
Vol.:(0123456789)

J. Comput. Educ. (2023) 10(1):189–215
https://doi.org/10.1007/s40692-022-00228-w

1 3

What happens to your body during learning 
with computer‑based environments? Exploring 
negative academic emotions using psychophysiological 
measurements

Kerstin Huber1   · Maria Bannert1

Received: 16 June 2021 / Revised: 11 January 2022 / Accepted: 1 March 2022 / 
Published online: 27 March 2022 
© The Author(s) 2022

Abstract  This explorative study aims to examine if electrodermal activity (EDA) 
and heart rate (HR) are appropriate measures for identifying and monitoring aca-
demic emotions during learning in computer-based learning environments (CBLEs). 
Understanding learners’ emotions while using CBLEs, allows improving the design 
of CBLEs. Therefore, we collected EDA, HR, and self-report data from 32 partici-
pants to measure academic emotions during learning with CBLEs in a laboratory 
setting. We induced negative academic emotions during learning using harmful 
connotated learning content about animal welfare. In a pre-post design, participants 
reported their emotional state before and after learning. We collated the self-reports 
with the EDA and HR curves to identify the emotional change in real-time. We 
prepared the data for repeated measurement analyses and group differences (high-, 
middle-, low learning performance; bored vs. not bored participants). Negative aca-
demic emotions were detected in increased EDA and HR. EDA turned out to be an 
indicator of learning performance. Boredom manifested in HR decrease. Findings 
show that EDA and HR are appropriate tools to measure academic emotions. We 
want to show the importance of real-time measures for learning and the efficiency 
of EDA and HR measures. It is worth considering EDA as a predictor for learning 
success and implementing EDA and HR measurements in CBLEs. However, more 
research is needed to clarify the role of HR in the context of learning performance.
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Introduction

There is no doubt that emotions influence our learning behavior and outcome. When 
we are in a good mood, we learn more successfully (Arguel et al., 2017; Duffy et al., 
2018; Loderer et  al., 2020). This widely replicated insight shows that emotional 
states significantly impact learning performance (for a review, see Panadero, 2017; 
Loderer et al., 2020). Therefore, we considered it essential to explore emotions in 
the context of learning further.

Since we investigated computer-based learning environments (CBLEs), a spe-
cific set of emotions comes to the fore: emotions occurring in educational settings 
(e.g., studying at home, taking an exam, or being in class) are defined as academic 
emotions and are directly bound to learning and achievement. The most-reported 
academic emotions are anxiety, enjoyment, hope, pride, relief, anger, boredom, and 
shame (e.g., Duffy et al., 2018; Järvenoja et al., 2017; Loderer et al., 2020; Pekrun 
et al., 2002). Academic emotions are mainly evaluated post facto using self-report 
data (e.g., Boekaerts, 1999; Eteläpelto et  al., 2018; Magno, 2011; Pekrun et  al., 
2011, 2017; Vermeer et al., 2000). However, a notable drawback of self-reports is 
that emotional states must be experienced consciously to report on them. Collecting 
post facto and self-report data reveals subjective responses about past events, which 
can cause measurement errors (e.g., Arguel et al., 2017; Laarni et al., 2015; Slater, 
2002). Nevertheless, self-report data is a crucial and meaningful tool to gather sub-
jective experiences, but it is limited according to an objective and implicit explora-
tion of emotional processes during learning.

A promising approach to evaluate learning processes besides self-reports is “on-
the-fly” measures stated by Winne and Perry (2000). Also, Järvelä and colleagues 
(2019) showed that analyzing real-time data is fruitful. They explored self-regulated 
learning by using qualitative content analyses, facial expressions, and psychophysi-
ological measurements (i.e., electrodermal activity [EDA] and heart rate [HR]) in 
a collaborative learning setting. Confusion, for example, was detected based on a 
simultaneous increase in EDA, negative facial expressions, and a complimentary 
content analysis (Järvelä et al., 2019).

Our research goal is to provide deeper insights into learning (i.e., progression 
of the learning process besides self-reports, see section “Purpose of the study and 
research questions”) and explore the psychophysiological appearance of academic 
emotions. Based on the findings mentioned above and to balance the mentioned 
limitations of self-reports, the present study relied on psychophysiological meas-
urements (i.e., EDA and HR) to examine academic emotions in CBLEs. Because 
changes in physiological behavior can have multiple reasons (see section “Psycho-
physiological measurements for academic emotions”), we eliminated as many con-
founding factors (e.g., the impact of social interactions in collaborative learning 
settings or movement artifacts) as possible by using a straightforward laboratory set-
up. More precisely, we explored if specific physiological response patterns can be 
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found, which indicate the current emotional state of the learner. Moreover, we seek 
to determine if physiological behavior can be a sufficient indicator for learning per-
formance. Furthermore, we analyzed the change of academic emotions before and 
after stimulus presentation and whether this progress is evident in psychophysiologi-
cal data.

Theoretical framework

The dual processing self‑regulating model

The Dual Processing Self-Regulating Model from Boekaerts (2011) describes the 
essential role of emotions in learning. Boekaerts (2011) claimed that emotional 
states guide the learner’s behavior onto one of two possible pathways. She proposed 
a well-being and a growth pathway as self-regulatory strategies, depending on how 
the task is assessed. Tasks that do not fit the current mental model trigger negative 
emotional states, which are detrimental for knowledge increase, leading the learner 
to take the well-being pathway. Tasks that correspond with the learner’s goals cause 
positive emotional states and thus open the growth pathway, resulting in knowledge 
increase. Measuring learner’s emotional states can therefore propose a statement 
about learning success.

Furthermore, it is possible to switch from one pathway to the other. If learners are 
on the growth pathway and detect indicators for failing, they shift to the well-being 
pathway (Boekaerts, 2011). Determining this emotional shift in real-time enables 
immediate support and therefore guides the learner back on the growth pathway (see 
Arguel et al., 2017; D’Mello & Graesser, 2014). We want to find an appropriate “on-
the-fly” measure that can identify negative emotional states during learning with 
CBLEs, as a step towards the primary goal of guiding and keeping the learner on the 
growth pathway.

Academic emotions

Given that emotions are concomitants of learning, it is necessary to differentiate 
these academic emotions specifically (Pekrun & Stephens, 2012). Academic emo-
tions, which can be seen in Table  1, are related to achievement, classroom set-
tings, and learning. They are bound to success and failure, but also to the process 
of learning itself (Goetz & Hall, 2013; Pekrun et al., 2002, 2017). Multiple research 
approaches address academic emotions (e.g., confusion: D’Mello et al., 2014; bore-
dom: Goetz & Hall, 2013; Pekrun, 2006; Pekrun et al., 2002). The underlying con-
cept of this work is the Three-Dimensional Taxonomy of Academic Achievement 
Emotions from Pekrun (2006), which classifies academic emotions in three dimen-
sions: their valence (positive or negative), activation (activating or deactivating), and 
object focus (activity or outcome; see Table 1). Enjoyment, for example, is, accord-
ing to Pekrun (2006), a positive and activating academic emotion, during an activ-
ity (e.g., studying). In comparison, sadness is defined as negative and deactivating 
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academic emotions triggered by pro- or retrospective failure (e.g., upcoming or past 
exams).

In the psychophysiological literature, the term “arousal” is more common 
than “activation” (e.g., Berntson et al., 2017; Lang et al., 2009; Levenson et al., 
2017; Potter & Bolls, 2012). To have consistent terminology in this article, we 
refer to the term “activation”.

Negative academic emotions usually trigger task-irrelevant thoughts and 
decrease the resources required for the task. Therefore, learning performance 
may decline if a learning goal seems unachievable due to prevalent negative aca-
demic emotions. However, negative activating academic emotions can also cause 
intense motivation to prevent failure, resulting in solving the task and increasing 
learning performance (Pekrun & Stephens, 2012). The shift from detrimental 
and conducive emotional states is also supported by Boekaerts’ Dual Process-
ing Self-Regulating Model (2011; see chapter “Theoretical framework”), where 
learners switch from the well-being pathway to the growth pathway. Depend-
ing on the learner’s assessment and the apparent solvability of a task, emotional 
states can change, and even knowledge can increase despite experiencing nega-
tive emotions during learning (Boekaerts, 2011).

Furthermore, task difficulty can affect academic emotions due to cognitive 
incongruity (Pekrun & Stephens, 2012). If the task seems too tricky or non-solv-
able, negative academic emotions are triggered, resulting in low learning perfor-
mance (Baker et al., 2010; D’Mello & Graesser, 2014). Otherwise, positive aca-
demic emotions arise if a learning task can be solved, leading to high learning 
performance (Kang et al., 2008; Pekrun & Stephens, 2012).

In the present study, we decided to focus on negative activating academic 
emotions to reduce complexity. Besides, it is more valuable to properly under-
stand the physiological appearance of negative academic emotions and cope 
with them to promote learning. We are interested in whether learners show an 
increase in knowledge despite the task causing negative academic emotions, or 

Table 1   A Three-dimensional taxonomy of academic achievement emotions

Academic Achievement Emotions categorized into three dimensions valence, activation, and object focus
a Positive = pleasant emotion
b Negative = unpleasant emotion (based on Pekrun & Stephens, 2012, p. 4)

Object Focus Positivea Negativeb

Activating Deactivating Activating Deactivating

Activity Enjoyment Relaxation Anger Boredom
Outcome Joy Contentment Anxiety Sadness

Hope Relief Shame Hopelessness
Pride Anger Disappointment
Gratitude
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say it with Boekaerts’ approach if there is an increase in learning, a shift from 
the well-being to the growth pathway has happened.

Psychophysiological measurements for academic emotions

Psychophysiological measures (e.g., EDA, electromyography, eye-tracking, or elec-
trical activity of heart and brain) are well-elaborated to index cognitive tasks and 
emotional states (see Berntson et  al., 2017; Dawson et  al., 2017; Levenson et  al., 
2017). Psychophysiological measurements aim to conclude from physiological reac-
tions to psychological processes (e.g., emotions or attention; Pinel & Pauli, 2012). 
Here, the essential statement is that physiological processes are intertwined with 
human behavior (Cacioppo et al., 2017). Based on psychophysiological data, conclu-
sions concerning emotional processes can be drawn. Psychological conditions can-
not be associated with a separate isolated physiological reaction. The complex reac-
tion pattern must always be considered (Cacioppo & Tassinary, 1990). For example, 
an electrodermal reaction can indicate an arousing situation or a deep breath. Both 
situations show the same result—an increase in the electrodermal curve—but they 
are very different in their respective meaning. Therefore, there is no one-to-one rela-
tion between a single physiological response (e.g., an increase in EDA or HR decel-
eration) and a specific emotion (e.g., frustration). For example, an increase in EDA 
cannot identify frustration, and frustration does not express solely in changing EDA. 
Adding HR as a measure for valence can specify the increase in EDA since negative 
emotions express in HR decrease (see sections “Electrodermal activity” and “Heart 
rate”). Therefore, the psychophysiological pattern composed of EDA and HR curves 
must be considered to identify emotional states. The attribution from physiological 
response patterns to actual psychological meaning requires an accurate experimental 
design, appropriate data analyses, and interpretation (Cacioppo et al., 2017).

Since we see emotions as a two-dimensional model, both, valence and activation 
must be examined to capture emotions comprehensively. Then, merging EDA and 
HR data reveals a physiological pattern, which can identify emotional states (e.g., 
Barrett & Russell, 1999; Eteläpelto et al., 2018; Larsen & Diener, 1992; Levenson 
et  al., 2017). Furthermore, only the valence can declare if the emotion is positive 
or negative, which is crucial for successful learning. We chose EDA and HR since 
these are easily measurable, non-invasive, sensitive to psychological states, and 
well-elaborated (see sections “Electrodermal activity” and “Heart rate”). Based on 
established research about psychophysiological measurements, we used EDA to 
capture the activation and HR to measure the valence of academic emotions. We do 
not further address the third dimension “object focus” because it refers to whether 
the emotional state is seen as activity or outcome (see Table 1), which is not relevant 
for our purpose.

Electrodermal activity

A standard psychophysiological measurement in many different research areas is 
EDA (e.g., attention, information processing, and emotion). Its popularity is the 
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simple measurability and the sensitivity to many psychological states and processes 
(Dawson et al., 2017). EDA changes are associated with emotional activation, emo-
tionally arousing thoughts or events, which induce an increase of electrical con-
ductivity of the skin (Bradley, 2009). The EDA is solely controlled by the sympa-
thetic nervous system (SNS) and, therefore, a direct reflection of activation (details 
see section “Heart rate”; Dawson et al., 2017; Lang et al., 2009). The interpretation 
of EDA changes depends on the stimulus material and the surroundings (Dawson 
et al., 2017). For example, an increase in EDA in an emotional surrounding can be 
interpreted as increased emotional activation. When somebody gets frightened, the 
increase in EDA can be traced back to the occurring attentional shift towards the 
unexpected stimulus (Bradley, 2009). Therefore, the more controlled a laboratory 
setting is, the more reliable is the interpretation of a change in EDA (Dawson et al., 
2017). Moreover, having more than one measure (e.g., HR and self-reports) leads 
to a more accurate reconstruction of the learner’s psychological state (Lang, 2014).

The most used method of recording EDA are skin conductance level and skin 
conductance response, both measured in microSiemens (μS). The tonic  skin con-
ductance level measures the conductivity  of the  skin in a particular situation and 
ranges from two to 20 μS. The phasic skin conductance response shows temporary 
fast changes in the conductivity of the  skin caused by discrete events and ranges 
from one to five μS (Dawson et al., 2017).

Heart rate

Besides the primary function of pumping blood through the body, the heart also 
reveals information about emotion, attention, activation, and information processing 
(Berntson et al., 2017; Lang et al., 2009; Potter & Bolls, 2012). HR is, like EDA, 
easily measurable, non-invasive, and associated with many different psychological 
states. The HR shows the frequency of a cardiac cycle and is measured in beats per 
minute (bpm; Berntson et al., 2017). The most promising measurement is an inter-
beat interval (IBI). Here, the time between two peaks of the cardiac cycle is tracked. 
The most prominent peak of the cardiac cycle is the R-spike. The time between two 
R-spikes is called RR-interval (Potter & Bolls, 2012).

Fluctuations in the HR can tell if a stimulus is pleasant or unpleasant, meaning 
HR is sensitive for measuring valence (Greenwald et al., 1989). Pictural stimuli (eve-
ryday objects or exciting scenes), which were assessed as pleasant (e.g., a beautiful 
landscape or erotic pictures), lead to HR acceleration, and pictural stimuli, assessed 
as unpleasant (e.g., dirty laundry or mutilated bodies), cause HR deceleration (Ijs-
selsteijn et al., 2000; Lang et al., 1993, 1997; Palomba et al., 1997). The valence of 
the pictural stimuli (pleasant or unpleasant) was evaluated and standardized by the 
International Affective Picture System, which can be used to explore emotion and 
attention (Lang et al., 1997).

Nevertheless, it is reasonable to assume that activating emotions lead to HR 
acceleration and deactivating emotions to HR deceleration. However, this relation 
does not necessarily persist based on the mechanics of the autonomic nervous sys-
tem, which regulates HR and EDA. The link between activation and valence regard-
ing the HR underlies the dual control of the heart. Its pace is regulated by both 
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autonomic nervous branches, the parasympathetic nervous system (PNS), and the 
SNS (Berntson et al., 2017; Lang et al., 2009; Levenson et al., 2017). Both systems 
influence how fast the heart beats, depending on which system is activated. The acti-
vation of the PNS leads to HR deceleration, which is associated with attention and 
cognitive effort (Lang et al., 2009). The activation of the SNS results in HR accel-
eration, which is related to emotional activation (Lang, 1994). Therefore, HR can 
be a measure of valence but also activation. Nevertheless, since the PNS is faster 
and more dominant than the SNS, the activation of the SNS must be potent to over-
come the parasympathetic activation (Shaffer & Ginsberg, 2017). A parameter to 
determine which system is activated is the heart rate variability (HRV), measured by 
spectral analyses (Berntson et al., 2017; Shaffer & Ginsberg, 2017).

Purpose of the study and research questions

When we consciously experience emotions like love, happiness, anxiety, or distress, 
we feel our physiological reactions (e.g., faster heartbeat or sweaty hands). However, 
unconscious emotional states, especially in the context of learning, equally impact 
our physiological behavior and are thus detectable in psychophysiological curves. 
Furthermore, psychophysiology allows visualizing emotional processes in real-time 
(see section “Psychophysiological measurements for academic emotions”).

Various studies have explored emotions in CBLEs and collaborative learning set-
tings in a diverse manner (for a review, see Loderer et  al., 2020). However, psy-
chophysiological assessments of academic emotions in educational psychology are 
underutilized (Pekrun & Stephens, 2012). The present study wants to address this 
issue and get a unified and clear perspective on academic emotions, CBLEs, and 
self-reports. Moreover, we captured the valence and activation of academic emo-
tions separately to give a detailed statement about the psychophysiological appear-
ance of academic emotions. It was realized with a simple study design in a labora-
tory set-up (see Fig.  1) that eliminates potential external influencing factors (e.g., 
big-fish-little-pond effect; Preckel et  al., 2008). The learning setting was designed 
to evoke negative emotions and guide the learner onto the well-being pathway. This 
process aims to be made physiologically detectable. Due to the lack of literature, the 
present work’s research question and data analyses were primarily exploratory.

Fig. 1   Screenshots of the Learning Material. Screenshot of the video on the left, an excerpt of the text 
on the right
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Since psychophysiological reactions unfold over time, they are an adequate meas-
urement for academic emotions, which also occur over time. Self-reports give infor-
mation about an emotional pre- and post-state of the learner – but they cannot pro-
vide details about the progression or reasons for the emergence of emotions. The 
exploratory research question (RQ) and hypotheses are structured top-down with the 
broad RQ at the top and the detailed hypotheses at the bottom. The derived RQ tar-
gets whether physiological behavior reveals more information about academic emo-
tions and learning:

•	 Can psychophysiological measurements provide deeper insights into learning 
processes? The explorative character of the RQ allows space for different data 
analyses and approaches. The term “deeper insights” implies getting information 
about the ongoing learning process (psychophysiological data) rather than solely 
having information about the current state of knowledge (self-reports). Moreo-
ver, the cause, emergence, and physiological progression of academic emotions 
provide insights into learning behavior. We formulated detailed hypotheses to 
follow the top-down approach, referring to negative academic emotions and their 
physiological indicators. The hypotheses target specific data analyses to find dis-
tinct physiological patterns and thus indicators of academic emotions. We state 
that patterns in EDA and HR indicate negative academic emotions. To meet the 
requirements of the two-dimensional model of emotions, we formulate a particu-
lar hypothesis for each dimension. Valence is captured by HR, and EDA cap-
tures activation. Learning requires attention and information processing, which 
activates the PNS. In the psychophysiological context, this implies that the HR 
decreases. Moreover, the designed learning environment (see section “Learning 
environment”) included unpleasant stimuli, leading to HR decrease (see section 
“Heart rate”). Therefore, we state:

•	 Negative activating academic emotions cause HR deceleration over time (H1). 
Emotional activating situations cause an increase in EDA (see section “Electro-
dermal activity”). We want to show that this condition transfers to learning (i.e., 
academic emotions). The learning materials (see  section “Learning environ-
ment”) induced negative activating academic emotions. Thus, we state:

•	 Negative activating academic emotions cause increasing EDA over time (H2). 
To associate learning, HR, and EDA, we formulated the third hypothesis. Task 
difficulty, analyzed using learning performance, has an impact on academic emo-
tions (see section “Academic emotions”), which can be measured by changes in 
EDA and HR:

•	 Depending on the learning performance (high vs. low), overall HR and EDA dif-
fer (H3).

In conclusion, the Dual-Processing Self-Regulating Model (Boekaerts, 2011) 
shows that emotions have a crucial impact on learning (see chapter “Theoretical 
framework”). Since learners cannot always detect detrimental academic emotions, 
learning success can be affected negatively. We want to show an approach, which 
makes academic emotions measurable in real-time so that learners can be supported 
immediately. EDA and HR provide a fruitful measurement for emotions (see section 
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“Psychophysiological measurements for academic emotions”). Based on the Three-
Dimensional Taxonomy of Academic Achievement Emotions, we aim to measure 
both, valence and activation to distinguish between detrimental and beneficial aca-
demic emotions (the third dimension "object focus" has no further relevance for our 
approach). Anger and enjoyment, for example, are both activating but different in 
their valence. Only if both dimensions are measured, detrimental (e.g., anger) and 
beneficial (e.g., enjoyment) can be discriminated, and the learner can be supported 
accurately.

Method

Participants

Acquisition of participants was realized via a web-based online recruitment sys-
tem ORSEE (Greiner, 2015). Participants were students and employees from the 
XXXX (N = 32; 21 females; Mage = 27.82, SD = 2.45). The inclusion criterion was 
being fluent in German to understand the stimulus material perfectly. We excluded 
one participant because of insufficient concentration and individual data channels 
with poor psychophysiological recordings. This results in different sample sizes 
for self-reports: n = 31 (20 females), HR: n = 28 (18 females), and EDA: n = 27 (16 
females). Despite the small sample size, a sufficient test power (β = 0.80) according 
to an a-priori analysis (α = 0.05) can be achieved, which suggested 30 participants 
for mildly correlated repeated measures (r = 0.20) with a minimum of 16 number 
of measurements without baseline (Faul et al., 2009). Based on the mixed findings 
on whether emotions can be discriminated by indicating EDA and HR, we assume 
a medium effect size of f = 0.25 (Berntson et al., 2017; Boucsein, 2012; Levenson 
et al., 2017). Since we want to consider as much data as possible, we focused on the 
first 17 data points (incl. baseline), where all participants are included.

Measures

Self‑reports

We used the German versions of the Positive and Negative Affect Schedule 
(PANAS, Krohne et  al., 1996; α ≥ 0.84; 5-point Likert-scale) and the seven-item 
short version of the Epistemically-Related Emotion Scale (EES-D, Pekrun et  al., 
2017; α ≥ 0.76; 5-point Likert-scale) in a pre-post design to measure the change of 
perceived emotional states after learning. We combined PANAS and EES-D because 
PANAS covers the overall emotional state (Krohne et  al., 1996), and the EES-D 
refers to emotions accompanied by cognitive activities and knowledge generation 
(Pekrun & Stephens, 2012; Pekrun et al., 2017). Both questionnaires measure emo-
tional activation and valence subjectively and are collated to EDA and HR as an 
objective measure for activation and emotional valence. The Academic Emotions 
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Questionnaire (AEQ, Titz, 2001; α ≥ 0.84; 5-point Likert-scale) was only included 
in the posttest to retrieve information about the emotional experience of the previous 
learning situation. The AEQ consists of class-, learning-, and test-related emotion 
scales, which can be applied separately. Since we focus on the learning situation 
itself, we chose the learning-related emotion scale, which includes eight subscales 
(enjoyment, hope, pride, anger, anxiety, shame, hopelessness, boredom). Each item 
of the AEQ refers either to emotional experiences before, during, or after learning. 
To not overwhelm the participants, we used the 45 items of the AEQ, which gath-
ered experiences during learning. The AEQ does not primarily refer to the valence 
or activation of emotions but mainly to the emotional evaluation of learning. Moreo-
ver, a short-form of a resilience scale (RS-13, Leppert et al., 2008; α = 0.69; 7-point 
Likert scale) was used before learning to determine possible correlations with emo-
tional states and physiological behavior (prototypical items of the mentioned scales 
can be seen in Table S14 in the supplementary material). Learning performance was 
measured using a self-designed questionnaire with 10 multiple-choice items and one 
open question immediately before (prior knowledge) and after the learning session. 
(e.g., “Conventional housing conditions for animals violate animal welfare laws. 
Why?” or “What is animal-turn?” followed by four answer options). The score of 
the prior knowledge was subtracted from the score, which participants achieved after 
learning and is used to represent learning performance. To minimize guessing, par-
ticipants always had the chance to mark “I don’t know”. The open question queried a 
correct abbreviation for a technical term and was rated with one point for the correct 
spelling. Regarding the multiple-choice items, participants scored for marking the 

Table 2   Results for the self-report measures for negative emotions and scale-reliability

N = 31
a Pretest
b Posttest
c Itemized by valence
d Maximum score = 33
PANAS Positive And Negative Affect Schedule, EES-D Epistemically-Related Emotion Scale, AEQ Aca-
demic Emotions Questionnaire, RS Resilience Scale

Measure No. of items Min Max M SD Cronbach’s α

PANASc Negative affect 10 1.07a 1.94a 1.30a 0.31a 0.747a

1.39b 3.20b 2.36b 0.73b 0.877b

EES-Dc Confused, anx-
ious, frustrated, 
bored

4 1.36a 1.52a 1.41a 0.49a 0.632a

1.39b 2.36b 1.74b 0.59b 0.622b

AEQc Anger, anxi-
ety, shame, 
hopelessness, 
boredom

32 1.74b 2.52b 2.12b 0.64b 0.868b

RS 13 4.68a 5.90a 5.23a 0.35a 0.687a

Learning performanced 11 6a 18a 11.7a 3.08a –
17b 26b 21.7b 2.48b –



199

1 3

J. Comput. Educ. (2023) 10(1):189–215	

correct answer and not marking the incorrect answer with one point each, resulting 
in a maximum score of 33. All items refer to the content of the learning material, 
which measures knowledge increase after learning.

Consequently, the pretest contained PANAS and EES-D measuring the current 
emotional state, RS-13 gathering an unbiased value of resilience, and the content-
related questionnaire testing prior knowledge. The posttest included PANAS and 
EES-D gaining the perceived change of emotional states, the content-related ques-
tionnaire measuring knowledge increase, and AEQ gathering the emotional experi-
ence of the previous learning situation. All scales and descriptive statistics for the 
present study can be seen in Table 2.

Psychophysiological data

We used the BIOPAC MP36 system and the Biopac Student Lab 4.1 software to 
record and process physiological data sampled with a 1 kHz rate. We sampled at a 
high rate to have valid data after smoothing and removing artifacts (see Boucsein 
et al., 2012). For proper measurements, we used the SS57L lead set and disposable 
snap Ag/AgCl pre-gelled electrodes for EDA and the fully shielded cable SS2LB 
with Ag/AgCl disposable snap pre-gelled electrodes EL501 for HR. From raw 
HR data, RR-intervals were derived in real-time for later analyses. Raw EDA data 
was treated with a 1 Hz FIR low-pass filter, and phasic data was derived from the 
tonic curve using a 0.05 Hz IIR high-pass filter. Artifacts were treated additionally 
with smoothing routines or interpolation methods. Furthermore, the baseline mean 
was subtracted from the curves to obtain standardized values and comparable data 
among all participants. The resulting channels with physiological data were resam-
pled with 100 Hz and exported as text and excel files for further analyses.

The entire sequence of the study, that is, stimulus material, the participant’s 
screen, and the recording of the participants—especially the placements of the elec-
trodes, was recorded with iMotions version 8.1.

Learning environment

We chose unpleasant stimuli as learning material to direct the participants on the 
well-being pathway and induce negative emotional states. The video is an actual 
report made by the public-sector broadcaster. The video consists of recordings made 
from animal welfarists in conventional pig farms and scenes of Germany’s political 
discussion about animal welfare. It starts with dramatic music and a voiceover, who 
reports about the illegally recorded scenes from pigsties, which were used to call 
attention to the mischief in conventional pig farming, triggering scare (see Fig. 1, on 
the left). Following scenes from a political event, the federal minister of Food and 
Agriculture (Germany) speaks about the danger that animal welfarists pose when 
recording illegally and that animals are protected by law. These scenes evoke an 
imbalance between reality and politics. Subsequently, the legal basis of conventional 
pig farming is presented. The conclusion is that many pig farms and the welfare 
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of animals were not appropriately controlled, which activates anger. Then the ille-
gally recorded scenes from pigsties continue, leading to sadness and distress. The 
voiceover continuously reports about the legal basis, the political discussion, and 
the animal protection act. The following scenes show how piglets were killed by 
an employee, which triggers distress and anger. The video concludes that the viola-
tion of the animal protection act is not punished sufficiently, resulting in frustration. 
Overall, the video induces severe negative emotions.

Afterward, the participants had to read a challenging scientific paper from Bruhn 
and Wollenteit (2018) about the detailed legal basis of the animal protection act and 
regulations. The text includes a lot of paragraphs and laws, which makes it diffi-
cult to read and understand (see Fig. 1, on the right). Because the participants were 
told to understand the content and recall as much information as possible, the task 
gets more difficult or even unsolvable, which should maintain the negative mood and 
lead to frustration and eventual boredom. The overall learning environment should 
affect the ongoing task appraisal in an emotionally negative manner, leading to per-
ceived insolubility of the task. Therefore, a shift to the well-being pathway, indi-
cated by changing psychophysiological behavior.

We pretested the learning material separately to ensure that it triggers negative 
emotions (N = 5). These pretests show that both stimuli evoke negative emotions 
(p < 0.05 for distressed, scared, hostile, upset, ashamed; detailed t-tests see Table S5 
in the supplementary material).

Procedure

Initially, we informed participants about the procedure of the study and psychophys-
iological data collection. We only shared the topic but no hypotheses or research 
interests. Then, participants had to sign a declaration of consent. Before the learning 
session started, participants answered questionnaires about resilience (RS-13), epis-
temic emotions (EES-D), current emotional states (PANAS), their political opinion 
about pig farming, eating habits, and prior knowledge about the topic to generate the 
learning performance score. During a rest period of five minutes, electrodes for the 
psychophysiological measurements were applied, which ensures an even hydration 
between the electrode, gel, and skin.

Moreover, the participants could get used to the laboratory set-up while a base-
line was measured. Two electrodes were applied to the palmar proximal phalanges 
of the middle and ring finger of the non-dominant hand to record EDA. To collect 
HR data, we attached three electrodes according to the lead-II placement and the 
Einthoven Triangle to the upper body (two electrodes under the collarbone, one 
electrode on the left side of the ribcage, see Fig. 2). The learning session consisted 
of the six-minute video followed by the scientific text described above that started 
automatically after the baseline measurement using iMotions (version 8.1). We 
instructed the subjects to pay attention to the content and memorize as much infor-
mation as possible immediately before the learning session. When the participants 
finished reading, cables and electrodes were removed. Afterward, information about 
the level of knowledge (learning performance), epistemic (EES-D), and academic 
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(AEQ) emotions and current emotional state (PANAS) were gathered, and partici-
pants were informed about the research questions. The entire study lasted about one 
hour and took place in a laboratory of the XXXX.

Data processing

All self-reports were collected using the online survey tool SoSci Survey and ana-
lyzed using SPSS Statistics 26 (IBM Corp., 2020) and JASP (JASP Team, 2020).

The following treatments were recommended by the software creators (Sjak-Shie, 
2019) and carried out in scientifically replicated standard procedures (see Boucsein 
et al., 2012; Cacioppo et al., 2017; Potter & Bolls, 2012).

First, each data channel was checked visually for measurement errors or arti-
facts, and if necessary, smoothing or artifact removal procedures were used. The 
EDA signal was baseline corrected. The baseline correction is necessary because 
EDA can vary widely between and within participants (2 – 20 μS; see section 
“Electrodermal activity”) We subtracted the baseline, which was measured before 
the learning session (see Fig.  2) for each participant individually to generate 
comparable curves. The RR-intervals were generated in real-time from the raw 
electrocardiogram (ECG) using a standard procedure provided by Biopac Student 
Lab. Each step of data processing in the Biopac Student Lab and a screenshot of 
data recordings can be seen in Fig. 3. 

To analyze HRV, we used the MATLAB-based application PhysioDataToolbox 
version 0.5 (Sjak-Shie, 2019). Therefore, the raw ECG signal was extracted from 
the Biopac Student Lab. The ECG signal analyzer treated the raw ECG data with 
a 1 Hz high-pass filter and a 50 Hz low-pass filter. To detect and count R-spikes, 
the minimum value of 0.38 millivolt and the minimum distance of 0.3 s between 
R-spikes must be fulfilled. Peaks below or above these values were not classified 
as R-spikes (see Fig. 4a on the left). Then, IBIs were derived from the detected 
R-spikes. A minimum value of 0.4 s and a maximum value of 1.3 s between the 
R-spikes must be fulfilled to be classified as IBI. IBIs with lower or higher values 

Fig. 2   The Study Design, Including Every Step of the Procedure, all Instruments, and Placement of the 
Electrodes in Chronological Order From Left to Right
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than these parameters were automatically rejected (see Fig. 4a on the right). The 
HRV analyzer used these generated IBIs and resampled them with a 4  Hz fre-
quency. A spectral analysis was carried out to get information about which fre-
quency components account for the variability of the heartbeat. Therefore, a 

Fig. 3   Chronological steps of data processing in the biopac student lab including a screenshot of data 
recordings. The displayed data stems from one of our participants

Fig. 4   Illustration of Generating the Heart Rate Variability in the PhysioData Toolbox. Illustration of 
how R-spikes (on the Left) and Inter-Beat-Intervals (on the Right) Were Detected. The displayed data 
stems from one of our participants
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very low (0.0033 Hz & 0.04 Hz), low (0.04 Hz & 0.15 Hz) and high (0.15 Hz & 
0.4  Hz) filter power band were calculated. The resulting curves reveal whether 
the PNS (high-frequency) or the SNS (low-frequency) controls the heartbeat (see 
Fig. 4), which allows a proper interpretation of the HR data and their psychologi-
cal meaning. The most descriptive output was the percentage distribution of each 
filter power band, and thus, if PNS or SNS controls the HR. The very low filter 
power band stands for thermoregulation, which is not relevant in our case.

After processing participants separately, we integrated all data in one file and 
visually lapped every data channel to identify outliers or abnormal curves between 
participants.

Finally, we exported all psychophysiological data in one excel-file for statistical 
analyses. We used the generated HRV data from PhysioDataToolbox and the data 
processed in Biopac Student Lab to analyze EDA, HR, and HRV data statistically.

We used two different methodical approaches. First, we prepared the data for 
repeated measurement analyses and group differences. Since we do not have spe-
cific areas or a stimulus onset but are interested in the progression of the curves 
over time, we averaged each data channel per minute, resulting in at least 17 (incl. 
baseline) values per participant (Min = 17, Max = 39; for HR: M = 27.0, SD = 5.54; 
for EDA: M = 27.1, SD = 5.64). These data segments were recommended by the 
software creators (Sjak-Shie, 2019). To avoid confusion: increasing HR represents 
decreasing RR-intervals.

To test H1 and H2, we conducted an ANOVA with repeated measurements to 
analyze if, when, or where psychophysiological curves differ. Therefore, we can 
explore how the curves progress over time. Most important when analyzing psy-
chophysiological data is the visual inspection. Thereby, artifacts can be detected and 
removed easily. Afterward, an ANOVA with repeated measurements can be used as 
trend analysis. Here, the shape of the curves can be described. If a linear trend can 
be shown, the curves follow a linear progression. If the curves would fluctuate inten-
sively, quadratic or cubic curves could be found, which is not to be expected in our 
case. Moreover, we conducted HRV analyses to determine which nervous system 
(i.e., PNS or SNS) controls the HR (see section “Heart rate”).

To test H3, we performed simple linear regression analyses, with EDA or HR 
as the predictor and learning performance as the dependent variable. Additionally, 
we performed a One-Way ANOVA to look for group differences in learning perfor-
mance (high vs. middle vs. low).

It was noticeable that some participants were less bored after the learning phase 
than before. Therefore, we compared the psychophysiological curves of these par-
ticipants to find patterns.
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Findings

Self‑reports

The presented results regarding emotional states stem from the EES-D, PANAS, and 
AEQ questionnaires.

All participants reported a significant increase in negative emotional states after 
learning (e.g., frustrated, distressed, scared, upset), indicating a negative appraisal 
of the task. However not significant, an unexpected tendency to a decrease in self-
reported boredom after learning can be shown (see Table 3), which is in line with 
the verbal feedback from the participants. They expressed interest in the topic and 
wanted to receive more information.

The learning performance was significantly higher in the posttest (see Table 3). 
Learning performance scores were normally distributed (Shapiro–Wilk test 
p = 0.95). Due to technical problems, poor psychophysiological data, or artifacts, the 
sample size varied. Detailed descriptive information can be found in the supplemen-
tary material.

Psychophysiological data and learning performance

In the following sections, additionally, to test the hypotheses, exploratory analyses 
were carried out.

Simple linear regression analyses were used to examine whether psychophysi-
ological behavior can predict learning performance. EDA data (i.e., the average skin 
conductance level) was used as a predictor and learning performance (i.e., difference 
score) as a dependent variable. The model showed a R2 of 0.27 (adjusted R2 = 0.24, 
F(1, 26) = 9.62, p = 0.005, β =  − 0.52), which indicated, according to Cohen (1988) 
a high goodness-of-fit. EDA was therefore a significant predictor for learning perfor-
mance, t(27) =  − 3.10, p = 0.005. Regression analyses for HR data (i.e., average HR 
in bpm) did not show a convenient fit (F(1, 29) = 0.38, p = 0.54).

As exploratory analyses an ANOVA with repeated measurements was conducted 
using 60-s-slices for EDA and HR (see chapter  2.5.). EDA and HR curves fol-
lowed a significant linear trend. EDA (F(1, 26) = 10.4, p = 0.003, η2

p = 0.29) and HR 

Table 3   Self-report values for negative academic emotions and learning performance

N = 31

Mpre SDpre Mpost SDpost t(30) p Cohen’s d

Frustrated 1.42 0.67 2.35 1.14 4.21  < 0.001 0.76
Distressed 1.55 0.85 3.00 1.07 6.86  < 0.001 1.23
Scared 1.06 0.25 3.13 1.38 8.58  < 0.001 1.54
Upset 1.13 0.34 3.19 1.20 8.92  < 0.001 1.60
Bored 1.52 0.77 1.39 0.56 −0.94 0.35 −0.17
Learning performance 11.7 3.08 21.7 2.48 13.2  < 0.001 2.37
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increased (F(1, 27) = 12.9, p = 0.001, η2
p = 0.32) significantly over 17 consecutive 

measuring points (i.e., 16 min incl. baseline T0; see Figs. 2 and 3). A significant 
difference of EDA (F(2.33, 60.5) = 8.91, p = 0.0002, η2

p = 0.26) and HR (F(5.26, 
142) = 4.67, p = 0.0004, η2

p = 0.15) can be indicated with the highest increase in 
EDA after seven minutes into the experimental task (from M = 0.44, SD = 1.94 
to M = 1.53, SD = 2.16; t(26) =  − 4.08, p = 0.0004; see Fig.  2, black dots) and the 
highest acceleration of the HR after six minutes into the experimental task (from 
M =  − 0.001, SD = 0.04 to M =  − 0.016, SD = 0.036; t(27) = 2.71, p = 0.012; see 
Fig. 3, black triangles; HR acceleration means decreasing RR-intervals).

A distinctive feature can be observed after approximately six minutes (see 
Figs. 5 and 6): EDA and HR decline (i.e., RR curve rises) before increasing rap-
idly. At this time, the video ended and participants started reading the text, result-
ing in an attentional shift and a sudden increase in emotional activation (Lang, 
2014). Afterward, the EDA and HR curves rose less sharply.

To examine whether the PNS or SNS controlled the HR, a spectral analysis for 
HRV was conducted using the PhysioData Toolbox. There, percentages were cal-
culated to illustrate which nervous system was more active. The results showed 
that the low-frequency power (i.e., SNS) is 62.9 percent in charge of HR changes. 
At the same time, the high-frequency power (i.e., PNS) had only 29.8 percent 
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control over HR. The remaining 7.23 percent corresponded to very low-frequency 
power and is associated with thermoregulation and, therefore, negligible.

Trend analyses showed a significant linear relation for EDA and learning 
performance (F(2, 24) = 4.10, p = 0.029, η2

p = 0.26) supported the finding that 
higher learning scores go along with low EDA (see Fig. 7, on the right). For HR 
data, no statistically significant relation to learning performance can be reported 
(F(2, 25) = 1.05, p = 0.37). However, a visual inspection showed a linear trend 
between decreasing HR and increasing learning performance (see Fig. 7, on the 
left). Therefore, we conducted a One-Way ANOVA, resulting in significant differ-
ence between the groups of high, middle, and low learning performance for HR 
(F(2, 25) = 52.6, p < 0.001, η2 = 0.81) and EDA (F(4.99, 59.9) = 2.30, p = 0.043, 
η2 = 0.161; descriptive information in Table 4). 
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Fig. 7   Groups of High, Middle, and Low Learning Performance to the Average of 17 Data Points of RR-
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Table 4   Groups of High, 
Middle, and Low Learning 
Performance for Electrodermal 
Activity (EDA) and Heart Rate 
(HR)

N M SD

High EDA 8 14.8 2.61
HR 9 14.9 2.47

Middle EDA 9 10.2 0.67
HR 9 10.3 0.71

Low EDA 10 5.60 2.22
HR 10 5.60 2.22
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As an explorative analysis, we compared participants which scored very high or 
very low on self-reported emotion questionnaires and analyzed whether specific emo-
tions show a distinct psychophysiological pattern. Therefore, we aggregated the psy-
chophysiological data of participants with differential values greater or less than zero 
(post–pre) individual items (sample size varies per item). Noticeable is the behavior in 
HR between bored (which scored one point higher in the posttest; n = 5) and not bored 
participants (which scored 2 points (n = 2) and one point (n = 5) lower in the posttest; 
see Fig. 8). Here, in four consecutive data points the HR was significantly higher for 
not bored (n = 7) than bored (n = 5) participants: after eight (F(1, 10) = 5.65, p = 0.039, 
η2 = 0.38), nine (F(1, 10) = 5.66, p = 0.039, η2 = 0.36), 10 (F(1, 10) = 6.06, p = 0.034, 
η2 = 0.38) and 12 (F(1, 10) = 5.16, p = 0.047, η2 = 0.33) minutes into the experimental 
task.

Discussion and implications

In this work, we assessed if psychophysiological data can be used as an indicator 
for emotional states during learning with CBLEs and therefore predict learning per-
formance (e.g., Pekrun & Stephens, 2012; Pekrun et al., 2011, 2017). Our explora-
tory research question targets the discourse of whether objective, real-time measures 
(i.e., psychophysiological data) reveal more information about the learning process 
than subjective post hoc self-reports. Compared to self-reports, which give the result 
of a learning session, psychophysiological data can measure what happens during 
the entire learning session and give real-time information about the learner’s physi-
ological behavior and emotional state. In our work, psychophysiological measure-
ments were particularly fruitful given the progression of emotional states and task 
appraisal during learning and the shifting between the growth and well-being path-
way. Different patterns were assessed by comparing groups that scored very high 
versus low on academic emotion scales. The characteristics, increasing EDA and 
HR, which interfere with learning, were detected. In addition, high EDA indicated 
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low learning performance. Thus, psychophysiological measurements provide deeper 
insights into how and when academic emotions develop during learning than solely 
interpret self-reports.

Since our research question is relatively comprehensive, we defined precise 
hypotheses: Emotionally negative and activating learning material causes a decrease 
in HR and an increase in EDA, but differ depending on students’ learning perfor-
mance (high, middle, low).

Negative activating academic emotions cause HR deceleration over time (H1)

HR and negative activating emotions (frustration, distress, anxiety, and anger) 
increased after the learning phase, but this pattern is not aligned with our first 
hypothesis. However, our results indicate that the valence of deactivating aca-
demic emotions was expressed in HR because bored participants showed a lower 
HR (i.e., higher RR-intervals) than less bored participants (see Fig. 8). This leads to 
the assumption that HR can measure valence but not for highly activating emotions. 
Based on the research about to connection of HR and valence (see section “Heart 
rate”), HR can be a valid measure for valence. However, our learning environment’s 
emotionally stimulating situation should be considered because the activation of 
the SNS could have superimposed the PNS and HR deceleration (Lang et al., 2009; 
see section “Heart rate”). This is in line with our finding that boredom expresses in 
decreasing HR (and increasing RR-intervals). Moreover, HRV analyses showed that 
the SNS is mainly in control over HR, concluding that the learning material was 
highly emotionally activating and therefore overcame the PNS (see section “Heart 
rate”). In summary, our first hypothesis cannot be supported, but the results indicate 
that changes in HR can reflect changing emotional states of learners.

A second possible explanation for the HR increase during the learning task 
besides high emotional activation of the learner can be the high cognitive load. 
Cranford and colleagues (2014) showed that tasks that cause a high cognitive load 
led to a higher increase in HR than tasks that elicit a small cognitive load. Also, 
Haapalainen and colleagues (2010) showed that ECG data was one of the most valu-
able indicators for cognitive load. Our results point in the same direction that HR 
displays rather cognitive load than the valence of academic emotions in a highly 
activating learning environment. Adding a control group with no emotionally acti-
vating stimuli would clarify this ambiguity. Moreover, qualitative data (open-ended 
questions or interviewing participants afterward) could provide a remedy.

Negative activating academic emotions cause increasing EDA over time (H2)

EDA data followed a significant linear trend corresponding to HR data, which is, 
considering the self-report results, in line with our second hypothesis. Prior research 
(e.g., Eteläpelto et al., 2018; Kreibig, 2010) showed that high EDA values are indi-
cators for emotionally high activation, which corresponds with our findings. Con-
sequently, EDA can be used as a reliable measure for emotional activation during 
learning. However, EDA cannot determine the valence of academic emotions. Since 
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activating and deactivating academic emotions can benefit learning, a measure for 
the valence is necessary. Herewith, the importance of measuring the valence of aca-
demic emotions becomes apparent. We showed that HR could not perform this task, 
at least in the context of learning. Therefore, more research is needed to identify a 
reliable indicator of valence for academic emotions.

Depending on the learning performance, overall HR and EDA differ (H3)

Taking learning performance into account, a promising correlation can be found: 
With increasing EDA, the learning performance decreases. The activating learning 
material triggered negative academic emotions, which expressed in increasing EDA 
and led to poor knowledge increase. Though the posttest’s learning score was sig-
nificantly higher, the prior knowledge was relatively low due to the topic. So, it is 
not surprising that participants achieved a higher score in the posttest. Besides, the 
motivation of the learners could have been very high to prevent failure, resulting in 
high learning performance (see chapter 1.2.). This methodological issue should be 
considered for future research by choosing a more common topic. However, three 
significantly different groups for learning performance were identified. Therefore, 
EDA is a credible indicator of learning performance. For HR data, no clear statisti-
cal correlation was found. A trend can be detected when observing the results vis-
ually: with increasing HR, learning performance decreases. As a result, our third 
hypothesis can partly be supported.

Contrary to our expectations, the RR curve remains constantly below baseline 
level, triggered by activating, engrossing, and emotional learning material (Lang 
et al., 2009). This is in line with the findings that HR increases in highly emotional 
learning settings (Eteläpelto et al., 2018). Intense emotions like anxiety activate the 
SNS, resulting in faster HR and increasing EDA (Eteläpelto et  al., 2018; Kreibig, 
2010; Levenson et  al., 2017). Based on these findings, the intensity of the expe-
rienced emotion could be the reason why we could not measure HR deceleration 
according to H3. We did not expect the overpowering emotional activation triggered 
by our learning environment. Our results point in the direction that in an emotionally 
high activating learning environment, HR is more sensitive for measuring cognitive 
load. Information input and attention usually go along with HR deceleration. When 
activating emotions, mental work, or concentration on inner thoughts are involved, 
the heart speeds up (Lang, 2014). This leads to the understanding that our setting 
provides an activating and emotional learning environment, which activates the 
SNS resulting in increasing EDA and HR. The activation of the SNS of our learning 
material overcomes the activation of the PNS, which slows the heart down (Lang 
et al., 2009).

An issue that remains to be discussed is the dramatic increase from T7 to T8 in 
EDA and from T6 to T7 in HR (see Fig. 5 and 6), which is a typical psychophysi-
ological pattern for orienting responses. The reason behind an orienting response is 
the appearance of an unexpected stimulus (e.g., the sudden appearance of an error 
message on the screen or unexpected doorbell or call), which does not fit the current 
mental model (e.g., Bradley, 2009; Liebold et al., 2017; Potter & Bolls, 2012). This 
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unexpected stimulus was the transition from the video to the text in our study. After 
the video stopped, the screen turned white before the text appeared. Moreover, the 
task shifted from watching the video passively to interacting with the input device 
(e.g., zooming the text in or out) and reading actively. Also, the participants’ posture 
changed, from leaning back to sitting upright and closer to the screen. The EDA 
increased later than the HR because the electrodermal system is slower than the car-
diovascular system (Berntson et al., 2017; Dawson et al., 2017). Since an orienting 
response refers to a short period and abates after a few seconds (Bradley, 2009), it 
has no further impact on our investigation.

Our overarching aim is to promote learning with CBLEs and find an implicit 
and real-time measurement for learning performance. Our research contributes to 
this issue by investigating how academic emotions manifest in psychophysiological 
data and validating physiological variables (e.g., EDA or HR) as a measurement of 
learning performance. The results are two options supporting the learner: as soon 
as a destructive academic emotion appears (e.g., frustration, boredom, anger (see 
Table 1), indicated by fluctuating and high EDA and HR), the learner receives sup-
port to solve the problem, prevent a switch to the well-being pathway (see chap-
ter 1.1.), and lead the learner to learning success. The second assistance is identify-
ing positive academic emotions (indicated by a steady EDA and HR), maintaining 
them, and keeping the learner on the growth pathway (see chapter  “Theoretical 
framework”). Consequently, the learner’s individual needs can be considered with-
out getting out of the flow (Arguel et al., 2017).

Our findings and prior research on the significance and performance of psycho-
physiological measures show that it is worth establishing these measurements in 
CBLEs. An early approach to assessing emotions via an input device was “The Emo-
tion Mouse” (Ark et al., 1999), which has not gained further acceptance because of 
the intrusive hardware. Since the technical state of the art nowadays is more sophis-
ticated (e.g., smartwatches, fitness, or activity trackers), it is simple and unobtrusive 
to include these devices in CBLEs.

Limitations

Regarding our sample, gender differences can be noticed (see section “Partici-
pants”), which should be considered regarding the interpretation of the results of the 
self-reports. However, in a meta-analysis on emotions in technology-based learn-
ing environments, Loderer and colleagues (2020) could only find a weak relation 
between gender and academic emotions. Moreover, Frenzel et al. (2007) showed that 
gender had no direct effect on academic emotions. Consequently, despite the gender 
differences, our sample can be considered reliable. Due to drop-outs, no noteworthy 
gender differences resulted in physiological data.

Although the task triggered negative and learning-inhibiting academic emotions, 
learners showed a significant knowledge increase. However, attention should be paid 
to the low prior knowledge, ensuring a higher posttest score. In future studies, the 
content of the learning material should be considered to clarify further connections 
of EDA and HR with learning success. Identifying relevant areas turned out to be 
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difficult as we cannot be sure that all learners read the same text passage simulta-
neously. Previously defined areas or controlled reading speed could counteract this 
issue. The resulting comparable sections are more manageable in data processing 
and interpretation than looking at the learning session overall.

More research is needed to determine psychophysiological patterns for successful 
learning processes besides emotional and activating learning environments. Further-
more, the technical implementation of psychophysiological measurements and pro-
cessing in digital environments is uncertain.

Conclusions

CBLEs gained importance, especially during the COVID-19 pandemic. However, 
learners’ emotional states can hardly be identified by teachers in CBLEs. By mak-
ing academic emotions measurable, learning progress can be better understood. The 
added value of this work is to comprehend the physiological appearance and impact 
of academic emotions on learning behavior and ultimately derive design approaches 
for CBLEs. In addition, this work aims further to validate psychophysiological 
measurements in the context of CBLEs, as this is relatively unattended (see Loderer 
et al., 2020).

Our findings show that psychophysiological measurements represent changes in 
academic emotions. Especially the distinction between the physiological behavior of 
bored and not bored participants can show shifting from Boekaerts’ (2011) growth 
to well-being pathway. Bored participants chose the emotionally deactivating well-
being pathway, especially with the increasing duration indicated by lower HR.

In conclusion, we found the physiological pattern of increasing HR and EDA, 
which indicates negative activating emotional states of learners in academic settings 
and EDA as sufficient indicator for learning performance. However, self-reports are 
essential at this stage of research to identify individual emotional states. Based on 
our research, it is possible to head in the direction of promoting learning using psy-
chophysiological measurements.

More research is needed to combine knowledge about the physiological emer-
gence of emotions, the connection to the physiological appearance of academic emo-
tions, and learning processes. Currently, these are rather separate research areas but 
would enormously benefit from each other. Moreover, qualitative data (e.g., inter-
views, open-ended questionnaires, or think-aloud data) can be included to extend the 
findings and contribute to the multimodal data approach (see Järvelä et al., 2019).

Acknowledgements  This research did not receive any specific grant from funding agencies in the pub-
lic, commercial, or not-for-profit sectors.

Funding  Open Access funding enabled and organized by Projekt DEAL. None.

Data availability  On request.

Code availability  Not applicable.

Declarations 



212	 J. Comput. Educ. (2023) 10(1):189–215

1 3

Conflict of interest  All authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Arguel, A., Lockyer, L., Lipp, O. V., Lodge, J. M., & Kennedy, G. (2017). Inside Out: Detecting Learn-
ers’ Confusion to Improve Interactive Digital Learning Environments. Journal of Educational Com-
puting Research, 55(4), 526–551. https://​doi.​org/​10.​1177/​07356​33116​674732

Ark, W. S., Dryer, D. C., & Lu, D. J. (1999). The Emotion Mouse. In H. J. Bullinger & J. Ziegler (Eds.), 
Human-Computer Interaction: Ergonomics and User Interfaces (pp. 818–823). Lawrence Erlbaum 
Associates, Inc.

Baker, R. S. J., & d., D’Mello, S. K., Rodrigo, Ma. M. T., & Graesser, A. C. (2010). Better to be frus-
trated than bored: The incidence, persistence, and impact of learners’ cognitive-affective states dur-
ing interactions with three different computer-based learning environments. International Journal of 
Human-Computer Studies, 68(4), 223–241. https://​doi.​org/​10.​1016/j.​ijhcs.​2009.​12.​003

Barrett, L. F., & Russell, J. A. (1999). The Structure of Current Affect: Controversies and Emerging Con-
sensus. Current Directions in Psychological Science, 8, 10–14. https://​doi.​org/​10.​1111/​1467-​8721.​
00003

Berntson, G. G., Quigley, K. S., Norman, G. J., & Lozano, D. L. (2017). Cardiovascular Psychophysiol-
ogy. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of Psychophysiology 
(4th ed., pp. 183–216). Cambridge University Press. https://​doi.​org/​10.​1017/​97811​07415​782.​009

Boekaerts, M. (1999). Motivated learning: Studying student* situation transactional units. European 
Journal of Psychology of Education, 14(1), 41. https://​doi.​org/​10.​1007/​BF031​73110

Boekaerts, M. (2011). Emotions, emotion regulation, and self-regulation of learning. In B. J. Zimmerman 
& D. H. Schunk (Eds.), Handbook of Self-Regulation of Learning and Performance (pp. 408–425). 
Routledge/Taylor & Francis Group.

Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. 
L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49(8), 
1017–1034. https://​doi.​org/​10.​1111/j.​1469-​8986.​2012.​01384.x

Boucsein, W. (2012). Electrodermal activity (2nd ed). Springer.
Bradley, M. M. (2009). Natural selective attention: Orienting and emotion. Psychophysiology, 46(1), 

1–11. https://​doi.​org/​10.​1111/j.​1469-​8986.​2008.​00702.x
Bruhn, D., & Wollenteit, U. (2018). Konventionelle Schweinehaltung und Tierschutzgesetz. Natur Und 

Recht, 40(3), 160–169. https://​doi.​org/​10.​1007/​s10357-​018-​3310-9
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (2017). Strong Inference in Psychophysiological Sci-

ence. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of Psychophysiology 
(4th ed., pp. 3–15). Cambridge University Press. https://​doi.​org/​10.​1017/​97811​07415​782.​001

Cacioppo, J. T., & Tassinary, L. G. (1990). Inferring psychological significance from physiological sig-
nals. American Psychologist, 45(1), 16–28. https://​doi.​org/​10.​1037/​0003-​066X.​45.1.​16

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Lawrence Erlbaum 
Associates, Inc.

IBM Corp. (2020). IBM SPSS Statistics for Windows (26) [Computer Software].
Cranford, K. N., Tiettmeyer, J. M., Chuprinko, B. C., Jordan, S., & Grove, N. P. (2014). Measuring load 

on working memory: The use of heart rate as a means of measuring chemistry students’ cognitive 
load. Journal of Chemical Education, 91(5), 641–647. https://​doi.​org/​10.​1021/​ed400​576n

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0735633116674732
https://doi.org/10.1016/j.ijhcs.2009.12.003
https://doi.org/10.1111/1467-8721.00003
https://doi.org/10.1111/1467-8721.00003
https://doi.org/10.1017/9781107415782.009
https://doi.org/10.1007/BF03173110
https://doi.org/10.1111/j.1469-8986.2012.01384.x
https://doi.org/10.1111/j.1469-8986.2008.00702.x
https://doi.org/10.1007/s10357-018-3310-9
https://doi.org/10.1017/9781107415782.001
https://doi.org/10.1037/0003-066X.45.1.16
https://doi.org/10.1021/ed400576n


213

1 3

J. Comput. Educ. (2023) 10(1):189–215	

D’Mello, S., Lehman, B., Pekrun, R., & Graesser, A. (2014). Confusion can be beneficial for learning. 
Learning and Instruction, 29, 153–170. https://​doi.​org/​10.​1016/j.​learn​instr​uc.​2012.​05.​003

Dawson, M. E., Schell, A. M., & Filion, D. L. (2017). The Electrodermal System. In J. T. Cacioppo, L. G. 
Tassinary, & G. G. Berntson (Eds.), Handbook of Psychophysiology (4th ed., pp. 217–243). Cam-
bridge University Press. https://​doi.​org/​10.​1017/​97811​07415​782.​010

D’Mello, S., & Graesser, A. (2014). Confusion and its dynamics during device comprehension with 
breakdown scenarios. Acta Psychologica, 151, 106–116. https://​doi.​org/​10.​1016/j.​actpsy.​2014.​06.​
005

Duffy, M. C., Lajoie, S. P., Pekrun, R., & Lachapelle, K. (2018). Emotions in medical education: Exam-
ining the validity of the Medical Emotion Scale (MES) across authentic medical learning environ-
ments. Learning and Instruction. https://​doi.​org/​10.​1016/j.​learn​instr​uc.​2018.​07.​001

Eteläpelto, A., Kykyri, V.-L., Penttonen, M., Hökkä, P., Paloniemi, S., Vähäsantanen, K., Eteläpelto, T., 
& Lappalainen, V. (2018). A multi-componential methodology for exploring emotions in learning. 
Frontline Learning Research. https://​doi.​org/​10.​14786/​flr.​v6i3.​379

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 
31: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. 
https://​doi.​org/​10.​3758/​BRM.​41.4.​1149

Frenzel, A. C., Pekrun, R., & Goetz, T. (2007). Girls and mathematics —A “hopeless” issue? A control-
value approach to gender differences in emotions towards mathematics. European Journal of Psy-
chology of Education, 22(4), 497–514. https://​doi.​org/​10.​1007/​BF031​73468

Goetz, T., & Hall, N. C. (2013). Academic boredom. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), Inter-
national Handbook of Emotions in Education (pp. 311–330). Routledge/Taylor & Francis Group.

Greenwald, M. K., Cook, E. W., & Lang, P. J. (1989). Affective judgment and psychophysiological 
response: Dimensional covariation in the evaluation of pictorial stimuli. Journal of Psychophysiol-
ogy, 3(1), 51–64.

Greiner, B. (2015). Subject pool recruitment procedures: Organizing experiments with ORSEE. Journal 
of the Economic Science Association, 1(1), 114–125. https://​doi.​org/​10.​1007/​s40881-​015-​0004-4

Haapalainen, E., Kim, S., Forlizzi, J. F., & Dey, A. K. (2010) Psycho-physiological measures for assess-
ing cognitive load. Proceedings of the 12th ACM International Conference on Ubiquitous Comput-
ing Doi: https://​doi.​org/​10.​1145/​18643​49.​18643​95

Ijsselsteijn, de Ridder, H., Freeman, J., & Avons, S. E. (2000). Presence: Concept, determinants and 
measurement. Human Vision and Electronic Imaging, 3959, 520–529. https://​doi.​org/​10.​1117/​12.​
387188

Järvelä, S., Malmberg, J., Haataja, E., Sobocinski, M., & Kirschner, P. A. (2019). What multimodal data 
can tell us about the students’ regulation of their learning process? Learning and Instruction. https://​
doi.​org/​10.​1016/j.​learn​instr​uc.​2019.​04.​004

Järvenoja, H., Järvelä, S., & Malmberg, J. (2017). Supporting groups’ emotion and motivation regulation 
during collaborative learning. Learning and Instruction. https://​doi.​org/​10.​1016/j.​learn​instr​uc.​2017.​
11.​004

JASP Team. (2020). JASP (0.12.2) [Computer software].
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G. F., McClure, S. M., Wang, J. T., & Camerer, C. 

F. (2008). The Wick in the Candle of Learning: Epistemic curiosity activates reward circuitry and 
enhances memory. SSRN Electronic Journal. https://​doi.​org/​10.​2139/​ssrn.​13082​86

Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 
84(3), 394–421. https://​doi.​org/​10.​1016/j.​biops​ycho.​2010.​03.​010

Krohne, H. W., Egloff, B., Kohlmann, C.-W., & Tausch, A. (1996). Untersuchungen mit einer deutschen 
Version der „Positive and Negative Affect Schedule“ (PANAS). Diagnostica, 42(2), 139–156.

Laarni, J., Ravaja, N., Saari, T., Böcking, S., Hartmann, T., & Schramm, H. (2015). Ways to measure 
spatial presence: Review and future directions. In Lombard M., Biocca F., Freeman J., IJsselsteijn 
W., Schaevitz R. (Eds.) Immersed in Media. Springer. https://​doi.​org/​10.​1007/​978-3-​319-​10190-3_8

Lang, A. (2014). Measuring Psychological Responses To Media Messages. Routledge.
Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affec-

tive, facial, visceral, and behavioral reactions. Psychophysiology, 30(3), 261–273. https://​doi.​org/​10.​
1111/j.​1469-​8986.​1993.​tb033​52.x

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): 
Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 1(39–
58), 3.

https://doi.org/10.1016/j.learninstruc.2012.05.003
https://doi.org/10.1017/9781107415782.010
https://doi.org/10.1016/j.actpsy.2014.06.005
https://doi.org/10.1016/j.actpsy.2014.06.005
https://doi.org/10.1016/j.learninstruc.2018.07.001
https://doi.org/10.14786/flr.v6i3.379
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.1007/BF03173468
https://doi.org/10.1007/s40881-015-0004-4
https://doi.org/10.1145/1864349.1864395
https://doi.org/10.1117/12.387188
https://doi.org/10.1117/12.387188
https://doi.org/10.1016/j.learninstruc.2019.04.004
https://doi.org/10.1016/j.learninstruc.2019.04.004
https://doi.org/10.1016/j.learninstruc.2017.11.004
https://doi.org/10.1016/j.learninstruc.2017.11.004
https://doi.org/10.2139/ssrn.1308286
https://doi.org/10.1016/j.biopsycho.2010.03.010
https://doi.org/10.1007/978-3-319-10190-3_8
https://doi.org/10.1111/j.1469-8986.1993.tb03352.x
https://doi.org/10.1111/j.1469-8986.1993.tb03352.x


214	 J. Comput. Educ. (2023) 10(1):189–215

1 3

Lang, A., Potter, R., & Bolls, P. (2009). Where psychophysiology meets the media: Taking the effects out 
of mass media research. In J. Bryant & M. B. Oliver (Eds.), Media Effects: Advances in Theory and 
Research (3rd ed., pp. 185–206). Routledge.

Lang, A. (1994). What can the heart tell us about thinking? In A. Lang (Ed.), Measuring psychological 
responses to media messages (pp. 111–124). Routledge/Taylor & Francis Group.

Larsen, R. J., & Diener, E. (1992). Promises and problems with the circumplex model of emotion. In M. 
S. Clark (Ed.), Emotion (pp. 25–59). Sage Publications Inc.

Leppert, K., Koch, B., Brähler, E., & Strauss, B. (2008). Die Resilienzskala (RS) – Überprüfung der 
Langfrom RS-25 und einer Kurzform RS-13. Klinische Diagnostik Und Evaluation, 1, 226–243.

Levenson, R. W., Lwi, S. J., Brown, C. L., Ford, B. Q., Otero, M. C., & Verstaen, A. (2017). Emotion. In 
J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of Psychophysiology (4th ed., 
pp. 444–464). Cambridge University Press. https://​doi.​org/​10.​1017/​97811​07415​782.​020

Liebold, B., Brill, M., Pietschmann, D., Schwab, F., & Ohler, P. (2017). Continuous measurement of 
breaks in presence: Psychophysiology and orienting responses. Media Psychology, 20(3), 477–501. 
https://​doi.​org/​10.​1080/​15213​269.​2016.​12068​29

Loderer, K., Pekrun, R., & Lester, J. C. (2020). Beyond cold technology: A systematic review and meta-
analysis on emotions in technology-based learning environments. Learning and Instruction, 70, 
101162. https://​doi.​org/​10.​1016/j.​learn​instr​uc.​2018.​08.​002

Magno, C. (2011). Validating the Academic Self-regulated Learning Scale with the Motivated Strate-
gies for Learning Questionnaire (MSLQ) and Learning and Study Strategies Inventory (LASSI). 
The International Journal of Educational and Psychological Assessment, 7.

Palomba, D., Angrilli, A., & Mini, A. (1997). Visual evoked potentials, heart rate responses and memory 
to emotional pictorial stimuli. International Journal of Psychophysiology, 27(1), 55–67. https://​doi.​
org/​10.​1016/​s0167-​8760(97)​00751-4

Panadero, E. (2017). A Review of Self-regulated Learning: Six Models and Four Directions for Research. 
Frontiers in Psychology. https://​doi.​org/​10.​3389/​fpsyg.​2017.​00422

Pekrun, R. (2006). The Control-Value Theory of Achievement Emotions: Assumptions, Corollaries, and 
Implications for Educational Research and Practice. Educational Psychology Review, 18(4), 315–
341. https://​doi.​org/​10.​1007/​s10648-​006-​9029-9

Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic Emotions in Students’ self-regulated 
learning and achievement: a program of qualitative and quantitative Research. Educational Psychol-
ogist, 37(2), 91–105. https://​doi.​org/​10.​1207/​S1532​6985E​P3702_4

Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in stu-
dents’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary 
Educational Psychology, 36(1), 36–48. https://​doi.​org/​10.​1016/j.​cedps​ych.​2010.​10.​002

Pekrun, R., Vogl, E., Muis, K. R., & Sinatra, G. M. (2017). Measuring emotions during epistemic activi-
ties: The Epistemically-Related Emotion Scales. Cognition and Emotion, 31(6), 1268–1276. https://​
doi.​org/​10.​1080/​02699​931.​2016.​12049​89

Pekrun, R., & Stephens, E. J. (2012). Academic emotions. In K. R. Harris, S. Graham, T. Urdan, S. Gra-
ham, J. M. Royer, & M. Zeidner (Eds.), APA Educational Psychology Handbook, Vol 2: Individual 
Differences and Cultural and Contextual Factors (pp. 3–31). American Psychological Association. 
https://​doi.​org/​10.​1037/​13274-​001

Pinel, J. P. J., & Pauli, P. (2012). Biopsychologie (8th ed.). Pearson, Higher Education.
Potter, R. F., & Bolls, P. (2012). Psychophysiological Measurement and Meaning: Cognitive and Emo-

tional Processing of Media. Routledge/Taylor & Francis Group.
Preckel, F., Zeidner, M., Goetz, T., & Schleyer, E. (2008). Female “big fish” swimming against the tide: 

The “big-fish-little-pond effect” and gender ratio in special gifted classes. Contemporary Educa-
tional Psychology, 33(1), 78–96. https://​doi.​org/​10.​1016/j.​cedps​ych.​2006.​08.​001

Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Fron-
tiers in Public Health. https://​doi.​org/​10.​3389/​fpubh.​2017.​00258

Sjak-Shie, E. E. (2019). PhysioData Toolbox (0.5) [Computer software]. https://​Physi​oData​Toolb​ox.​leide​
nuniv.​nl

Slater, M. (2002). Presence and The Sixth Sense. Presence Teleoperators and Virtual Environments, 
11(4), 435–439. https://​doi.​org/​10.​1162/​10547​46027​60204​327

Titz, W. (2001). Emotionen von Studierenden in Lernsituationen: Explorative Analysen und Entwicklung 
von Selbstberichtskalen. Waxmann.

https://doi.org/10.1017/9781107415782.020
https://doi.org/10.1080/15213269.2016.1206829
https://doi.org/10.1016/j.learninstruc.2018.08.002
https://doi.org/10.1016/s0167-8760(97)00751-4
https://doi.org/10.1016/s0167-8760(97)00751-4
https://doi.org/10.3389/fpsyg.2017.00422
https://doi.org/10.1007/s10648-006-9029-9
https://doi.org/10.1207/S15326985EP3702_4
https://doi.org/10.1016/j.cedpsych.2010.10.002
https://doi.org/10.1080/02699931.2016.1204989
https://doi.org/10.1080/02699931.2016.1204989
https://doi.org/10.1037/13274-001
https://doi.org/10.1016/j.cedpsych.2006.08.001
https://doi.org/10.3389/fpubh.2017.00258
https://PhysioDataToolbox.leidenuniv.nl
https://PhysioDataToolbox.leidenuniv.nl
https://doi.org/10.1162/105474602760204327


215

1 3

J. Comput. Educ. (2023) 10(1):189–215	

Vermeer, H. J., Boekaerts, M., & Seegers, G. (2000). Motivational and gender differences: Sixth-grade 
students’ mathematical problem-solving behavior. Journal of Educational Psychology, 92(2), 308–
315. https://​doi.​org/​10.​1037/​0022-​0663.​92.2.​308

Winne, P. H., & Perry, N. E. (2000). Measuring self-regulated learning. In M. Boekaerts, P. R. Pintrich, 
& M. Zeidner (Eds.), Handbook of Self-Regulation (pp. 531–566) Academic Press. https://​doi.​org/​
10.​1016/​B978-​01210​9890-2/​50045-7

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Kerstin Huber  (M. Sc. in Media and Instructional Psychology) works as a research fellow at the Chair 
of Teaching and Learning with Digital Media for the project Teach@TUM, main focus on evaluation of 
the subproject Toolbox Teacher Education at the TUM School of Social Sciences and Technology, Tech-
nical University of Munich. Interests and research focus are interactive and multimedia learning, digital 
teaching and learning, cognitive and emotional processing of digital media, psychophysiological meas-
urements, & human-computer interaction.

Maria Bannert  holds the Chair of Teaching and Learning with Digital Media at the Technical Univer-
sity of Munich / TUM, Faculty of Social Sciences and Technology, in Germany. Her research interests 
include educational psychology with a focus on educational media (especially multimedia and hyper-
media learning environments, VR/AR) and the development of psychologically based assessment and 
evaluation methods for the effectiveness of computer-based learning and teaching technologies. Current 
research activities include the analysis of self-regulated individual and group learning processes and their 
personalized support by adaptive learning technologies.

https://doi.org/10.1037/0022-0663.92.2.308
https://doi.org/10.1016/B978-012109890-2/50045-7
https://doi.org/10.1016/B978-012109890-2/50045-7

	What happens to your body during learning with computer-based environments? Exploring negative academic emotions using psychophysiological measurements
	Abstract 
	Introduction
	Theoretical framework
	The dual processing self-regulating model
	Academic emotions
	Psychophysiological measurements for academic emotions
	Electrodermal activity
	Heart rate

	Purpose of the study and research questions

	Method
	Participants
	Measures
	Self-reports
	Psychophysiological data

	Learning environment
	Procedure
	Data processing

	Findings
	Self-reports
	Psychophysiological data and learning performance

	Discussion and implications
	Negative activating academic emotions cause HR deceleration over time (H1)
	Negative activating academic emotions cause increasing EDA over time (H2)
	Depending on the learning performance, overall HR and EDA differ (H3)

	Limitations
	Conclusions
	Acknowledgements 
	References




