
Vol.:(0123456789)

Machine Learning (2022) 111:2407–2433
https://doi.org/10.1007/s10994-022-06132-9

1 3

Robustness verification of ReLU networks via quadratic 
programming

Aleksei Kuvshinov1   · Stephan Günnemann1

Received: 2 May 2021 / Revised: 1 October 2021 / Accepted: 6 February 2022 /  
Published online: 16 March 2022 
© The Author(s) 2022

Abstract
Neural networks are known to be sensitive to adversarial perturbations. To investigate this 
undesired behavior we consider the problem of computing the distance to the decision 
boundary (DtDB) from a given sample for a deep neural net classifier. In this work we 
present a procedure where we solve a convex quadratic programming (QP) task to obtain 
a lower bound on the DtDB. This bound is used as a robustness certificate of the classifier 
around a given sample. We show that our approach provides better or competitive results in 
comparison with a wide range of existing techniques.

Keywords  Machine learning · Robustness verification · Neural networks · Minimal 
adversarial perturbation · Quadratic programming

1  Introduction

The high predictive power of neural network classifiers makes them the method of choice 
to tackle challenging classification problems in many areas. However, questions regard-
ing the robustness of their performance under slight input perturbations still remain open, 
severely limiting the applicability of deep neural network classifiers to sensitive tasks that 
require certification of the obtained results.

In recent years this issue gained a lot of attention, resulting in a large variety of 
methods tackling tasks ranging from adversarial attacks and defenses against these to 
robustness verification and robust training. In this work we focus on robustness verifica-
tion. That is, computing the distance from a given anchor point x0 in the input space to 
its closest adversarial, i.e. a point that is assigned a different class label by the network. 
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This problem plays a fundamental role in understanding the behavior of deep classifiers 
and essentially provides the only reliable way to assess classifier robustness. Unfortu-
nately, its complexity class does not allow a polynomial time algorithm. For deep clas-
sifiers with ReLU activation the verification problem can equivalently be reformulated 
as a mixed integer programming (MIP) task and was shown to be NP-complete by Katz 
et al. (2017). Even worse, Weng et al. (2018) showed that an approximation of the mini-
mum adversarial perturbation of a certain (high) quality cannot be found within polyno-
mial time.

Related work There exist two streams of related work on robustness verification of deep 
ReLU classifiers. This categorization is based on whether they are solving the verification 
problem exactly or verifying a bound on the distance to the decision boundary (DtDB).

The first group of methods are exact verification approaches. As mentioned above, the 
verification task can be modeled using MIP techniques. Katz et al. (2017) present a modi-
fication of the simplex algorithm that can be used to solve the verification task exactly 
for smaller ReLU networks based on satisfiable modulo theory (SMT). Other approaches 
(Ehlers 2017) rely on SMT solvers when solving the described task. Bunel et al. (2018) 
provide an overview and comparison of those. Other exact methods (Dutta et  al. 2018; 
Lomuscio and Maganti 2017; Tjeng et al. 2017) deploy MIP solvers together with presolv-
ing to find a tight formulation of the MIP problem or (Jordan et al. 2018) use an algorithm 
to find the largest ball around the anchor point that touches the decision boundary.

The second popular class of methods for verifying classifier robustness deals with veri-
fication of an �-neighborhood: given an anchor point x0 and an 𝜖 > 0 , the task is to verify 
whether an adversarial point exists within the � neighborhood of x0 which is defined with 
respect to a certain norm in the input space. All existing methods relax the initial problem 
and require bounds on activation inputs in each layer. These bounds should be as tight as 
possible to ensure good final results. Raghunathan et al. (2018a, b), Dvijotham et al. (2018, 
2019) consider semidefinite (SDP) and linear (LP) problems as relaxations of the �-veri-
fication problem. Wong and Kolter (2018) replace ReLU constraints by linear constraints 
and consider the dual formulation of the obtained LP relaxation. Weng et al. (2018) present 
an approach that also uses linear functions (later extended to quadratic functions by Zhang 
et al. 2018) to deal with nonlinear activation functions and propagate the layer-wise out-
put bounds until the final layer. Salman et al. (2019) provide a unifying framework for the 
approaches using neuron-wise relaxations of the activation functions and use the best pos-
sible convex relaxation. Finally, Hein and Andriushchenko (2017), Tsuzuku et al. (2018) 
use the Lipschitz constant of the transformations within classifier’s architecture.

Our approach belongs to the same group of the inexact verifiers, but deals with con-
structing lower bounds on DtDB without necessarily restricting admissible adversarial 
points to a given neighborhood. Croce et  al. (2019) leverage the piecewise affine nature 
of the outputs of a ReLU classifier and compute lower bounds on DtDB by assuming that 
the classifier behaves globally the same way it does in the linear region around the given 
anchor point. The �-verification task is closely related to this problem since each �-neigh-
borhood that is certified as adversarial-free immediately provides a lower bound on the 
minimal adversarial perturbation magnitude. It is also a common strategy for the �-verifica-
tion methods to use a binary search or a Newton method on top of their algorithm to find 
the largest � such that the �-neighborhood around x0 is still successfully verified as robust.

Adversarial attacks Constructing misclassified examples that are close to the anchor point 
can be considered as a complementary research direction to robustness verification since each 
adversarial example by definition provides an upper bound on the DtDB. Many methods were 
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proposed to construct such points (Szegedy et al. 2014; Goodfellow et al. 2015; Kurakin et al. 
2016; Papernot et al. 2016; Madry et al. 2017; Carlini and Wagner 2017).

Robust training The question of how to actually train a robust classifier is closely related 
to robustness verification since the latter might allow us to construct some type of robust loss 
based on the insights from the verification procedure (Hein and Andriushchenko 2017; Madry 
et al. 2017; Wong and Kolter 2018; Raghunathan et al. 2018a; Tsuzuku et al. 2018; Wang 
et al. 2018; Croce et al. 2019). We leave this direction for future work.

1.1 � Contributions

1.	 We propose a novel relaxation of the DtDB problem in form of a QP task allowing 
efficient computation of high quality lower bounds on the DtDB in l2-norm with an 
extension to l∞-norm. We reach state-of-the-art performance for dense and convolutional 
networks compared to the bounds obtained from methods based on LP relaxations 
(CROWN by Zhang et al. 2018 and ConvAdv by Wong and Kolter 2018). Furthermore, 
our method performs much faster than methods based on SDP relaxations (Raghunathan 
et al. 2018b), while providing smaller lower bounds. This is a fundamental property due 
to the difference in computational complexity between SDP and QP tasks.

2.	 Unlike �-verification techniques, we provide a lower bound on DtDB without an initial 
guess and without computing bounds for the neuron activation values in each layer. 
If additional information is present allowing the user to bound the distance to any admis-
sible adversarial point from above, we incorporate these upper bounds in our formulation 
to verify larger regions around the anchor point. Such bounds have to be tight enough 
to verify non-trivial neighborhoods and play an important role in other relaxation tech-
niques such as the SDP based approaches by Raghunathan et al. (2018b) and Dvijotham 
et al. (2019). We describe an efficient search method for pre-activation bounds resulting 
in larger verified regions based on sequential convex quadratic programming (QP).

3.	 To analyze the gap in the optimal objective function value between the initial DtDB 
problem and our relaxation we establish a connection of DtDB’s dual problem to our 
QP task. It allows us to deconstruct this gap into two components. Moreover, we discuss 
how we improve the QP formulation to close the gap to DtDB and how we bound one 
of its components.

The remainder of this paper is organized as follows. In Sect. 2 we introduce the necessary 
notation. In Sect. 3.1 we formally define the problem of finding the smallest adversarial per-
turbation and in Sect. 3.2 introduce its QP relaxation QPRel. There we also formulate the dual 
DtDB problem as the best convex QP relaxation. In Sect. 3.3 we introduce additional linear 
constraints using bounds on the region of the admissible points around x0 and summarize our 
verification procedure. In Sect. 4 we compare our approach to the LP- and SDP-based com-
petitors. We summarize our findings in Sect. 5 and discuss the directions for future work.

2 � Notation and idea

We consider a neural network consisting of L linear transformations representing dense, 
convolutional, skip or average pooling layers and L − 1 ReLU activations (no ReLU after 
the last hidden layer). The number of neurons in layer l is denoted as nl for l = 0,… , L , 
meaning that the data has n0 features and nL classes. Furthermore, we present our analysis 
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for the l2-norm as perturbation measure since only few available methods are applicable 
to this setting. To make our method comparable with the approach by Raghunathan et al. 
(2018b) we propose a generalization to l∞-setting as well.

Given sample x0 ∈ ℝ
n0 , weight matrices Wl ∈ ℝ

nl×nl−1 , and bias vectors bl ∈ ℝ
nl , we 

define the output of the ith neuron in the lth layer after the ReLU activation as

where [x]+ is the positive part of x and f (x0) = xL denotes the output of the complete for-
ward pass through the network. We start with the observation that for each pair of scalars 
x and y the following holds (also used by Raghunathan et al. 2018b; Dvijotham et al. 2019 
for �-verification).

This relation allows us to obtain an optimization problem with linear complementarity 
constraints.

3 � Verification as an optimization task

3.1 � Formulation of DtDB

For a given sample x̃0 , pre-trained neural network f, predicted label ỹ and adversarial label 
y we aim to find the closest point to x̃0 in ℝn0 that has a larger or equal probability of being 
classified as y compared to the initial label. This task corresponds to the following optimi-
zation problem.

where ei is the ith unit vector in ℝnL and ‖x‖ denotes the Euclidean norm of x. To compute 
the distance from x̃0 to the (full) decision boundary, one needs to compute the solution for 
all adversarial labels y = 1,… , nL except ỹ . Next we unfold the above optimization prob-
lem using (1), where x denotes a container with all variables x0,… , xL and [L] is the set 
{1,… , L} .

We apply (2) to reformulate the problem and eliminate xL , such that from now on 
n = n0 +⋯ + nL−1 and x contains only the remaining variables x0,… , xL−1.

(1)
xl
i
=
[
Wl

i
xl−1 + bl

i

]
+
and

fi(x
0) = xL

i
= WL

i
xL−1 + bL

i
,

(2)x =
[
y
]
+
⟺ x ≥ 0, x − y ≥ 0, x(x − y) = 0.

(DtDB)min
x0∈ℝn0

‖x0 − x̃0‖2, s.t. (eỹ − ey)
T f (x0) ≤ 0,

min
x∈ℝn

‖x0 − x̃0‖2, s.t. (eỹ − ey)
TxL ≤ 0, xL = WLxL−1 + bL

xl = ReLU(Wlxl−1 + bl) for l ∈ [L − 1].

(DtDB)min
x∈ℝn

‖x0 − x̃0‖2, s.t. (eỹ − ey)
T
�
WLxL−1 + bL

�
≤ 0,

(3)
(
xl
)T(

xl −
(
Wlxl−1 + bl

))
= 0 for l ∈ [L − 1],
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3.2 � QP relaxation

To get rid of the quadratic equality constraints (3) we consider a Lagrangian relaxation 
of DtDB:

where for arbitrary vectors x0 ∈ ℝ
n0 ,… , xL−1 ∈ ℝ

nL−1 and � ∈ ℝ
L−1
+

 we define

as the propagation gap. The obtained problem is indeed a QP with linear constraints. We 
need to clarify two questions. How does the problem QPRel help us with solving DtDB 
and how do we solve this problem itself efficiently?

3.2.1 � QPRel vs. DtDB

QPRel returns robust radius It follows directly from the definition of the Lagrange relaxa-
tion QPRel that for arbitrary non-negative � it holds that:

–	 if x is feasible for DtDB we have c(x, �) = 0 , meaning that x equals the vector obtained 
by propagating x0 through the neural network as defined in (1),

–	 if x is feasible for QPRel then c(x, �) ≥ 0 , meaning that there might be a slack between 
the true output of layer l when getting x0 as an input and the value of xl.

In general the following holds for the relation between the solution of QPRel and DtDB 
(see Fig. 1). We include the proof of Lemma 1 and all other results in “Appendix B”.

Lemma 1  Denote the solution of QPRel by xqp and the square root of its optimal objective 
value by dqp, let d be the square root of the optimal objective value of DtDB. The following 
holds: 

(4)xl −
(
Wlxl−1 + bl

)
≥ 0, xl ≥ 0 for l ∈ [L − 1].

(QPRel)

min
x∈ℝn

‖x0 − x̃0‖2 + c(x, 𝜆), s.t. (eỹ − ey)
T
�
WLxL−1 + bL

�
≤ 0,

xl −
�
Wlxl−1 + bl

�
≥ 0, xl ≥ 0 for l ∈ [L − 1],

(5)c(x, �) ∶=

L−1∑
l=1

�l
(
xl
)T(

xl −
(
Wlxl−1 + bl

))

Fig. 1   Setting of the optimal 
solutions for DtDB x̃adv and 
QPRelxqp
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1.	 dqp ≤ d and when c(xqp, �) = 0 we have dqp = d and xqp is optimal for DtDB.
2.	 dqp is monotone with respect to �, that is for two non-negative �1, �2 with �1 ≤ �2 ele-

mentwise it holds that dqp(�1) ≤ dqp(�
2).

The first result from Lemma 1 ensures that dqp provides a radius of a certified region 
around the anchor point. Whereas the second part indicates that we should choose � as 
large as possible to get our lower bound closer to DtDB. Unfortunately, as we show below, 
QPRel becomes non-convex for large values of � . While one could try to tackle a non-
convex QP with proper optimization methods, we address conditions such that QPRel is 
guaranteed to be convex and can be solved efficiently next.

Convexity of QPRel To look into the problem QPRel in more detail we introduce the 
Hessian M� (which is a constant matrix) of its objective function. Let El ∈ ℝ

nl×nl be the 
identity matrix of the corresponding dimension and set �0 = 1 . We define M� ∈ ℝ

n×n as the 
symmetric block tridiagonal matrix with blocks M�

l,l
= 2�lEl and M�

l,l−1
= −�lW

l. Using 
this matrix we rewrite the objective function from QPRel as (see “Appendix B”, Lemma 4 
for the proof and definition of the terms)

where B1 influences only the linear term and is therefore not relevant in this section. From 
this reformulation we clearly see that the matrix M� determines the (non-)convexity of the 
objective function. The following theorem provides sufficient and necessary conditions on 
� depending on the weights Wl assuring that M� is positive semi-definite. This allows us to 
use off-the-shelf QP-solvers with excellent convergence properties.

Theorem 1  Let W1,… ,WL−1 be the weights of a pre-trained neural network and ‖W‖ the 
spectral norm of an arbitrary matrix. Then the following two conditions for � provide 
correspondingly a sufficient and a necessary criterion for the matrix M� to be positive 
semi-definite.

Furthermore, we define � and 𝜆̄ that correspondingly satisfy conditions (7) and (8) with 
equality:

Finally, in case with a single hidden layer M� is positive-semi definite even for 𝜆 = 𝜆̄ from 
(8).

We use (7), (8) and our previous results as guidelines for the choice of � . Since dqp(�) is 
monotone in the sense of Lemma 1 we perform a binary search between � and 𝜆̄ to find the 
point closest to 𝜆̄ (where QP is non-convex for networks with more than one hidden layer) 
such that the QP remains convex. We denote the obtained � by 𝜆̂ . This preprocessing step does 

(6)min
x∈ℝn

1

2
xTM𝜆(W)x + xTB1(b, 𝜆, x̃

0) + ‖x̃0‖2, s.t. M̄(W)x − B2(b) ≥ 0,

(7)(suf. condition) �1 ≤
2�0

‖W1‖2 and �l ≤
�l−1

‖Wl‖2 for l ≥ 2,

(8)(nec. condition) �l ≤
4�l−1

‖Wl‖2 for l ≥ 1.

(9)𝜆
l
= 2

l�
k=1

1

‖Wk‖2 , 𝜆̄l = 4l
l�

k=1

1

‖Wk‖2 .
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not considerably affect the runtime since checking whether a matrix is positive semi-definite 
is done efficiently by Cholesky decomposition. However, it significantly improves the final 
bounds compared to the bounds obtained when using � = � from (7).

Note that this procedure has to be done once for a given classifier. 𝜆̂ is then used to 
solve QPRel for all anchor points and adversarial labels. This is a significant computational 
advantage compared to SDP-based �-verification methods. For example, Dvijotham et al. 
(2019) include the dual multipliers as variables in a relaxation of the SDP problem that 
has to be solved for each combination of the anchor point, adversarial label and verified 
epsilon.

Relation to the dual of  DtDB Since  QPRel is a Lagrangean relaxation of a non-con-
vex quadratically constrained QP DtDB, we unavoidably have a gap between their optimal 
objective values, but get a simpler problem to solve in return. To investigate and approxi-
mate the components of that gap, we look onto the relation of DtDB and QPRel from the 
perspective of duality theory. A similar question was investigated by Salman et al. (2019) 
for the existing �-verification methods based on neuron-wise LP-relaxations. However, our 
method does not fall into this category because the relaxation happens jointly for all layers.

Note, that our formulation of  DtDB problem contains quadratic equality constraints 
(3) and therefore has a non-convex admissible set. For the derivation of its dual problem 
we refer to the complementary material (see “Appendix B”) and summarize here the most 
important result.

Theorem 2  Solving the Lagrange dual problem of the non-convex DtDB is equivalent to 
solving the problem

where we slightly redefine the notation and write QPRel(�) for the optimal objective func-
tion value of QPRel for the corresponding � . We also denote �∗ as the optimal value of � 
for the above problem.

Now we are ready to formulate the result that provides a way to estimate how large is 
the difference between the optimal objective function value of QPRel for 𝜆̂ , constructed 
using Theorem 1, and the optimal �∗ . The latter is defined by Theorem 2 and would pro-
vide the best bound we can get when constraining ourselves to the convex QP relaxations.

Lemma 2  Denote �∗ as the optimal � defined in Theorem 2, 𝜆̂ as � we use for verification, 
𝜆̄ as defined in (9), c(x, �) as the propagation gap defined in (5) and x̂qp as the solution of 
QPRel(𝜆̂) . Then we get the following upper bound on the possible improvement of QPRel’s 
objective function for a � value that is different from our 𝜆̂:

In summary, we have the following relation between the values defined above, where we 
add -P and -D to the problem name to denote its primal and dual forms respectively:

max
�∈ℝL−1

+

QPRel(�) s.t. M� is positive semi-definite,

max
𝜆 ≥ 0

M𝜆 psd

(
QPRel(𝜆) − QPRel(𝜆̂)

)
= QPRel(𝜆∗) − QPRel(𝜆̂) ≤ c(x̂qp, 𝜆̄ − 𝜆̂).

DtDB-P ≥ DtDB-D = QPRel(𝜆∗) ≥ QPRel(𝜆̂).
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We have shown how to find a good 𝜆̂ and are able to estimate the gap resulting in the sec-
ond ≥ sign as shown in Lemma 2. Additionally, in the next section we describe how to 
close the duality gap resulting in the first ≥ sign by introducing additional constraints to 
the QPRel problem.

3.3 � Improving bounds via additional linear constraints

The initial DtDB problem and its relaxation QPRel do not require bounds on pre-activation 
values Wlxl−1 + bl frequently used in �-verification approaches. However, if available, these 
can improve our relaxation. That is, we can additionally bound the admissible set of QPRel 
by

given some bounds al, āl ∈ ℝ
nl for layer l. Moreover, we include the following linear con-

straint on each neuron i in layer l as also widely used in other verification methods for 
ReLU networks (Ehlers 2017; Wong and Kolter 2018; Dvijotham et al. 2019; Salman et al. 
2019).

Note that constraints (10) and (11) are linear and therefore the new relaxation is still a QP.
Before continuing the discussion how we exploit these bounds, we first introduce the 

notation of a proper bound propagation mapping. We need this to ensure that the resulting 
solution of QPRel with these additional constraints is still a lower bound on DtDB. For a 
fixed anchor point and network weights consider a mapping from a bound in the input layer 
� ∈ ℝ+ to the bounds al(𝛾), āl(𝛾) ∈ ℝ

nl . We call this mapping a proper bound propagation 
mapping if 

1.	 bounds are valid for all x0 with ‖x̃0 − x0‖ ≤ 𝛾 inequalities (10) hold for the correspond-
ing pre-activation values in each layer as defined in (1) and

2.	 bounds are monotone for arbitrary �1 ≤ �2 in each hidden layer l of the network there 
holds āl(𝛾2) ≥ āl(𝛾1) ≥ al(𝛾1) ≥ al(𝛾2).

In our experiments we deploy the bound propagation technique by Wong and Kolter (2018) 
to obtain bounds al, āl since it satisfies these properties and is computationally efficient.

Lemma 3  When using a proper bound propagation mapping, the following holds for the 
square root of the optimal objective function value dqp(�) of QPRel (we drop the depend-
ence on � since it is now fixed) solved with the additional constraints (10) and (11) using 
pre-activation bounds al(𝛾), āl(𝛾) . 

1.	 dqp(�1) ≥ dqp(�2) if �1 ≤ �2, i.e. dqp(�) is monotonically decreasing, where we say that 
dqp(�) = ∞ if the corresponding QPRel with (10) and (11) is infeasible,

2.	 if dqp(�) ≤ � then dqp(�) is a lower bound on DtDB (which might not be the case other-
wise, see “Appendix B” for details).

(10)al ≤ Wlxl−1 + bl ≤ āl for l = 1,… , L − 1

(11)−āl
i
(Wlxl−1 + bl)i + (āl

i
− al

i
)xl

i
≤ −āl

i
al
i
.
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Guided by the results of Lemma 3 we apply binary search to find the smallest � that is 
still providing us with a lower bound dqp(�) on the smallest adversarial perturbation (the 
smaller the value of � , the better the resulting bound). In each step we solve a convex QP 
and increase � if  QPRel is infeasible, that is current bounds al(𝛾), āl(𝛾) are too tight, or 
if dqp(𝛾) > 𝛾 since in this case we do not have a certificate for dqp(�) to be a valid lower 
bound on DtDB. Otherwise we set the current � as the right boundary of the search interval 
and proceed with a smaller value of � . The whole procedure is summarized in Algorithm 1.

3.4 � l∞‑Setting

For comparison with the SDP-based approach by Raghunathan et al. (2018b) we show how 
we apply our method to compute bounds on the distance to the closest adversarial meas-
ured using the l∞-norm. A straight forward way would be to modify the objective function 
accordingly. By introducing a new variable m representing ‖x0 − x̃0‖2

∞
= maxi(x

0
i
− x̃0

i
)2 

and n0 new quadratic constraints we get the following versions of QPRel:
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Note that the quadratic constraints do not harm the complexity since they describe a convex 
cone and can be handled by the QP-solvers. While this formulation is of a similar structure 
as the QPRel (quadratic objective as well as linear and quadratic constraints), the Hessian 
of the objective function is not positive semi-definite for any value of � . Since c(x, �) is the 
only source of quadratic terms now (squared distance to the anchor point is now replaced 
by m), the new M� is of the same form as in (6), but with �0 = 0 . To see that we cannot 
affect the convexity of the objective function by the parameter � anymore consider vector x 
with an arbitrary x0 ∈ ℝ

n0 as well as x1 = �W1x0 for some 0 < 𝛼 < 1 and xl = 0 for l > 1 . 
Then

meaning that M� cannot be positive semi-definite.
To overcome this issue, we utilize the new quadratic constraints. We return back to a 

convex QP by considering the following problem with a positive �.

Clearly, for 0 < 𝜇 ≤ n−1
0

 the solution of this problem is a finite lower bound on DtDB with 
the l∞-norm. On the other side we are back in the setting of Theorem 1 with �0 = � allow-
ing us to use the same framework as before. In Sect. 4 we obtain the results in the l∞-set-
ting by solving this problem with � = (2n0)

−1.

4 � Experiments

For each considered sample we apply the procedure described in Sect. 3.3, Algorithm 1 
including tightening of the relaxation by introducing additional linear constraints (10) and 
(11). 𝜆̂ is chosen for each classifier according to Theorem 1 and the discussion afterwards 
such that a relative accuracy of at least c� = 10−4 is achieved during the binary search in 
each �l . For the values of other parameters in Algorithm 1 we choose for all tests c� = 10−8 
and n� = 10 . Other methods are tested with the default settings as provided in the cor-
responding repositories. For ConvAdv by Wong and Kolter (2018) we use the maximum 
of 200 iterations during Newton’s method for the networks D8, D8R, C, CR (see below) 
and 20 otherwise. To solve the QP tasks or verify that they are infeasible we use Gurobi 
(Gurobi Optimization 2018).

Datasets and classifiers The experiments are performed using the MNIST (LeCun et al. 
1999) and Fashion-MNIST (Xiao et al. 2017) datasets as well as the tabular datasets IRIS 
(3 classes, 4 features) and WINE (2 classes, 12 features) from Dua and Graff (2017) scaled 

min
x∈ℝn ,m∈ℝ

m + c(x, 𝜆), s.t. (x0
i
− x̃0

i
)2 ≤ m, i = 1,… , n0,

(eỹ − ey)
T
(
WLxL−1 + bL

)
≤ 0,

xl −
(
Wlxl−1 + bl

)
≥ 0, xl ≥ 0 for l ∈ [L − 1].

xTM𝜆x = 𝜆1

�
‖x1‖2 − �

x1
�T
W1x0

�
= 𝜆1(𝛼

2 − 𝛼)‖W1x0‖2 < 0

min
x∈ℝn ,m∈ℝ

m + c(x, 𝜆) + 𝜇

n0∑
i=1

(
(x0

i
− x̃0

i
)2 − m

)
, s.t. (x0

i
− x̃0

i
)2 ≤ m for i = 1,… , n0,

(eỹ − ey)
T
(
WLxL−1 + bL

)
≤ 0,

xl −
(
Wlxl−1 + bl

)
≥ 0, xl ≥ 0 for l ∈ [L − 1].
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such that the feature values lie in [0, 1] interval. For each of the datasets we use the cor-
rectly classified samples from 120 train points to evaluate the verification approaches.

For classification we take ReLU networks consisting of dense and convolutional linear 
layers. The architectures we used for the image datasets are named D2, D4, D8 (dense net-
works containing 2, 4 and 8 hidden layers consisting of 50 neurons each with an exception 
for the last 4 layers in D8 that have 20 neurons each) and C. We use similar structures of 
the networks as Wong and Kolter (2018) to enable easier comparison. The latter consists 
of two convolutional layers with 4 × 4 windows, a stride of 2 as well as 16 and 32 output 
channels correspondingly, followed by two dense layers with input/output dimensions of 
1568/100 and finally 100/10. For each architecture we use normally trained classifiers as 
well as robustly trained ones (indicated by suffix R, e.g. CR) using the method by Wong 
and Kolter (2018) with � = 1.58 in l2-setting and � = 0.1 in l∞-setting. For the tabular data-
sets we use a dense network with two hidden layers with 10 neurons called D2 and dif-
ferent � values in l2-setting: 0.113 for IRIS and 0.195 for WINE (and the same � = 0.1 
in l∞-setting). The weights as well as the project code are available at github.​com/​Aleks​
ei-​Kuvsh​inov/​QPRel. In Table 1 we show the clean accuracy of the trained networks on the 
corresponding test sets.

Competitors We compare our approach QPRel with the following verification meth-
ods: ConvAdv by Wong and Kolter (2018) based on the LP relaxation of ReLU constraints 
(we use its implementation supporting the l2-norm by Croce et  al. 2019), CROWN by 
Zhang et  al. (2018) which is a layerwise bound propagation technique including perfor-
mance boosting quadratic approximations and warm start (for dense networks only since its 
implementation did not support convolutional layers), and SDPRel by Raghunathan et al. 
(2018b) based on a SDP relaxation solved by MOSEK.

Metrics The results on MNIST and Fashion-MNIST for the l2 - and l∞ setting are shown 
in Tables 3 and  4 correspondingly. We show the results on the tabular data in Table 2. We 
run the methods for each of the considered samples and report the following metrics.

Table 1   Clean accuracy Model MNIST FMNIST

D2 0.9753 0.8847
D2R ( l

2
) 0.8518 0.7184

D2R ( l∞) 0.8722 0.7440
D4 0.9758 0.8873
D4R ( l

2
) 0.8169 0.7092

D4R ( l∞) 0.8916 0.7324
D8 0.9649 0.8802
D8R ( l

2
) 0.7482 0.7894

D8R ( l∞) 0.6843 0.6856
C 0.9897 0.9136
CR ( l

2
) 0.8323 0.7383

CR ( l∞) 0.9835 0.7688

IRIS WINE

D2 0.9733 0.9858
D2R ( l

2
) 0.9349 0.7845

D2R ( l∞) 0.9232 0.7538

http://github.com/Aleksei-Kuvshinov/QPRel
http://github.com/Aleksei-Kuvshinov/QPRel
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(1) AvgBound the average value of the bounds obtained from QPRel and the corre-
sponding competitor (the best value marked bold if at least 5% larger than the worst one). 
To asses the impact of introducing additional linear constraints using a bound propagation 
method as described in Sect. 3.3 we report the lower bounds obtained by solving QPRel 
without constraints (10) and (11) in the last column AvgBound (no BndProp) in Tables 3 
and 4. (2) MedRelDiff to QPRel: the median of the relative difference between the bounds 
(e.g. QPRel minus CROWN and then divided by CROWN). Positive values for the lower 
bounds mean our bounds are better in average over the samples. (3) � to hit 50% LB-veri-
fied: the number of samples with an adversarial-free radius of � is monotonically decreas-
ing in � . Therefore, to assess the performance of a verification procedure like QPRel or 
CROWN we report the smallest � such that exactly 50% of the samples are successfully 
verified. The larger this value, the better (the largest values marked bold).

l2-setting, state-of-the-art bounds For all considered architectures the lower bounds 
computed by QPRel are tighter in comparison to the competitors in average (see Table 3, 

Table 2   Experiment results, tabular data

IRIS and WINE, l
2

AvgBound MedRelDiff � to hit 50%

Dataset Network Method to QPRel (%) LB-verified

IRIS D2 QPRel 0.24 – 0.206
CROWN 0.24 + 2.17 0.202
ConvAdv 0.23 + 0.63 0.197

WINE D2 QPRel 0.18 – 0.179
CROWN 0.18 + 1.76 0.176
ConvAdv 0.18 + 1.19 0.174

IRIS D2R QPRel 0.24 – 0.225
CROWN 0.24 + 0.09 0.225
ConvAdv 0.24 + 1.00 0.223

WINE D2R QPRel 0.62 – 0.614
CROWN 0.46 + 34.9 0.455
ConvAdv 0.45 + 37.2 0.449

IRIS and WINE, l∞ AvgBound MedRelDiff � to hit 50%

Dataset Network Method to QPRel (%) LB-verified

IRIS D2 QPRel 0.12 – 0.106
CROWN 0.13 −3.16 0.110
ConvAdv 0.13 −6.99 0.109

WINE D2 QPRel 0.06 – 0.055
CROWN 0.06 −6.06 0.059
ConvAdv 0.06 −4.38 0.058

IRIS D2R QPRel 0.14 – 0.144
CROWN 0.15 −8.50 0.157
ConvAdv 0.15 −6.48 0.157

WINE D2R QPRel 0.19 – 0.190
CROWN 0.15 + 27.3 0.150
ConvAdv 0.15 + 28.0 0.150
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Table 3   Experiment results, image data, l
2
-setting

MNIST, l
2

AvgBound MedRelDiff � to hit 50% AvgBound

Network Method to QPRel (%) LB-verified (no BndProp)

D2 QPRel 0.38 – 0.371 0.37
CROWN 0.25 + 52.8 0.235 –
ConvAdv 0.23 + 66.0 0.217 –

D2R QPRel 1.77 – 1.681 1.39
CROWN 1.60 + 11.6 1.561 –
ConvAdv 1.44 + 25.6 1.361 –

D4 QPRel 0.20 – 0.200 0.09
CROWN 0.17 + 17.9 0.169 –
ConvAdv 0.17 + 24.3 0.159 –

D4R QPRel 1.67 – 1.689 0.69
CROWN 1.63 + 6.5 1.770 –
ConvAdv 1.46 + 19.1 1.649 –

D8 QPRel 0.17 – 0.167 0.03
CROWN 0.16 + 3.2 0.159 –
ConvAdv 0.16 + 3.2 0.159 –

D8R QPRel 1.78 – 2.034 0.18
CROWN 1.61 + 10.8 1.780 –
ConvAdv 1.49 + 22.9 1.628 –

C QPRel 0.13 – 0.140 0.01
ConvAdv 0.06 + 108.1 0.064 –

CR QPRel 1.57 – 1.686 0.02
ConvAdv 1.37 + 20.3 1.488 –

FMNIST, l
2

AvgBound MedRelDiff � to hit 50% AvgBound

Network Method to QPRel (%) LB-verified (no BndProp)

D2 QPRel 0.31 – 0.277 0.19
CROWN 0.21 + 42.5 0.202 –
ConvAdv 0.20 + 55.1 0.192 –

D2R QPRel 2.22 – 2.290 1.43
CROWN 2.11 + 4.1 2.197 –
ConvAdv 1.92 + 15.4 1.916 –

D4 QPRel 0.19 – 0.181 0.03
CROWN 0.17 + 13.7 0.158 –
ConvAdv 0.16 + 20.1 0.152 –

D4R QPRel 2.12 – 2.154 0.51
CROWN 2.05 + 3.4 2.019 –
ConvAdv 1.89 + 14.6 1.840 –

D8 QPRel 0.14 – 0.134 0.01
CROWN 0.14 + 7.3 0.128 –
ConvAdv 0.14 + 7.3 0.128 –

D8R QPRel 2.03 – 2.225 0.10
CROWN 1.88 + 6.9 1.947 –
ConvAdv 1.74 + 16.3 1.761 –
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AvgBound and MedRelDiff) and for the networks with a smaller number of hidden layers 
even for most individual images. Naturally, this results in larger values of � to hit 50% 
LB-verified as well. It seems that the competitors tend to underestimate robustness of the 
considered networks, especially if it was not trained robustly. For the normally trained con-
volutional network C on MNIST we were able to improve the competitor’s lower bounds 
by a factor of 2 in average. In contrast to other verification procedure that can not easily 
verify networks that were not robustly trained, our method is applicable to normally trained 
networks as well.

While this improvement of the verifiable radius comes at higher computational cost 
(QPRel is about one order of magnitude slower than the LP-competitors) due to a funda-
mental difference in complexity of the LP- and QP-tasks, the average runtime per sample is 
still only seconds or less for the dense and multiple minutes for the convolutional networks. 
We present a detailed runtime comparison in “Appendix A”.

In the last column of Table 3, we report the lower bound obtained when solving QPRel 
without introducing additional constraints as described in Sect.  3.3. We observe that the 
relaxation becomes less tight for networks with more layers and if it was trained robustly. 
We suppose that when the number of layers L becomes larger the binary search between � 
and 𝜆̄ (see Theorem 1 and the discussion afterwards) in a higher dimensional space results 
in a point far from the optimal Lagrange multipliers. Especially the last �

L−1
 and 𝜆̄L−1 

defined in (9) become small such that the gap between xL−1 and WL−1xL−2 + bL−1 has only a 
very limited effect on the objective function of QPRel. That results in an undesired optimal 
solution of QPRel with a large propagation gap. At that point, by introducing additional 
linear constraints [especially (11)] we prohibit this behavior by bounding the propagation 
gap for the set of feasible points. Overall, incorporating additional linear constraints by 
using bounds on ReLU’s input has proven to significantly improve our relaxation and the 
resulting lower bounds.

l∞-setting, comparison with SDP-relaxations In order to compare our method with 
the work done by Raghunathan et  al. (2018b) we generalize QPRel to the l∞-setting as 
described in Sect. 3.4. Note, that the resulting relaxation is looser than the initial QPRel 
for the l2-setting since we bound the l∞-distance from below to make the problem quadratic 
and convex. To compute the largest � such that the SDP verification succeeds we perform a 
binary search on the [0, 1] interval. Since this approach takes longer to run we test it only 
on the networks D2 and D2R trained with � = 0.1 (MNIST data).

In l∞ setting our bounds are about 3 times smaller than the ones of SDPRel (see Table 4, 
MedRelDiff to QPRel)—though computed three orders of magnitude faster (see “Appendix 
A”). This shows that the QP relaxation is less suited than the competitors for obtaining 
tight bounds in l∞-setting as already indicated by the arguments above due to the nature of 
the quadratic relaxation, but trades this off by much better efficiency compared to SDPRel.

Table 3   (continued)

FMNIST, l
2

AvgBound MedRelDiff � to hit 50% AvgBound

Network Method to QPRel (%) LB-verified (no BndProp)

C QPRel 0.09 – 0.101 0.00

ConvAdv 0.07 + 28.1 0.082 –
CR QPRel 1.64 – 1.760 0.02

ConvAdv 1.57 + 7.6 1.553 –
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Table 4   Experiment results, image data, l∞-setting

MNIST, l∞ AvgBound MedRelDiff � to hit 50% AvgBound

Network Method to QPRel (%) LB-verified (no BndProp)

D2 QPRel 0.01 – 0.014 0.01
CROWN 0.01 + 19.6 0.011 –
ConvAdv 0.01 + 20.7 0.011 –
SDPRel 0.03 −43.5 0.024 –

D2R QPRel 0.05 – 0.048 0.04
CROWN 0.10 −54.4 0.105 –
ConvAdv 0.10 −50.5 0.099 –
SDPRel 0.16 −68.2 0.165 –

D4 QPRel 0.01 – 0.009 0.01
CROWN 0.01 + 8.2 0.008 –
ConvAdv 0.01 + 0.0 0.009 –

D4R QPRel 0.04 – 0.038 0.03
CROWN 0.11 −63.3 0.106 –
ConvAdv 0.10 −60.8 0.098 –

D8 QPRel < 0.01 – 0.003 < 0.01

CROWN 0.01 −60.9 0.008 –
ConvAdv 0.01 −64.0 0.007 –

D8R QPRel 0.01 – 0.006 < 0.01

CROWN 0.09 −93.9 0.093 –
ConvAdv 0.09 −93.9 0.093 –

C QPRel 0.01 – 0.002 < 0.01

ConvAdv 0.01 −101.6 0.005 –
CR QPRel 0.04 – 0.038 < 0.01

ConvAdv 0.09 −61.4 0.091 –

FMNIST, l∞ AvgBound MedRelDiff � to hit 50% AvgBound

Network Method to QPRel (%) LB-verified (no BndProp)

D2 QPRel 0.01 – 0.011 0.01
CROWN 0.01 + 11.1 0.010 –
ConvAdv 0.01 + 11.7 0.010 –

D2R QPRel 0.05 – 0.052 0.04
CROWN 0.13 −64.1 0.136 –
ConvAdv 0.13 −61.5 0.128 –

D4 QPRel 0.01 – 0.008 < 0.01

CROWN 0.01 + 2.2 0.008 –
ConvAdv 0.01 −5.8 0.008 –

D4R QPRel 0.06 – 0.059 0.02
CROWN 0.13 −54.7 0.133 –
ConvAdv 0.12 −51.1 0.125 –

D8 QPRel < 0.01 – 0.004 < 0.01

CROWN 0.01 −27.4 0.007 –
ConvAdv 0.01 −27.5 0.007 –
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5 � Conclusion and future work

We presented a novel approach to solve the problem of approximating the minimal adver-
sarial perturbations for ReLU networks based on a convex QP relaxation of  DtDB. We 
show that the lower bounds computed with QPRel allow certification of larger neighbor-
hoods. Since convexity of the underlying QP determines computational efficiency of our 
approach we derive the necessary and sufficient conditions on the Lagrangian multipliers. 
The obtained lower bounds in the l2-setting show state-of-the-art results allowing to certify 
larger radia around the data samples as adversarial free.

With our contribution we make a step towards robustness verification of deep ReLU-
based classifiers. While the proposed theoretical framework is applicable to any linear 
transformations including dense, convolutional and average pooling layers as well as skip 
connections, it requires a different analysis when a non-ReLU activation functions are 
used (except leaky ReLU). To be able to apply the approach on a wider class of networks 
it should be generalized to popular architectures beyond ReLU activations. Last but not 
least, excellent results that our method demonstrated for the verification task indicate an 
intriguing research direction toward robust training. Based on our certificates the next step 
towards robust training would be an approach that uses the solution of QPRel to make an 
update step resulting in larger certified neighborhood for the correctly classified samples. 
As our approach does not require a predefined � , that additional regularization acts indi-
vidually for each sample depending on its current robust neighborhood.

Appendix

A Runtime

Tables 5, 6, 7 and 8 (see “Appendix C”) show the average runtime and its standard devia-
tion for the considered experiments. During the binary search procedure we apply for 
SDPRel we always make 10 bisection steps. Furthermore, we speed up this approach by 

Table 4   (continued)

FMNIST, l∞ AvgBound MedRelDiff � to hit 50% AvgBound

Network Method to QPRel (%) LB-verified (no BndProp)

D8R QPRel 0.05 – 0.060 < 0.01

CROWN 0.11 −49.0 0.112 –

ConvAdv 0.11 −49.0 0.112 –
C QPRel < 0.01 – 0.001 < 0.01

ConvAdv 0.01 −162.0 0.004 –
CR QPRel 0.02 – 0.004 < 0.01

ConvAdv 0.08 −373.3 0.086 –
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modifying MOSEK parameters1 (see Table 9 for details) such that the optimization pro-
cedure terminates earlier (approximately after a half of the usual number of iterations). 
We can still rely on the obtained results since we are not interested in the exact value of 
the SDP objective, but only whether it is positive or negative which was observed to be 
determined far sooner during the solution process than when the solver would reach a true 
optimum.

All tasks necessary for the computation of bounds on DtDB for one sample are run 
on four CPUs (including the solution of QPs and SDPs with Gurobi and MOSEK respec-
tively). Column Runtime-LB (s), sequential QPRel shows the runtime of the whole bound 
improvement procedure as described in Sect. 3.3. From the comparison of QPRel and the 
LP-based approaches we see the clear advantage of the latter since they do not involve any 
optimization task. However, especially in the l2-setting this advantage comes in cost of the 
verification properties as discussed in Sect. 4. On the other hand, SDPRel with a binary 
search provides better bounds, but is about three orders of magnitude slower than QPRel.

Table 5   Runtime comparison, 
MNIST, l

2

MNIST, l
2

Runtime-LB (s) sequen-
tial QPRel

Network NrPts Method Mean Std

D2 119 QPRel 6.231 3.996
D2 119 CROWN 0.092 0.026
D2 119 ConvAdv 0.829 0.017
D2R 99 QPRel 5.285 1.144
D2R 99 CROWN 0.104 0.030
D2R 99 ConvAdv 0.735 0.020
D4 120 QPRel 6.267 0.996
D4 120 CROWN 0.312 0.017
D4 120 ConvAdv 1.886 0.045
D4R 96 QPRel 12.514 1.649
D4R 96 CROWN 0.346 0.033
D4R 96 ConvAdv 1.426 0.103
D8 119 QPRel 6.134 1.013
D8 119 CROWN 0.644 0.032
D8 119 ConvAdv 13.889 0.820
D8R 75 QPRel 13.160 2.953
D8R 75 CROWN 0.620 0.138
D8R 75 ConvAdv 10.153 2.118
C 120 QPRel 2370.008 824.183
C 120 ConvAdv 143.156 11.727
CR 94 QPRel 214.818 91.502
CR 94 ConvAdv 48.880 3.656

1  https://​docs.​mosek.​com/9.​0/​pytho​napi/​param​eters.​html contains the full list of parameters including their 
description.

https://docs.mosek.com/9.0/pythonapi/parameters.html
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B Proofs

Lemma 1  Denote the solution of QPRel by xqp and the square root of its optimal objective 
value by dqp , let d be the square root of the optimal objective value of DtDB. The following 
holds: 

1.	 dqp ≤ d and when c(xqp, �) = 0 we have dqp = d and xqp is optimal for DtDB.
2.	 For two non-negative �1, �2 with �1 ≤ �2 elementwise it holds that dqp(�1) ≤ dqp(�

2).

Proof  Assume xadv is the optimal solution of DtDB. Then it is an admissible point of QPRel 
as well and c(xadv, �) = 0 since xl

adv
= ReLU(Wlxl−1

adv
+ bl) for l = 1,… , L − 1 . Since xqp is 

optimal for QPRel and xadv is an admissible point we get

d2 = ‖x0
adv

− x̃0‖2 = ‖x0
adv

− x̃0‖2 + c(xadv, 𝜆) ≥ ‖x0
qp
− x̃0‖2 + c(xqp, 𝜆) = d2

qp

Table 6   Runtime comparison, 
MNIST, l∞

MNIST, l∞ Runtime-LB (s) sequen-
tial QPRel

Network NrPts Method Mean Std

D2 119 QPRel 5.459 0.782
D2 119 CROWN 0.088 0.030
D2 119 ConvAdv 0.858 0.018
D2 119 SDPRel 5094.572 974.972
D2R 104 QPRel 4.724 0.805
D2R 104 CROWN 0.093 0.020
D2R 104 ConvAdv 0.836 0.013
D2R 104 SDPRel 5443.324 1121.064
D4 120 QPRel 6.593 1.112
D4 120 CROWN 0.256 0.025
D4 120 ConvAdv 2.015 0.024
D4R 103 QPRel 11.106 3.700
D4R 103 CROWN 0.308 0.021
D4R 103 ConvAdv 1.905 0.094
D8 119 QPRel 8.358 1.692
D8 119 CROWN 0.523 0.060
D8 119 ConvAdv 15.502 1.004
D8R 75 QPRel 12.024 2.543
D8R 75 CROWN 0.629 0.062
D8R 75 ConvAdv 10.281 2.072
C 120 QPRel 3647.024 322.421
C 120 ConvAdv 201.347 23.439
CR 94 QPRel 564.413 231.521
CR 94 ConvAdv 141.203 11.073



2425Machine Learning (2022) 111:2407–2433	

1 3

proving the first claim. The second one follows from the fact that c(x, �) for a given x is a 
linear function of �:

where each c(x, el) =
(
xl
)T(

xl −
(
Wlxl−1 + bl

))
 is non-negative for admissible x because 

of the non-negativity constraints (4). Therefore the claim follows immediately from the 
assumption that �1

l
≤ �2

l
 for all l

	�  ◻

Theorem 3  Let W1,… ,WL−1 be the weights of a pre-trained neural network and ‖W‖ the 
spectral norm of an arbitrary matrix. Then the following two conditions for � provide 

c(x, �) = �T
⎛
⎜⎜⎝

c(x, e1)

⋮

c(x, eL−1),

⎞
⎟⎟⎠

c(x, �1) =

L−1∑
l=1

�1
l
c(x, el) ≤

L−1∑
l=1

�2
l
c(x, el) = c(x, �2).

Table 7   Runtime comparison, 
F-MNIST, train data, l

2

F-MNIST, l
2

Runtime-LB (s) sequen-
tial QPRel

Network NrPts Method Mean Std

D2 117 QPRel 4.836 0.685
D2 117 CROWN 0.096 0.020
D2 117 ConvAdv 0.825 0.038
D2R 87 QPRel 5.196 1.007
D2R 87 CROWN 0.118 0.030
D2R 87 ConvAdv 0.738 0.043
D4 116 QPRel 5.715 0.765
D4 116 CROWN 0.305 0.033
D4 116 ConvAdv 1.629 0.059
D4R 88 QPRel 11.618 2.079
D4R 88 CROWN 0.349 0.033
D4R 88 ConvAdv 1.918 0.038
D8 117 QPRel 6.470 1.269
D8 117 CROWN 0.626 0.046
D8 117 ConvAdv 14.123 0.999
D8R 89 QPRel 12.992 4.952
D8R 89 CROWN 0.730 0.050
D8R 89 ConvAdv 11.818 0.843
C 112 QPRel 2805.849 955.243
C 112 ConvAdv 177.451 15.203
CR 90 QPRel 352.121 138.573
CR 90 ConvAdv 57.378 9.209
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correspondingly a sufficient and a necessary criterion for the matrix M� to be positive 
semi-definite.

(7)(suf. condition) �1 ≤
2�0

‖W1‖2 and �l ≤
�l−1

‖Wl‖2 for l ≥ 2,

Table 8   Runtime comparison, 
F-MNIST, l∞

F-MNIST, l∞ Runtime-LB (s) sequen-
tial QPRel

Network NrPts Method Mean Std

D2 117 QPRel 4.836 0.685
D2 117 CROWN 0.096 0.020
D2 117 ConvAdv 0.825 0.038
D2R 87 QPRel 5.196 1.007
D2R 87 CROWN 0.118 0.030
D2R 87 ConvAdv 0.738 0.043
D4 116 QPRel 5.715 0.765
D4 116 CROWN 0.305 0.033
D4 116 ConvAdv 1.629 0.059
D4R 88 QPRel 11.618 2.079
D4R 88 CROWN 0.349 0.033
D4R 88 ConvAdv 1.918 0.038
D8 117 QPRel 6.470 1.269
D8 117 CROWN 0.626 0.046
D8 117 ConvAdv 14.123 0.999
D8R 89 QPRel 12.992 4.952
D8R 89 CROWN 0.730 0.050
D8R 89 ConvAdv 11.818 0.843
C 110 QPRel 5372.089 562.702
C 110 ConvAdv 252.012 29.203
CR 86 QPRel 1252.235 422.278
CR 86 ConvAdv 185.257 15.502

Table 9   MOSEK parameters we use to run SDPRel and their default values

Parameter New value Default value

MSK_IPAR_NUM_THREADS 1 0
MSK_DPAR_INTPNT_CO_TOL_MU_RED 10−4 10−8

MSK_DPAR_INTPNT_CO_TOL_REL_GAP 10−4 10−8

MSK_DPAR_INTPNT_CO_TOL_INFEAS 10−6 10−12

MSK_DPAR_INTPNT_CO_TOL_DFEAS 10−4 10−8

MSK_DPAR_INTPNT_CO_TOL_PFEAS 10−4 10−8
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Furthermore, we define � and 𝜆̄ that correspondingly satisfy conditions (7) and (8) with 
equality:

Finally, in case with a single hidden layer M� is positive-semi definite even for 𝜆 = 𝜆̄ from 
(8).

Proof  Let the assumptions hold and x be an arbitrary vector from ℝn . First we prove the 
sufficient condition by deriving a lower bound on xTM�x that is non-negative if (7) holds.

where we applied the sub-multiplicativity property of the spectral norm, i.e. 
‖Wlxl−1‖ ≤ ‖Wl‖‖xl−1‖ , to obtain the last inequality. We see that under the assumption (7) 
on � and W’s it holds that

and the lower bound on xTM�x obtained above is a sum of non-negative terms meaning 
that xTM�x ≥ 0 for all x ∈ ℝ

n.
To prove the necessary condition consider for each l = 1,… , L − 1 a special vector x̃ 

(we don’t explicitly label it as dependent on l to avoid overloaded notation) which is every-
where zero except

(8)(nec. condition) �l ≤
4�l−1

‖Wl‖2 for l ≥ 1.

(9)𝜆
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For M� in order to be positive semi-definite it has to satisfy

which results in the necessary condition (8) as stated above. It remains to prove sufficiency 
of (8) if the considered network contains one hidden layer. To do so we can reuse the last 
computation and obtain now for arbitrary x ∈ ℝ

n

We see that the last term remains non-negative in case of �1 =
4�0

‖W1‖2 for all x. 	�  ◻

Theorem 4  Solving the Lagrange dual problem of the non-convex DtDB is equivalent to 
solving the problem

Proof  We start with the following formulation of  DtDB, where we use ≤ instead of the 
equality to formulate the complementarity constraints. This is possible because of the fact 
that both components of the product are non-negative due to the other constraints, that are 
rewritten using the matrix notation from Lemma 4.

To formulate the Lagrange dual we introduce the non-negative Lagrange multipliers � and 
� . We obtain the following formulation of the primal problem

and by switching the order of the optimization tasks we arrive at the dual task (again, we 
use the notation from Lemma 4 to rewrite the objective).

x̃l−1 ∶= arg max
x∈ℝnl−1

‖Wlx‖
‖x‖ and x̃l ∶=

1

2
Wlxl−1.
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4
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QPRel(�) s.t. M� is positive semi-definite.
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��
≤ 0 for l ∈ [L − 1],
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Note, that for � such that M� is not positive semi-definite there exists x such that 
xTM𝜆x < 0 . Therefore, the inner optimization task is unbounded in this case. That means 
we can introduce the desired constraint on � and solve the convex QP explicitly, obtaining 
the following equivalent formulation of the dual.

By splitting the maximization task in two we obtain

where the inner task is a convex QP. Therefore, it can be transformed to its dual without 
introducing the duality gap. Following the steps we have done backwards (now with a fixed 
� ) we obtain exactly the  QPRel problem as the dual of the inner optimization problem. 
That concludes the proof since we arrive at the formulation from the claim. 	�  ◻

Lemma 2  Denote �∗ as the optimal � defined in Theorem 2, 𝜆̂ as � we use for verification, 
𝜆̄ as defined in (9), c(x, �) as the propagation gap defined in (5) and x̂qp as the solution of 
QPRel(𝜆̂) . Then we get the following upper bound on the possible improvement of QPRel’s 
objective function for a � value that is different from our 𝜆̂:

Proof  The first equality holds due to the definition of �∗ . From there we proceed as follows.

To prove the first inequality note that M�∗ is positive semi-definite and therefore �∗ sat-
isfies the necessary condition (8) from Theorem  1 meaning that 𝜆∗ ≤ 𝜆̄ elementwise. 
Due to the fact that  QPRel is monotone with respect to � (see Lemma  1) we get that 
QPRel(𝜆∗) ≤ QPRel(𝜆̄) . For the second inequality instead of the minimum objective func-
tion value we just use the value of QPRel(𝜆̄) evaluated at x̂ . Finally, the last equation holds 
due to the linearity of c(x, �) with respect to � . 	� ◻

Lemma 3  When using a proper bound propagation mapping, the following holds for 
the square root of the optimal objective function value dqp(�) of  QPRel (we drop the 

max
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dependence on � since it is now fixed) solved with the additional constraints (10) and (11) 
using pre-activation bounds al(𝛾), āl(𝛾) . 

1.	 dqp(�1) ≥ dqp(�2) if �1 ≤ �2 , i.e. dqp(�) is monotonically decreasing, where we say that 
dqp(�) = ∞ if the corresponding QPRel with (10) and (11) is infeasible,

2.	 if dqp(�) ≤ � then dqp(�) is a lower bound on DtDB.

Proof  First claim follows directly from the fact that QPRel with constraints (10) and (11) 
has a larger feasible set if the additional constraints are constructed using a larger value 
for � . Assume that �1 ≤ �2 and constraints (10), (11) hold for bounds al(�1) and āl(𝛾1) , then 
they hold for al(�2) and āl(𝛾2) automatically.

For (10), if al(𝛾1) ≤ Wlxl−1 + bl ≤ āl(𝛾1) then al(𝛾2) ≤ Wlxl−1 + bl ≤ āl(𝛾2) since 
al(�2) ≤ al(�1) and āl(𝛾1) ≤ āl(𝛾2) . The latter is true due to the fact that proper bound prop-
agation mapping is monotonic.

For (11) assume that al
i
(𝛾1) < 0 < āl

i
(𝛾1) . Otherwise the only admissible values for xl

i
 

and (Wlxl−1 + bl)i satisfy xl
i
= max((Wlxl−1 + bl)i, 0) and are obviously admissible in case 

of the less restrictive bounds al
i
(�2) and āl

i
(𝛾2) as well. With this assumption (11) can be 

equivalently reformulated as

where the right hand side is increasing in āl
i
 and decreasing in al

i
 (as long as al

i
< 0 < āl

i
 ). 

Therefore it remains true if we replace al
i
 , āl

i
 by any less restrictive bounds.

To prove the second claim we denote as before the square root of the optimal objective 
function of DtDB by dadv , that is the distance to the closest adversarial, and the correspond-
ing solution by xadv ∈ ℝ

n . Consider two cases.
If 𝛾 > dadv = ‖x̃0 − x0

adv
‖ , then xadv is an admissible point for QPRel with additional lin-

ear constraints due to the first property of a proper bound propagation mapping. The objec-
tive function value at this point is d2

adv
 and therefore the minimum dqp(�)2 cannot be larger 

(similar to the argumentation in Lemma 1).
If � ≤ dadv , we directly follow that dqp(�) ≤ dadv from the assumption. Note that at this 

point the assumption dqp(�) ≤ � plays a crucial role making it possible to prove that dqp is a 
valid lower bound on dadv . 	�  ◻

Lemma 4  Objective function of QPRel is equal to

where B1 does not depend on x,  �0 = 1 and

xl
i
≤

āl
i

āl
i
− al

i

(
(Wlxl−1 + bl)i − al

i

)
,

1

2
xTM𝜆(W)x + xTB1(b, 𝜆, x̃

0) + ‖x̃0‖2,

M�
l,l
= �lEl for l = 0,… , L − 1,

M�
l,l−1

= −
1

2
�lW

l for l = 1,… , L − 1,

M�
l−1,l

= −
1

2
�l(W

l)T for l = 1,… , L − 1.
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Proof  The proof is done by sorting the quadratic, linear and constant terms in the objective 
function:

From the quadratic term we can identify the blocks of M� as claimed. 	�  ◻

C Tables

All tables can be found on pp. 24–27.

Author Contributions  SG, AK: Conceptualization; SG, AK: Methodology; SG, AK: Formal analysis 
and investigation; AK: Writing—original draft preparation; SG, AK: Writing—review and editing; SG: 
Supervision.

Funding  Open Access funding enabled and organized by Projekt DEAL. This research was supported by 
the BMW AG.

Data availability  The authors provide references to all data and material used in this work.

Code availability  Custom code is provided including the installation instructions. It requires installation of 
the gurobi solver, academic licenses are available at gurobi.com.

Declarations 

Conflict of interest  Not applicable, the authors have no conflicts of interest to declare that are relevant to the 
content of this article.

Ethical approval  The authors approve that the research presented in this paper is conducted following the 
principles of ethical and professional conduct.

Informed consent  The authors consent to participate in ECML PKDD 2022 conference.

Consent for publication  Not applicable, the authors use publicly available data only and provide the cor-
responding references.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 

‖x0 − x̃0‖2 +
L−1�
l=1

𝜆l
�
xl
�T�

xl −
�
Wlxl−1 + bl

��

=
�
x0
�T
x0 − 2

�
x0
�T
x̃0 + ‖x̃0‖2 +

L−1�
l=1

𝜆l

��
xl
�T
xl −

�
xl
�T
Wlxl−1 −

�
xl
�T
bl
�

=

L−1�
l=0

𝜆l
�
xl
�T
xl −

L−1�
l=1

𝜆l
�
xl
�T
Wlxl−1

�������������������������������������������������
quadratic term

−2
�
x0
�T
x̃0 −

L−1�
l=1

𝜆l
�
xl
�T
bl + ‖x̃0‖2

���������������������������������������������������
linear and constant terms

.



2432	 Machine Learning (2022) 111:2407–2433

1 3

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Bunel, R. R., Turkaslan, I., Torr, P., Kohli, P., & Mudigonda, P. K. (2018). A unified view of piecewise lin-
ear neural network verification. Advances in Neural Information Processing Systems, 31, 4790–4799.

Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In 2017 IEEE sym-
posium on security and privacy (SP) (pp 39–57).

Croce, F., Andriushchenko, M., & Hein, M. (2019). Provable robustness of ReLU networks via maximiza-
tion of linear regions. In AISTATS.

Dua, D., & Graff, C. (2017). UCI machine learning repository. http://​archi​ve.​ics.​uci.​edu/​ml.
Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Output range analysis for deep feed-

forward neural networks. In NASA formal methods (pp. 121–138). https://​doi.​org/​10.​1007/​
978-3-​319-​77935-5_9.

Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A., & Kohli, P. (2018). A dual approach to scalable veri-
fication of deep networks. In Proceedings of the conference on uncertainty in artificial intelligence. 
http://​auai.​org/​uai20​18/​proce​edings/​papers/​204.​pdf.

Dvijotham, K., Stanforth, R., Gowal, S., Qin, C., De, S., & Kohli, P. (2019). Efficient neural network veri-
fication with exactness characterization. In Proceedings of the conference on uncertainty in artificial 
intelligence. http://​auai.​org/​uai20​19/​proce​edings/​papers/​164.​pdf.

Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In Automated tech-
nology for verification and analysis (pp. 269–286). Springer

Goodfellow, I., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In Inter-
national conference on learning representations. arXiv:​1412.​6572.

Gurobi Optimization L. (2018). Gurobi optimizer reference manual. http://​www.​gurobi.​com.
Hein, M., & Andriushchenko, M. (2017). Formal guarantees on the robustness of a classifier against adver-

sarial manipulation. Advances in Neural Information Processing Systems, 30, 2266–2276.
Jordan, M., Lewis, J., & Dimakis, A. G. (2018). Provable certificates for adversarial examples: Fitting a ball 

in the union of polytopes. In Advances in neural information processing systems 33.
Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017). Reluplex: An efficient SMT 

solver for verifying deep neural networks. In Computer aided verification (pp. 97–117).
Kurakin, A., Goodfellow, I. J., & Bengio, S. (2016). Adversarial examples in the physical world. In Interna-

tional conference on learning representations. arXiv:​1607.​02533.
LeCun, Y., Cortes, C., & Burges, C. J. (1999). The MNIST database of handwritten digits. http://​yann.​lecun.​

com/​exdb/​mnist/.
Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward ReLU neural 

networks. arXiv e-prints arXiv:​1706.​07351.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep learning models resist-

ant to adversarial attacks. arXiv preprint arXiv:​17060​6083.
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A. (2016). The limitations of 

deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy 
(EuroS&P) (pp. 372–387).

Raghunathan, A., Steinhardt, J., & Liang, P. (2018a). Certified defenses against adversarial examples. In 
International conference on learning representations.

Raghunathan, A., Steinhardt, J., & Liang, P. S. (2018b). Semidefinite relaxations for certifying robustness to 
adversarial examples. Advances in Neural Information Processing Systems, 31, 10877–10887.

Salman, H., Yang, G., Zhang, H., Hsieh, C. J., & Zhang, P. (2019). A convex relaxation barrier to tight 
robustness verification of neural networks. Advances in Neural Information Processing Systems, 32, 
9832–9842.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014). Intrigu-
ing properties of neural networks. In International conference on learning representations. arXiv:​
1312.​6199.

Tjeng, V., Xiao, K., & Tedrake, R. (2017). Evaluating robustness of neural networks with mixed integer 
programming. arXiv preprint arXiv:​17110​7356.

Tsuzuku, Y., Sato, I., & Sugiyama, M. (2018). Lipschitz-margin training: Scalable certification of pertur-
bation invariance for deep neural networks. Advances in Neural Information Processing Systems, 31, 
6541–6550.

http://creativecommons.org/licenses/by/4.0/
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
http://auai.org/uai2018/proceedings/papers/204.pdf
http://auai.org/uai2019/proceedings/papers/164.pdf
http://arxiv.org/abs/1412.6572
http://www.gurobi.com
http://arxiv.org/abs/1607.02533
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/170606083
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/171107356


2433Machine Learning (2022) 111:2407–2433	

1 3

Wang, S., Chen, Y., Abdou, A., & Jana, S. (2018). MixTrain: Scalable training of verifiably robust neural 
networks. arXiv preprint arXiv:​18110​2625.

Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C. J., Daniel, L., Boning, D., & Dhillon, I. (2018). Towards 
fast computation of certified robustness for ReLU networks. In Proceedings of the 35th international 
conference on machine learning (Vol. 80, pp. 5276–5285).

Wong, E., & Kolter, Z. (2018). Provable defenses against adversarial examples via the convex outer adver-
sarial polytope. In Proceedings of the 35th international conference on machine learning (Vol. 80, pp. 
5286–5295).

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for benchmarking 
machine learning algorithms. CoRR arXiv:​1708.​07747.

Zhang, H., Weng, T. W., Chen, P. Y., Hsieh, C. J., & Daniel, L. (2018). Efficient neural network robustness 
certification with general activation functions. Advances in Neural Information Processing Systems, 
31, 4939–4948.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/181102625
http://arxiv.org/abs/1708.07747

	Robustness verification of ReLU networks via quadratic programming
	Abstract
	1 Introduction
	1.1 Contributions

	2 Notation and idea
	3 Verification as an optimization task
	3.1 Formulation of DtDB
	3.2 QP relaxation
	3.2.1 QPRel vs. DtDB

	3.3 Improving bounds via additional linear constraints
	3.4 -Setting

	4 Experiments
	5 Conclusion and future work
	References




