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Motivation
• Scientific Approach: Experiment with different strategies for combining (Spatially Adaptive) Sparse Grids (SG) with

Uncertainty Quantification (UQ) and Sensitivity Analysis (SA) algorithms
• Final Goal:

Efficient UQ and SA of complex dynamical models (e.g., HBV-SASK hydrologic model [1]) by utilizing (adaptive) Sparse Grids
• Impediments:
− High-dimensionality
− High (model) execution time
− Model as a black box
− Possible discontinuities in the parameter space; anisotropic or decoupled parameters
− Output of the model - time signal
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Building Blocks
• Sparse Grid (SG)
− Standard SG and Combination Technique
− Spatially Adaptive SG
− SparseSpACE Framework

• Non-intrusive UQ and SA
• UQ with SG
− Different variant
− Initial results

• UQ with SG for Time-dependent models
− Initial results
− Future works
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Sparse Grid

Main problem: With high-dimensional problems the number of grid points in a regular grid increases exponentially

Sparse Grids Idea [4]: Selecting points that contribute most to the solution given certain smoothness criteria
[⇒] Reduction of point numbers from O(Nd ) to O(Nlog(N)d−1)

Sparse Grids can be constructed in various ways:

• hierarchization, combination technique, adaptivity...
• different basis functions (e.g., linear hat, Lagrange poly, b-splines etc.)
• or the point positions/ grid types (e.g., equidistant grids, Clenshaw-Curtis, Leja)
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Sparse Grid & Combination Technique

Combination Technique (CT) [5]:
Efficient SG computation by linearly combining computations on cheap/coarser anisotropic full grids (e.g., component grids)
For these full grids any conventional full grid solver can be applied

uCT
I = ∑

l∈I
clud

l = ∑
l∈I

∑
l≤i≤l+1,i∈I

(−1)‖i−l‖1ud
l , I = {l ∈ Nd | ‖l‖1 = l + d−1} (1)

cl scalar coefficients streaming from the combinatorics of the difference formulation

Abbildung: Combination technique represented via subspaces, grid components and the final resulting sparse grid; green component grids are added and
orange ones are subtractedI. Jovanovic Buha (TUM) | Sparse Grids and Applications Seminar 2024 | Efficient FUQ and SA with Spatially Adaptive SG 5



Spatially Adaptive Sparse Grid

General assumptions of standard SG - similar contribution of all dimensions to the result and an overall smoothness
throughout the domain

• Dimension Adaptivity [6, 7] - different dimensions or interactions between them contribute in different magnitudes to the
solution; adjusting the index set in CT

• Spatial Adaptivity - often different resolutions are required at different parts of the domain; do not add full subspaces but only
specific points to the SG

− Drawback: Standard CT offers no spatial adaptivity

− CT with Spatial Adaptivity - use rectilinear grids constructed via a tensor product of refined 1-D grids [2]
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Spatially Adaptive Sparse Grid

Combination Technique with Dimension-Wise Refinement [2]
CT with Spatial Adaptivity - use rectilinear grids constructed
via a tensor product of refined 1-D grids

Key components:

• 1D refinements define the adaptive process
• Creating a global valid combination scheme from 1D

refinements
• Special error estimators guide the refinement
• Data structure and tree rebalancing for better performance
• SparseSpACE Framework

https://github.com/obersteiner/sparseSpACE
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Spatially Adaptive SG CT & SparseSpACE Framework

Key components:
• Step 1: 1D refinements define the adaptive process
− look at every child in a grid and refine based on error

approximation
− error estimator
• compute for each leaf node p ∈ Pk , for each dim. k ∈ [d] over all grids
• for grid l error estimate ε

k ,l
p is 1D surplus value weighted by the volume of the

respective basis function
• εk

p = ∑l∈I |cl · εk ,l
p |

• refine every point p with error estimate |εk
p | ≥ γ · εmax (e.g., γ = 0.5)

• global error - ε = ∑
d
k=1 ∑

|Pk |
j=1 |εk

j |

− output [⇒] vector Pk of points and respective point levels
Lk for each dimension k ∈ [d ]
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Spatially Adaptive SG CT & SparseSpACE Framework
Key components:
• Step 1: 1D refinements define the adaptive process
• Step 2: Creating a global valid combination scheme from 1D

refinements
− Step 2.1: create the index set based on the maximum

levels lmax per dimension; where lmax
k = max(Lk )

I = {l ∈ Nd |‖l‖1 ≤max(lmax ) + d−1, li ≤ lmax
i

∨ (li = lmax
i , lk = 1,k ∈ [d ]/i)}

(2)

− Step 2.2: define set of points Pk ,l ⊆ Pk for each level
vector l (i.e., Pk ,Lk ⇒ Pk ,l ,Lk ,l )

− Ensure validity of combination scheme

Pk ,i ⊆ Pk ,j for i, j ∈ I,k ∈ [d ], j ≥ i (3)

Pk ,i = Pk ,j for i, j ∈ I,k ∈ [d ], ik = jk (4)
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SparseSpACE Framework - creating component grids

Comparison of two strategies for creating component grids in SparseSpACE
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Spatially Adaptive SG CT & SparseSpACE Framework

Complete algorithm:

• iterate over all component grids and calculate the 1D grid
points for level vector l ∈ I (i.e., Pk ,Lk ⇒ Pk ,l ,Lk ,l )

• build via tensor construction the d-dimensional rectilinear
grids

• compute approximation (e.g., interpolation or quadrature
integration)

• compute error estimates for all leaf points
• refine every point ε

k ,l
p with error estimate |εk

p | ≥ γ · εmax (e.g.,
γ = 0.5)

• perform tree rebalancing for each dimension (update Pk ,Lk )
• continue until tol. reached or max. num. of model evaluations

• Example of the final approximation
(e.g., integration via quadrature approximation)

uSCT
I = ∑

l∈I
cl · ∑

i∈∏
d
k=1[|Pk ,l |]

(
f (θ

i)
∫

θ∈Ω
Ψi(θ )dθ

)
(5)

(e.g., interpolation)

usct
I = ∑

l∈I
cl · ∑

i∈∏
d
k=1[|Pk ,l |]

(
f (θ

i)Ψi(θ )
)

(6)

• Ψi(θ ) are corresponding basis function assigned to point θ
i

with θ i
k = Pk ,l

ik
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Non-intrusive Uncertainty Quantification
General Polynomial Chaos Expansion (gPCE) [8] of f (t ,θ ) : T×Γ→ R, reads:

f (t ,θ )≈ fN(t ,θ ) = ∑
p

cp(t)Φp(θ ) = ∑
p
< f (t ,θ ),Φp(θ ) >ρ(θ) Φp(θ ) (7)

• stochastic part - θ = (θ1,θ2, . . . ,θd )T ;θ : Ω→ Γ and ρ(θ ) = ∏
d
k=1 ρk (θk )

• p = (p1, . . . ,pd ) is a multi-index in PP = {p ∈ Nd : ∑
d
k=1 pk ≤ P},

• Φp(θ ) are orthonormal multivariate polynomials constructed via a tensor
product basis of the univariate polynomials Φp(θ ) = Φp1(θ1) · . . . ·Φpd (θd )

Pseudo-spectral projection (PSP) - uses (full tensor) quadrature rule to approximate the coefficients of the gPCE

cp(t) = E[f (t ,θ )Φp(θ )]≈ ĉp(t) =
Q

∑
q=1

f (t ,θ q)Φp(θ
q)ω

q (8)

Total number of coefficients: N =
(P+d

d

)
Total number of model evaluations: Q = ∏

d
k=1 Qk ; and it has to hold - pk = floor(DE(Qk )/2) [9]
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Non-intrusive Uncertainty Quantification
Post-processing & Sensitivity Analysis

Quantify uncertainty of f (or O(f )) by computing, e.g.

E [f ] =
∫

Γ
f (t ,θ )ρ(θ )dθ ; Var [f ] = E [f 2]− (E [f ])2 (9)

Variance-based (Sobol) sensitivity analysis

ST
k =

Var(f )−Var(E(f |θ−k ))

Var(f )
=

E(Var(f |θ−k ))

Var(f )
(10)

Use gPCE coeff. to approximate expectation and variance:

E[fN(t ,θ )] = c0(t) Var [fN(t ,θ )] = ∑
N−1
position(p)=1 c2

p(t) (11)

Use gPCE coeff. to compute Sobol’ indices (SI)[2]:

ST
k =

∑p∈Ak
c2

p(t)
Var [fN(t ,θ )]

, Ak = {p ∈PP ∧pk 6= 0} (12)
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UQ & Sparse Grids I

Multiple ways how to combine the gPCE (i.e., PSP) and SG.
So far SparseSpACE framework & UQ - adaptive SG integration quadrature rule used for computing integrals in E [O(f )] and
Var [O(f )]

Var 1: Sparse Quadrature (i.e., Sparse PSP)

Var 2: Sparse Interpolation Surrogate (i.e., fSGI) + PSP
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UQ & Sparse Grids II
Multiple ways how to combine the gPCE (i.e., PSP) and SG

Var 1: Sparse Quadrature (i.e., Sparse PSP)

ĉn,I(t) = ∑
l∈I

cl ·Sk
l,n

= ∑
l∈I

cl · ∑
i∈∏

d
k=1[|Pk ,l |]

(
f (t ,F−1(θ

i))Φn(F−1(θ
i))
∫

θ∈[0,1]d
Ψi(θ )dθ

)
= ∑

l∈I
cl · ∑

i∈∏
d
k=1[|Pk ,l |]

(
f (t ,F−1(θ

i))Φn(F−1(θ
i))ω

i
) (13)

Problem with spatially adaptive approach - single adaptive SG integration rule needed for all the integrals ĉn,I

Var 2: Sparse Interpolation Surrogate (i.e., fSGI) + PSP

where Ψi(θ) are basis functions of the SG scheme, Φn(θ) are basis polynomials of the PCE, n ∈ [N] is a scalar index of the gPCE coeff. ĉn, and cl is a
scalar coeff. streaming from CT; F−1 : [0,1]d → Γ is an isoprobabilistic transformation of the variables in the probability space.
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UQ & Sparse Grids III
Multiple ways how to combine the gPCE (i.e., PSP) and SG

Var 1: Sparse Quadrature (i.e., Sparse PSP)

Var 2: Sparse Interpolation Surrogate (i.e., fSGI) + PSP

ĉn,I(t) =
∫

θ∈Γ
fSGI(t ,θ )Φn(θ )ρ(θ )dθ

=
∫

θ∈[0,1]d

∑
l∈I

cl · ∑
i∈∏

d
k=1[|Pk ,l |]

f (t ,F−1(θ
i))Ψi(θ )


︸ ︷︷ ︸

fSGI

Φn(F−1(θ ))dθ

= ∑
l∈I

cl · ∑
i∈∏

d
k=1[|Pk ,l |]

f (t ,F−1(θ
i))
∫

θ∈[0,1]d
Ψi(θ )Φn(F−1(θ ))dθ

(14)

where Ψi(θ) are basis functions of the SG scheme, Φn(θ) are basis polynomials of the PCE, n ∈ [N] is a scalar index of the gPCE coeff. ĉn, and cl is a
scalar coeff. streaming from CT; F−1 : [0,1]d → Γ is an isoprobabilistic transformation of the variables in the probability space.
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UQ & Sparse Grids - Initial Results
Variant Method Interpolation method (SGI) quadrature method gPCE

Var 1

m1 no Full Gauss-Legendre yes

m2 no (Sparse) Clenshaw-Curtis yes

m3 no (Sparse) delayed Kronrod-Patterson[3] yes

Var 2
m4 (piecewise linear) standard CT Gauss-Legendre (high order) or analytical computation yes

m5 (piecewise linear) spatially adaptive CT Gauss-Legendre (high order) or analytical computation yes

Step 1: Benchmark Convergence of different methods

• Surrogate construction: SG-(gPCE) of Genz function (5D) and
Ishigami function (3D)

fcorner(x) =

(
1 +

d

∑
i=1

i ·xi

)−d−1

; fishi(x) = sin(x1)+a ·sin2(x2)+b ·x4
3 ·sin(x1)

• Practicalities:
− linear basis functions
− experiment with or without boundary points
− using trapezoidal grid for sparse interpolation (m4 & m5)
− refine up to 10% points with the largest surplus

• Convergence results as expected
• For simple cases, building an intermediate SG surrogate is not

beneficial time-wise
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UQ & Sparse Grids - Initial Results
Variant Method Interpolation method (SGI) quadrature method gPCE

Var 1

m1 no Full Gauss-Legendre yes

m2 no (Sparse) Clenshaw-Curtis yes

m3 no (Sparse) delayed Kronrod-Patterson[3] yes

Var 2
m4 (piecewise linear) standard CT Gauss-Legendre (high order) or analytical computation yes

m5 (piecewise linear) spatially adaptive CT Gauss-Legendre (high order) or analytical computation yes

Step 1: Benchmark Convergence of different methods

• UQ & SA: Ishigami fun. (3D) - analytical values for S.I. available
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Time Dependent Analysis
Different strategies: • a) Time-varying analysis; • b) Time-aggregated analysis; • c) Sliding-window analysis
• d) Karhunen–Loéve (KL) expansion based intermediate surrogate
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Time Aggregated UQ & SA with Adaptive SG
• First Results - Time-aggregated: Building a single (adpative) SG interpolation approximation of the data-misfit function (e.g.,

RMSE) for a certain time period;
• using it to learn gPCE surrogate of data-misfit function and derive Sobol S.I.
• convenient for identifying annual variability
• possible to use it as a surrogate model for efficient calibration instead of a full model
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Future Work

• SpareSpACE
− Introduce Parallelization in SpareSpACE (i.e., in parallel execution of a model for all the points in a single component grid)
− Experiment with different grids/points (e.g., Leja) and basis functions (e.g., b-splines for interpolation)

• Time-varying UQ & Sparse Grids
− Continue developing the KL intermediate surrogate and apply adaptive SG as needed
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Thank You!
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SparseSpACE Framework - creating component grids
Strategies for creating component grids out of 1D refinements:

• Strategy 1 Add all points pj ∈ Pk to Pk ,l for which Lk
j ≤ lk for a component grid with level l .

Pk ,l = {Pk
j ∈ Pk | Lk

j ≤ lk} (15)

• Strategy 2 Introduce the value ck
j that should delay the level increase for dimension k .

Pk ,l = {Pk
j ∈ Pk | Lk

j ≤ lk −ck
j }; ck

j = lmax
k −Dk

j (16)

where Dk
j is the maximum of the levels of the hierarchical descendants of point Pk

j in the hierarchical tree.
• Strategy 3 Control 0≥ ĉk

j ≤ ck
j ; i.e., guarantees that leaves of Pk are added if we are at the level vector with the maximum

level in dimension k
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