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Abstract: The landscape of clinical management for metastatic melanoma (MM) and other solid
tumors has been modernized by the advent of immune checkpoint inhibitors (ICI), including pro-
grammed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T lymphocyte
antigen 4 (CTLA-4) inhibitors. While these agents demonstrate efficacy in suppressing tumor growth,
they also lead to immune-related adverse events (irAEs), resulting in the exacerbation of autoim-
mune diseases such as rheumatoid arthritis (RA), ulcerative colitis (UC), and Crohn’s disease (CD).
The immune checkpoint inhibitors offer promising advancements in the treatment of melanoma
and other cancers, but they also present significant challenges related to irAEs and autoimmune
diseases. Ongoing research is crucial to better understand these challenges and develop strategies for
mitigating adverse effects while maximizing therapeutic benefits. In this manuscript, we addressed
this challenge using network-based approaches by constructing and analyzing the molecular and
signaling networks associated with tumor-immune crosstalk. Our analysis revealed that IL6 is the
key regulator responsible for irAEs during ICI therapies. Furthermore, we conducted an integrative
network and molecular-level analysis, including virtual screening, of drug libraries, such as the
Collection of Open Natural Products (COCONUT) and the Zinc15 FDA-approved library, to identify
potential IL6 inhibitors. Subsequently, the compound amprenavir was identified as the best molecule
that may disrupt essential interactions between IL6 and IL6R, which are responsible for initiating the
signaling cascades underlying irAEs in ICI therapies.

Keywords: melanoma metastasis; ulcerative colitis; Crohn’s disease; rheumatoid arthritis; integrated
bioinformatics analysis; virtual screening; molecular docking; molecular dynamic simulation

1. Introduction

Metastatic melanoma is an advanced and aggressive form of skin cancer that arises
from the uncontrolled growth of pigment-producing cells called melanocytes [1]. Immune
checkpoint inhibitor (ICI) therapies have emerged as a revolutionary approach in the
treatment of melanoma. ICI therapies focus on modulating the immune system to enhance
its ability to recognize and attack cancer cells. Various ICIs have been discovered to
inhibit specific proteins (e.g., cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) [2]
and programmed cell death protein 1 (PD-1) in tumor-immune environments and thereby
eliminate tumor cells [3–6]. While ICI therapies hold great promise in cancer treatment,
they present a distinct challenge by potentially inducing autoimmune phenotypes [7].
The mechanisms that enable the immune system to target cancer cells are also supposed
to inadvertently lead to the immune-related adverse events (irAEs) responsible for the
exacerbation of autoimmune diseases [8]. This dual nature of immune checkpoint therapies
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underscores the delicate balance that must be struck between activating the immune
system to combat melanoma and preventing it from attacking the body’s tissues, resulting
in irAEs [9–12]. Understanding the crosstalk between melanoma and autoimmune diseases
is challenging due to the involvement of a large number of immune cells, and it is vital
for the safe use of ICI therapies in the regulation of tumor growth. In this manuscript, we
approached this challenge using network-based approaches by constructing and analyzing
the molecular and signaling network associated with tumor-immune crosstalk. A detailed
workflow of our research is shown in Figure 1.
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Figure 1. This workflow outlines the process for identifying a lead compound for melanoma and
autoimmune disease. The methods utilized were enhanced with various filters. Initially, gene-
related information for all diseases was obtained using DisGeNET. The common genes identified
were then analyzed through a protein–protein interaction (PPI) molecular map using the STRING
database. The resulting PPI network was further analyzed in Cytoscape for cluster identification with
MCODE. The most promising cluster underwent enrichment analysis, and we used a network-based
approach to identify the target. Virtual screening and molecular docking were employed to find the
best compound. Finally, the stability of the lead compound (amprenavir) was assessed through a
molecular dynamics (MDs) simulation.

2. Results and Discussion
2.1. Protein–Protein Interaction Network at the Interface of Melanoma and Autoimmune Diseases

We extracted the genes associated with MM (n = 504), RA (n = 2722), UC (n = 1458),
and CD (n = 1382) from the DisGeNet database. We found a total of 132 common genes
in all 4 disease phenotypes, for which a protein–protein interaction (PPI) network was
prepared using the STRING database (Figure 2). We considered these common genes as the
connecting links between melanoma and the investigated autoimmune diseases.

Out of the 132 genes used for the construction of the PPI network, 25 genes did not
exhibit any connections with other genes, and hence, we created a network showing the
common 107 genes (Figure 3).



Int. J. Mol. Sci. 2024, 25, 10600 3 of 15
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 2. Venn diagram highlighting the overlapping genes between rheumatoid arthritis (RA), ul-

cerative colitis (UC), Crohn’s disease (CD), and melanoma metastasis (MM). A total of 132 genes 

were shared among all the disease phenotypes. 

Out of the 132 genes used for the construction of the PPI network, 25 genes did not 

exhibit any connections with other genes, and hence, we created a network showing the 

common 107 genes (Figure 3). 

 

Figure 3. A network of the 107 common genes associated with the investigated four disease pheno-

types. The network was prepared using the String database, and the connections between the nodes 

were above the 0.7 confidence score cutoff. 

2.2. Identification of the Hub Genes from the PPI Network Associated with Crosstalk between 

Melanoma and Autoimmune Diseases 

To identify the key hub genes in the PPI network prepared using the common genes 

in melanoma and autoimmune diseases, we used the Cytoscape plugin Molecular Com-

plex Detection (MCODE) algorithm. The MCODE algorithm detects interconnected net-

work clusters based on a k-core score that represents the maximal number of connected 

Figure 2. Venn diagram highlighting the overlapping genes between rheumatoid arthritis (RA),
ulcerative colitis (UC), Crohn’s disease (CD), and melanoma metastasis (MM). A total of 132 genes
were shared among all the disease phenotypes.
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Figure 3. A network of the 107 common genes associated with the investigated four disease pheno-
types. The network was prepared using the String database, and the connections between the nodes
were above the 0.7 confidence score cutoff.

2.2. Identification of the Hub Genes from the PPI Network Associated with Crosstalk between
Melanoma and Autoimmune Diseases

To identify the key hub genes in the PPI network prepared using the common genes in
melanoma and autoimmune diseases, we used the Cytoscape plugin Molecular Complex
Detection (MCODE) algorithm. The MCODE algorithm detects interconnected network
clusters based on a k-core score that represents the maximal number of connected sub-
graphs, with all the nodes connected by a minimum number of k degrees [13]. The MCODE
algorithm detected six highly connected subnetworks, represented as MCODE modules
(Table 1). For the identification of the hub genes responsible for the crosstalk between
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melanoma and autoimmune diseases, we selected module 1, which contained 16 genes,
with the highest MCODE score of 10.13.

Table 1. Network modules generated by MCODE, with their score, number of nodes, and interactions,
along with the associated gene names.

Modules Nodes Interaction MCODE
Score Genes

1 16 76 10.133 CCL2, CSF2, FGF2, IL10, IL18, IL1B, IL6, MMP1, MMP2, MMP3,
MMP9, POMC, STAT3, TGFB1, TIMP1, and VEGFA

2 7 18 6 CREBBP, EP300, FOXO3, HIF1A, MAPK1, MDM2, and TP53

3 4 6 4 AKT1, CD40, CD40LG, and PIK3CG

4 8 13 3.71 CTNNB1, CXCL10, CXCL8, IL1A, IL4, MYC, NFKB1, and TNF

5 7 10 3.33 CALM1, CALM2, CALM3, CXCR4, FAS, PIK3CB, and STAT5A

6 3 3 3 HLA-B, HLA-C, and HLA-DQB1

2.3. Pathway Enrichment Analysis of the Top MCODE Cluster

To identify the biological processes and pathways that might play a key role in
the crosstalk of melanoma and autoimmune diseases, we performed a pathway enrich-
ment analysis of the genes associated with the top MCODE module using the Reactome
database 2022 in the Enrichr web-based server (https://maayanlab.cloud/Enrichr ac-
cessed on 10 April 2024). All the enriched pathways (Figure 4), along with the path-
way p-values, adjusted p-values, and gene/protein sets for each case, were examined
(Supplementary Table S1).

The interleukin-4 (IL4) and interleukin-13 (IL13) signaling pathways, which play key
roles immune regulation and inflammation and are primarily associated with allergic re-
sponses and Th2 immunity [14], were among the top enriched pathways. Previous studies
have also suggested that these pathways shape the tumor microenvironment and promote
tumor progression by modulating immune responses and survival pathways [15]. In au-
toimmune diseases like RA and UC, IL4 and IL13 contribute to excessive inflammation
and tissue damage, fostering autoantibody production and B cell survival [16]. Further,
we also found that the interleukin-6 (IL6), interleukin-10 (IL10), and interleukin-1 (IL1)
signaling cascades among the top enriched pathways that regulate melanoma [17,18] and
autoimmune diseases [19], exerting diverse effects on inflammation, immune dysregulation,
and disease progression. Elevated IL6 levels in melanoma correlate with advanced disease
stages and therapy resistance, while in autoimmune diseases, IL6 drives inflammation and
tissue damage [19]. Conversely, IL10 exhibits dual roles, suppressing anti-tumor immunity
in melanoma yet mitigating inflammation in autoimmune diseases. In melanoma, IL1 or-
chestrates tumor growth, angiogenesis, and metastasis [20] by instigating pro-inflammatory
cytokine production, fostering melanoma cell invasiveness, and modulating the tumor
microenvironment’s immune cell composition that may contribute to autoimmune disease
pathogenesis, fueling inflammation and tissue damage in conditions like RA [21] and
IBD [22] by inciting cytokine production and immune cell activation. Additionally, we
also found that matrix metalloproteinases (MMPs), collagen degradation, MAPK signaling,
and CD163-mediated anti-inflammatory responses were among the top enriched pathways
that are known for regulating melanoma and autoimmune diseases [23–29]. In melanoma,
collagen degradation promotes tumor invasion and metastasis by the MMP-mediated
breakdown of the extracellular matrix (ECM), facilitating melanoma cell infiltration into
surrounding tissues and distant metastasis [30,31]. Elevated levels of collagen degradation
products also instigate immune-mediated tissue damage and inflammation in autoimmune
diseases like RA [32]. The CD163-mediated anti-inflammatory responses potentially affect
the inflammation resolution phase, resulting in progression towards chronic inflammatory
phenotypes, together with the exacerbation of autoimmune symptoms. Understanding the

https://maayanlab.cloud/Enrichr
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intricate interplay of these signaling pathways is crucial for developing targeted therapies
that effectively modulate immune responses, together with the management of tumors by
immune checkpoint inhibitors.
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Figure 4. A network of top enriched pathways associated with the genes present in the best cluster
was identified through the MCODE analysis. The enriched pathways are shown in the green rectangle
boxes, the genes are shown as colored ovals, and the disease phenotypes (MM and autoimmune
diseases) are shown as circular nodes. The impacts of the genes on the pathways (dashed lines) and
their links to melanoma and the autoimmune disease phenotypes (dotted lines) are shown where the
pointed arrowheads indicate ‘activation’ and the blunt-end arrowheads indicate ‘suppression’.

The pathway enrichment analysis not only helped us to identify the pathways asso-
ciated with the common genes at the interface of melanoma and autoimmune diseases
but also the directions from the genes to the pathways, which enabled us to prioritize the
therapeutic targets.

2.4. Identification of Lead Molecule and Molecular Docking

IL6 (Figure 4) was found to regulate five pathways among the eight enriched pathways
associated with MM and autoimmune disease. This directed network suggests that the
inhibition of IL6 will reduce the activity of pathways such as IL6, IL4/IL13 signaling, colla-
gen degradation, CD163-mediating responses, and MAPK signaling, and it may activate
IL10 signaling. Thus, the inhibition of IL6 will not only be able to suppress melanoma
metastasis but also reduce autoimmune phenotypes, which may be exacerbated during
immune checkpoint therapies [33–35]. Interestingly, previous reports have also highlighted
increased levels of IL6 as a significant contributor to irAEs, as seen in melanoma patients un-
dergoing anti-CTLA-4 ICI therapy [36,37]. Hailemichael and colleagues analyzed samples
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from ICI-treated tumor patients with immune-related enterocolitis (irEC) and found that
IL6 gene expression profiles were more than 24-fold upregulated compared with normal
tissues [38]. Lei et al. highlighted that patients with high serum levels of IL6 developed
resistance to ICIs [39]. Similarly, average IL6 (both mRNA and protein-level) expression
was elevated in RA, UC, and CD patients compared with healthy controls [40–42]. These
reports have indicated that targeting IL6 will improve the responsiveness of ICIs and also
downregulate irAEs.

To identify potential inhibitors for the IL6 protein, we utilized the FDA-approved
library using the Zinc15 database (https://zinc15.docking.org/) accessed on 20 April 2024,
which contains 1615 compounds, and the natural compound library of the COCONUT
database (https://coconut.naturalproducts.net/) accessed on 30 April 2024, which contains
407,270 unique compounds [43]. We filtered the COCONUT database libraries prior to
the virtual screening with IL6 for Lipinski’s rule of five [44] in order to consider only
drug-like molecules. Only 272,001 compounds were able to pass Lipinski’s rule of five
filtering criteria.

The active site of IL6 was selected, considering amino acid residues Phe74, Phe78,
Leu178, Arg179, and Arg182, which play a significant role (as hotspot residues) in its
interaction with IL6R [45]. We used the LibDock protocol available in the DS2022 for the
initial screening of the drug libraries. LibDock is a rigid-based docking program that first
calculates hotspots (polar and apolar probes) from the active site of a receptor and then
rotates ligands in the cavities for a proper fit [46,47]. The top 20 compounds, based on their
LibDock scores [48,49], were further analyzed using the flexible docking tool ‘CDOCKER’
present in the DS2022 (Table 2). In flexible CDOCKER docking [50], both a compound
and its receptor can adjust their conformations for a better fit. This adaptability is crucial
for accurately predicting the binding affinity and interaction mode between a candidate
compound and its target protein [51,52]. Only nine compounds out of twenty could be
further docked with IL6 using the CDOCKER protocol.

Table 2. List of top 20 compounds identified after the virtual screening of the IL6 binding site
responsible for interacting with IL6R.

S. No. Compound ID Database Compound Name LibDock
Score

-CDOCKER
Energy

(kcal/mol)

1 CNP0003841 Coconut N-[(3-methoxyphenyl)methyl]-3-({5-[(4-phenylpiperazin-1-
yl)methyl]-1,2-oxazol-3-yl}methyl)oxetan-3-amine 127.506 NA

2 CNP0004058 Coconut
2-chloro-5-hydroxy-N-{[4-hydroxy-5-(hydroxymethyl)-3-{4-[3-
(trifluoromethyl)phenyl]piperazin-1-yl}oxolan-2-
yl]methyl}benzamide

126.919 NA

3 CNP0004582 Coconut
2-{[({3-methyl-4-[(7-methyl-1H-1,3-benzodiazol-2-yl)methyl]-
6-(propan-2-yl)cyclohex-2-en-1-
yl}methyl)carbamoyl]methoxy}acetic acid

122.508 18.4652

4 CNP0004629 Coconut
2-{[({3-methyl-4-[(1-methyl-1H-1,3-benzodiazol-2-yl)methyl]-
6-(propan-2-yl)cyclohex-2-en-1-
yl}methyl)carbamoyl]methoxy}acetic acid

121.359 13.0031

5 CNP0000288 Coconut 7-methoxy-2-(4-methoxyphenyl)-4-[2-(4-
methoxyphenyl)ethyl]-3,4-dihydro-2H-1-benzopyran 120.936 25.4486

6 ZINC03809192 ZINC
[(3S)-oxolan-3-yl] N-[(2S,3R)-4-[(4-aminophenyl)sulfonyl-(2-
methylpropyl)amino]-3-hydroxy-1-phenylbutan-2-
yl]carbamate

120.668 34.7136

7 CNP0004224 Coconut
4-(dimethylamino)-N-[5-hydroxy-7a-(2-{[2-(1H-indol-3-
yl)ethyl]carbamoyl}ethyl)-3,3,5-trimethyl-octahydro-1H-
inden-1-yl]benzamide

118.314 NA

8 CNP0004392 Coconut 4-[(2-{3-[2-(pyrrolidin-1-yl)pyridin-4-yl]-1,2,4-oxadiazol-5-
yl}pyrrolidin-1-yl)methyl]benzoic acid 118.034 NA

9 CNP0003909 Coconut 3-[4-(4-methoxyphenyl)-1H-imidazol-2-yl]-4-[(4-
methylphenyl)methyl]morpholine 117.757 17.5344

https://zinc15.docking.org/
https://coconut.naturalproducts.net/
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Table 2. Cont.

S. No. Compound ID Database Compound Name LibDock
Score

-CDOCKER
Energy

(kcal/mol)

10 ZINC03955219 ZINC
[(3aS,4R,6aR)-2,3,3a,4,5,6a-hexahydrofuro [2,3-b]furan-4-yl] N-
[(2S,3R)-4-[(4-aminophenyl)sulfonyl-(2-methylpropyl)amino]-
3-hydroxy-1-phenylbutan-2-yl]carbamate

117.727 18.3056

11 CNP0004686 Coconut 4-cyano-N-{2,3-dihydroxy-5-[6-(morpholin-4-yl)pyridin-3-
yl]cyclopentyl}benzamide 117.281 NA

12 CNP0004257 Coconut
N-[(2H-1,3-benzodioxol-5-yl)methyl]-3-({5-
[(dimethylamino)methyl]-1,2-oxazol-3-yl}methyl)oxetan-3-
amine

116.072 NA

13 CNP0003888 Coconut 3-[4-(4-chlorophenyl)-1H-imidazol-2-yl]-4-[(1-methyl-1H-
imidazol-2-yl)methyl]morpholine 115.838 16.6375

14 CNP0004329 Coconut
N-[(2H-1,3-benzodioxol-4-yl)methyl]-3-({5-[(4-
phenylpiperazin-1-yl)methyl]-1,2-oxazol-3-yl}methyl)oxetan-
3-amine

115.688 NA

15 CNP0004277 Coconut (5-{[(3-{[5-(pyridin-2-yl)-1,2-oxazol-3-yl]methyl}oxetan-3-
yl)amino]methyl}furan-2-yl)methanol 115.539 NA

16 CNP0004720 Coconut 2-{[(3-{[5-(4-methoxyphenyl)-1,2-oxazol-3-yl]methyl}oxetan-3-
yl)amino]methyl}phenol 115.352 NA

17 CNP0003796 Coconut N-[(4-methoxyphenyl)methyl]-3-{[5-(pyridin-2-yl)-1,2-oxazol-
3-yl]methyl}oxetan-3-amine 113.167 NA

18 CNP0004058 Coconut
2-chloro-5-hydroxy-N-{[4-hydroxy-5-(hydroxymethyl)-3-{4-[3-
(trifluoromethyl)phenyl]piperazin-1-yl}oxolan-2-
yl]methyl}benzamide

112.619 NA

19 CNP0003038 Coconut 2-amino-3-(1-{1-[3-(2-amino-2-carboxyethyl)-1H-indol-1-
yl]ethyl}-1H-indol-3-yl)propanoic acid 111.568 41.6684

20 CNP0005022 Coconut 4-({3-[4-(pyridin-4-yl)-1H-imidazol-2-yl]morpholin-4-
yl}methyl)benzoic acid 111.381 22.286

We selected the top two compounds (Figure 5) because they had the highest CDOCKER
energy values (CNP0003038: −41.6684 kcal/mol and ZINC03809192: −34.7136 kcal/mol, re-
spectively). One belonged to the natural compound library and the other to the ZINC database.
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We performed a literature survey for these two compounds for their toxicity, bioas-
says, and roles in tumor/autoimmune disease regulation. We found that the compound
CNP0003038, also referred to as 1,1′-ethylenebis-L-tryptophan (EBT; PubChem CID: 3905118),
enhances the proliferation of EoL-3 eosinophilic leukemia cells and induces the release of
eosinophil cationic protein from isolated human peripheral blood eosinophils, resulting in
eosinophilia-myalgia syndrome [53]. EBT has also been shown to induce IL-5 production in
isolated human T cells, and it induced inflammation, mast cell infiltration, fascia thickening,
and adipose tissue fibrosis in an eosinophilia-myalgia-syndrome mouse model [54]. Due to
the possible toxic effects of compound CNP0003038 on the immune system, we removed it
from further analysis.

The compound from the ZINC database, ‘ZINC000003809192’, also known as ampre-
navir, is primarily known as a protease inhibitor and used in the treatment of HIV/AIDS.
It inhibits the HIV protease enzyme, thereby blocking the cleavage of viral polyproteins
into functional proteins, ultimately hindering viral replication [55,56]. Amprenavir was
also included in the investigation of FDA-approved small molecule drugs through in-silico
screening, and their potential as inhibitors of extracellular signal-regulated kinase (ERK)
and apoptosis inducers in MCF-7 human breast cancer cells has been assessed [57]. Based
on all the above facts, we selected only Amprenavir for the molecular dynamic simulation.

We employed molecular docking and molecular dynamics simulation analyses to
investigate the interaction patterns, stability, and flexibility of the docked complex, which
helped us explore the interaction and stability of Amprenavir with IL6 during the simu-
lation. Our molecular docking studies suggested that Amprenavir forms three hydrogen
bonds and four hydrophobic bonds with the IL6 amino acid residues SER176, CYS73,
MET67, ARG179, LYS54, and LYS66 (more information on the bonds is provided in
Supplementary Table S2). To further check if Amprenavir interfered with the binding
of IL6 with IL6R, we performed additional protein–protein docking using the HDOCK
tool [58]. For this, we first used an IL6 and IL6R complex (PDB ID: 1P9M) [59] and re-
docked the protein units using HDOCK as a control scenario. Next, we used IL6 in complex
with ‘Amprenavir’ and performed the protein–protein docking with IL6R, again using the
HDOCK tool. Both scenarios were compared with each other to evaluate the effect of ‘Am-
prenavir’ on IL6 and IL6R interactions. We observed that the docked complex of IL6-IL6R
had a higher docking energy of −398.1 kcal/mol, and thus, it was more stable in compari-
son to the IL6-Amprenavir-IL6R complex (−262.02 kcal/mol). We further compared the
impact of ‘Amprenavir’ on the number of bonds formed between IL6 and IL6R.

The residues essential for IL6 binding to IL6R include the following from IL6: LYS27,
GLN28, ARG30, PHE74, PHE75, PHE78, LEU178, ARG179, ALA180, and ARG182 [59], which
form various bonds with the following residues from IL6RA: GLU163, GLN190, PHE229,
ASP253, GLU277, GLU278, and PHE279, as well as the following residues from IL6RB: LYS118,
LYS119, ARG128, VAL167, TYR168, PHE169, VAL230, and VAL264 (more information on the
bonds formed between IL6 and IL6R is provided in Supplementary Table S3).

Our analysis revealed that the IL6-Amprenavir-IL6R complex lost six significant
bonds that were formed between the IL6-IL6R complex. However, one new bond formed
between IL6 and IL6R in the presence of Amprenavir (IL6’s ARG179 with IL6RA’s GLU163)
(Supplementary Table S3). We also observed that the IL6 amino acid residues LYS66,
SER176, and ARG179 and the IL6R residues GLY164 and CYS192 formed bonds with
Amprenavir (Figure 6a,b) (Supplementary Table S3). The energies and bond assessments of
the docked complex showed that the compound Amprenavir functions as an inhibitor for
IL6 interactions with IL6R, disrupting numerous bonds that originally formed between the
protein and its receptor.
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Figure 6. The docked poses obtained from the HDOCK docking tool depicting the interactions
between IL6R and IL6 with Amprenavir. In this illustration, IL6R is represented by two different
color bases on separate chains (alpha in light green and beta in dark green), while IL6 is shown in
blue. The first frame of figure (a) showcases the surface representation of IL6R, the IL6 proteins, and
their interactions. Figure (b) showcases a surface representation of IL6R and the IL6 proteins with
Amprenavir. Additionally, the frame provides a zoomed-in version of the surface, highlighting the
interactions between IL6R, IL6, and Amprenavir.

2.5. Molecular Dynamics Simulation

To evaluate the flexibility and overall stability of the IL6-Amprenavir docked complex,
we performed time-dependent molecular dynamics (MDs) simulations using the ‘Standard
Dynamics Cascade’ protocol in the DS2022. The complex’s stability was assessed through
root mean square deviation (RMSD), which measures the deviations of atomic coordinates
from their initial positions, and this allowed us to monitor how the structures of the
complexes changed over time. In parallel, root mean square fluctuation (RMSF) was
used to analyze the flexibility of individual residues, quantifying how much each residue
fluctuated during the simulation rather than tracking their positional shifts over time.
Additionally, we measured the Radius of gyration (Rg) to assess the compactness of the
proteins’ backbones. The Rg measurements provided insights into the overall structural
compactness, dynamics, and flexibility of the proteins in a biological environment (Figure 7).
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We observed the RMSD of the docked complex (IL6-Amprenavir) for 50 ns, and we found
that the complex achieved convergence and stabilized at around 20 ns (Figure 7b).
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Figure 7. MD simulation analysis of the IL6-Amprenavir complex. (a) Hydrogen bonds and hy-
drophobic interactions between IL6 and Amprenavir are shown before and after the MD simulation.
After the MD simulation, Amprenavir formed two additional hydrogen bonds with IL6 compared
to the initial docked pose, while the hydrophobic bonds remained unchanged. The colored arrow
indicates the nature of the bonds. All IL6 amino acid residues involved in the bond formation are
labelled. (b) Root Mean Square Deviation (RMSD) graph of the IL6 from the docked complex over a
simulation period of 50 nanoseconds (ns). (c) Root Mean Square Fluctuation (RMSF) graph of the IL6
interaction site associated with IL6R. The IL6 amino acid residues that directly interacted with IL6R
are labelled. (d) Radius of gyration (Rg) graph of IL6 from the IL6-Amprenavir complex. The graph
suggests that IL6 attained a more compact structure after binding with the drug.

We comprehensively analyzed the residue fluctuations in the RMSF, which were
crucial for IL6 to bind with IL6R. The residues within the hydrophilic domain (Lys27,
Arg30, Phe78, Arg179, and Arg182) formed salt bridges with the IL6R proteins. In the
molecular docking of the IL6-Amprenavir-IL6R complex, we observed the disruptions
to the salt bridges involved the residues Lys27 and Arg182 between IL6 and IL6R. The
same happened for Phe 78, which disengaged from its bond with IL6R (Supplementary
Table S3). All these residues took part in the binding of Amprenavir into the cavities of IL6.
During the MD simulation, all these residues showed minimal fluctuations of 0.4 (Å), which
indicated that these IL6 residues were tightly engaged with the drug ‘Amprenavir’ and
were not available for interaction with IL6R. Furthermore, no residues showed fluctuations
of more than 0.7 Å (Figure 7c). In the case of the radius of gyration, during the MD run after
the binding of the Amprenavir, IL6 started to achieve a more compact structure (Figure 7d).
A comparison of the bonds formed in the IL6-Amprenavir complex before and after the MD
simulation is shown in Figure 7a and in Supplementary Tables S2 and S4. The analysis of
the final pose of the IL6-Amprenavir complex after the MD simulation indicated increases
in the bonds compared to the initial docked pose. Initially, it formed three hydrogen bonds
with various IL6 residues, which increased to five after a 50 ns production run. Overall,
our analysis indicated that the compound Amprenavir binds with IL6 and forms a stable
complex at the same site that is associated with IL6R interactions.
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3. Methods and Methodology
3.1. Data Collection and Protein–Protein Interaction (PPI)

The genes related to MM, RA, UC, and CD were extracted from the DisGeNet database
(https://www.disgenet.org/) accessed on 15 March 2024, which is one of the largest
publicly available collections of genes and variants associated with human diseases [60].
The data extracted from DisGeNet was subsequently analyzed to identify the common
genes among the above-mentioned disease phenotypes. All the common genes were
further used to explore their protein–protein interactions using the STRING database
(http://string-db.org) accessed on 30 March 2024 [61], with a confidence score cutoff
of 0.70.

3.2. Identification of Highly Interconnected Clusters in the Tumor-Autoimmune PPI Network

We used the Cytoscape plugin the Molecular Complex Detection (MCODE) algo-
rithm [13] to identify highly connected clusters in the protein–protein interaction network
of the common genes associated with the tumors and the selected autoimmune disease
phenotypes. The degree cutoff 2 was used to control the genes that were to become part
of the cluster. New members were added to the cluster only if their node score deviates
from the cluster’s seed node score by less than the set cutoff of 0.2. The k-score cutoff 2 was
used to filter out clusters that did not contain a maximally interconnected sub-cluster of a
degree score of at least 2. A max depth of 100 was set to limit the distance from the seed
node within which MCODE could search for cluster members. This approach allowed us to
partition the network based on its topology, pinpointing densely connected regions within
the protein–protein interaction network associated with the crosstalk between melanoma
and the immune checkpoint therapies that induced irAEs.

3.3. Pathway Enrichment Analysis

For the top cluster identified using the MCODE analysis, we identified enriched path-
ways using Enrichr (https://maayanlab.cloud/Enrichr/) accessed on 10 April 2024 [62]. We
specifically focused on the pathways that were present in the Reactome 2022 database, with
the significance threshold of a p-value of 0.05 for the enrichment analysis. The pathways
were sorted on the basics of the combined score [63], which was described as follows:

C = log(p)× z

where C is the combined score, p is the Fisher exact test p-value, and z is the z-score for
the deviation from the expected rank. Further, we filtered enriched pathways that were
previously identified to play a role in melanoma and autoimmune diseases. From the
filtered pathways, we identified the nodes that were common in all the enriched pathways
for future analysis.

3.4. Three-Dimensional Structure Preparation and Screening of the Lead Compounds

We conducted virtual screening and molecular docking analyses to elucidate the
inhibition mechanism and identify the potential lead compounds for IL6 inhibition. To
perform these analyses, we use a 3D model of IL6 (PDB ID: 1ALU) from the RCSB PDB
database (https://www.rcsb.org/) accessed on 15 April 2024 [64]. The model was subjected
to the ‘Prepare Protein’ protocols of the Biovia Discovery Studio 2022 (DS2022) [65] using the
CHARMM force field [66]. The structure was further optimized using the ‘Smart Minimiser’
algorithm to achieve a stable state through energy minimization. The minimization process
was completed in 2000 steps, with an RMS gradient tolerance set at 0.1. With the help of the
‘Receptor-ligand Interaction’ tool of the DS2022, we defined the IL6 binding site based on
the amino acid residues that played a key role in its interaction with IL6R [64]. To identify
potential inhibitors for the IL6 proteins, we conducted a virtual screening of the natural
products using Collection of Open Natural Products (COCONUT), an extensive and well-
annotated resource for natural products [43]. Additionally, we included an FDA-approved

https://www.disgenet.org/
http://string-db.org
https://maayanlab.cloud/Enrichr/
https://www.rcsb.org/


Int. J. Mol. Sci. 2024, 25, 10600 12 of 15

drug library from the ZINC 15 database [67] for the virtual screening using the ‘LibDock’
protocol of the DS2022. All the docked compounds were further subjected to the flexible
‘CDOCKER’ program in the DS2022 [65,68]. Finally, we performed the protein–protein
docking between IL6R and IL6 in the complex with the screened drug molecules using the
HDOCK tool [58].

3.5. Molecular Dynamic Simulation

We assessed the binding affinity of the IL6 inhibitor docked at the IL6R interaction
site, and we performed the MD simulation using the DS2022. The MD simulation was
performed in an implicit solvent environment to investigate the stability, conformational
changes, and dynamic behavior of the inhibitor in the binding cavity by examining the
formation of diverse electrostatic interactions. For the MD simulation, the complex was
subjected to an initial minimization phase consisting of 1000 steps using the steepest
descent algorithm, followed by an additional 2000 steps employing the conjugate gradient
method with the CHARMM force field [66]. After minimization, the systems underwent
a heating phase where the initial temperature was incrementally increased from 50 K to
300 K in 50 ps intervals. Subsequently, an equilibration step lasting 100 ps was performed.
The adjusted velocity frequency was configured to 50 for the heating and equilibration
phases. Subsequently, a production run of 50 ns was conducted within an NVT assembly
(maintaining normal volume and temperature) at a constant temperature of 300 K, with
the results being saved at intervals of 0.02 ns. For the entire simulation run, we analyzed
trajectories consisting of 25,000 conformations. Various properties, including root mean
square deviation (RMSD), root mean square fluctuation (RMSF), and the radius of gyration
(ROG), were examined using the ‘Analyze Trajectory Protocol’ of the DS2022

4. Conclusions

The introduction of ICIs, such as PD-1, PD-L1, and CTLA-4 inhibitors, has revolu-
tionized the clinical management of metastatic melanoma (MM). These inhibitors have
shown remarkable efficacy in controlling the growth of tumors. However, their use also
leads to irAEs, resulting in the exacerbation of autoimmune diseases such as RA, UC,
and CD in melanoma patients. Our research explored the interface between MM and
autoimmune diseases, aiming to identify potential druggable targets and understand the
crosstalk between these conditions for the safe use of ICIs in MM management. Using
an integrative network approach, IL6 was identified as a promising target at the interface
between MM and autoimmune diseases. Through structure biology approaches, the lead
compounds capable of inhibiting IL6, such as Amprenavir, were identified. As IL6 is mainly
an acute inflammatory cytokine, presumably, an IL6 inhibitor may be used to treat the acute
inflammatory responses caused by ICIs in melanoma patients that later exacerbate the
autoimmune phenotypes. However, further laboratory experiments are needed to validate
the efficacy of Amprenavir together with ICIs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms251910600/s1.
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