
Journal of Magnetic Resonance 334 (2022) 107122
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
PEAKIT: A Gaussian Process regression analysis tool for chemical
exchange saturation transfer spectra
https://doi.org/10.1016/j.jmr.2021.107122
1090-7807/� 2021 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: luisa.ciobanu@cea.fr (L. Ciobanu).
Michele Lecis a,b, Solène Bardin a, Catalin I. Ciobanu c, Luisa Ciobanu a,⇑
aNeuroSpin, CEA, Gif-sur-Yvette, Paris-Saclay University, Saclay, France
b Technical University of Munich, Munich, Germany
cBoostrs SAS, Paris, France

a r t i c l e i n f o
Article history:
Received 8 October 2021
Revised 26 November 2021
Accepted 30 November 2021
Available online 4 December 2021

Keywords:
Chemical Exchange Saturation Transfer
(CEST)
Z-spectrum
Peak detection
Noise level
Gaussian process regression
User interface
Python
Tkinter
a b s t r a c t

Chemical Exchange Saturation Transfer (CEST) is a powerful technique for metabolic imaging, capable of
exploring concentrations in the lM to mM range. However, extracting quantitative information from Z-
spectra can be challenging due to the non-CEST contributions present and the limited knowledge about
the exchanging pools. The PEAKIT tool is proposed as an alternative approach to quantifying CEST peaks,
which requires no prior assumptions about the frequency offset or the underlying shape of the baseline.
Specifically, the tool takes as input an experimental Z-spectrum and proceeds to identify peak candidates.
After a baseline estimation based on Gaussian Process regression, PEAKIT outputs the chemical shift off-
sets, the areas, the heights and the statistical significance of the detected peaks. The performance and
limitations of the PEAKIT tool are discussed for in vitro and in vivo applications.

� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Chemical Exchange Saturation Transfer (CEST) has been suc-
cessfully used for the in vivo detection of numerous metabolites
including glutamate [1], glucose [2], creatine [3], lactate [4] and
myoinositol [5]. The technique takes advantage of the exchange
between the water protons and the protons within the metabolites
of interest whose magnetization is selectively saturated for suffi-
ciently long times to allow the subsequent saturation of the bulk
water magnetization. The most straightforward way to analyse
the CEST data is by computing the difference between the signals
obtained upon radio frequency irradiations at two frequencies
symmetric with respect to the water frequency, normalized to
the signal obtained in the absence of saturation. This quantity,
named CEST ratio or Magnetization Transfer Ratio Asymmetry
MTRasym
� �

[6], can be used to produce frequency-specific CEST
maps. However, such maps fail to reflect CEST-only effects in the
presence of confounding factors such as asymmetric magnetization
transfer (MT) effects [7] or upfield Nuclear Overhauser Enhance-
ment (NOE) effects [8]. The NOE effect is particularly problematic
for metabolites with CEST contributions in the 3 to 4 ppm range, as
it has a large resonance peak at negative 3.5 ppm.

Alternative analysis methods model the measured spectral CEST
signals (Z-spectra) as non-linear combinations of Lorentzian func-
tions corresponding not only to the metabolites of interest, but also
to the bulk water, the MT, and the NOE pools [9]. These approaches
can extract information from overlapping peaks, but have the
drawback that require a priori knowledge of the number of pools
and their corresponding frequency shifts. Methods for finding the
exchange rate and the labile proton ratio by fitting numerical or
approximate analytical solutions of the Bloch-McConnell equations
have also been proposed [10,11]. They typically require long acqui-
sition times, can be computationally demanding, and may intro-
duce errors due to the approximations made in using analytical
solutions. Recently, the use of magnetic resonance finger printing
(MRF) for CEST quantification has been reported both on phantoms
and in vivo [12,13]. The accuracy of the results obtained with MRF
depends on the size of the dictionaries used for matching the
experimental CEST data. Deep neural networks can help improve
this accuracy [14].

In this manuscript, we focus on developing a simple approach
for detecting CEST peaks without making any assumptions about
the frequency offset or the underlying line shape of the CEST
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response. To this end, we have built a software tool (PEAKIT) which
identifies statistically-significant peaks and calculates the peak
height, area and statistical significance. The baseline, necessary
for peak characterization, is estimated locally using a Gaussian Pro-
cess regression model and is therefore minimally impacted by
direct water saturation and NOE effects.

Compared to Lorentzian fits or the more complex Deep Neural
Networks regression, Gaussian Processes (GP) are non-parametric
models, well suited for problems in which the training data is rel-
atively small. By construction GP predictions are not subject to
large gradient variations which occasionally cause parametric
models to diverge. One drawback of the GP approach is the associ-
ated computation time, which increases strongly with the number
of training points considered. A comparison between GP and other
machine learning methods is discussed in Ref. [15].
2. The PEAKIT software tool

PEAKITwas developed with Python 3.8 and provided with a user
interface through the tkinter package (Fig. 1). The tool takes as
input a spectrum consisting of saturation offsets on the x axis
and the normalized signal intensities on the y axis, and it outputs
the location (chemical shift offset) of each detected peak along
with the peak’s height, area and statistical significance (p-value).
The user can specify whether the software should look for positive
or negative peaks. By default, negative peaks are expected; in order
to analyze positive peaks the box ‘‘up” has to be checked (see
Fig. 1). There are three steps to the PEAKIT algorithm, correspond-
ing to (i) the peak detection, (ii) the baseline estimation, and (iii)
the p-value computation, respectively. A detailed description of
each of these three steps is given in the following sections.
Fig. 1. Screenshot of the entry page of the PEAKIT software tool. The user can navigate the
results and it updates according to the selection made by the user.
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2.1. Peak detection

The peak detection process (Fig. 2) is based on an iterative
approach exploiting the local properties of the spectrum [16].

Specifically, for each point i of coordinates ðxi; yiÞ , a slope ai is
computed as follows:

ai ¼ yiþ1 � yi
xiþ1 � xi

Furthermore, at any point i we compute the moving average of
the r preceding slopes as follows:

ai
� ¼ 1

r

Xi�1

j¼i�r�1

aj

where r is the number of consecutive points preceding point i. The
appropriate choice of r depends on the noise level as well as on the
shape of the spectrum: a dataset with numerous small peaks
requires small values of r as the slope varies rapidly.

PEAKIT algorithm detects the apparition of a peak at point ib
(henceforth referred to as the beginning of the peak) if the following
two conditions are met simultaneously:

aib � aib

�
> D ð1aÞ

aibþ1 � aib

�
> D ð1bÞ

where the threshold D is a free positive parameter which can be
defined by the user. Specifically, in the PEAKIT tool, D is expressed
as a percentage of the maximum ai present in the spectrum; the
user may input any D value between 0 and 100 (see Fig. 1). We
make the following observations related to the choice of this
parameter:
various functionalities from the panel on the right. The plot on the left displays the



Fig. 2. Schematic representation of the peak detection process. The algorithm
computes the slopes successively, checking at every step whether the peak
conditions (1a) and (1b) are satisfied. For each identified peak, the algorithm
outputs a set of three points: the beginning (ib), the maximum (im), and the end (ie)
of the peak. The slopes ai are defined in the text.
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- Setting D = 0 implies that a peak is detected when the slopes at
two consecutive points ib and ib + 1 exceed the moving average
at point ib .

- In case of noisy shapes, two random fluctuations occurring con-
secutively may trigger the detection of a peak when none is in
fact present. In these cases, setting a higher thresholdD helps to
reduce the rate of false positives and thus to improve the preci-
sion of peak detection.

- Finally, setting D = 100 guarantees that neither of the condi-
tions (1a) and (1b) will be met, and, as a result, no peak will
be found.

As soon as the detection of a peak is triggered, the PEAKIT algo-
rithm scans through the points ib + 1, ib + 2, . . . until the peak max-
imum is reached at point im:
Fig. 3. Based on the training points (green markers), the GP regression produces, for
all points in the peak region, a baseline shape {bi} (orange line) along with their
standard deviations {rig (shaded band). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
aim � aib

�
< D� ð2Þ

Thus, the maximum is detected when the slope is found to be
smaller than the moving average recorded at the beginning of

the peak (aib

�
), net of a threshold parameter D*. The default value

of D* is set to 0, as in the most common cases it is sufficient that

aimþ1 � aib

�
is negative. In the case of adjacent and partially overlap-

ping peaks it may be necessary to increase the D* value (between 0
and 100) to prevent detecting multiple peaks as a single one.
(Note: For positive peaks, the inequalities (1a), (1b) and (2) reverse
signs.)

By default, the PEAKIT algorithm assumes the peak to be sym-
metric and adds an equal number of points to the right side of
the peak maximum to complete peak detection. Thus, the end of
the peak will occur at point ie = 2im � ib. In conclusion, the output
of the peak detection process consists of a set of three points for
each detected peak: ib , im , and ie corresponding to the beginning,
the maximum, and the end of the peak, respectively. The ‘‘rev”
checkbox (see Fig. 1) can be used to reverse the direction of the
scan: for asymmetric peaks, the algorithm may perform better in
one of the two directions (e.g., in case the discontinuity of the slope
is more pronounced).

In cases in which the result of the automated peak detection
algorithm is judged to be inaccurate, the selection of the peak
can also be made manually, by entering the beginning and the
3

end values of the peak in the ‘‘point_min” and ‘‘point_max” fields,
respectively. Regardless of how the peak was selected (automati-
cally or manually), there is no impact on the subsequent steps of
the analysis which include the baseline estimation and the peak
significance computation, described in Sections 2.2 and 2.3,
respectively.
2.2. Baseline estimation

In this section, we describe the baseline estimation for each
detected peak. In essence, the baseline level estimates the shape
of the spectrum if the detected peak were absent. Under this
hypothesis, the baseline profile fbig should match the spectrum
fyig located just outside the peak. To ensure this matching, our
technique uses a set of 2r ‘‘training points” formed by the r points
in the spectrum immediately preceding the peak, and the same
number r of points immediately succeeding the peak.

The baseline estimation process relies on a Gaussian Process
(GP) regression implemented via the GPy Python package [17].
An excellent introduction to Gaussian Processes can be found in
Ref. [15]; this reference notably includes a chapter dedicated to
GP regression which contains the full mathematical details of the
method employed in PEAKIT. Without delving into these details,
we mention that the GP technique produces, for all points {xi}
within the peak region ib � i � ie , the predicted baseline levels
{bi} along with their standard deviations {rig (Fig. 3). The values
frig form the uncertainty band around the predicted baseline
shape. We note that the uncertainty band narrows as r increases.
We also note that, for a given value of r, a noisier dataset
fyib�r ; � � � ; yib�1; yieþ1; � � � ; yieþrg will produce a wider uncertainty
band.

Once the baseline level is established, it is possible to quantify
how much of the height and area of the peak can be attributed
to signal. These contributions are inferred from the observed data
by subtracting the baseline estimation. In addition, we re-compute
the peak center location by identifying the point i in the peak
region of the spectrum for which the difference (yi – bi) is
maximum.
2.3. Peak significance computation

The third and final goal of the PEAKIT tool is to compute a p-
value for each detected peak. If the p-value is smaller than a certain



Fig. 4. Examples of PEAKIT analysis of Z-spectra acquired on carnosine phantoms in PBS at different concentrations: 20 mM (a) and 1 mM (b). The Z-spectra show a significant
peak centered at 3.3 ppm. The peak height (c) and the peak area (d) increase linearly with the metabolite concentration. The Z-spectra were acquired with a nominal spectral
resolution of 0.054 ppm (zero-filled to 0.027) using a saturation power B1 = 1 lT. Each Z-spectrum is the average of 80 transients, for an acquisition time of 21 min.
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threshold (for example, p < 0.005), then the detection of the given
peak is confirmed. If, on the other hand, the p-value exceeds the
threshold (p > 0.005) then the peak is not statistically significant,
and is consequently discarded.

The significance assessment is based on the null hypothesis,
which assumes the detected peak is not due to the CEST signal
but is instead generated by random fluctuations of the noise
around the baseline. In order to test the null hypothesis, noise fluc-
tuations are randomly generated in a Monte Carlo simulation.

Specifically, at every point i in the peak region ib � i � ie we
generate a random number Bi from the Gaussian distribution
whose mean and standard deviation are the predicted bi and ri ,
respectively. The ensemble of values {Bi} forms a pseudo-
experiment, which is simply a spectrum randomly generated from
the baseline shape according to its uncertainty band.

Next, we compute a measure of how consistent this pseudo-
experiment is with the baseline data using a v2 approach:

v2
pseudo ¼

Xie

i¼ib

ðBi � biÞ2
bi

The process is repeated N times to generate a large number of
pseudo-experiments (for example, N = 100,000), and for each
pseudo-experiment we record its corresponding v2 value calcu-
lated using the above equation. The larger its v2 value, the more
the pseudo-experiment will have deviated from the baseline
shape.
4

To estimate the p-value, we compute the fraction of pseudo-
experiments which deviate from the baseline as much as the data
or more, or in mathematical terms the fraction of pseudo-
experiments having v2

pseudo � v2
data , where v2

data given by:

v2
data ¼

Xie

i¼ib

ðyi � biÞ2
bi

where yi are the experimental points and bi are, as in the previous
formulae, the baseline points predicted by the GP regression.

If the detected peak is generated by signal (as opposed to noise),
then the experimental points will deviate significantly from the
predicted baseline shape, resulting in a large value of v2

data . As
consequence, very few pseudo-experiments, if any, will fluctuate
to the level of the experimental data or more (v2

pseudo � v2
data)

and the p-value will consequently be very small. This allows to
reject the null hypothesis and confirm peak detection.

Finally, if none of the pseudo-experiments have v2
pseudo � v2

data,
this implies that the number of pseudo-experiments N is insuffi-
cient for extracting a precise p-value, and an upper bound can be
set: p < 1

N . For example, if N = 100,000 and we register no
pseudo-experiments with v2

pseudo � v2
data then we conclude that

the p-value satisfies p < 0.001%. As a general rule, choosing an
appropriate number N of pseudo-experiments is a trade-off
between ensuring a high statistical precision (larger N is better)
and maintaining a short computation time (smaller N is better).



Fig. 5. PEAKIT analysis of a Z-spectrum acquired in vivo on a rat leg muscle. (a) Downfield region of the spectrum in which are apparent four significant CEST peaks
corresponding to creatine, phosphocreatine, carnosine and APT. The analyses of the creatine and phosphocreatine CEST peaks are shown in (b) and (c), respectively. (d) Zoom
on the 3.0 – 3.6 ppm range showing the PEAKIT analysis of the carnosine CEST peak. The Z-spectrum was acquired with a nominal spectral resolution of 0.054 ppm (zero-filled
to 0.027) using a saturation power B1 = 1lT. Each Z-spectrum is the average of 80 transients, for an acquisition time of 21 min.

Table 1
PEAKIT output obtained on the Z-spectrum in Fig. 5.

Metabolite Peak frequency offset (ppm) Height (a.u.) Area (a.u.) p-value

Creatine 1.93 4.8 ± 0.4 1.55 ± 0.2 <5 � 10�7

Phosphocreatine 2.63 3.6 ± 0.1 (9.3 ± 0.5) � 10�1 <5 � 10�7

Carnosine 3.28 (4.1 ± 0.4) � 10�1 (4.2 ± 0.6) � 10�2 <5 � 10�7

APT 3.46 (3.8 ± 1.5) � 10�1 (4.2 ± 2.4) � 10�2 3.7 � 10�3
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3. Applications

To evaluate the performance of PEAKIT we analyzed CEST
spectra acquired on a 17.2 T pre-clinical scanner (Bruker Bios-
pin, Germany). The CEST acquisitions were performed using an
in-house written linescan CEST pulse sequence developed
according to Ref. [18]. The pulse sequence and all experimental
parameters are described in detail in Ref. [19]. For the in vivo
experiments, all animal procedures were approved by the
French authorities, notably by the Comité d’Ethique en Expéri-
mentation Animale, Commissariat à l’Energie Atomique et aux
Énergies Alternatives, and the Ministère de l’Education Natio-
nale, de l’Enseignement Supérieur et de la Recherche under ref-
erence A15 � 40 and were conducted in strict accordance with
the recommendations and guidelines of the European Union
(Directive 2010/63/EU) and the French National Committee
(Décret 2013–118).
5

3.1. In vitro detection

PEAKIT was used to analyze Z-spectra acquired on phantom
samples containing carnosine, known to present a CEST effect
[20], in phosphate buffer solution (PBS) at pH = 7.2, and tempera-
ture 37 �C, at different concentrations (20 mM, 10 mM, 5 mM,
2.5 mM and 1 mM)

According to the results of the automatic detection, all the
phantoms present a peak centered at 3.3 ppm, as expected. For
baseline estimation thirty training points (r = 15) are used. The
choice of this relatively large number of training points is moti-
vated by the fact that there are no other contributions expected
in the spectrum besides carnosine. Consequently, the uncertainty
around the predicted baseline is narrow (Fig. 4a and 4b) and the
fluctuations generated through pseudo-experiments are small
compared to the peaks, resulting in p-values p < 5 � 10�7 for all con-
centrations studied.
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In addition to position and significance, PEAKIT calculates the
height and the area of each peak. As shown in Fig. 4c and d, both
the height and the area are linearly correlated with the carnosine
concentration. We stress here that although these linear fits can
be used to infer the carnosine concentration from the CEST
response of other similar samples, they cannot be used to unam-
biguously quantify the amount of carnosine present in samples
with a very different composition (e.g. tissue samples). The estima-
tion of the baseline, and therefore the estimated area and height of
each peak, are dependent on the local shape of the Z-spectrum,
which in turn depends on the sample (presence of MT or multiple
peaks, for example) and the experimental parameters. Thus, PEAKIT
is suited to conducting semi-quantitative analyses and comparisons
between spectra generated by very similar samples, and acquired
under the same experimental conditions.
3.2. In vivo detection

To test the performance of the PEAKIT for in vivo acquisitions we
analyzed a Z-spectrum acquired on a rat leg muscle. On the left
side of the spectrum (downfield) we can identify four peaks
(Fig. 5a). At 1.9 and 2.6 ppm we recognize creatine (Cr) and phos-
phocreatine (PCr) [21]. Due to the asymmetric shape of the peaks,
the automatic detection is manually adjusted to the range 2.32–
1.64 ppm for Cr (Fig. 5b) and 2.85–2.32 ppm for PCr (Fig. 5c). The
baseline is estimated considering five training points per side
(r = 5) and the significance assessment returns a p-value < 5 � 10�7

for both peaks, confirming the detection. The peak detected at
3.3 ppm is attributable to carnosine [19], with a p-value
p < 5 � 10�7. The parameter r is lowered to 4, due to the smaller
number of points in the peak (Fig. 5d). The amide proton transfer
(APT) peak [22], centered at 3.5 ppm was also found significant
(p = 3.7 � 10�3). The output results from the PEAKIT analysis of
the four peaks are summarized in Table 1.
4. Conclusion

We report the development and testing of PEAKIT - a software
tool for the detection and characterization of CEST peaks. The per-
formance of the tool was evaluated through the analysis of in vitro
and in vivo CEST data acquired at 17.2 T using a linescan CEST pulse
sequence. The tool is not intended for the detection of highly over-
lapping peaks for which other analysis approaches should be
employed [9,11]. Compared to other existing tools used for the
detection and characterization of CEST peaks, PEAKIT has the
advantage that it does not require assumptions regarding the posi-
tion and the shape of the peaks. The software is easy to use and of
reduced computational cost.

For each detected peak, PEAKIT returns its height, area, and sta-
tistical significance. While these are quantitative measures charac-
terizing the signal, care must be in exerted when interpreting the
analysis results. Specifically, these variables as well as other similar
CEST metrics [23] depend on the RF saturation power levels, the B0

field strength, the exchange rates, and the local shape of the Z-
spectrum. As a result, one cannot directly compare results obtained
from samples having very different molecular composition (e.g.
metabolites in solutions vs tissue samples). Absolute quantification
is possible, however, if an a priori calibration is available, under the
same experimental conditions. We note that PEAKIT can be a help-
ful tool in the characterization of new CEST agents. For in vivo
applications, PEAKIT can be used to monitor metabolic dynamic
processes.

The PEAKIT software is open-source, and freely available for
download from github [24].
6

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements

This project was funded by a public grant overseen by the
French National Research Agency (ANR) and the Deutsche
Forschungsgemeinschaft (DFG) under the project BAMBOO and
by the French Alternatives Energies and Atomic Energy Commis-
sion (CEA).
References

[1] K. Cai et al., Magnetic resonance imaging of glutamate, Nat. Med. 18 (2) (2012)
302–306, https://doi.org/10.1038/nm.2615.

[2] X. Xu et al., D -glucose weighted chemical exchange saturation transfer
(glucoCEST)-based dynamic glucose enhanced (DGE) MRI at 3T: early
experience in healthy volunteers and brain tumor patients, Magn. Reson.
Med. 84 (1) (2020) 247–262, https://doi.org/10.1002/mrm.28124.

[3] M. Haris et al., Exchange rates of creatine kinase metabolites: feasibility of
imaging creatine by chemical exchange saturation transfer MRI, NMR Biomed.
25 (11) (2012) 1305–1309, https://doi.org/10.1002/nbm.2792.

[4] C. DeBrosse et al., Lactate Chemical Exchange Saturation Transfer (LATEST)
Imaging in vivo: a biomarker for LDH activity, Sci. Rep. 6 (1) (2016), https://doi.
org/10.1038/srep19517.

[5] M. Haris, K. Cai, A. Singh, H. Hariharan, R. Reddy, In vivo mapping of brain myo-
inositol, NeuroImage 54 (3) (2011) 2079–2085, https://doi.org/10.1016/j.
neuroimage.2010.10.017.

[6] P.Z. Sun, Simplified and scalable numerical solution for describing multi-pool
chemical exchange saturation transfer (CEST) MRI contrast, J. Magn. Reson. 205
(2) (2010) 235–241, https://doi.org/10.1016/j.jmr.2010.05.004.

[7] J. Hua, C.K. Jones, J. Blakeley, S.A. Smith, P.C.M. van Zijl, J. Zhou, Quantitative
description of the asymmetry in magnetization transfer effects around the
water resonance in the human brain, Magn. Reson. Med. 58 (4) (2007) 786–
793, https://doi.org/10.1002/mrm.21387.

[8] P.C.M. van Zijl, N.N. Yadav, Chemical exchange saturation transfer (CEST):
What is in a name and what isn’t?, Magn Reson. Med. 65 (4) (2011) 927–948,
https://doi.org/10.1002/mrm.22761.

[9] M. Zaiss, B. Schmitt, P. Bachert, Quantitative separation of CEST effect from
magnetization transfer and spillover effects by Lorentzian-line-fit analysis of
z-spectra, J. Magn. Reson. 211 (2) (2011) 149–155, https://doi.org/10.1016/j.
jmr.2011.05.001.

[10] M.T. McMahon, A.A. Gilad, J. Zhou, P.Z. Sun, J.W.M. Bulte, P.C.M. van Zijl,
Quantifying exchange rates in chemical exchange saturation transfer agents
using the saturation time and saturation power dependencies of the
magnetization transfer effect on the magnetic resonance imaging signal
(QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst
dendrimer, Magn. Reson. Med. 55 (4) (2006) 836–847, https://doi.org/
10.1002/mrm.20818.

[11] M. Zaiss, G. Angelovski, E. Demetriou, M.T. McMahon, X. Golay, K. Scheffler,
QUESP and QUEST revisited - fast and accurate quantitative CEST experiments:
QUESP and QUEST Revisited, Magn. Reson. Med. 79 (3) (2018) 1708–1721,
https://doi.org/10.1002/mrm.26813.

[12] O. Cohen, S. Huang, M.T. McMahon, M.S. Rosen, C.T. Farrar, Rapid and
quantitative chemical exchange saturation transfer (CEST) imaging with
magnetic resonance fingerprinting (MRF): Cohen et al, Magn. Reson. Med. 80
(6) (2018) 2449–2463, https://doi.org/10.1002/mrm.27221.

[13] O. Perlman, K. Herz, M. Zaiss, O. Cohen, M.S. Rosen, C.T. Farrar, CEST MR-
Fingerprinting: practical considerations and insights for acquisition schedule
design and improved reconstruction, Magn. Reson. Med. 83 (2) (2020) 462–
478, https://doi.org/10.1002/mrm.27937.

[14] B. Kim, M. Schär, H. Park, H.-Y. Heo, A deep learning approach for
magnetization transfer contrast MR fingerprinting and chemical exchange
saturation transfer imaging, NeuroImage 221 (2020), https://doi.org/10.1016/
j.neuroimage.2020.117165 117165.

[15] C.E. Rasmussen, C.K.I. Williams, Gaussian processes for machine learning, MIT
Press, In accordance with Chapter 2 (‘‘Regression”), we have selected a
squared-exponential covariance function whose hyperparameters are
determined from the training data using a maximum likelihood method.

[16] S.V. Chekanov, M. Erickson, A nonparametric peak finder algorithm and its
application in searches for new physics, Adv. High Energy Phys. 2013 (2013)
1–4, https://doi.org/10.1155/2013/162986.

[17] GPy, GPy: A Gaussian process framework in python, 2018, http://github.com/
SheffieldML/GPy.

[18] X. Xu, J.-S. Lee, A. Jerschow, Ultrafast scanning of exchangeable sites by NMR
spectroscopy, Angew. Chem. Int. Ed. 52 (32) (2013) 8281–8284, https://doi.
org/10.1002/anie.201303255.

https://doi.org/10.1038/nm.2615
https://doi.org/10.1002/mrm.28124
https://doi.org/10.1002/nbm.2792
https://doi.org/10.1038/srep19517
https://doi.org/10.1038/srep19517
https://doi.org/10.1016/j.neuroimage.2010.10.017
https://doi.org/10.1016/j.neuroimage.2010.10.017
https://doi.org/10.1016/j.jmr.2010.05.004
https://doi.org/10.1002/mrm.21387
https://doi.org/10.1002/mrm.22761
https://doi.org/10.1016/j.jmr.2011.05.001
https://doi.org/10.1016/j.jmr.2011.05.001
https://doi.org/10.1002/mrm.20818
https://doi.org/10.1002/mrm.20818
https://doi.org/10.1002/mrm.26813
https://doi.org/10.1002/mrm.27221
https://doi.org/10.1002/mrm.27937
https://doi.org/10.1016/j.neuroimage.2020.117165
https://doi.org/10.1016/j.neuroimage.2020.117165
https://doi.org/10.1155/2013/162986
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://doi.org/10.1002/anie.201303255
https://doi.org/10.1002/anie.201303255


M. Lecis, Solène Bardin, C.I. Ciobanu et al. Journal of Magnetic Resonance 334 (2022) 107122
[19] S. Bardin, M. Lecis, D. Boido, F. Boumezbeur, L. Ciobanu, First in vivo detection
of carnosine using CEST, in: Presented at the ISMRM, Montréal, QC, Canada,
May 2021.

[20] O. Bodet, S. Goerke, N.G.R. Behl, V. Roeloffs, M. Zaiss, P. Bachert, Amide proton
transfer of carnosine in aqueous solution studied in vitro by WEX and CEST
experiments: study of amide proton transfer in carnosine-water system, NMR
Biomed. 28 (9) (2015) 1097–1103, https://doi.org/10.1002/nbm.3343.

[21] K. Pavuluri, J.T. Rosenberg, S. Helsper, S. Bo, M.T. McMahon, Amplified
detection of phosphocreatine and creatine after supplementation using CEST
7

MRI at high and ultrahigh magnetic fields, J. Magn. Reson. 313 (Apr.) (2020),
https://doi.org/10.1016/j.jmr.2020.106703 106703.

[22] J. Zhou, J.-F. Payen, D.A. Wilson, R.J. Traystman, P.C.M. van Zijl, Using the amide
proton signals of intracellular proteins and peptides to detect pH effects in
MRI, Nat. Med. 9 (8) (2003) 1085–1090, https://doi.org/10.1038/nm907.

[23] H. Heo et al., Insight into the quantitative metrics of chemical exchange
saturation transfer (CEST) imaging, Magn. Reson. Med. 77 (5) (2017) 1853–
1865, https://doi.org/10.1002/mrm.26264.

[24] https://github.com/SKMikee/PeakIt.

https://doi.org/10.1002/nbm.3343
https://doi.org/10.1016/j.jmr.2020.106703
https://doi.org/10.1038/nm907
https://doi.org/10.1002/mrm.26264
https://github.com/SKMikee/PeakIt

	PEAKIT: A Gaussian Process regression analysis tool for chemical exchange saturation transfer spectra
	1 Introduction
	2 The PEAKIT software tool
	2.1 Peak detection
	2.2 Baseline estimation
	2.3 Peak significance computation

	3 Applications
	3.1 In vitro detection
	3.2 In vivo detection

	4 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


