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1. Introduction

Manufacturing equipment is characterized by its long-
lasting capability of up to 20 or more years [1] and commu-
nicating with brownfield components and controllers can be a
barrier to scalable real-time applications. Development towards
Industry 4.0, and more specifically Cyber-Physical Systems and
Internet of Things (IoT), paved the way for digitalization and
retrofitting of old machinery with connected sensors, edge in-
telligence, cloud connection, etc. [2, 3]. One of the most robust
and long-standing pillars of the production chain are Computer
Numerical Control (CNC) machines.

Highly automated machining centers are characterized by
their high-speed manufacturing but also by their complexity.
The extreme environmental conditions and the high-speed pro-
cessing engender operation failures such as tool breakage, im-
proper tool clamping or chip jamming [4]. The high variety in
tool types and tool operations (OP), in terms of shape, geome-
tries, materials, coatings, surface finishing and physical changes
over time, rises strong robustness and generalization challenges

for traditional analytics [4]. The complexity increases with the
discrepancy between the same processes caused by changes in
the machining parameters and maintenance methods, such as
lubrication of components.

Addressing these challenges, a wide variety of research in
tool health monitoring [5, 6] and few in process quality [7, 8]
has been performed. To enhance the research in the field, some
machining datasets have been published. One of them is the
SMART LAB Milling Dataset [9], which has been collected at
the University of Michigan over 18 different experiments from
direct measurements. The goal of the dataset is to investigate the
tool wear detection as well as detection of inadequate clamping.
A second dataset is from the NASA Milling Dataset [10], which
studies the tool wear based on three different types of sensors,
acoustic emission, vibration and current. However, both exper-
iments were conducted in a laboratory during a short limited
time frame. To the best of the authors knowledge, there exists no
CNC research dataset from a real production environment col-
lected over a long period of time and from different machines.
These conditions are essential to build robust data-driven mod-
els and improve their generalization and thus their reliability in
industry.
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Abstract

Manufacturing processes have undergone tremendous technological progress in recent decades. To meet the agile philosophy in industry, data-
driven algorithms need to handle growing complexity, particularly in Computer Numerical Control machining. To enhance the scalability of
machine learning in real-world applications, this paper presents a benchmark dataset for process monitoring of brownfield milling machines based
on acceleration data. The data is collected from a real-world production plant using a smart data collection system over a two-years period. In this
work, the edge-to-cloud setup is presented followed by an extensive description of the different normal and abnormal processes. An analysis of the
dataset highlights the challenges of machine learning in industry caused by the environmental and industrial factors. The new dataset is published
with this paper and available at: https://github.com/boschresearch/CNC_Machining.
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This paper introduces a new dataset collected during real-life
production. The data is collected from three brownfield milling
CNC machines at different time frames in a two years interval.
The first section of this paper describes the IoT system built to
retrofit the old machinery, ease the data collection and enable
parallel prediction and annotation. The second section provides
in-depth description and analysis of the dataset that will be pub-
lished with this paper. It is followed by an overview of the en-
vironmental and industrial challenges, which have been consid-
ered in a systematic way during dataset creation and annotation.
This allows the scientific community to work on solutions for
these real-world problems and provide comparable results for
benchmarking. More specifically, the dataset has been designed
to address the challenges of feature drifts between machines
and over time, the high diversity of tool operations during pro-
duction and the severe dataset imbalance in terms of number of
samples per class. To overcome these challenges, we propose
some data split scenarios which can be used in future work.

2. Experimental Set Up/ Data Acquisition System

2.1. Hardware components

To keep the research as close as possible to the industrial
scenario, the data is collected from different 4-axis horizontal
CNC machining centers during production. The machines are
processing aluminum workpieces as depicted in Figure 1. For
the data acquisition, we used an indirect method by collecting
accelerometer data from Bosch CISS sensors [11] mounted to
the rear end of the spindle housing. Other approaches opt for
mounting the sensors in the machining area [12, 13, 5, 7]. This
rear area remains unaffected by extreme machining environ-
ment, coolant or material chips and is available for retrofitting
new sensors to brownfield machines. The sensor maintains a
constant distance to the tool center point and the three axes of
the accelerometer are in alignment with the linear motion axis
of the machine. The sensor coordinate system is indicated in
Figure 1.

Fig. 1: Schematic sketch of the experimental setup: 4-axis machining center
with mounted sensor.

Using the low-cost tri-axial CISS sensor, acceleration data is
collected with a sampling rate of 2 kHz. As mentioned in Sec-
tion 3.2.2, most relevant frequencies to monitor the machining

processes are low integer multiples (1..4) of the spindle speed.
For tool operations present in this dataset (see Table 1), these
frequencies will be in the range of 75 Hz to 1 kHz. According to
the Nyquist-Shannon theorem [14], a minimum sampling rate
of 2 kHz is sufficient to detect machine anomalies. Sampling
with this rate along the 3-axes produces an amount of 4.14 GB
per day. Such volumes of data cannot be fully stored and pro-
cessed in on-premise solutions. It demands a smart data mining
system to collect, store, annotate, process and learn from the
gathered data.

2.2. Software Architecture for Data Collection

To have reliable annotation, continuous data collection and
simultaneous Machine Learning (ML) evaluation, we require
an IoT architecture which enables:

1. central aggregation of selected anomalies and processes
across different machining centers and locations,

2. local storage and processing of raw sensor data including
event annotation by product experts,

3. aggregation of annotated data in a central database,
4. centralized training of ML models, and
5. management and deployment of models and modules from

the cloud to the edge device.

Sun et al. [15] proposes the offloading of the ML inferenc-
ing to on-premise servers to improve the communication effort
and latency. In similiar fashion, Yigitoglu et al. [16] proposed
a framework for Fog computing. Motivated by both works
[16, 15], the data collection system presented in this work is
characterized in an edge-to-cloud architecture. The main goal
of this architecture is the simplification of data annotation, the
use of expert knowledge in the shop floor, and the centralized
storage of annotated data in the cloud. Through an anomaly de-
tector module, potential events and anomalies are pre-selected
for annotation. In this section, we outline the edge-to-cloud data
collection system.

2.2.1. Edge stack

Fig. 2: Concept and interaction of containers in the edge stack.
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The edge stack represented in Figure 2 describes the mod-
ules running in the production line on site. The modules are
managed from the cloud side by an orchestration client running
on the edge device. A messaging bus using the Message Queu-
ing Telemetry Transport (MQTT) protocol provides a standard-
ized interface for local inter-application communication. The
data gathering and annotation system involves multiple mod-
ules. Firstly, a data gathering module establishes a connection
to the accelerometer sensor and triggers the read. The data
stream is afterwards published on the message bus. Secondly,
the data stream is subscribed by a ML module, which with pre-
dictions on the stream, supports the quality check process by
pre-selecting the correct time frame for anomalies. This allows
time-delayed annotations to be entered by the end-of-line qual-
ity check, while retaining the majority of data only in the edge
time-series database. Ultimately, a dashboard allows the visu-
alization of the ML pseudo-labels and manual annotation via
the user interface. Once an event is validated by the experts,
the corresponding data segment gets acquired and queried for
upload to the cloud. The major benefit of the architecture is the
collaboration of data science and domain expertise. It allows ad-
ditionally in-place distribution of updated ML modules, which
support and improve data annotation.

2.2.2. Cloud Stack
Publishing large-scale dataset, training ML models centrally

or aggregating data from multiple edge devices require a cloud
stack. Figure 3 presents the data flow and the main components
required in the cloud. Annotated vibration fragments from edge

Fig. 3: Services and building blocks in cloud stack.

devices get streamlined to the central data storage. Using the
vibration fragments from the central data storage, the data is
segmented and preprocessed. Since annotating high frequency
data can be very challenging for human experts, verification of
correctness of the labels is essential. After verification, the ML
model is (re-)trained, gets build and registered in the Container
Registry. The edge device management communicates the new
model version to the local server. Using this paradigm, we suc-
cessfully improve our models at the edge through the continu-
ous collection of anomalies.

3. New CNC Machining Dataset

The overall goal of this paper is to enhance the scalability
of machine learning in real-world applications by presenting a
dataset containing the main challenges that hinder the reliability

of ML algorithms in the manufacturing environment. The chal-
lenges are caused on the one hand by the variation of material
components (spindle, machining tools, raw material produced,
etc.) due to wear or discrepancies in the physical structure of
parts across machines, and on the other hand by the frequent
changes in the production flow as a result of customer require-
ments and technological progress.

The following section presents the dataset and the various
process operations. We introduce how we systematically embed
the real-world challenges into the collected data.

3.1. Data Description

The data is collected in a production plant from 3 different
CNC machines (M01, M02 and M03) on a regular basis during
the time interval of October 2018 to August 2021. The time
frame is tagged as ”Month Year” and represents the 6-month
interval before the label. For example, ”Aug 2019” would refer
to the period between February 2019 and August 2019.

The machine performs a sequence of several operations us-
ing different tools on aluminium parts to work the specified de-
sign. It is important to mention that the machines produce dif-
ferent parts and the process flow changes over time. To study
the drift between machines and over time, the dataset is built
with 15 different tool operations that run on all 3 machines at
different time frames. Table 1 gives an overview on the charac-
teristics of the different operations.

Table 1 Tools operations collected from M01, M02 and M03.

Tool op-
eration

Description speed
[Hz]

feed
[mm s−1]

duration
[s]

OP00 Step Drill 250 ≈ 100 ≈ 132
OP01 Step Drill 250 ≈ 100 ≈ 29
OP02 Drill 200 ≈ 50 ≈ 42
OP03 Step Drill 250 ≈ 330 ≈ 77
OP04 Step Drill 250 ≈ 100 ≈ 64
OP05 Step Drill 200 ≈ 50 ≈ 18
OP06 Step Drill 250 ≈ 50 ≈ 91
OP07 Step Drill 200 ≈ 50 ≈ 24
OP08 Step Drill 250 ≈ 50 ≈ 37
OP09 Straight

Flute
250 ≈ 50 ≈ 102

OP10 Step Drill 250 ≈ 50 ≈ 45
OP11 Step Drill 250 ≈ 50 ≈ 59
OP12 Step Drill 250 ≈ 50 ≈ 46
OP13 T-Slot Cut-

ter
75 ≈ 25 ≈ 32

OP14 Step Drill 250 ≈ 100 ≈ 34

For sake of confidentiality the tool operations order has been
shuffled and only a part of the production flow is present in the
dataset. Each operation in the table represents a specific process
performed by a different tool with unique parameters.

As described in the experimental set-up, the data has been
collected from the accelerometer with no further information
from the machine’s controller. Figure 4 gives an overview on
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Fig. 4: Overview of the segmentation step of the different tool operations. The
X, Y, Z acceleration axes of 4 sequential tool operations are illustrated. The tool
number is mentioned in the upper border.

the collected acceleration data from a machining sequence. The
data is then manually segmented and structured in the research
database. Having no connection to the controller hinders the au-
tomated segmentation and thus the process-wise anomaly de-
tection. A non-intrusive solution to monitor and prevent pro-
cess failures consist of windowing the data stream with a fixed-
sized window length and processing the windows steam inde-
pendently from the process ID.

3.2. Real-world Challenges

Generalization is still one of the primary challenges for in-
dustrial ML due the continuous disturbances. Driven by mar-
ket demand and technical progress, CNC machining produc-
tion processes are constantly changing with R&D advancement,
which goes along with modifications in the tool process oper-
ations. Another type of disturbance is caused by the noisy en-
vironment in the shop floor and the high imbalance of the nor-
mal/abnormal classes. This section presents the different indus-
trial challenges based on the Bosch CNC Machining Dataset
described in the previous section.

3.2.1. Environmental challenges
During machining, the different process operations are con-

ducted in high-speed, requiring a frequent mounting and un-
mounting of tools on the spindle chuck. These factors lead oc-
casionally to process failures mainly caused by tool misalign-
ment, chip clamping, chip in chuck, tool breakage, etc. To reach
the optimal product quality, after each batch an expert on the
shop floor controls the resulting workpiece in a gauging station
and annotate the process health. Nevertheless, labeling during
production is still very challenging. Due to the manual drudgery
gauging, some processes are wrongly labelled and precise an-
notations are missing. The published dataset focuses on the
quality process failures, i.e., the OK class refers to a healthy
process and NOK refers to a faulty process.

A common challenge in industrial datasets is the strong
OK/NOK unbalance, especially in process monitoring tasks.
Figure 5 shows an unbalance rate of 816:35 between the
OK/NOK in our dataset. In our real production, the amount of
OK samples are significantly higher. To provide an exemplary
dataset, a reasonable number of OK processes were selected

Fig. 5: Class distribution per process operation.

from the different time periods, which reduces the class imbal-
ance.

Besides the process failures, some condition anomalies oc-
cur and are detected only after machine maintenance. These
anomalies are caused mainly by components wear, hydraulic is-
sues, incorrect settings, etc. However, before reaching a critical
phase, a slight deterioration/change over time is seen, causing
additional noise in the vibration data. This causes a drift in the
OK class between different time frames. In addition to ageing
drift, a discrepancy between the conditions of the machines and
machine components increases the challenge in real-world ap-
plications. The within-class discrepancy over time and between
machines is studied in Figure 6.

Fig. 6: Example of feature maps of 3 different OPs reduced into 2D using prin-
cipal component analysis [17]. (a) plots the drift between the 3 machines (in
Aug 2019). (b) plots the drift between the 3 largest time frames (in M01).

Considering the data stream challenges, the raw data from
3 different processes are first snipped using a sliding window
with window length equal to 4096. This value has been de-
fined empirically, due to the nature of the collected data and
the known process steps. From each window, the most com-
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mon features for industrial time-series data are extracted using
a generic feature extractor Tsfresh [18]. This includes summary
statistics, characteristics of samples distribution and observed
dynamics. To visualize the discrepancies, the high-dimensional
features have been reduced to 2 dimensions using principal
component analysis [17]. Figure 6.a visualizes the discrepancy
cross-machines in a single time interval (Aug 2019) and high-
lights the challenge of scaling data-driven algorithms to solve
industrial tasks. In a similar manner, in Figure 6.b, the drift of
the data over time is depicted for the 3 largest time intervals
from a single machine (M01).

To encounter the mentioned challenge, generalization of the
ML models must be the main evaluation criteria. By building
the training dataset, some processes should be kept aside to
evaluate the performance of the models. The dataset published
with this paper provides suitable content and structure to en-
able ML researchers to develop more robust models for such
unavoidable environmental challenges from real life.

3.2.2. Industrial challenges
To enhance the ML generalization, our dataset presents an

example of 15 different tool operations. As mentioned previ-
ously, each OP is characterized by a unique parametrization
that results in different patterns in the time series signal, mak-
ing it difficult to predict health status. Using the same pipeline
as in Section 3.2.1, the features are extracted from the different
OPs and the high-dimensional extracted features are mapped
in a two-dimensional space using principle component analy-
sis [17]. An overview of the reduced features is presented in
Figure 7.

Fig. 7: Feature maps of the complete dataset reduced into 2D using principle
component analysis [17].

In Figure 7, the distancing between the OKs and NOKs of
the different OPs is illustrated. Some processes of the NOK
class are easily distinguishable from the OK class. In others,
it is difficult to distinguish between the OK class and the NOK
class due to the difference in severity of the anomaly’s impact.
An example is shown in Figure 8, where a comparison between
OP07 and OP08 in time and frequency-domain is conducted. It
shows that the impact is more severe in OP07 than in OP08 and

a clear divergence between the two processes in both time and
frequency domains. However, a common observation is that the
anomaly can be detected in frequencies which are integer mul-
tiples of the spindle speed. For this example of OP07, the fre-
quency characteristics in the 200 Hz and 400 Hz regions there-
fore have visibly higher amplitude compared to the healthy pro-
cess.

Fig. 8: Comparison of 2 different tool operations: OP07 vs. OP08.

To achieve rapid processing and non-intrusive solutions,
time series signals are usually windowed at fixed length (WS).
This technique is generally used as a data augmentation tech-
nique, especially for NOK data. The drawback of segmenting
NOK data is that the label of small segments may not corre-
spond to the complete process. This effect is mainly observed in
the first and last extracts, where anomalies are not present yet.
When labelling the published data, we truncated the start and
end of the OP from the NOK samples. However, this issue can
appear in the middle of the process due to fast position change.
This can be seen in Figure 9, where a small snippet from the
middle of OP08 of the OK and NOK classes matches exactly.
To encounter this issue, a reasonable choice of WS needs to be
defined.

The CNC Machining dataset provides the needed variety of
samples and classes with different levels of discrimination that
allow the research community to work on solutions in a sys-
tematic way and investigate the robustness of the data-driven
methods to industrial challenges.

3.2.3. Dataset partitioning
By publishing this dataset, we encourage the research of ML

models and learning techniques for noisy time-series data. To
realistically measure performance in the real-world challenges,
we propose three strategies for partitioning the CNC Machining
dataset. With a machine-wise partitioning, as in Figure 10.a, the
ability to perform on a new machine outside the training set
is addressed. Using time-wise partitioning, as in Figure 10.b,
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Fig. 9: Data segmentation causing faulty labels. Data taken from
”OP08 Feb2019 000” and windowed with ws = 1000. For sake of perfect over-
lap, the OK sample is cropped to the range [4650, 64231].

we address a data drift over time, by withholding some time
intervals exclusively for validation and testing.

Fig. 10: Three strategies for dataset partitioning.

We intentionally suggest doing this already for the validation
set and not only for the test set to be able to check overfitting
during training. A third option for partitioning is the application
of the same strategy on each process as in Figure 10.c.

4. Conclusion

Generalization is still a major challenge for industrial ML
applications. To overcome this limitation, we proposed in this
paper a challenging dataset from a real production plant. We
depicted our smart data collection system based on an edge-
to-cloud IoT architecture. The main benefit of this approach
is, firstly, to retrofit brownfield CNC machinery where a di-
rect measurement is extremely complicated, and secondly, en-
able the data science and domain expertise collaboration. With
the presented system, vibration data has been collected from 3
different machines over a long time-interval. The data analysis
showed that, with a low-cost accelerometer mounted in the rear
side of the machine, process anomalies are detectable. The ad-
vantage of this approach is to avoid the extreme conditions from
the front side, i.e. the machining area. Finally, to enhance ML
and machine monitoring researches, we highlighted the envi-
ronmental and industrial challenges embedded in the presented
dataset. Some dataset scenarios have been proposed to enable
the researchers to work on solutions in a systematic way. Fu-
ture research will focus on development of robust ML architec-

tures. Labeling and segmenting time-series data remain impor-
tant topics and will be further investigated.
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