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Abstract
Objectives  To evaluate the diagnostic performance of an automated reconstruction algorithm combining MR imaging 
acquired using compressed SENSE (CS) with deep learning (DL) in order to reconstruct denoised high-quality images from 
undersampled MR images in patients with shoulder pain.
Methods  Prospectively, thirty-eight patients (14 women, mean age 40.0 ± 15.2 years) with shoulder pain underwent mor-
phological MRI using a pseudo-random, density-weighted k-space scheme with an acceleration factor of 2.5 using CS only. 
An automated DL-based algorithm (CS DL) was used to create reconstructions of the same k-space data as used for CS 
reconstructions. Images were analyzed by two radiologists and assessed for pathologies, image quality, and visibility of 
anatomical landmarks using a 4-point Likert scale.
Results  Overall agreement for the detection of pathologies between the CS DL reconstructions and CS images was substantial to 
almost perfect (κ 0.95 (95% confidence interval 0.82–1.00)). Image quality and the visibility of the rotator cuff, articular cartilage, 
and axillary recess were overall rated significantly higher for CS DL images compared to CS (p < 0.03). Contrast-to-noise ratios 
were significantly higher for cartilage/fluid (CS DL 198 ± 24.3, CS 130 ± 32.2, p = 0.02) and ligament/fluid (CS DL 184 ± 17.3, CS 
141 ± 23.5, p = 0.03) and SNR values were significantly higher for ligaments and muscle of the CS DL reconstructions (p < 0.04).
Conclusion  Evaluation of shoulder pathologies was feasible using a DL-based algorithm for MRI reconstruction and denois-
ing. In clinical routine, CS DL may be beneficial in particular for reducing image noise and may be useful for the detection 
and better discrimination of discrete pathologies.
Summary statement  Assessment of shoulder pathologies was feasible with improved image quality as well as higher SNR 
using a compressed sensing deep learning–based framework for image reconstructions and denoising.
Key Points 
• Automated deep learning–based reconstructions showed a significant increase in signal-to-noise ratio and contrast-to- 
   noise ratio (p < 0.04) with only a slight increase of reconstruction time of 40 s compared to CS.
• All pathologies were accurately detected with no loss of diagnostic information or prolongation of the scan time.
• Significant improvements of the image quality as well as the visibility of the rotator cuff, articular cartilage, and axillary  
   recess were detected.
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Abbreviations
CNR	� Contrast-to-noise ratio
CS	� Compressed SENSE
CS AI	� Compressed SENSE artificial intelligence
CNN	� Convolutional neural network
ETL	� Echo train length
GAN	� Generative adversarial network
IM	� Intermediate-weighted
PI	� Parallel imaging
SNR	� Signal-to-noise-ratio
TSE	� Turbo spin-echo

Introduction

In modern society, shoulder pain is very common and may 
cause impairment in everyday and work activities [1]. In the 
general population, acute as well as chronic shoulder pain 
often originates from rotator cuff pathologies and pathologies 
of other soft tissue structures [2]. MR imaging is currently 
the modality of choice for imaging of shoulder pain, due to 
the high contrast and resolution, in particular if soft tissue 
pathologies are suspected [3, 4]. MR imaging of the shoulder 
is often challenging in patients with shoulder pain (breathing 
artifacts, motion artifacts caused by pain, etc.) and poten-
tial artifacts caused by surgery [5, 6]. Furthermore, imaging 
quality is often corrupted due to increased image noise (e.g., 
Rician noise) or limited by the surface coil where tissues 
that lie peripheral to the coil elements are less assessable 
due to increased noise [7]. As consequence, increased image 
noise could lead to inaccurate diagnosis or impaired image 
analysis [7].

Different strategies have previously been introduced in 
order to reduce image noise including traditional approaches 
which mainly are based on filtering, transformations or sta-
tistical methods, as well as modern DL-based approaches 
which are based on convolutional neuronal networks (CNNs) 
and general adversarial networks (GANs) [7–14]. Tradi-
tional patch-based denoising methods such as non-local 
means (NLM) algorithms rely on the self-spatial similari-
ties of natural images and have proven to be compatible 
with iterative image reconstruction methods based on par-
allel accelerated imaging, e.g., SENSE and GRAPPA [10, 
11, 15–17]. In recent studies, the application of deep learn-
ing–based algorithms was suggested for reconstruction of 
accelerated MR scans as well as for image denoising [12, 
14, 18, 19]. Zhang et al created a supervised feed-forward 
CNN which separates noise from noisy observation and uses 
residual modules as well as batch normalization to speed 
up the denoising performance [12]. As a self-learning 

self-supervised image denoising network, Xu et al proposed 
the “Noisy-As-Clean” network [13]. This method declares 
corrupted test images as ground truth (“clean” target) and 
uses synthetic images, which consist out of small alterations 
to the corrupted test image in order to train the network. In 
general, CNNs and GANs apply self-learning reconstruction 
schemes and have shown promising results in order to reduce 
image noise and accelerate the MR imaging data acquisi-
tion process in contrast to the classic iterative reconstruc-
tion schemes [18, 20–24]. These DL-based methods apply 
reconstruction schemes in order to calculate high-quality 
images from undersampled MR data.

In this study, we used a reconstruction framework which 
utilizes a novel CNN to integrate and enhance conventional 
CS algorithms based on the adaptive-CS-network, previ-
ously described by Pezzotti et al [18]. Therefore, the pur-
pose of this study was to assess the diagnostic performance 
and denoising capabilities of the reconstruction framework 
which combines PI, CS, and a DL-based algorithm (CS DL) 
for the assessment of various shoulder pathologies on mul-
tiplanar shoulder MRI compared to images reconstructed 
with CS only.

Methods and materials

Study participants

In this prospective study, patients with shoulder pain 
(N = 38, mean age 40 ± 15.2 years, 14 women) that were 
admitted to the orthopedic and trauma surgery departments 
between June 2021 and January 2022 were enrolled. The 
patients presented with shoulder pain due to various pathol-
ogies including suspected chronic degenerative changes 
(n = 21), acute trauma (n = 9), as well as unclear shoulder 
pain (n = 8). Informed consent was obtained from all study 
participants prior to inclusion. The study was approved by 
our institutional review board (Ethics Commission of the 
Medical Faculty, Technical University of Munich, Germany; 
ethics proposal number 42/21S). To calculate the appropri-
ate number of study participants, a priori power analysis was 
performed using data of a preceding study [25]. The data of 
the SNR calculations between the ankle MRI with CS only 
and the ankle MRI with the deep learning reconstructed CS 
was used to simulate a comparison between the two differ-
ent groups. Finally, a sample size of at least 24 subjects per 
group was determined to achieve a power > 0.8. Therefore, 
we included 38 participants into the study to ensure adequate 
group sizes for the comparison.
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MR imaging

Each patient underwent a 3-T MRI examination (Ingenia 
Elition; Philips Healthcare) of the shoulder using a dedicated 
16-channel shoulder coil. A clinical routine imaging proto-
col was used including a triplanar intermediate-weighted 
(IM) turbo spin-echo (TSE) sequence with spectral fat satu-
ration, a sagittal T2-weighted TSE sequence, and a coronal 
T1-weighted TSE sequence. Detailed scan parameters are 
displayed in Table 1. All acquired data were reconstructed 
with standard CS and CS DL.

C‑SENSE DL

The CS DL reconstructions investigated in this study are 
based on an adaptive-CS-network, as previously described 
by Pezzotti et al [18]. This network utilizes a novel CNN 
to integrate and enhance conventional CS algorithms. The 
adaptive-CS-network is an advancement of the deep learn-
ing–based iterative shrinkage-thresholding algorithm (ISTA) 
network proposed by Zhang and Ghanem [26]. It integrates 
multiscale sparsification in a problem-specific learnable 
manner. Further, the CNN-based sparsification approach 
is combined with the image reconstruction approach of 
CS and therefore, ensures data consistency. Prior informa-
tion such as coil sensitivity distribution and location of the 
image background are automatically incorporated as well. 
The adaptive-CS-network therefore combines parallel imag-
ing, compressed sensing, and deep learning into a single 
algorithm and replaces the wavelet transform by a CNN as 
sparsifying transform in the CS algorithm. The adaptive-
CS-network used in this study was initially trained with a 
dataset of approximately 740,000 MR images from various 
anatomical regions acquired using 1.5-T and 3-T MR imag-
ing. The algorithm was refined to run on standard recon-
struction hardware, in contrast to the previously reported 
network [18]. Reconstruction was performed on the scan-
ner and the reconstructions took approx. 80 s for the CS 

DL reconstructions compared to approximately 40 s for the 
standard CS reconstructions.

Quantitative image analysis

Signal-to-noise (SNR) and contrast-to-noise (CNR) values 
were calculated for CS only and CS DL using an estab-
lished subtraction method (Figs. 1 and 2) [27–29]. There-
fore, sequences of ten patients were acquired twice in the 
same exam session. The repeated sequences were subtracted 
using the inbuild MRI software to create the noise maps in 
which regions of interest were placed in the same location on 
three consecutive slices. SNR was calculated as previously 
described [27]:

SI1 measures the signal intensity of the ROI in the first 
series, SI2 the signal from the ROI in the second series, and 
SI3 the ROI from the ROI in the noise maps. Following 
SNR calculation was then performed for muscle, ligaments, 
joint fluid, subchondral bone, and fat. CNR was calculated 
by subtracting the SNR of tissue 1 with the SNR of tissue 
2 and was calculated for cartilage/fluid, subchondral bone/
cartilage, ligament/fluid, and ligament/fat.

Semi‑quantitative image analysis

Image readings were performed by two experienced radiolo-
gists separately and independently and blinded to all clinical 
information (Y.L. with 4 years of experience in musculo-
skeletal imaging and J.N. with 10 years of experience in 
musculoskeletal imaging). Readings were performed on a 
PACS work station certified for clinical use (IDS7 21.2, 
Sectra). The standard CS images and CS DL reconstructed 
images were read with at least 3 weeks in between readings, 

SNRDiff =
1
√

2

×

�

SI1 + SI2
�

SI3 ×
�

�

2
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Table 1   Sequence parameters of the sequences used in this study

Sequence Coronal IM/SPIR Axial IM/SPIR Sagittal IM/SPIR Sagittal T2 Coronal T1

Echo time (ms) 50 50 50 80 19
Repetition time (ms) 2400 2450 2400 2500 730
Acceleration factor 2.5 2.5 2.5 2.5 2.5
TSE factor 16 16 16 16 5
Field of view (mm3) 160 × 160 × 83 160 × 160 × 83 160 × 160 × 83 160 × 160 × 108 160 × 160 × 76
Voxel size (acquisition, mm3) 0.4 × 0.54 × 3.0 0.4 × 0.54 × 3.0 0.4 × 0.54 × 3.0 0.35 × 0.49 × 3.0 0.35 × 0.45 × 3.0
Voxel size (reconstructed, mm3) 0.28 × 0.28 × 3.0 0.28 × 0.28 × 3.0 0.28 × 0.28 × 3.0 0.24 × 0.24 × 3.0 0.24 × 0.24 × 3.0
Slice thickness (mm) 3 3 3 3 3
Slice number 26 31 28 30 23
Acquisition time (min) 3.39 3.24 3.18 3.11 2.3
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respectively. For intra-reader reproducibility, 10 patients 
were assessed once again after 4 weeks by both radiologists.

The CS and CS DL images were analyzed for the visibility 
of anatomical landmarks graded with a 4-point Likert scale 
(1 = inadequate, 2 = adequate, 3 = good, 4 = excellent) based on 
the extent of the partial volume effect, blurring, image noise, 
signal inhomogeneity, and discrimination from adjacent struc-
tures [27]. Following landmarks were assessed for visibility: 
rotator cuff tendons and muscles, biceps anchor, long biceps 
tendon, rotator cuff interval, AC joint, articular cartilage, axil-
lary recess, and labrum. Overall image quality was assessed 
also using a 4-point Likert scale based on the overall image 
expression. Furthermore, the rotator cuff tendons, long biceps 
tendon, rotator cuff muscles, glenoid and humeral cartilage, 

bone, bursa, AC joint, glenoid labrum, and joint capsule were 
assessed for visibility and presence of pathologies. The bone 
was assessed for bone marrow edema, subchondral cysts, or 
osseous defects such as Bankart and Hill-Sachs lesions [30]. 
Rotator cuff tendons were assessed for tendinopathy includ-
ing subacromial impingement, rotator cuff tendinitis/tendi-
nosis, and calcific tendonitis, and the fatty infiltration was 
graded according to Goutallier et al [31]. The biceps tendon 
was assessed for tendinopathic changes, dislocation, as well 
as lesions of the biceps pulley. Anatomical variations of the 
labrum were graded according to Kanatli et al [32] (for detailed 
information about the gradings of abnormalities, see Table 2). 
The overall diagnostic confidence of the readings was also 
graded with a 4-point Likert scale based on how confident the 

Fig. 2   Calculated CNR for 
cartilage/fluid, subchondral 
bone/cartilage, ligament/fluid, 
and ligament/fat. CNR values 
of cartilage/fluid and ligament/
fluid of the CS DL reconstruc-
tions were significantly higher 
compared to standard CS 
images (p < 0.05)

Fig. 1   Calculated SNR for sub-
chondral bone, fluid, cartilage, 
ligaments, muscle, and fat. Sig-
nificant higher SNR values were 
seen for ligaments and muscle 
of the CS DL reconstructions 
(ligaments p = 0.01, muscle 
p = 0.04)
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readers were regarding the evaluation of pathologies. Severe-
ness of motion artifacts, blurring, or image noise was semi-
quantitatively classified into no, little, and severe artifacts.

Statistical analysis

The data were analyzed using IBM SPSS, version 25.0 (IBM 
Corp.). All statistical tests were performed two sided, and 
a level of significance (α) of 0.05 was used for all tests. A 
Shapiro–Wilk test was performed to test for normal or non-
normal distribution of the data. A paired t-test was used 
for comparison of normally distributed numerical variables 
and a Wilcoxon signed-rank test was used to compare non-
normally distributed numerical and categorical variables 
between CS and CS DL image assessments. McNemar’s 
test was used to assess for binary categorical variables. 

In order to assess the inter- and intra-observer agreement, 
Cohen’s kappa was used for ordinal scaled data and inter-
class correlation coefficient using a two-way random-effects 
model with absolute agreement for nominal scaled data. The 
values can be interpreted as poor (0), slight (0.0–0.2), fair 
(0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), 
and almost perfect (0.81–1.00) [33, 34]. For all measure-
ments, 95% confidence intervals (CI) were calculated.

Results

Assessment of shoulder pathologies/abnormalities

Almost all pathologies were accurately detected on the CS 
DL reconstructions by both readers compared to the standard 
CS images with no significant difference (readers 1 and 2: κ 
0.95 (95% confidence interval 0.82–1.00)). In total, 9 acute 
fractures were detected, of which 7 were osseous Bankart 
lesions (Figs. 3, 4, and 5) and two were humerus fractures. 
Moreover, four partial tears (Fig. 6) and one complete tear 
of one or more rotator cuff tendons were detected. Joint effu-
sion was detected in 7 patients and 28 patients showed signs 
of an osteoarthritis of the AC joint. Detailed numbers and 
the distributions of pathologies are listed in Table 2. The 
overall diagnostic confidence of pathologies detected on the 
CS DL images was higher compared to CS in both readers, 
and this finding reached the statistical level of significance 
for one reader (reader 1 CS: 3.2 ± 0.1, CS DL 3.8 ± 0.2, 
p = 0.18; reader 2 CS: 2.9 ± 0.2, CS DL 3.7 ± 0.1, p = 0.04, 
Table 3). Compared to the standard CS images, the overall 
image quality of the CS DL reconstructions was rated sig-
nificantly higher (reader 1 CS 2.8 ± 0.3, CS DL 3.7 ± 0.1, 
p = 0.02; reader 2 CS 2.7 ± 0.1, CS DL 3.8 ± 0.3, p = 0.01). 
No significant differences were detected for the ratings of 
motion artifacts (reader 1 CS: 3.7 ± 0.4, CS DL 3.8 ± 0.4, 
p = 0.23; reader 2 CS: 3.7 ± 0.4 and CS DL 3.8 ± 0.5, 
p = 0.25). There were no severe motion artifacts detected in 
the CS DL reconstructions as well as in the CS only images.

Visibility of anatomical features

The overall visibility of anatomical regions recorded was 
higher for the CS DL reconstruction by both readers, yet 
no statistical significance was reached (reader 1 CS DL 
2.5 ± 0.2, 3.1 ± 0.3, p = 0.17; reader 2 CS DL: 2.4 ± 0.4 
and CS: 3.2 ± 0.2, p = 0.31). A significant increase of the 
visibility was seen for the rotator cuff tendons (reader 
1 CS 2.3 ± 0.4, CS DL 3.5 ± 0.3, p = 0.04; reader 2 CS 
2.2 ± 0.4, CS DL 3.5 ± 0.3 p = 0.03), articular carti-
lage (reader 1 CS: 2.3 ± 0.4, CS DL 3.5 ± 0.2, p = 0.03; 
reader 2 CS: 2.2 ± 0.2, CS DL 3.5 ± 0.3, p = 0.02), rota-
tor interval (reader 1 CS: 2.4 ± 0.4, CS DL 3.5 ± 0.1, 

Table 2   Assessed abnormalities/pathologies of the shoulder and 
detected numbers

Parameters Grading and frequency (n, %)

Bone Normal signal: 24 (63%)
Bone marrow edema: 1 (3%)
Subchondral cysts: 3 (8%)
Tuberculum majus fracture: 2 (5%)
Hill-Sachs defect: 1 (3%)
Bankart defect: 7 (18%)

Rotator cuff tendons No pathology: 10 (26%)
Tendinopathy: 23 (60%)
Partial tear: 4 (11%)
Complete tear: 1 (3%)

Rotator cuff muscle No pathology: 29 (76%)
Fatty infiltration: 0 (0%)
Acute injury: 9 (24%)

Biceps No pathology: 22 (58%)
Tendinopathy: 15 (39%)
Dislocation: 0 (0%)
Tear: 0 (0%)
SLAP: 0 (0%)
Pulley: 1 (3%)

Cartilage Normal signal: 31 (82%)
Abnormal: 7 (18%)

Bursa Normal signal: 28 (74%)
Inflamed: 10 (26%)

AC joint Normal joint: 10 (26%)
Osteoarthritis: 28 (74%)

Effusion No effusion: 31 (82%)
Joint effusion: 7 (18%)

Labrum Normal labrum: 30 (79%)
Anatomical normal variant: 1 (3%)
Lesion: 7 (18%)
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p = 0.02; reader 2 CS: 2.4 ± 0.1 CS DL 3.4 ± 0.2, 
p = 0.03), and axillary recess (reader 1 CS: 2.0 ± 0.6, CS 
DL 3.2 ± 0.4, p = 0.02; reader 2 CS: 2.1 ± 0.4, CS DL 
3.2 ± 0.3, p = 0.04). An increase of visibility was also 
detected for the biceps anchor (reader 1 CS: 2.1 ± 0.3, 
CS DL 3.1 ± 0.4, p = 0.06; reader 2 CS: 2.3 ± 0.3, CS DL 
3.2 ± 0.2, p = 0.05), AC joint (reader 1 CS: 2.6 ± 0.3, CS 
DL 3.6 ± 0.2, p = 0.26; reader 2 CS: 2.7 ± 0.3, CS DL 
3.6 ± 0.2, p = 0.34), and labrum (reader 1 CS: 2.6 ± 0.3, 
CS DL 3.6 ± 0.2, p = 0.26; reader 2 CS: 2.7 ± 0.3, CS DL 
3.6 ± 0.2, p = 0.34), yet these results did not reach the 
level of significance (Table 4). Only a slight increase was 
seen in the visibility of the long biceps tendon, muscle, 
and bone. None of the anatomical regions was rated lower 
in the CS DL reconstructions than in the standard CS 
images.

Quantitative image analysis

Significant higher SNR values were detected for ligaments 
and muscle of the CS DL reconstructions compared to the 
standard CS images (ligaments p = 0.01, muscle p = 0.04). 
Although the SNR values of the CS DL reconstructions were 

generally higher, no statistical significance was reached for 
fat, joint fluid, and subchondral bone (Fig. 1). Comparing the 
CNR values, the CNR values of cartilage/fluid and ligament/
fluid of the CS DL reconstructions were significantly higher 
compared to standard CS images (cartilage/fluid p = 0.02 and 
ligament/fluid p = 0.03, respectively; Fig. 2).

Inter‑ and intra‑reader agreement

Inter-reader agreement for the detection and grading of 
pathologies was substantial to almost perfect (κ 0.89 (95% 
confidence interval 0.71–1.00)). Agreement for the grading 
of the visibility of anatomical regions was also substantial to 
almost perfect (κ 0.94 (95% confidence interval 0.89–1.00)). 
For intra-reader reliability, both readers reassessed the 
images of 10 patients after at least 4 weeks. The intra-reader 
agreement was overall substantial to almost perfect (range 
κ 0.84 to 1.00) for both readers. All acute pathologies were 
once more accurately identified on the CS DL reconstruc-
tions (κ 1.00 (95% CI 1.00–1.00) for both readers). Only in 
two patients the tendinopathy of the supraspinatus tendons 
was rated as partial tears instead (κ 0.84 (95% confidence 
interval 0.75–1.00)).

Fig. 4   A 46-year-old patient 
with anterior fracture disloca-
tion of the right shoulder. A 
Standard sagittal IM-weighted 
sequence with TSE showing 
increased noise in the whole 
images. B CS DL reconstruc-
tion of the IM-weighted TSE 
sequence with markedly 
reduced overall noise and 
smoother borders of the osse-
ous Bankart fragment (white 
arrows)

Fig. 3   A Transversal IM-
weighted TSE sequence of a 
34-year-old participant with an 
acute Bankart fracture. B High-
resolution CS DL reconstruc-
tion of the transversal image 
with markedly reduced image 
noise and a clear discrimination 
of the glenoid fracture borders 
(white arrows)
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Discussion

In this study, the application of a compressed sensing deep 
learning–based framework for image reconstruction and 
denoising was investigated and shown to be feasible and 
to improve image quality while remaining accurate regard-
ing the assessment of various pathologies of the shoulder. 
Images with CS DL reconstructions overall showed a sig-
nificantly higher image quality and a higher diagnostic con-
fidence indicating that the better image quality and visibility 
of anatomical landmarks may be useful for the visualiza-
tion and differentiation of pathologies. The increased image 
quality and denoising in the CS DL reconstructions may be 
particularly beneficial in patients with subtle findings and 
increased image noise. Almost all pathologies were identi-
cally detected on the CS DL reconstructions as in the stand-
ard CS images, with no loss of information due to the DL-
based reconstruction algorithm. Furthermore, the visibility 
of the articular cartilage, AC joint, and rotator cuff tendons 

was rated higher in the CS DL images compared to standard 
CS reconstructions. The reduced image noise also improved 
the discrimination between tissues which may improve the 
detection and assessment of e.g. acute fractures or degenera-
tive changes. Due to the denoising, significant higher SNR 
values were detected for ligaments and muscle of the CS DL 
reconstructions which further increases the image quality. 
CNR for cartilage/fluid and ligament/fluid was significantly 
higher in the CS DL reconstruction. In general, the reduced 
image noise of the CS DL reconstruction may be particularly 
useful when assessing more peripheral pathologies, e.g., 
injury to the biceps tendon, muscle, or scapula, and might 
help identify discrete pathologies which otherwise would be 
difficult to discriminate.

In recent studies, different approaches for deep learn-
ing–based enhancement of reconstruction quality and 
noise reduction in CS imaging had been proposed. Mani-
mala et  al successfully implemented a CNN for fast 
denoising of sparse MR images corrupted with Rician 

Fig. 5   A 64-year-old patient 
after acute shoulder disloca-
tion with decentered humeral 
head and lesion of the anterior 
inferior labrum. (A) Note the 
reduced noise and smooth dis-
play of the labral defect (white 
arrows) in the high-resolution 
CS DL reconstructions (B)

Fig. 6   A 54-year-old patient 
with tendinopathic changes of 
the rotator cuff, in particular 
the supraspinatus tendon. A 
Standard coronal T1-weighted 
sequence with TSE. B CS 
DL reconstruction of the 
T1-weighted TSE sequence 
with overall reduced noise and 
smoother discrimination of the 
tendinopathy of the supraspina-
tus tendon (white arrows)
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noise [19]. The algorithm exploits patch-based processing 
in order to update and refine the dictionary of weights. 
Furthermore, it can be employed without estimating the 
noise level and preserves the local structures better com-
pared to traditional methods like NLM [19]. Chaudhari 
et al implemented a deep learning–based 3D CNN called 
“DeepResolve” to reconstruct small-slice high-resolu-
tion images from acquired thicker slices and was able to 
achieve superior quantitative and qualitative diagnostic 
performance [35]. Quan et al developed a convolutional 
autoencoder and GAN which employ deeper generator 
and discriminator networks with cyclic data consist-
ency loss for interpolation of the under-sampled k-space 
data [36]. This enables faster image acquisition but also 
enhanced reconstruction quality using a chained network. 
In a retrospective study, Koch et al successfully utilized a 
neuronal network for denoising of shoulder and hip MRI 
which was trained with a supervised learning approach 
using pairs of high-spatial-resolution high-signal-to-noise 
ratio images and synthesized low-resolution low-signal-
to-noise ratio images [37].

To our knowledge, none of the abovementioned studies 
evaluated shoulder pathologies and anatomical structures 
with traumatic and non-traumatic pathologies prospec-
tively in a larger patient cohort. Furthermore, with the CS 

DL algorithm used in this study, image reconstruction was 
performed automatically during acquisition with no further 
time-consuming postprocessing needed. We found that CS 
DL reconstructions are generally applicable and reliable, yet, 
depending on the pathology and patient compliance, it has 
a larger or smaller benefit on image quality. Furthermore, 
our study was conducted in a clinical routine setup and our 
framework is applicable on every standard 3 T MRI scanner 
and can be implied on scanning protocols without the need 
of special hardware.

In our current work, the CS DL reconstructions were not 
accelerated, meaning there was no difference in scan times. 
Both CS and CS DL images were reconstructed from the 
same data, to minimize differences and confounders due to 
quality variations in the acquired data for both techniques. 
However, in future work, a thorough optimization of CS DL 
sequences is warranted to investigate the impact of CS DL 
on further image acceleration or increased resolution com-
pared to what currently is possible with standard CS.

There are certain limitations to our study which need to 
be addressed. First, we examined an inhomogeneous patient 
collective of 38 patients with various disorders and injuries 
of the shoulder. Studies with larger study cohorts with mul-
tiple cases of one pathology are needed in the future in order 
to show the applicability of the CS DL reconstructions for 

Table 4   Visibility of anatomical 
regions of the shoulder

Data are presented as means ± standard deviations
4-point Likert scale (4 = excellent; 1 = inadequate)

Reader 1 Reader 2

Anatomical regions CS CS DL p value CS CS DL p value

Rotator cuff tendons 2.3 ± 0.4 3.5 ± 0.3 0.04 2.2 ± 0.4 3.5 ± 0.3 0.03
Long biceps tendon 2.8 ± 0.5 3.5 ± 0.4 0.59 2.8 ± 0.4 3.4 ± 0.4 0.53
Biceps anchor 2.1 ± 0.3 3.1 ± 0.4 0.06 2.3 ± 0.3 3.2 ± 0.2 0.05
Rotator interval 2.4 ± 0.4 3.5 ± 0.1 0.02 2.4 ± 0.1 3.4 ± 0.2 0.03
AC joint 2.6 ± 0.3 3.6 ± 0.2 0.26 2.7 ± 0.3 3.6 ± 0.2 0.34
Articular cartilage 2.3 ± 0.4 3.5 ± 0.2 0.03 2.2 ± 0.2 3.5 ± 0.3 0.02
Axillary recess 2.0 ± 0.6 3.2 ± 0.4 0.02 2.1 ± 0.4 3.2 ± 0.3 0.04
Labrum 2.2 ± 0.3 2.9 ± 0.2 0.21 2.2 ± 0.3 2.9 ± 0.2 0.34
Bone 2.5 ± 0.3 3.2 ± 0.5 0.69 2.3 ± 0.4 3.1 ± 0.4 0.74
Muscle 2.5 ± 0.4 3.3 ± 0.6 0.55 2.6 ± 0.5 3.3 ± 0.4 0.62

Table 3   Comparison of the 
mean image quality, motion 
artifacts, and diagnostic 
confidence

Data are presented as means ± standard deviations
4-point Likert scale (4 = excellent; 1 = inadequate)
* Motion artifacts graded with a 3-point scale: 2 = severe, 3 = little, 4 = none

Reader 1 Reader 2

CS CS DL p value CS CS DL p value

Diagnostic confidence 3.2 ± 0.1 3.8 ± 0.2 0.18 2.9 ± 0.2 3.7 ± 0.1 0.04
Motion artifacts 3.7 ± 0.4* 3.8 ± 0.4* 0.23 3.7 ± 0.4* 3.8 ± 0.5* 0.25
Overall image quality 2.8 ± 0.3 3.7 ± 0.1 0.02 2.7 ± 0.1 3.8 ± 0.3 0.01
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various pathologies. For comparison, the standard CS images 
were used as standard of reference but no further modality, 
e.g., arthroscopy, was available. Therefore, confirmation of 
diagnosis was not verified by an external standard of refer-
ence. Only in the acute trauma cases with occurring fractures 
(n = 9) an additional conventional CT scan was available.

The assessment of shoulder pathologies was feasible, 
and the image quality and the SNR were significantly 
improved, while remaining accurate regarding the assess-
ment of the pathologies when using a compressed sensing 
deep learning–based framework for image reconstructions. 
The reduced image noise improved the quality as well as 
visibility of anatomical landmarks compared to the stand-
ard CS reconstructions and might help with the detec-
tion of even discrete pathologies. In clinical routine, this 
automated reconstruction and denoising technique might 
be particularly useful when applied to challenging MRI 
acquisitions, e.g., in traumatic shoulder injuries.
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