sensors is necessary. Existing 
publications and ongoing research on sensors for laser beam 
welding applications demonstrated that a variety of different 
sensor approaches are suitable for monitoring the laser beam
welding process. They are used for capturing real-time infor-
mation about the welding process and for detecting weld defects 
inside as well as on the surface of the weld seam. Using the
principle of the optical coherence tomography (OCT) in a sen-
sor, a novel tool is available to measure the keyhole depth
inline [9] and to use the signal’s information for a determination 
of the weld seam quality [10]. Since one advantage of the OCT 
is to directly measure the keyhole depth, the correlation be-
tween signal characteristics and the weld depth can be obtained.
Another suitable method to monitor the laser beam welding 
process was shown by Shevchik et al. [11], who used photodi-
odes for the recording of different process emission 
wavelengths and an acoustic sensor. The signals were analyzed 
afterwards and served as inputs for a weld seam classification 
using machine learning methods. As a common approach, 
charge-coupled devices (CCD) [12] or thermographic cam-
eras [13] are being applied to gather information about the 
welding process. Advantages are a direct recording of the weld 
seam surface and the detection of possible irregularities and 
spatter formation [14]. For the evaluation of the image and sig-
nal data of the aforementioned sensors, machine learning 
techniques are suitable methods to correlate the data to process 
characteristics and the quality of the weld seam. Guenther et al.
proposed a combined application of sensors and machine learn-
ing in laser beam welding applications [15]. The focus of their 
research was an architecture based on Reinforcement Learning 
and Deep Neural Networks for processing camera image data 
and signals from photodiodes with the goal of implementing a 
process control.

2. Objectives

Several sensor systems are commercially available to moni-
tor the laser beam welding process. In the case of joining 
metallic foils for the manufacturing of bipolar plates, there are 
no investigations concerning the combined inspection of burn 
trough and humping, for instance, using a photodiode-based 
sensor system. In the presented work, the sensor system was 
used for an inline and online inspection. Based on the results, a 
design for an intelligent inline laser beam welding architecture 
was derived.

3. Experimental setup

In order to investigate the suitability of a photodiode-based 
sensor system, the welding process was monitored using a laser 
welding monitor (LWM, Precitec GmbH & Co. KG, Germany, 
Fig. 1). The experiments were conducted with a continuous-
wave (cw) multi-mode disk laser (TruDisk 1020, Trumpf SE & 
Co. KG, Germany) with a wavelength of 515 nm. The beam 
was deflected by a scanning optics (PFO20-2 TF1, Trumpf SE 
& Co. KG, Germany). The optical fiber of the laser beam 
source had a core diameter of 50 µm and the imaging ratio of 
the optical setup was 2.93. In this experiment, the working dis-
tance was chosen according to the focus of the laser beam, 
leading to a spot diameter of 150 µm.

Fig. 1. Experimental setup for an overlap weld of two 80 µm stainless steel 
316L foils.

Equipped with a programmable logic controller (PLC), the 
LWM recorded the measured signals from three photodiodes. 
The photodiodes measured the wavelengths 515 nm (reflec-
tion), 450 – 780 nm (plasma, green light filtered out), and 
1100 – 1800 nm (temperature). As the control of the laser cell,
the main system PLC processed all signals from the peripheral 
components. It represents the interface between the laser beam
source, the optics, and the LWM. For a synchronized measure-
ment of the process emissions, a trigger signal was generated 
by the main PLC at the start and end of the laser emission that 
started and stopped the measurement of the LWM. The three 
photodiodes recorded the individual signals during the welding 
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process with a sampling rate of 50 kHz defined by the LWM 
PLC. In addition, the laser power was being recorded synchro-
nized with the mentioned signals. As a sample material, stain-
less steel AISI 316L was selected for the welding experiments. 
The chosen specimen geometry can be seen in Figure 2. Over-
lap welds with a length of 15 mm were performed on two metal 
foils with a film thickness of 80 µm each and outer dimensions 
of 25 mm × 25 mm. In order to achieve the highest productivity 
for the manufacturing of bipolar plates, the laser power was 
kept constant at 1 kW during the experiments, with the welding 
speed increased in 50 mm/s increments from 1150 to 1850
mm/s.

Fig. 2. Sample geometry and major weld seam defects that occurred during the 
experiments.

Three identical tests were performed for 15 different para-
meter setups, whereby the process emissions were measured 
inline (during welding) and online (directly after welding) by 
the LWM. The online measurements were performed with a la-
ser power of only 30 W and 100 W, respectively, to compare 
the signal characteristics with the inline measurements without 
changing the weld seam properties after the process. 

For the inline and online measurement, the recorded process 
emissions were evaluated offline after the experiments using 
Matlab R2021b. Since the signals were saved as time series 
data, a transformation was performed to synchronize them to 
the corresponding weld seam positions. This allows the sensor 
data to be subsequently mapped directly to an image of the 
weld seam, recorded by a laser scanning microscope (LSM).

4. Results and discussion

As a result, five major areas within the investigated para-
meter range were distinguished, based on the occurring exter-
nal weld seam properties and defects (Table 1).

Table 1. Identified weld seam properties and major defects on the seam surface 
for the investigated parameter range

ID occurred weld defect(s) feed rate (mm/s)
1 – 4 occasional humping without holes, 

strong burn-in on the backside
1150 – 1300

5 – 7 occasional humping without holes, 
slight burn-in on the backside

1350 – 1450

8 – 12 increased strong humping with 
imperfections and holes

1500 – 1700

13 –
14

occasional humping, start of lack 
of fusion

1750 – 1800

15 lack of fusion 1850

In Figure 3, the LWM signals are shown together with an 
LSM image of the corresponding weld seam surface for one of 
the specimens welded with 1700 mm/s. Welding was per-
formed in positive x-direction. The sample was chosen, 
because a strong humping effect with subsequent holes is 
clearly visible on the specimen’s surface. After processing the 
data, no anomaly was identified within the inline measured sig-
nals, which indicated the occurrence of humping. The emis-
sions recorded by the photodiodes originated from the process 
zone. As the humping appeared in back of the process zone in 
the feed direction, the emitted radiation from this area could not 
be detected with the used sensor setup. Therefore, the online 
measurements were conducted while the welded foils were still 
clamped down. In contrast to the inline measurement, the 
online recorded data associated to 100 W laser power showed 
clear peaks in the signal waveforms for the plasma, tempera-
ture, and reflection signal in the areas where humping 
occurred (Fig. 3).

Fig. 3. Inline and online measured LWM signals of a sample (P = 1000 W,
v = 1700 mm/s) correlated to the corresponding weld seam.

The reflection signal has approximately the same signal 
curve as the height profile extracted from the LSM analysis, 
whereas the temperature and plasma signals are opposed to the 
reflection signal. In areas with humping, a peak in the reflection 
signal was visible. Consequently, the temperature and plasma 
signals have a local minimum in the same segment. For all three 
signals, the time-shifted appearance of peaks with regard to the 
local seam topography was characteristic. As for the reflection 
signal, the peaks occurred with a time-shift (not consistent) af-
ter a hump in the seam surface. The peaks in the temperature 
and plasma signal occurred with a time-shift after a hole in the 
seam surface, respectively. Additionally, the temperature and 
plasma signal curves were nearly identical, while the plasma 
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signal voltage was lower. A further analysis showed that the 
three signal voltages (photodiodes) of the mentioned 100 W da-
taset were higher than the corresponding measurement associ-
ated to 30 W laser power, see Fig. 4. The differences can be 
explained by the resulting higher process emissions, which 
originated from the process zone when the laser power was set 
to 100 W.

Fig. 4. Comparison of the online measured LWM signals of an already welded 
sample (P = 1000 W, v = 1700 mm/s) carried out with 30 W and 100 W pro-
cessing laser power.

In addition, the LWM data of the samples welded with 
1850 mm/s (lack of fusion between top and bottom foil) were 
compared with the datasets representing a successful weld in 
the range of 1150 mm/s – 1800 mm/s. In order to analyze the 
measurements, boxplots were used to visualize the inline rec-
orded data of the plasma, temperature, and reflection signal,
respectively. With this method, the statistical distribution of the 
data points is given (cf. Fig. 5). The central red mark on each 
box indicates the median, whereby the bottom and top edges of 
the box indicate the lower (25th percentile) and upper (75th 
percentile) quartiles. The whisker length was set to 1.5 times 
the interquartile range. The temperature and the reflection sig-
nals of the welding conducted with a corresponding welding 
speed of 1850 mm/s showed no distinct relationship between 
anomalies in the signal and the resulting lack of fusion of the 
two stainless-steel foils.

However, when looking at the boxplots of the plasma sig-
nals in Figure 5, the median values are slightly ascending with 
an increasing welding speed and a decreasing weld depth. For 
the samples welded with 1850 mm/s, the according boxplot 
shows a sudden decrease in the median value with a simultane-
ous increase in the interquartile range (1.68 V). Additionally, 
the distance of the upper (5.969 V) and lower (0.171 V) adja-
cent value increases significantly compared to the previous 
boxplots of the successfully welded samples. The adjacent val-
ues are the upper and lower limit of the data points that are not 
outliers. With the associated signal behavior as a basis, it is as-
sumed that the changes in the statistical values are an indicator 
for the lack of fusion between top and bottom foil during weld-
ing. Therefore, a threshold value for detecting the welding 
defect will be defined in further work based on a statistical sig-
nal evaluation. At this point, further experiments are necessary 
to validate the identified signal behavior extensively as well as 
a transfer of the results to a signal analysis for burn-through 
effects during welding.

Fig. 5. Boxplots of the inline recorded plasma signals for the investigated wel-
ding parameters.

5. Design of an intelligent laser beam welding architecture

The results of the experiments showed that a photodiode-
based system can detect single process defects, such as hump-
ing (online) or lack of fusion (inline). These results can con-
tribute to an intelligent laser beam welding architecture for the 
welding of metallic bipolar plates which is presented as a con-
cept within this paper. The core of this system is the integrated 
adaptive data processing method using machine learning algo-
rithms for the interpretation of sensor signals. Additionally, a
sensor data fusion approach as a basis for an inline weld seam 
quality prediction is derived to increase process reliability. The 
goal is to provide redundant information for a 100 % inline 
quality assurance to substitute complex quality tests. For the 
welding of metallic bipolar plates, the available sensors are not 
yet qualified extensively. In the architecture shown in Figure 6,
four sophisticated sensors are combined to monitor different 
aspects of the process. These sensors are chosen to guarantee 
redundancy with respect to the process monitoring of all rele-
vant phenomena, such as humping and burn through.
Additionally, the selected sensors are capable of detecting weld 
seam properties and possible weld defects, as outlined in sec-
tion 1.

5.1. Process and sensor level

During welding, optical and acoustic process emissions are 
generated (Fig. 6, section A – process level), for which the cor-
responding sensors are suitable. Section B of Figure 1 reflects 
the sensor level, which contains a photodiode-based sensor sys-
tem, an OCT sensor, a high-speed (thermographic) camera, and 
an optical microphone. While the OCT system directly 
measures the keyhole depth [9] and is therefore suitable for de-
tecting burn throughs or insufficient penetration, the photo-
diodes record emissions from the process zone, for example, in 
the visible, near-infrared, and infrared spectrum. It is assumed 
that the time series data can be used for detecting gaps between 
two foils or burn throughs as well. Furthermore, the OCT signal 
can be analyzed to determine the keyhole geometry [16] and 
seam internal weld defects, such as pores [17]. A high-speed 
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camera as the third sensor records the surface of the melt pool 
during the process. With image processing, it is possible to vis-
ualize the formation of spatters and near-surface pores. Addi-
tionally, the direct inspection of the weld seam surface via Deep 
Neural Networks allows for the detection of humping as one of 
the major seam defects and reasons for scrap in the welding of 
bipolar plates. Instead of a camera for the visible wavelengths, 
a thermographic camera may be used as an alternative to detect 
process emissions originating from the keyhole as a redundancy 
to the recorded photodiode signals. As the optical microphone 
is capable of sampling with a frequency of up to several MHz, 
the recording of different process characteristics is superior 
compared to the described optical sensor systems. Existing pub-
lications showed that acoustic process emissions during laser 
material processing can be used to detect the formation of spat-
ters [18], [19]. It is assumed that an optical microphone is 
therefore capable of detecting the occurrence of the humping 
and the detachment of larger spatters and melt formations as 
well. This hypothesis will be subject to further work. As a re-
sult, the individual capabilities of the sensors will complement
each other to form an overall and holistic monitoring system.

5.2. Data and prediction level

Section C (Fig. 6) displays the data level in which the signals 
are downsampled within several processing steps as a basis for 
the quality prediction (Fig. 6, section C1). Section C1 contains 
individual wavelet transformations for the acoustic signatures 
and the occasionally highly scattered OCT depth signal to de-
rive relevant features, such as included frequencies or statistical 
parameters, the standard deviation, for instance. The photodi-
ode signals can be pre-processed through a percentile filter with 
a moving average window. For pre-processing the camera im-
ages, different image correction methods, such as denoising and 
sharpening, are applied. The following two paths, C2.1 and 
C2.2, contain the algorithms and pre-trained artificial neural 
networks (ANN) for the quality prediction. Their basic proce-
dures differ fundamentally. On path C2.1, a feature fusion is 
performed as the next step after pre-processing. After aligning 
and synchronizing the data, a convolutional neural net-
work (CNN) combines the time series data and the 2D image 
data via a hybrid architecture, representing a feature level fu-
sion [20]. Based on the combined information, the weld seam 
(part) is classified by a second ANN. On path C2.2, the classi-
fication is performed individually for each sensor first with 
appropriate ANNs. They are applied to the time series data, if 
suitable, to detect trends in the signal behavior for overlapping 
segments. In the following step, the four predictions are com-
bined, and using an ANN, the final prediction for the current 
segment is determined. This approach represents a decision 
level fusion [20]. On the prediction level (Fig. 6, section D), the 
overall weld seam quality prediction is performed by merging 
the single classified segments and displaying the quality of the 
entire weld seam. Via active (machine) learning, the decisions 
made by the ANNs are verified. False positive or false negative 
classifications will be identified. They are used for re-training
the implemented neural networks to further increase the classi-
fication accuracy.

Fig. 6. Intelligent laser beam welding architecture combining different sensor 
approaches and applying sensor data fusion; PD: photodiodes, OCT: optical 
coherence tomography sensor, HSC: high-speed camera, OM: optical micro-
phone 

6. Conclusion

In this work, the results of laser beam welding experiments 
using green laser radiation for the joining of two 80 µm stain-
less-steel AISI 316L foils were presented. The process 
emissions were measured inline first via a photodiode-based la-
ser welding monitor (LWM). It was shown that no anomalies 
in the inline signal correlated to the humping effect could be 
identified in the data. However, the signal analysis showed a 
possible relationship between statistical signal values and the 
weld state, indicating a lack of fusion. Thus, a determination of 
the weld depth based on the plasma signal needs to be investi-
gated in detail in a further study. Additionally, online 
measurements with 30 W and 100 W processing laser power 
were performed. Based on a signal analysis, a relationship be-
tween the occurrence of humping and the signal characteristics 
was identified for the online measurements of the LWM sensor.
Especially for the reflection signal, the correlation to the weld 
seam surface was significant. With the shown procedure, it is 
possible to implement an online measurement strategy based 
on the LWM to detect humping. Deploying a sensor with a
higher sampling rate, the online measurement can be performed 
even faster after the welding process. 
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Since a single sensor can only detect specific weld defects, 
an intelligent laser beam welding architecture and its imple-
mentation were proposed in detail together with a novel sensor 
data fusion concept. This architecture aims on redundant infor-
mation about the welding process to reliably predict the weld 
seam quality.

Concerning the LWM, a further study will investigate in de-
tail the effects of a burn-through on the signal behavior within 
an extended validation based on the assumptions made. An in-
crease in the parameter range with respect to a variation of the
laser power will be included as well as experiments regarding
the detectability of other weld seam properties and defects 
using the LWM sensor.

For the intelligent laser beam welding architecture, the re-
maining sensors need to be investigated thoroughly concerning
the suitability for measuring weld seam properties and defects 
for the underlying application.
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