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Abstract
Technical advancements in optical devices like sensors and projectors have led to tremendous innovations in manufacturing 
metrology, not least due to reductions in cost and the use of sophisticated image processing software. More recently, meth-
ods based on machine learning have demonstrated their high potential in meeting challenges that are difficult to overcome 
using conventional image processing techniques. In this context, we present an approach for the intelligent predetection of 
projected reference markers in robot-based inspection systems. These markers support the alignment of different sensor views 
and do not need to be physically attached to any parts. However, their robust detection is challenging under unfavorable 
lighting conditions. Hence, we introduce trained models of a cascade classifier based on both synthetic and real image data. 
Subsequently, we present the detection performance for different shapes and designs of markers projected onto real-world 
sheet metal parts as used in the automotive industry. The results demonstrate that properly trained classifiers can achieve a 
recall and precision of 90% and higher. The use of intelligent predetection promises more robust results in the subsequent 
detection of projected markers and, thus, benefits image processing in particular in geometric quality assurance applications.

Keywords  Projected reference markers · Machine learning · Robot-based inspection systems · Geometric quality 
assurance · Manufacturing metrology

1  Introduction

Robot-based inspection systems (RIS) usually comprise 
an industrial robot and a vision sensor. They are used in 
tasks involving the inspection of free-form surfaces, such 
as surface quality assurance or ascertaining the geometric 
dimensional conformance of sheet metal parts [1]. Due to 
continuous improvements in vision devices [1], RISs offer 
advantages over conventional contact measuring methods 
such as coordinate measuring machines. However, for larger 
parts, for example from the automotive industry, it is neces-
sary to acquire images from different viewpoints and merge 
them afterwards [1], because the field of view (FOV) of typi-
cally employed vision sensors is too small. The alignment of 
multiple views is crucial, because it strongly influences the 
quality of the digitization of a part. Given the high accuracy 

requirements in the manufacturing industry, physical mark-
ers (fiducials) are often used to enhance alignment in close-
range photogrammetry applications [1, 2].

Motivated by the idea of reference markers which are no 
longer attached to a part but are projected onto it using a 
commercially available projector, a concept was previously 
proposed for the alignment of point clouds [3]. This concept 
uses projections which are applied in a region-specific man-
ner onto flat areas on the surface of a part. Consequently, 
projected markers can be placed exclusively onto dedicated 
regions of a part, which are selected in advance. Project-
ing markers requires less manual effort than fiducials [4]. 
Furthermore, physical contact is avoided, which decreases 
the chance of damage [4] or accidentally missing markers 
during detachment.

In an industrial environment, however, the conditions 
for capturing images with the aforementioned markers 
are often changing and unfavorable. Such conditions can 
impact images of markers in the form of deviations in scale, 
exposure, and contrast, as well as in perspective distortion 
[5]. In particular, the contrast of markers in relation to their 
surroundings/background is crucial for their detection. The 
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contrast between areas with and without projection is usually 
lower than with physical markers due to the limited contrast 
inherent to conventional projection devices. The detection of 
projected markers is particularly difficult when the already 
lower contrast is superimposed by a high contrast variation 
in the image. Such contrast variations can be caused by unfa-
vorable combinations of pose-dependent illumination and 
component surface orientation [6]. Examples of challenging 
lighting conditions in the detection of projected markers are 
shown in Fig. 1a, c. As opposed to this, Fig. 1b represents a 
normally exposed marker.

Most conventional marker detection approaches first bina-
rize the image, for instance by thresholding or calculating 
the edges, and then filter the remaining pixel by querying 
simple, predefined, and handcrafted features, such as the 
area of a blob or the length of an edge [7, 8]. While these 
methods can be effective under favorable conditions or 
for physical markers with a high contrast, they tend to fail 
with projected markers. Figure 1, for example, illustrates 
the varying contrast of such markers. It usually represents 
markers projected to different locations on the surface of 
a part for which it is often not possible to find a common 
parameterization of the aforementioned conventional detec-
tion approaches. Therefore, a novel approach is proposed 
using machine learning for industrial marker detection. It 
enables an intelligent predetection in order to facilitate the 
subsequent image processing, see Fig. 2. In this regard, 
it raises the questions of which machine learning method 
promises good results to robustly detect projected refer-
ence markers in industrial applications and how to train the 
selected classifier.

From the intelligent predetection comes the advantage of 
higher robustness of the detection under varying lighting con-
ditions and the ability to successfully apply basic routines, such 
as thresholding or computing gradients, for feature extraction 
in significantly more challenging environments. In addition, 
the predetection is independent of the kinematic chain and 
internal camera parameters. Thus, under similar environmen-
tal conditions the one-time trained classifier for the detection 
of projected markers can be transferred to various handling 

and camera systems as well as new applications in production 
technology without requiring much expert knowledge.

1.1 � Contributions

The new contributions made by this article are as follows: 
(1) we apply the Viola–Jones method [9, 10], which com-
prises a cascade classifier in combination with Haar-like 
features, for predetecting projected markers in RIS. (2) Our 
approach is transferable to different camera systems, mark-
ers, and sheet metal parts. (3) We train the cascade classifier 
with synthetic images and find real-world influences, e.g. 
variation in illumination intensity, blur, noise, which need 
to be modeled.

1.2 � Outline

The following section presents the state of the art of fiducial 
marker detection. In Sect. 3, we present our novel approach 
for the intelligent predetection of projected markers followed 
by the experimental setup in Sect. 4. Section 5 discusses the 
experimental investigation of the method, while the main 
conclusions are presented in Sect. 6.

2 � State of the art and related work

This section presents methods regarding marker detection 
in images, divided into established techniques for detecting 
and verifying possible candidates as markers (Sect. 2.1) and 
approaches using machine learning (Sect. 2.2).

Fig. 1   Varying lighting conditions for projected markers in different 
regions of the same measurement object

Intelligent global predetec�on of markers

Predetec�ng

Image of the 
measurement object Region of interest (ROI)

Local image processing of each ROI

Preprocessing Segmenta�on Feature extrac�on

Blurring Detec�ng
edges

Localizing
(subpix.) features

Fig. 2   Illustration of the image processing method for obtaining fea-
tures of projected reference markers
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2.1 � Common techniques for localizing artificial 
markers in images

Several marker systems have been proposed in the literature, 
including markers for augmented reality (AR) and robot nav-
igation [11–13], photogrammetry [14, 15] and point cloud 
alignment [2]. Each has its own set of predefined and tuned 
methods of robustly locating specified targets in images, 
depending on the target shape, application, and constraints 
such as hardware or computation time. The localization of 
artificial markers, as employed in many computer vision 
tasks, is usually a two-step process, comprising candidate 
detection and marker verification [7, 8]. During the detection 
process, possible marker candidates are found, for example, 
based on separated blobs or edges. To reduce the number of 
false positives, an additional verification/identification step 
is required.

2.1.1 � Candidate detection

To detect potential marker candidates, the image is seg-
mented to remove non-significant image regions (image 
background). Due to their black and white appearance and 
frequently retroreflective properties [16], artificial markers 
usually exhibit strong contrast and are captured as bright 
areas in the image. Therefore, the simplest way of separating 
any contiguous partial areas from the image background is 
to conduct a thresholding operation. This process is called 
blob detection [7] and either uses a fixed global threshold, 
for example determined from an image histogram [15, 17], 
or a local adaptive threshold, computed in a small neighbor-
hood around each pixel [18–20]. Local adaptive methods are 
quite common, since they achieve better performance in poor 
or uneven/inhomogeneous lighting conditions [19].

Another common approach is to use edges for the detec-
tion of possible marker candidates [12, 21, 22]. Since the 
addressed markers exhibit strong and sharp contrast at their 
boundaries, edges can easily be computed by detecting the 
maximum gray value gradients in the image. Furthermore, 
the definition of an absolute threshold, as it is the case with 
global thresholding operations, can be circumvented, which 
may be problematic under difficult lighting conditions [7]. 
In addition, partially occluded markers can be detected using 
heuristic methods [7, 19].

The majority of markers have a black and white design to 
achieve maximum contrast in the image to facilitate detec-
tion and identification processes. Some authors, however, 
use colored markers to improve the initial positive detec-
tion rate. By using a camera capable of recording color 
information, these markers can be more easily segmented 
by switching to the appropriate color channel in the image 
and performing a thresholding operation [14, 23] or by 
extracting the edges [24]. DeGol et al. [23] used opposing 

color patterns, especially red and green, because such color 
gradients are rare in natural scenes and exhibit a strong 
contrast. Fraser and Cronk [25] used color as an additional 
detection cue to distinguish their red-colored markers from 
bright white reflections, which might otherwise be set as 
valid markers.

Barone et al. [2] implemented a segmentation method 
based on texture, in which they employ a statistical meas-
urement approach to classify the direct local texture around 
each pixel and applied morphological operations to segment 
the image into homogeneous and inhomogeneous intensity 
regions.

Dosil et al. [26] developed a method based on the meas-
urement of symmetry. Radial symmetry is identified by a 
combination of multiple symmetry detectors with different 
orientations. Local maxima in the responses of the proposed 
detectors form regions of circular marker candidates.

2.1.2 � Marker verification

Once all the marker candidates have been separated from 
the image background, one or more verification steps are 
usually applied to enable any false positives to be rejected. 
Common methods of removing incorrectly detected markers 
involve checking basic geometric properties such as the size, 
diameter, aspect ratio, or circularity of the detected blobs 
or edges [2, 7, 14, 15, 25]. More advanced methods use the 
response of the Hough transformation [24], the fitting of an 
ellipse and consideration of the error of the fit [26], template 
matching and break at a certain error [27], the approxima-
tion of a polygon and testing of its topology [18–20] or form 
factors [28].

Fiala [7, 12] filtered square AR markers called ARTag by 
segmenting extracted edges into straight line sections and 
grouping them into quadrilaterals.

With more complex markers, e.g. encoded fiducials, the 
decoding process is used to verify the integrity of detected 
markers. This is also called the identification step accord-
ing to [7]. Examples are ARTag [7, 12], ARToolKit [13], 
ARToolKitPlus [11], or in the circular case, FourierTag 
[29]. Furthermore, structural integrity tests can be applied 
to markers consisting of multiple sub-geometries. These 
patterns are added to the shape of the markers and are used 
for verification. A common example are the finder patterns 
located at the corners of QR codes [30].

Often, the main reason for using artificial markers is to 
precisely localize artificial feature points, which require 
a proper candidate detection and verification of potential 
markers in advance. The aforementioned detection and 
verification methods are often associated with a succeeding 
feature point calculation, since calculated feature points, e.g. 
centroids or corners, often rely on the geometric shape of 
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the artificial markers and thus can be used as an additional 
verification cue.

2.2 � Use of machine learning for marker detection

Most of the methods presented in Sects. 2.1.1 and 2.1.2 rely 
on handcrafted features. The challenge with such features is 
to define explicit and simple detection rules that provide a 
sufficient description of the markers’ representations [31]. 
Hence, the development of these types of features requires 
a lot of time and a comprehensive knowledge of the appli-
cation area and its conditions [5, 32]. Inaccuracies in this 
process can also lead to a declining detection rate, especially 
when background clutter, deviations in scale, perspective 
distortion, or inconsistent illumination occur [5, 32].

Some authors address these problems and switch to 
machine learning methods for detecting and/or identifying 
markers in images. Among the first authors to use machine 
learning in the context of marker detection were Claus and 
Fitzgibbon [5, 33]. They implemented a two-stage cascading 
classifier based on an ideal Bayes decision rule and using 
nearest-neighbor classification to detect fiducial targets in 
real-world scenes. An intensity pair consisting of the center 
and one edge pixel of each detected candidate window was 
used for classification.

Belussi and Hirata [30] used a cascading classifier based 
on the Viola–Jones rapid object detection framework in 
combination with Haar-like features [9, 10] to detect the 
finder patterns of QR codes in natural scenes. Yuan et al. 
[34] applied a QR code detection procedure based on the 
extraction of BING (binarized normed gradients) features 
attached to an AdaBoost-SVM (support vector machine). 
However, the drawback of BING features is their poor pro-
posal window (ROI) localization accuracy [35]. Chou et al. 
[32] took a deep learning approach by applying a modified 
CNN (convolutional neural network) to the localization 
and segmentation of QR codes. CNN-based models are 
known for their good detection rates, but their performance 
decreases with varying and inconsistent image data [36]. 
Jiang et al. [37] introduced an automatic detection algorithm 
for fiducial markers in medical X-ray images based on the 
calculation of HOG (histogram of gradients) features in 
combination with an SVM.

Besides marker detection, machine learning techniques 
can also be employed to verify and decode previously 
detected marker candidates. Instead of using a binary clas-
sification approach, Mondéjar-Guerra et al. [20] modeled 
the marker identification step as a multi-class classification 
problem by including the different marker encodings in the 
training and labeling process. The authors compared three 
different types of classifiers, a CNN, SVM, and MLP (multi-
layer perceptron) for identifying and decoding fiducial mark-
ers (ArUco and AprilTags) in difficult image conditions. 

The employed machine learning approaches showed nearly 
similar results and their performance was significantly bet-
ter than conventional identification methods of the afore-
mentioned marker systems. Another interesting aspect of 
the work presented by Mondéjar-Guerra et al. [20] is the 
use of synthetic data, which comprises the generation of 
synthetic images for training purposes. This approach can be 
advantageous because it avoids exhaustive image data acqui-
sition of real scenes. In addition, it provides the possibility 
to control the composition of a training dataset more easily, 
since parameters like quantity, resolution, or influences from 
image acquisition, e.g. illumination, blur, noise, or perspec-
tive distortion, can be adjusted individually. These aspects 
are often not considered in literature. Mondéjar-Guerra 
et al. [20] employed synthetic training images of markers. 
However, the authors did not consider influences, which can 
occur when using a projection device such as a visible pixel 
grid or frayed marker contours. Moreover, they solely pro-
cessed ArUco markers and AprilTags.

Most research into the use of machine learning for the 
detection of artificial markers concerns AR, QR code detec-
tion, or medical imaging, as such applications deal with vari-
ous and complex real-world scenarios. To our knowledge, 
comparable approaches have not yet been published in the 
field of industrial close-range photogrammetry. This could 
be due to the sole use of physical, retroreflective markers, as 
established in industrial close-range photogrammetry appli-
cations [1]. Retroreflective properties allow better control 
of marker exposure in the image, so the non-marker back-
ground is more likely to be underexposed with the markers 
shown as very bright areas in the image [16]. The resulting 
high contrast significantly simplifies marker extraction using 
conventional candidate detection and verification methods. 
This circumstance changes when projecting markers onto 
sheet metal parts. As a consequence, imaged markers are 
significantly affected by influences such as varying contrast 
or overexposure, as it can be seen in Fig. 1. This makes 
subsequent marker detection much more difficult. Machine 
learning methods have the potential of adapting to those 
influences since the learning process is designed to find 
similarities and differences within provided training data-
sets. This promises marker detection to be more robust under 
a wider range of environmental conditions, as it was also 
suggested by authors of other works presented in this sec-
tion. We therefore propose using an intelligent predetection 
approach based on machine learning to cope with the chal-
lenging lighting conditions inherent to projected markers.

2.3 � Application of reference projections

Although the use of physical (retroreflective) markers is quite 
common, it is not always feasible. Using such markers for 
measurement applications is usually associated with a lot of 
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manual efforts and a high amount of time [4, 38]. Hence, pro-
jecting reference markers provides an alternative to overcome 
these challenges. Markers are then projected onto the surface 
of an object by means of a projection device. As a result, it is 
not necessary to invest time for attaching and removing mark-
ers [4, 38]. Furthermore, it facilitates modifying the reference 
projections, e.g. the marker density and/or size [4]. It also pre-
vents damaging the underlying surface, because there is no 
physical contact [4]. However, the intensity of projected mark-
ers changes with respect to the distance and angle from the 
projection device, which impacts subsequent image processing 
[4]. In the case of a digital projector, the effect of pixelation 
can also occur due to its limited resolution [4].

In the field of close-range photogrammetry and surface 
reconstruction, some approaches have been presented. Pappa 
et al. [4] projected a repetitive pattern of white circular 
points (dots) on large, flexible, thin-film components from 
the aerospace industry for static and dynamic surface meas-
urements. Feng et al. [22] used a projected grid of white 
dots to reconstruct surface points of a flexible antenna. Chen 
et al. [39] applied a pattern consisting of circular points in 
conjunction with encoded markers to measure the deforma-
tion of a crane girder. To detect and verify the projected 
markers, the authors of the presented applications employed 
common detection methods, as elaborated in Sect. 2.1, albeit 
individual thresholds were selected by hand [4], ambient 
light was controlled [22], or complex routines were needed 
to eliminate false marker candidates [39].

Overall, based on the works presented in this section 
we selected a machine learning method. The Viola–Jones 
method [9, 10] in combination with Haar-like features sug-
gests an easy-to-use and effective approach for our appli-
cation in industrial marker detection. The binary compo-
sition of the Haar-like features promises a good detection 
of markers under challenging lighting conditions since it 
is not directly related to absolute pixel values. In addition, 
these features are suitable to detect edges, lines, and other 
simple image structures [9], which is beneficial regarding 
the marker shapes which we intend to project. Furthermore, 
Belussi and Hirata [30] demonstrated that the Viola–Jones 
method achieves good detection results for printed square 
markers in the context of finder patterns of QR codes. There-
fore, we propose the application of this method for the pre-
detection of projected reference markers. In addition, we 
aim at modeling various influencing factors to examine the 
required complexity of generated synthetic training datasets.

3 � Methodology

In general, we follow the common procedure in machine 
learning, see Fig.  3. We acquired different datasets 
(Sect. 3.1) in order to train parametrized models according 

to the Viola–Jones method (Sects. 3.2, 3.3). The models 
were applied to real-world data to analyze their detection 
performance based on the performance indicators presented 
(Sect. 3.4).

3.1 � Dataset collection

To train a model according to the Viola–Jones method 
(Sect. 3.2), one positive (samples of single markers), one 
negative (samples without markers), and one validation 
dataset (images of a scene containing several markers) are 
required. A positive image sample depicts only a single 
marker, as it is shown, for example, in Fig. 4 for square 
markers. A negative image sample shows no markers but 
only background. An image of the validation dataset con-
tains a potential scene with several markers present, for 
example illustrated in Fig.  5. The validation dataset is 
employed to assess the success during the training proce-
dure. Furthermore, test datasets are finally used to evaluate 
the detection performance of the trained models. Since we 
examined different shapes of markers, it was necessary to 
obtain datasets for each marker shape. The negative dataset 
was independent of markers. Therefore, it was acquired once 
and used for all marker shapes. In the following, we describe 
the procedure of the dataset collection in more detail. The 
data acquisition parameters are explained in Sect. 3.1.2 and 
the labeling process of the validation and test datasets is 
described in Sect. 3.1.3.

3.1.1 � Procedure

For the collection of positive training samples, we pursued 
two approaches:

First, we implemented a software pipeline that can gener-
ate large amounts of synthetic images of the projected mark-
ers based on a template which depicts the desired reference 
marker, see Fig. 4, since the acquisition of real-world data-
sets can be a tedious task. This is advantageous since the 
detection performance often depends on the number of avail-
able samples, cf. Sect. 3.3. It is important that environmental 
influencing factors, which are usually present during imag-
ing, for example variation in illumination intensity, blur, or 

Acquire different datasets (training datasets)

Train parametrized models (training & valida�on datasets)

Apply models to real-world data (test datasets)

Evaluate detec�on performance

Fig. 3   General procedure
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noise, are modeled to sufficiently train the classifier. In order 
to examine the impact of dataset complexity, we generated 
multiple datasets, see Fig. 4, which incorporate apparent 
and observable influencing factors. The “Minimal” dataset 
includes such conditions as (illumination) intensity, blur, 
and noise. The “Reduced” dataset additionally considers 
the effect of the perspective distortion of markers, while the 
“Extended” dataset also includes overexposure (increase in 
background intensity and blur), and the “Full” dataset incor-
porates all the modeled effects, including uneven illumina-
tion, pixelation, and edge distortion. Pixelation occurred in 
imaged markers at low exposure levels in conjunction with 
limited digital projection device resolution. Note that each 
aforementioned dataset of positive samples considers a dif-
ferent subset of modeled influencing factors. With regard to 
subsequent investigations, this does not necessarily imply 
that the total number of samples in a dataset automatically 
increases with a larger number of modeled effects. All posi-
tive training samples were generated at a pixel resolution 
of 100 × 100. This size approximates the dimensions of the 
imaged projected markers.

Second, we also produced a dataset of real-world posi-
tive training samples by taking images of projected mark-
ers to examine the impact on the detection performance 
compared to the synthetic ones. To obtain a large variety of 

training samples, we projected the desired markers onto a 
flat sheet metal plate in a repetitive pattern. Routines were 
subsequently applied to cut out individual markers from the 
imaged data. For a quick overview of the real-world datasets 
employed, please see Table 4 in the Appendix.

To collect representative negative data, we took several 
images of an automotive side door, see use cases Sect. 4.1, 
with no markers visible. Then the images were divided into 
multiple subimages such that a large set of potential back-
grounds were available for training purposes. Black subim-
ages were omitted.

For the validation of the models during training, we used 
images showing the inside of the door with projected mark-
ers (validation datasets). The image data was then manually 
labeled by using bounding boxes to obtain a ground truth 
about the present markers, see Sect. 3.1.3.

To investigate the detection performance of the trained 
models, test datasets are required. For this purpose, we 
employ several imaging devices to obtain images with 
region-specifically projected markers applied to the two 
reference sheet metal parts (see Sect. 4.1). Subsequently, 
labeling was conducted analogous to the validation datasets, 
see Sect. 3.1.3.

3.1.2 � Data acquisition parameters

This section provides further details about the implementa-
tion and data acquisition parameters of the dataset collec-
tion, in particular regarding the acquisition of the real-world 
image data. In the Appendix, a summary is provided, see 
Table 4. These parameters are elaborated in the following.

As described earlier, the datasets were depending on 
the marker shape used, except for the negative dataset. We 
examined four different markers: filled square, circular, 
and cruciform shapes, which are referred to in this paper 
as square, circle, cross, as well as circular encoded mark-
ers. The last one is referred to in the following as “encoded 
markers”. It incorporated an encoding, similar to the cir-
cular, physical fiducials commonly found in measurement 
applications (cf. Sect. 2).

The parameters and ranges for generating positive syn-
thetic datasets were chosen in a way that the obtained syn-
thetic images exhibited similarities to the real-world sam-
ples. The real-world positive samples were acquired with 
the ZEISS sensor (vision sensor of the employed RIS, see 
Sect. 4.1) and an exposure time of 250 ms at a working 
distance of approximately 570 mm. Further specifications 
about the sensor are provided in Sect. 4.1. This exposure 
usually provided imaged markers with an adequate illumina-
tion intensity. Additionally, the sensor was tilted relatively to 
the plate (0◦–30◦ ) in order to introduce perspective distor-
tion to the markers.

Template
image

…

Intensity varia�on, blur, noise
Resize

Synthetic dataset generation

Minimal dataset

Over-
exposure

Uneven
illumination 

Pixelation

…

Reduced dataset

Modeling of additional influencing factors

Full dataset

Extended dataset
+ Distortion of edges

Image 
distortion

blur noise

Fig. 4   Overview of the generation of different synthetic positive sam-
ples (illustrated by a square marker)
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The images of the negative dataset were captured using 
the ZEISS sensor and different exposure times (250 ms, 350 
ms, 550 ms). Consequently, we obtained a large variety of 
potential backgrounds ranging from almost dark to overex-
posed regions with bright reflections (long exposure times). 
We applied a black background to the projection device 
since it also introduces a small amount of illumination to 
the scene. Different measurement poses were employed as 
compared with the image data acquired for the validation 
and test datasets.

The validation dataset comprised images with region-
specifically projected markers which were taken with five 
different poses, covering most of the side of the door, with 
and without a tilt angle of 15◦ (along the short side of the 
FOV of the ZEISS sensor). The exposure time was set to 
250 ms. As for the encoded markers, we additionally used 
exposure times of 100 ms and 400 ms but with no tilt angle 
of the sensor.

Compared with the validation datasets, a different param-
eterization was used for acquiring the test datasets. For 
instance, they differed in terms of their measurement poses, 
tilt angle of the sensor, and incorporated views (inside and 
outside of the door). Furthermore, we employed various sen-
sors, see Sect. 4.1 for the specifications, and different sheet 
metal parts. More details on the test datasets are provided in 
Sect. 5 along with the results.

3.1.3 � Labeling

The validation and test datasets were manually labeled by 
attaching a bounding box to each recognizable marker. This 
is important to determine the success of the binary clas-
sification according to the Viola–Jones method (ground 
truth for one marker type), i.e. whether or not a positive 
region proposal provided by the trained classifier actually 
contains a single projected marker. In addition, each label 
was annotated with one of the four attributes, which were 
introduced for a better analysis of the detection results: 
“Underexposed”, “Normally exposed”, “Overexposed”, or 
“Excluded”. If a pixel grid was visible within a projected 
marker, the category “Underexposed” was chosen. In con-
trast, “Overexposed” was selected when the adjacent back-
ground of a marker was affected by the induced illumination, 
i.e. a significant increase in background intensity was per-
ceptible. Markers were excluded if they exhibited impairing 
modifications, for instance if they were cropped due to their 
position relative to the image borders or extensive superim-
posed reflections were present which rendered them imprac-
tical for further feature extraction. An example of labeled 
markers with attributes is shown in Fig. 5.

3.2 � Model for the intelligent predetection

To enable intelligent predetection of the projected mark-
ers, we adapted the classifier according to [9, 10]. This 
object detection method was originally developed for high-
performance face detection applications and makes use of 
so-called Haar-like features as elements of the classifier, 
see Fig. 6. These features have a rectangular shape, and 
their object classification values (thresholds) are obtained 
by training on the basis of positive and negative samples (cf. 
Sect. 3.1). A classifier usually contains several stages. Each 
stage is composed of one or multiple (trained) Haar-like 
features. Once the classifier has been trained, sub-windows 
of an image (sliding window) are given to the classifier. 
The features employed at each stage are applied to the sub-
window and their values calculated on the basis of the cor-
responding intensity values in the image. These values are 
then compared to the trained thresholds of each feature. Only 
if a sub-window of an image passes through all stages of the 
cascade classifier, it is assumed that this sub-window shows 
the desired object of interest. Since the stages are arranged 
sequentially during the detection process, the classifier is 
also referred to as a “cascade classifier”.

The aforementioned features (Fig. 6) consist of rectangu-
lar forms and provide horizontal, vertical, and diagonal ori-
entations. They operate on a sub-window of an image, such 
that the calculation routine applied considers the pixel values 
covered by the black and white rectangles of each feature. 
Thus, the classification process is related more closely to 
those features than the absolute pixel values. This supports 
the detection of objects under challenging lighting condi-
tions, which was beneficial to our application. Furthermore, 
Viola and Jones [9] emphasize that the simple features make 
it possible to incorporate “ad-hoc domain knowledge”. This 
was useful, since we intended to project primitive shapes, 
such as a squares, circles, or crosses, as markers onto sheet 

Underexposed
Normally exposed
Overexposed
Excluded

Fig. 5   An example of the labeling procedure used to obtain the 
ground truth of the acquired validation and test datasets
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metal parts. These shapes, referred to in the following as 
projection primitives, consisted of horizontal, vertical, and 
diagonal edges, and should therefore be well-detectable by 
these features. Hence, we tested two feature sets: one accord-
ing to [9], referred to in the following as “Basic”, and the 
other one based on [40], referred to as “Large”, cf. Fig. 6.

Regarding the training process, we used the learning 
algorithm based on AdaBoost according to [9] to obtain the 
values of the threshold classification functions of each fea-
ture. This algorithm automatically chooses a suitable sub-
set of those Haar-like features and trains the classifier by 
means of the provided training datasets (see Sect. 3.1). It is 
designed to efficiently determine the “learned” thresholds 
and to achieve a clear differentiation between the positive 
and negative training samples. For more details on the learn-
ing algorithm and the boosting routine in the context of the 
Viola–Jones method, the reader is referred to [9, 41].

3.3 � Classifier training

The parameterization of the training also impacts the suc-
cess of the detection. Based on our software implementation 
(OpenCV, cf. Sect. 4.2) and in line with [30], the following 
parameters were considered relevant to the training process 
and, thus, investigated more closely (parameter tuning): 
selected (Haar-like) feature set (cf. Fig. 6), the overall false 
alarm rate (OFAR), the total number and ratio (positive to 
negative data) of the samples, and the scaled size of the sam-
ples. The OFAR describes an exponential relation between 
the maximum false alarm rate per stage (stage max. FAR) 
and the number of stages, cf. Sect. 3.2. The stage max. FAR 
is a criterion of the permitted misclassification per stage 
during the training process. For other (not examined) param-
eters, such as the minimal hitrate or maximal depth, we used 
the default values suggested by the OpenCV implementa-
tion, see Sect. 4.2.

Since no rigid process for classifier training is generally 
available, our training was based on the procedure shown 
in Fig. 7. First, we conducted preliminary investigations to 
determine a suitable initial parameterization. Next, these 
parameters were successively refined in the subsequent step 
by varying the training parameters, as discussed in the pre-
vious paragraph. Finally, the trained models which showed 
the best detection performance were selected. The success 
of the training was determined by means of the performance 
indicators recall and precision, cf. Sect. 3.4, based on the 
validation datasets acquired for training purposes.

As part of the preliminary investigations, it was first 
necessary to conduct some explorative studies to obtain 
initial meaningful training results. These mainly focused 
on the amount of positive and negative training samples 
required for the different datasets, see Sect. 3.1. The param-
eter ratio of a primitive relatively to its background was 
also considered. A recall, see Sect. 3.4, of about 80% indi-
cated a good level of detection performance. For this value, 
we observed that most of the recognizable markers, i. e. 
with no significant under- or overexposure, were detected. 
Eventually, we obtained the following initial parameteri-
zation, which was then used in all subsequent trainings: 
feature set (Large), stage max. FAR (0.5), number of stages 
(17), primitive-to-background-ratio of the positive sample 
(2:1), ratio between the number of positive and negative 
samples (1:2), number of training samples (depending on 
the dataset employed), and sample size (24 × 24 px).

In the next step, the training process was refined. We 
varied the parameters on the basis of the training steps 
introduced by [30]. The order in which the training 
parameters were varied was as follows: feature set (Basic, 
Large), OFAR ( 0.416 , 0.517 , 0.619 ), ratio of positive and 
negative samples (2:1, 2:2, 1:1, 1:2 for the “Reduced”, 
“Extended”, and “Full” datasets; 1:0.5, 1:1, 1:2, 1:4 for 
the “Minimal” and “Real samples” datasets), number of 
training samples, and their size. An overview is provided 
in Table 1.

Preliminary inves�ga�on:
Finding a suitable ini�al parameteriza�on

Refinement of training parameters:
Varia�on of the relevant training parameters 

and evalua�on of their impact

Obtaining trained models

Evaluated by means of the validation dataset

Fig. 7   Training procedure for the classifier

Feature set (Large) according to [40]

Edge features Line features Center-
surround features

Feature set (Basic) according to [9]

Fig. 6   Illustration of two rectangle feature sets
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Based on the determined initial parameterization, we 
tested the first three steps thoroughly because they seemed 
to be the ones with the largest impact on the detection 
performance. The number of training samples depended 
on the employed datasets. The sample size was examined 
for the “Full” dataset, but showed little effect. Hence, it 
was kept at 24 × 24 px for all datasets. For the interested 
reader, we provide a flowchart of the parameter variation of 
the “Full” dataset (square primitive) in the Appendix (see 
Fig. 12). We usually considered the recall as the criterion 
of improvement. When it increased, with no significant 
drop in the precision, did we move on to the next varia-
tion step. In the case that the recall decreased only slightly 
but the precision improved significantly, we adapted this 
parameterization.

Finally, we obtained suitable training parameters for the 
introduced datasets, as presented in Table 2. For real samples 
the Basic feature set showed the best performance, whereas 
synthetic datasets usually exhibited good training results 
with the Large feature set, except for the “Minimal” dataset 
with the primitive cross. The resulting trained models (clas-
sifiers) were employed for the experiments in Sect. 5.

3.4 � Performance indicators

The Viola–Jones method provides positive region propos-
als (suggesting the presence of markers), which can be 
handled as a binary classification problem. With regard 
to the (labeled) ground truth data, a proposal window was 
classified as a true positive (TP) only if it contained a com-
plete single projected marker. If the proposed region com-
prised no marker, more than one marker, or just a fraction 
of a marker, it was counted as a false positive (FP). False 
negatives (FN) consisted of markers that were labeled but 
not detected. To enable an intuitive analysis of the results, 
we employed simple metrics such as recall, precision, and 
F1  score for evaluation purposes, similarly as presented 
in [30].

The recall metric quantifies the percentage of all true 
positive proposals in relation to all positively labeled mark-
ers and can be defined as:

The precision metric indicates the ratio of correct proposals 
to the total proposals made:

The F1 score represents the weighted average of recall and 
precision and can be obtained by

(1)recall =
TP

TP + FN

(2)precision =
TP

TP + FP

(3)F1score = 2 ⋅
recall ⋅ precision

recall + precision
.

Table 1   Overview of the 
relevant training parameters in 
the refinement step

Training parameters

Dataset Feature set OFAR Ratio # pos : # neg # pos, # neg Size in px

“Minimal”,“Real samples” Basic, Large 0.416, 1:0.5, 1:1, Individually 12 × 12,
0.517, 1:2, 1:4 24 × 24,
0.619 32 × 32

“Reduced”, “Extended”, “Full” Basic, Large 0.416, 2:1, 2:2, Individually 12 × 12,
0.517, 1:1, 1:2 24 × 24,
0.619 32 × 32

Table 2   Parameterization of the trained models

Feature set Stage 
max. 
FAR

# pos # neg Size in px

Dataset square
“Minimal” Large 0.5 40 80 24 × 24
“Reduced” Large 0.4 160 320 24 × 24
“Extended” Large 0.4 120 240 24 × 24
“Full” Large 0.5 1000 1000 24 × 24
“Real samples” Basic 0.4 380 760 24 × 24
Dataset circle
“Minimal” Large 0.5 40 160 24 × 24
“Reduced” Large 0.4 320 320 24 × 24
“Extended” Large 0.5 240 480 24 × 24
“Full” Large 0.4 500 500 24 × 24
“Real samples” Basic 0.4 370 370 24 × 24
Dataset cross
“Minimal” Basic 0.5 40 160 24 × 24
“Reduced” Large 0.5 500 1000 24 × 24
“Extended” Large 0.5 750 1500 24 × 24
“Full” Large 0.5 500 1000 24 × 24
“Real samples” Basic 0.4 370 370 24 × 24
Dataset encoded markers
“Reduced” Large 0.4 500 1000 24 × 24
“Full” Large 0.4 1000 1000 24 × 24
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4 � Experimental setup

4.1 � Hardware

All measurements were taken in the working space of the 
ZEISS AIBox. The measurement setup comprised a Fanuc 
M-20iA industrial robot, which functioned as a flexible 
manipulator for the ZEISS COMET Pro AE optical 3D sen-
sor. The sensor provided a resolution of 4896 × 3264 pixels 
with an FOV of approximately 600 × 450 mm2 at a work-
ing distance of 570 mm. Furthermore, a Canon EOS 760D 
DSLR camera with a full resolution of 6000 × 4000 pixels 
and a Xiaomi Mi A2 smartphone camera with 4000 × 3000 
pixels were used in the measurement investigations.

For the projection of reference markers, a Sony VPL-
PHZ10 LCD projector served as a front projection device 
for displaying images with a resolution of 1920 × 1200 pix-
els, with a maximum light output of 5000 lm and a contrast 
ratio of 500,000:1. Blue markers were applied when using 
the ZEISS sensor due to a bandpass filter. Otherwise, we 
employed white projections.

As use cases we employed two sheet metal parts from 
the automotive industry: a side door and B-pillar, see Fig. 8. 
The surface of the parts was untreated, i.e. sprayed coating, 
which are often used to improve reflection properties, was 
not applied.

4.2 � Software

The software was developed in C++. To enable the imple-
mentation of image processing tasks, such as image data 
handling, generating synthetic samples, or applying the 
trained classifiers to images, we also used the open source 
framework OpenCV1. All acquired images were processed 
as gray-scale images. In addition, we employed utilities pro-
vided by OpenCV, such as the tool for sample creation and 
cascade training. To label the acquired image datasets, the 
available annotation tool was modified to include multiple 
illumination categories.

5 � Results and discussion

5.1 � Results

To evaluate the performance of trained classifiers for the 
predetection of projected reference markers under real-world 
conditions (working space in the ZEISS AIBox), we used 
the two reference use cases introduced above. The projec-
tion primitives were applied region-specifically meaning that 

they were displayed on plane homogeneous regions on the 
surface of the parts. For the side door, we employed the 
approach proposed in [42] regarding spatial interactive pro-
jections. This comprised a calibration procedure and mod-
eling the projection device for the calculation of projection 
images with the corresponding reference markers. On the 
B-pillar, the primitives were positioned manually with visual 
selection of the plane regions.

As for the test datasets of the door, images of the pro-
jected primitives (square, circle, cross) were acquired sepa-
rately using the ZEISS sensor. The procedure was kept 
the same. We used a variety of measurement poses (seven 
poses covering different views on the inside and outside of 
the door) and applied several exposure times (100 ms, 250 
ms, 400 ms), cf. Table 4 in the Appendix. Additionally, a 
tilt angle of ten degrees was introduced around the short 
side of the FOV. Each view contained several primitives for 
the detection process. The size of the displayed primitives 
was kept at a constant side length (for square or cross) or 
diagonal (for circle) of 26 projector pixels. Overall, 2340 
labels were drawn for each projected primitive (square, cir-
cle, cross) as ground truth and used in its entirety for the 

Sensor

Side door

RobotProjected markers

(a) Side door of a car showing projected square markers

DSLR camera B-pillar

Projected markers

(b) B-pillar showing projected circular encoded markers

Fig. 8   Technical setup with sheet metal parts from the automo-
tive industry (projection device is not shown). The smartphone was 
mounted on the tripod instead of the DSLR camera by means of a cell 
phone holder (not shown)

1  https://​opencv.​org.

https://opencv.org
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evaluation of the detection performance. The trained models 
from the previous section were applied to detect these pro-
jected markers in the acquired and labeled images.

Table 3 shows the detection performance results, i.e. 
the performance indicators (introduced in Sect. 3.4), of 
the primitives investigated for the different trained models. 
For all primitives and datasets, a recall of over 93% was 
achieved. We therefore conclude that the chosen predetec-
tion approach is well suited to the detection of projected 
reference markers in the form of simple shapes. It also dem-
onstrates that real-world positive samples were not needed 
to achieve a high detection performance. With the exception 
of the synthetic samples in the “Minimal” dataset, a preci-
sion above 90% and an F1 score over 94% were achieved. In 
comparison with the “Reduced” dataset, it is apparent that 
including the effect of marker distortion in the generation of 
positive training samples contributed to the improved pre-
cision rates of 90% and more, and resulted in an effective 
detection of the primitives.

To analyze the impact of different lighting conditions on 
the detection process, we introduced three attributes of dis-
played markers, see Sect. 3.1.3. Figure 9 shows the recall 
rates for the exposure levels of “Underexposed”, “Normally 
exposed”, and “Overexposed” for square primitives of the 
test dataset. It seems to be more challenging to deal with 
overexposed markers than with underexposed ones, espe-
cially with the synthetic datasets, for which the effect of 
overexposure was not considered. A similar trend was also 
observed for the primitive circle, see Appendix Fig. 13. The 

primitive cross also missed markers in the “Overexposed” 
class. However, it should be noted that the “Minimal” 
trained model used the basic feature set (Fig. 14). Regard-
ing the intelligent predetection of markers, we assume that 
avoiding overexposed markers during image data acquisition 
could improve the detection results in general.

Similar to the procedure described for the test dataset 
of the side door, we also employed the ZEISS sensor to 
acquired validation images of another sheet metal part, a 
B-pillar of a car. The detection performance results for the 
primitives square, circle, and cross are given in the Appen-
dix, see Table 5. Comparable values of the recall and preci-
sion were achieved as for the door. This demonstrates that 
the trained models also work on other parts.

Since we observed that modeling the effect of marker 
distortion affected precision (cf. Table 3 and 5), we also 
determined the admissible tilt angle for our imaging device. 
For this purpose, the sensor was tilted by up to 30◦ towards 
a sheet metal plate. Higher angles were not considered fea-
sible in practical applications. Zero degrees corresponded to 
the pose in which the optical axis of the ZEISS sensor was 
perpendicular to the plate. The angle was then increased 
in increments of 10◦ . For square projection primitives, the 
results show (see Appendix Fig. 15) that despite image 
distortion and distorted squares, respectively, the markers 
were well detected by the trained models. However, it is 
worth mentioning that distortions and illumination condi-
tions occurring with real parts might be more complex as the 
underlying surface is usually not planar in a mathematical 
sense as it is for a plate.

In addition to the aforementioned projection primitives 
(square, circle, cross), we also tested the detection perfor-
mance of projected markers that incorporated an encoding. 
Training was as described in Sect. 3. The test dataset of the 
encoded markers was acquired in a similar manner to that 
described above for projection primitives. Figure 8b shows 
an exemplaric illustration of projected encoded markers. 

Table 3   Detection results of markers projected onto the side door of 
a car

Recall Precision F
1
 score

Model of dataset square
“Minimal” 0.9500 0.8338 0.8881
“Reduced” 0.9496 0.9586 0.9541
“Extended” 0.9748 0.9698 0.9723
“Full” 0.9949 0.9058 0.9483
“Real samples” 0.9739 0.9167 0.9444
Model of dataset circle
“Minimal” 0.9697 0.8905 0.9284
“Reduced” 0.9692 0.9570 0.9631
“Extended” 0.9923 0.9595 0.9756
“Full” 0.9842 0.9685 0.9763
“Real samples” 0.9868 0.9440 0.9649
Model of dataset cross
“Minimal” 0.9333 0.5796 0.7151
“Reduced” 0.9932 0.9839 0.9885
“Extended” 0.9885 0.9889 0.9887
“Full” 0.9962 0.9881 0.9921
“Real samples” 0.9868 0.9360 0.9607

Fig. 9   Detection results of projected square markers for different 
exposure levels
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We also employed additional imaging devices as well as a 
different part to demonstrate the transferability. To enable 
an intuitive comparability between the detection results of 
the parts, simple and more complex marker shapes, as well 
as the various cameras, we used the performance indica-
tor recall. The results are presented in Fig. 10. The “Full” 
dataset achieved recall rates over 91% for both marker 
types (square and encoded markers). This shows that the 
proposed approach is capable of detecting more complex 
shapes based on synthetic training datasets and that it is 
transferable to other setups. For encoded markers, it appears 
that the “Reduced” dataset is not sufficient and reveals the 
need for additional modeled effects in the training samples. 
The classifier based on the “Full” dataset on the other hand 
demonstrates high detection rates. This might be useful for 
other applications, for instance the detection of conventional, 
physically attached fiducials under challenging lighting 
conditions.

5.2 � Discussion

The results presented in this section demonstrate that cas-
cade classifiers trained with real-world or synthetic datasets 
were able to cope with both varying lighting conditions and 
marker distortion in the course of the detection process. Note 
that although they displayed almost invariant behavior to 

the variation in illumination intensity in our investigations, 
the classifier is not invariant to rotations. Circular markers 
like the circle primitives or encoded markers should be less 
affected by this issue. For squares on the other hand, this 
circumstance needs to be considered, for example, by incor-
porating the pose information of the sensor into the display 
of the projected markers or by adding rotated samples to the 
training pipeline. The latter was not considered for this paper 
and, thus, requires further examination. Overall, the pro-
posed approach showed a very high detection performance 
for all tested markers, although it did not reach a precision 
value of 1. This means that other regions of an image were 
occasionally misclassified as valid markers as they exhibited 
local properties indistinguishable from true markers for the 
trained classifier. Consequently, post-processing routines 
of the obtained ROIs might still be necessary to eliminate 
false positives. Nevertheless, the intelligent predetection step 
introduced here promises a more robust marker detection 
under challenging lighting conditions and enables subse-
quent image processing techniques to be tailored more easily 
to the local ROIs.

We provide selected examples in Fig. 11 to demonstrate 
the impact and benefit of intelligent predetection for subse-
quent local image processing and, thus, for feature extraction 
under challenging lighting conditions. We used two estab-
lished methods (the Otsu algorithm and an adaptive Canny 
algorithm) to detect the contours (edges) of projected square 
markers. While the Otsu algorithm applied to the ROI (local 
image processing) is able to detect clear contours for the 
depicted squares, its global parameterization fails to detect 
the four edges or exhibits a visible offset. As for the adap-
tive Canny algorithm, the locally applied routine appears to 
detect all four edges of the squares, while the global param-
eterization does not. To complement this qualitative com-
parison, we plan to provide quantitative measures on this 
matter in future work, for example using intersection over 
union (IoU).

6 � Conclusion

In the context of geometric quality assurance of sheet metal 
parts, robot-based (optical) inspection systems have shown 
high potential for coping with current challenges in manu-
facturing metrology. To further improve RIS, we previously 
proposed a concept based on region-specific projections for 
the alignment of different views of a sensor. This eliminates 
the need for physically attached fiducials, but requires an 
image processing method for robustly detecting projected 
markers in challenging lighting conditions. Hence, in 
this paper, we introduced trained cascade classifiers with 
Haar-like features based on the Viola–Jones method as a 

Fig. 10   Detection results of projected square and encoded markers 
obtained with different imaging devices
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predetection step for an improved image processing in meas-
urement applications.

The results showed that properly trained models based on 
both positive synthetic and positive real image data achieved 

a high recall of above 90% for shapes like squares, circles, 
or crosses. Besides intensity variation, blur, and noise, 
modeling the effect of marker distortion on synthetic data-
sets improved the precision to above 90%. With projected 
encoded markers (similar to circular fiducials), we observed 
that incorporating influencing factors, such as overexposure 
and uneven illumination, into the generation of synthetic 
training data significantly benefited detection performance. 
We also demonstrated that the approach presented in this 
paper was transferable to other sheet metal parts and imag-
ing devices.

Since our results indicate that overexposure of markers 
tends to affect the detection performance, we suggest ana-
lyzing the impact of overexposed samples in future studies 
more closely. We are also interested in investigating the 
detection of more complex shapes on the basis of synthetic 
positive datasets, not only to further explore the limita-
tions of the proposed approach but also to foster ideas for 
novel marker designs that are adapted to the use of digital 
projection devices. In general, we intend to identify new 
use cases for the proposed approach outside the field of 
manufacturing metrology since we believe that it could 
benefit many applications in production engineering across 
all industries.

Appendix

See Tables 4, 5 and Figs. 12, 13, 14, 15.

Otsu-thresholding (global)
Otsu-thresholding (local in ROI)

(a) Feature extraction (edges) using the Otsu algorithm. Lo-
cal image processing resulted in accurate detection of edge
pixels (blue line).

Adapt. Canny (global)
Adapt. Canny (local in ROI)

(b) Feature extraction (edges) using the Canny algorithm.
Local image processing resulted in detection of edge pixels
on each side of the projected square (green line) unlike the
open contours obtained by the global Canny.

Fig. 11   Impact of predetection and local image processing on feature 
extraction (edges), as compared to global processing (illustrated are 
selected examples)

Table 4   Overview of the acquisition parameters of real-world datasets employed

Dataset Projection primitive Vision sensor Projection surface # measure-
ment poses

Exposure time in ms Sensor tilt angle 
in deg

Real positive samples Square, circle, cross ZEISS sensor Sheet metal plate 4 250 0, 10, 20, 30
Negative samples none ZEISS sensor Side door 5 250, 350, 550 0
Validation Square, circle, cross ZEISS sensor Side door 10 250 0, 15
Validation Encoded markers ZEISS sensor Side door 5 100, 250, 400 0
Test Square, circle, 

cross,encoded 
markers

ZEISS sensor Side door 14 100, 250, 400 0, 10

Test Square, circle, 
cross,encoded 
markers

ZEISS sensor B-pillar 4 100, 250, 400 0, 10

Test Square, circle, 
cross,encoded 
markers

DSLR camera B-pillar 4 4, 20, 100 0, 20

Test Square, circle, 
cross,encoded 
markers

Smartphone camera B-pillar 4 4, 20, 100 0, 20
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Fig. 12   Example flowchart of parameter variation during training 
(“Full” dataset, square primitive)

Fig. 13   Detection results of projected circular markers for different 
exposure levels (automotive side door)

Fig. 14   Detection results of projected markers with a cross as the pro-
jection primitive for different exposure levels (automotive side door)

Fig. 15   Detection results of projected square markers on a sheet 
metal plate with different tilt angles of the sensor

Table 5   Detection results of markers projected onto the B-pillar

Recall Precision F
1
 score

Model of dataset square
“Minimal” 0.9243 0.8959 0.9099
“Reduced” 0.9806 0.9786 0.9796
“Extended” 0.9949 0.9868 0.9908
“Full” 0.9969 0.9503 0.9730
“Real samples” 0.9806 0.9697 0.9751
Model of dataset circle
“Minimal” 0.9918 0.9390 0.9647
“Reduced” 0.9888 0.9827 0.9857
“Extended” 0.9918 0.9908 0.9913
“Full” 0.9918 0.9939 0.9928
“Real samples” 0.9908 0.9690 0.9798
Model of dataset cross
“Minimal” 0.9601 0.7039 0.8123
“Reduced” 0.9918 0.9969 0.9943
“Extended” 0.9898 0.9979 0.9938
“Full” 0.9928 0.9959 0.9943
“Real samples” 0.9796 0.9383 0.9585

http://creativecommons.org/licenses/by/4.0/
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