
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-022-09071-w

ORIGINAL ARTICLE

An extendable framework for intelligent and easily configurable
skills‑based industrial robot applications

Lisa Heuss1 · Clemens Gonnermann1 · Gunther Reinhart1

Received: 10 December 2021 / Accepted: 17 March 2022
© The Author(s) 2022

Abstract
Modern, flexible, and easy-to-use robotic technologies have the potential to support companies to increase their productivity
within today’s dynamic and volatile production. In this context, we introduce a skills-based software framework that makes
it possible to configure the functional capabilities of industrial robots flexibly. In addition, we have structured the software
framework into three consecutive expansion stages. In this way, it is possible to expand the robot’s reasoning capabilities
step by step so that the robot is enabled to be instructed at higher abstraction levels and to process increasingly complex
tasks. The contribution of our work is the further development of previous approaches and ideas from the research field of
skills-based industrial robotic frameworks by considering new and previously unaddressed design issues within the structure
of our software framework. We demonstrate the application of the framework using the example of an industrial robot for
assembling a diverse range of LEGO products. The example of use consists of three consecutive scenarios. To begin with,
the robot assembles different predefined product variants. Subsequently, we extend the robot application in a step-by-step
manner to allow the robot to execute more and more complex tasks until it can finally plan individual tasks autonomously.
On the one side, our approach shows how to enable companies with little robotic experience to start developing robotic
applications and thereby gain further expertise. On the other side, by using this approach the effort and time for developing
industrial robot applications will be reduced in the long term.

Keywords  Industrial robot · Skills · Framework · Task planning and control · Reconfiguration · Autonomy

1  Introduction

Today’s industry faces the challenges of increasing product
variety, cost pressure and market dynamics [1]. To remain
competitive, the constant flexibilization of manufacturer’s
production processes is essential. In this context, modern
robotic technologies are seen as a key enabler and will help
companies to further increase their productivity [2]. How-
ever, considering the current state of the art, industrial robots
are still lacking in the flexibility required to be quickly and
easily reconfigured to process diverse tasks [3]. The devel-
opment and programming of robotic applications require
expert knowledge and are time-consuming [4].

Service-oriented solutions, which can be equated to the
skills-based approaches addressed in this paper, promise to

address these challenges [4]. The robot’s capabilities are first
encapsulated in so-called skills, which can then be applied
in different situations by simple parameterization. Subse-
quently, individual skills can be combined in a modular fash-
ion to process complex tasks.

Building on this idea, we derived our long-term vision
for the development and operation of future robotic appli-
cations as follows [5–7]: Individual developers of robotic
software deploy their solutions as robot skills via a cen-
tral market place. In it, users can browse available skills.
Different solutions can be combined in a modular way to
individualize the robot’s skills to fulfill the requirements
of diverse applications. Then, suitable skills can be easily
downloaded to the robot. During operation, the robot can be
intuitively instructed to complete various tasks. If required,
the robot plans its task autonomously and handles variations
and uncertainties in the task itself and/or its surroundings.
If the task range of the robot changes over time, the skills
of the robot are adapted dynamically and on a situation-
specific basis.

 *	 Lisa Heuss
	 lisa.heuss@iwb.tum.de

1	 Institute for Machine Tools and Industrial Management,
Technical University of Munich, Boltzmannstraße
15, 85748 Garching near Munich, Germany

/ Published online: 7 April 2022

The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-09071-w&domain=pdf

1 3

This paper focuses on the necessary software architec-
ture of a robot within the outlined vision. We present the
REpac framework, a skills-based software framework for
industrial robots that makes it possible to easily REconfig-
ure the robot’s functionalities and provides autonomous task
planning and control based on skills. We build on previous
research and address the new combination of three previ-
ously unconsidered aspects in the design of our framework:

1.	 Within the REpac framework, the robot’s skills should
be freely configurable. Afterward, it should be possible
that a user instructs the robot to process diverse tasks
by composing its skills, or the robot even plans its task
autonomously.

2.	 The REpac framework should provide modular usable
components to equip the robot with different reasoning
capabilities depending on the requirements of an appli-
cation scenario. In this way, the robot can be instructed
at different abstraction levels and process tasks of
diverse complexity.

3.	 The REpac framework should be structured in succes-
sive expansion stages to support a user in learning how
to build intelligent robotic applications. Thus, the user
can start with a simple application in which the robot
processes a predefined task and expands it step by step
until the robot plans its tasks autonomously.

Aspects 1 and 2 intend to significantly reduce the effort and
time required for developing and operating industrial robotic
applications. Aspect 3 aims to support companies with little
robotics expertise in acquiring the necessary competencies.

The remainder of the paper is as follows: Sect. 2 reviews
related research. Sect. 3 presents the REpac framework.
Sect. 4 describes an example of use for the REpac frame-
work. Based on this, Sect. 5 discusses the results. Finally,
Sect. 6 concludes the paper.

2 � Related works

2.1 � Robot operating system (ROS) and related tools

ROS is widely used in the robotics community. As a platform
for the development of robotic applications, it provides a
wide range of tools for common tasks (e.g. motion planning
or visualization) and thus supports the exchange of knowl-
edge about these topics [8]. To support the development
and organization of robot behaviors, there are, for example,
the ROS packages SMACH based on state machines [9] or
py_trees_ros based on behavior trees [10] in the ROS eco-
system. In addition, the ROS package ROSPlan provides
automated task planning [11]. However, these tools cover
only a part of the functionalities required by a skills-based

software framework for industrial robots as considered in
this paper.

2.2 � Skills‑based industrial robotic frameworks

With reference to our vision for future skills-based robots,
several conceptual aspects need to be taken into account
when designing the framework. Firstly, we consider the defi-
nition and modeling of skills and tasks. In the state of the
art for industrial skills-based systems, an overriding struc-
turing into at least three abstraction levels can typically be
identified [12–19, 21–25, 28]. Primitive skills at the lowest
level are the actions directly performed by the robot sys-
tem. Composite skills are reoccurring higher-level behaviors
and are described by an organized collection of primitive or
lower-level composite skills. In turn, tasks are specified by
an organized sequence of skills. As [15] already noted, the
exact distinction of abstraction levels is often difficult due to
the underlying idea of flexible combining and composing of
the functionalities offered by a system. In related research,
several authors, for example [12–15], have already studied
the definition and conceptual modeling of skills and/or the
classification of production skills in more detail. We build
on these aforementioned results.

Secondly, a well-defined system structure is needed to
organize the implementation of skills and control them based
on a given task. In [16], the authors present a skills execution
management system based on state machines. New skills
can be added in a modular manner. Through the integration
of sensors, a robot perceives its environment and adapts the
execution of its skills to the individual situation (e.g. detects
variations in object’s poses). The programming and control
frameworks of [17] or [18] allow the easy use of developed
programs on robots of different vendors and/or with diverse
kinematics. The approach of [19] supports a seamless transi-
tion between the simulated and the physical robot system.
Commercially, [20] already offers a programming frame-
work that can easily be used with different robot systems and
equipment. Common to all these approaches is the idea of
building a system structure and/or implementing skills that
are robust and thus reusable in diverse settings, resulting in
a reduced development effort. This is in line with our vision
stated in the introduction.

In our work, we progress from the idea that skills are dis-
tributed via a central market place. Users can browse availa-
ble skills and download a set of suitable skills for their robot
application. Following, in the third step we consider the
selection, composition and configuration of suitable skills
for an application. In [21], a model-based engineering tool
to support users in this process was developed. The authors
of [22] present a knowledge-based architecture to also share
skills and additional knowledge between different systems
and to provide various knowledge-based services to simplify

6270 The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

the creation of robot applications. As can be seen from these
examples, diverse approaches for sharing and choosing skills
from a central market place already exist. Hence, we do not
consider it any further. However, to meet the requirements
of today’s constantly changing and evolving production, we
envisage the possibility of freely combining different skills
in the robot architecture as a key requirement.

Lastly, we review existing approaches for instructing the
robot in the task to be performed. Task-level programming
represents the modeling of tasks based on the available skills
of the robot and is also used by most of the works mentioned
in the two previous paragraphs. For task-level programming,
a wide range of concepts have been researched. A two-part
procedure is promising as, for example, presented by [13,
23, 24] and described below based on these works. The task
is first specified as a structured flow of skills, and then, the
skills are parameterized. In the second step, the skills param-
eterization, the user is supported by intuitive interfaces or
guidelines, or can teach the robot in an interactive way, for
example, by demonstration or gestures. As programming
based on this approach is done at a quite high abstraction
level, it is especially suited to non-robotics experts. Never-
theless, each action to be performed by the robot as well as
the detailed organization of all actions to complete a task
needs to be exactly specified. This is still time-consuming
for larger tasks. An alternative to task-level programming is
automated task planning based on skills. This was, for exam-
ple, explored in the research papers of [13, 25–28]. Here, the
user only specifies the goal state to be achieved and does not
need to specify all the actions to be performed. These are
planned by the robot itself based on its available skills. For
this, the robot maintains an internal model of its world con-
taining its own state as well as that of its operating environ-
ment. In the following, we look at the above papers again on
an individual basis with a focus on the robot system archi-
tecture. In [13] and [25], the underlying robot architecture is
not described. [26, 27] consider mainly kitting applications,
focus on the knowledge modeling and related technologies
and see their robot architecture more as an example of how
these approaches can be used. Within the skills-based con-
trol platform of [28], an internal world model for the robot is
first specified and then based on that developers implement
skills with which defined actions can be executed and thus
the state of the robot or its environment changed. The well-
defined interfaces of this architecture ease the software inte-
gration in a shared development team. However, we think
that the binding of skills to a central world model reduces
their reusability in a different context and thus restricts the
possibility of freely combining skills from different sources.
Therefore, for automated task planning, it can be summa-
rized that it allows a further increase in the abstraction
level of the task instruction. However, it also results in an
increased effort to set up, for example, central knowledge

management. To conclude, both presented approaches, task-
level programming and automated task planning, simplify
the task instruction of industrial robots, but also have their
individual advantages and disadvantages. We think that for
different applications one or the other approach is benefi-
cial or even applicable, and thus, it is desirable to have the
option of selecting the most suitable procedure as required.
We want to address this aspect in more detail in the design
of our framework.

2.3 � Conclusions and need for research

From the literature review, we derive three main conclusions
for our work:

C1	 The effort required to develop various robot applications
can be reduced considerably in the long term by imple-
menting reusable skills and combining them flexibly in
different robot applications.

C2	 The level of abstraction for task instruction can be
increased by enabling the robot to reason independently
or even plan specific tasks. In addition, a robust skill
design allows the robot to adapt the task execution based
on the individual situation. In total, this way, the effort
and required expertise for instructing and maintaining
robotic applications during operation can be reduced.

C3	 However, the comparison of existing works on task
instruction also shows that, for example, the effort
and expertise required to develop a robot application
that is programmed at the task level is less than if the
robot plans its tasks itself. Therefore, it is desirable to
equip the robot with more or less reasoning capabilities
depending on the application area of the robot and the
resulting requirements.

Based on these considerations, we highlight the current chal-
lenges and related need for research that we address in this
paper:

R1	 To the best of our knowledge, the current skills-based
development frameworks that support automated task
planning [13, 25–28] do not explicitly consider the
idea to deploy and share robot skills via a central mar-
ket place and freely combine these on an application-
specific basis. To fully exploit the potentials stated in
C1 and C2, we see a need for research to investigate to
what extent it is possible to select and flexibly combine
diverse skills from a central market place in the robot
architecture and use these also with automated task plan-
ning.

R2	 Based on our considerations C1–C3, we think it is desir-
able to freely combine the skills available in a central
market place in any skills-based robot application, equip

6271The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

the robot with reasoning capabilities as required, and in
this way instruct it either using task-level programming
or at a higher abstraction level that enables autonomous
task planning. In the works of [12, 13, 25, 28], both
methods for task instruction are utilized. However, [12,
13, 25] do not present their underlying robot system
architectures. The approach of [28] does not foresee the
use of the skills without the specified world model and
thus has the restrictions mentioned above on the free
composition of the robot’s skills. Therefore, we see a
need for research to design a suitable robot architecture
for this purpose.

R3	 Although intelligent systems offer high added value in
operation, their development is still subject to a certain
complexity (see C2 and C3). So, from our point of view,
it is advisable to start with a simple robot application, for
example, processing predefined tasks, and then enhance
this subsequently with reasoning capabilities until the
robot plans its tasks autonomously. In this way, the
knowledge required for building intelligent robot appli-
cations can be acquired step by step. Thus far, this has
not been considered in any skills-based robotic frame-
work that we know and therefore should be addressed in
future research.

3 � REpac framework

This paper presents an extendable framework for autono-
mous task planning and control for easily reconfigurable
skills-based industrial robots, the REpac framework. Based
on the identified need for research, we follow three objec-
tives within the design of the REpac framework:

1.	 Reusability and flexible composition of skills: The
robot’s functionalities should be flexibly configurable.
Developers should design their software solutions as
robust skills reusable in various situations on diverse
robot systems and provide these via a central market
place. Based on the available skills, the skills of a robot
should be freely composable within the REpac frame-
work as required for an application.

2.	 Modular configuration of the robot’s reasoning capabili-
ties: To allow users to adapt their robot to their needs,
the REpac framework should further provide different
components for task control, knowledge management,
and task planning that can be integrated in a modular
manner as required. In this way, it should be possible
to equip the robot with various reasoning capabilities
so that it can be instructed at different abstraction levels
depending on the requirements of the individual applica-
tion.

3.	 Learning how to build intelligent robotic applications
through step-by-step expansion: Within the design of
the REpac framework, the system architecture should be
structured into three expansion stages. First, the robot
should process different tasks specified by the user based
on its available skills. Second, the robot architecture
should be extendable by a shared knowledge manage-
ment system for skills that can be used for information
exchange or decision making during the execution of a
task. Third, it should be possible to integrate automated
task planning easily. Thus, the user can start with a sim-
ple skills-based robot application which she/he further
develops. This step-by-step expansion will support the
user in learning how to use the different components of
the REpac framework and how to build intelligent robot
applications.

The presented REpac framework builds on our previous
research [5–7, 29]. Below, we define the modeling of tasks
and skills. Based on this, we present the modules of the
framework and their interaction with reference to the three
mentioned expansion stages. Next, we firstly describe the
structure of the skills and the underlying development pro-
cedure. Secondly, we present the possibilities of using the
common knowledge management for skills and thirdly the
integration steps for automated task planning.

3.1 � Modeling of tasks and skills

In the presented REpac framework, the modeling of tasks
and subordinate skills is derived from the state of the art,
mainly [15] and [30]. We have also previously published
our definition of skills in [6]. The modeling of tasks and
skills is divided into four abstraction levels. In doing so,
tasks for the robot are specified on one of two abstraction
levels:

–	 A mission describes a goal state to be achieved by the
robot.

–	 An action plan describes an organized sequence of
actions to be executed by the robot’s skills. If the task is
specified as a mission, the plan contains the necessary
actions to complete the mission.

Action plans are subsequently executed using the robot’s
skills. Skills are in turn hierarchically modeled on different
levels of abstraction:

–	 Composite skills combine subordinate skills in a struc-
tured flow to complete complex behaviors.

–	 Primitive skills are the lowest level actions, which are
performed directly by the robotic system.

6272 The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

3.2 � Overview of the modules and expansion stages

The REpac framework provides functionalities for task plan-
ning and control of skills-based industrial robots and can
be used for a wide range of applications. Figure 1 gives an
overview of the framework and its modules. By selecting
different skills from the skills database and combining them
within the framework, the robot can be configured for a spe-
cific application. The skills and related data are marked in
blue. Building on this, the REpac framework offers three
expansion stages. The modules required for these expansion
stages are colored in different gray levels. In the following
subsections, the expansion stages are used as a basis for
presenting the framework. The whole REpac framework is
built based on ROS.

3.2.1 � Expansion stage 1

The first expansion stage consists of a control platform for
robot skills. Based on its available skills, the robot can com-
plete various tasks. This first expansion stage more or less
corresponds to the state of the framework as we presented
it in [6].

The skills are the central building blocks for determining
the functionalities offered by the robot. Thus, they define in
which applications the robot can be used and which tasks
it can perform. As it is expected that future robots will be
used for a wide range of tasks at short notice, not all possible
skills and related knowledge can be permanently stored on
the robot. For this reason, robotic skills are deployed via a
central skills database. From there, robot skills can be down-
loaded onto the robot on demand. Until now, this has been
performed manually. In the future, however, it would also

be conceivable for the robot itself to reload the necessary
skills on a situation-specific basis. The REpac framework
allows free combination of diverse skills as required by the
current application.

Upon start-up of the robot system, the skills manager is
responsible for correctly loading all skills currently installed
on the robot. After a successful start-up, all skills register
themselves with the skills manager and in this way allow
it to check whether all skills have been loaded correctly.
Afterward, the robot is ready to receive tasks. Within the
first expansion stage, task instruction is done at the level
of an action plan based on the available skills. The robot
controller accepts the tasks specified by the user and super-
ordinately coordinates the processing of the tasks during
operation. It forwards the plan to the task controller. Based
on the defined action plan, the task controller controls the
corresponding skills and supervises task execution using the
skill’s status messages. Furthermore, it provides status feed-
back to the robot controller.

3.2.2 � Expansion stage 2

In the second expansion stage, the skills blackboard extends
the REpac framework and offers a common memory and
communication platform for the skills. The blackboard cen-
trally stores information about the objects in the robot’s envi-
ronment. All skills can access and edit the data on the black-
board during their execution. In this way, an information
exchange between the skills is realized. Furthermore, the
data on the blackboard can be used for reasoning purposes.
Now, that all information about the objects relevant for the
robot is available centrally, and in a structured manner, skills
can also be called directly with reference to specific objects
relevant for their execution. The skill itself knows which fur-
ther information about the objects it needs for its execution
and queries these from the blackboard. This simplifies the
task instruction. The blackboard can be saved and reloaded
for later applications.

3.2.3 � Expansion stage 3

In the third expansion stage, automated task planning is
integrated into the REpac framework. In [7], we presented
our first concept to integrate automated task planning into
skills-based industrial robots and a draft for the robot archi-
tecture. In this paper, we describe the elaborated concept,
its integration into the overall framework and the concrete
implementation details.

This third expansion stage introduces two new modules,
the task planner and the symbolic knowledge base. Using
automated task planning, task instruction can be further sim-
plified for the user. Tasks are then specified at the mission
level by defining the goal state that is to be achieved by the Fig. 1   Overview of the REpac framework

6273The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

robot. The task planner derives an action plan to complete
the mission based on the actions the robot can perform based
on its current skills set. In doing so, the task planner utilizes
the symbolic knowledge base, which always represents the
current state of the robot’s world that is relevant for this
purpose. It is updated by the robot’s skills and is automati-
cally synchronized with the skills blackboard. The exact dis-
tinction and connection between the skills blackboard and
the symbolic knowledge base will be described later in the
paper. Next, the robot controller forwards the action plan to
the task controller to be executed by the skills.

3.3 � Structure and development of skills

The idea behind our work is that developers can provide
their individual robot skills independently of each other.
Afterward, different skills can be combined in the REpac
framework as demanded by the current application case. For
the development of skills, this means firstly that they must
be reusable in various tasks/situations and/or on different
robot systems as previously demonstrated by [16–18]. Sec-
ondly, they must be designed as modular, independent and
self-contained building blocks. Thirdly, they must provide
a self-description about their functionality and characteris-
tics similar to that requested by [15]. Finally, they must be
externally controllable as well as monitorable and offer a
standardized interface for this purpose [6]. These charac-
teristics are essential for all skills. Thus, all skills are built
based on a unified control structure and interface. Based on
this, the individual functionality of a skill is implemented
and completed by a description of its characteristics. We first
describe the unified control structure of skills, and afterward,
how to describe and implement skills based on this.

3.3.1 � Unified control structure and interface

We presented the uniform control structure and interface to
implement skills in our framework previously in [6, 29]. It
is built based on an adapted version of the PackML interface
state model as it is described in the PackML unit/machine
implementation guide [31] that itself is based on the ANSI/
ISA TR88.00.02-2015. Figure 2 illustrates the slightly more
developed approach.

The control structure defines at a high level, and based on
the adapted version of the PackML interface state model, the
states a skill can adopt. The PackML interface state model
distinguishes between waiting and acting states. This was
taken over for the control structure of the skills. The execu-
tion of a skill happens in the acting states. During the later
implementation of skills, a developer defines the routines
that will be executed when the related state is entered. In
doing so, it is defined what will happen when starting, exe-
cuting, completing, etc., a skill. The waiting states function

as stable intermediate states between the acting states. After
the routine defined for an acting state has been processed,
it transitions to the subsequent waiting state. Waiting states
wait for a command in order to transition to their subsequent
state. These commands are defined as the control functions
of the skill to start, stop, un-/hold and reset it. Only the exe-
cuting state is acting and waiting state at the same time. The
stopping and aborting state can be reached from all states
within the related dashed boxes.

The execution of a skill is externally controlled via the
control interface based on the previously described control
structure. The control functions are used for this purpose.
The execution status of a skill corresponds to the state within
the skill’s control structure in which it is currently situated.
In addition, a parameters list can be passed to the skill, when
starting it. In turn, the skill returns its results after comple-
tion during resetting.

This unified control structure and interface is imple-
mented by means of a skill meta-class. This skill meta-class
forms the basis for all skills. Based on this, we introduce
two distinct meta-classes for primitive and composite skills.
These meta-classes inherit from the skill meta-class and
extend it by further functionalities necessary for the develop-
ment of concrete primitive and composite skills. In this way,
developers are provided with a template for the development
of skills that they can use for their custom skills. This is
summarized in Fig. 3. For example, based on the primitive
skill meta-class two skills for moving the robot to a pose or
linear have been developed. These skills are further used to

Fig. 2   Unified control structure and interface of skills

6274 The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

develop a set of composite skills to pick, place and assemble
LEGO bricks.

3.3.2 � Description and implementation

The development of skills comprises two steps. First, the
developer describes the functionalities and characteristics of
the newly designed skill. These descriptions serve as infor-
mation for other people who want to use the skill and are
also required for the execution of it. Second, the developer
must implement the procedures to be executed by the skill.

The state of the art presents different approaches for
describing skills. In [15], skills are described from a pro-
cess-oriented point of view as capabilities that are offered
by a device or a combination of devices and are not bound
to a specific hardware design or vendor. The authors of [13]
describe skills as object-centered capabilities applied to
physical entities that can be referred to. We think that it is
best to combine these descriptive approaches depending on
the selected abstraction level.

Primitive skills are the lower-level capabilities that are
directly offered by the robot system. Thus, we describe these
from a purely process-oriented point of view. As a basis
for development, we use and extend the skills taxonomy of
[15]. Within the description of a primitive skill, the devel-
oper specifies its name, provides a general description of the
primitive skill and defines the parameters necessary for its
execution as well as the results it returns after completion.
The skill parameters and results are passed to or returned by
the skill when calling it via the unified control interface pre-
sented in the previous section. By way of example, Table 1
shows the description of the primitive skill move to pose.

Based on the primitive skill’s description, the developer
implements its internal processes. For this, the developer has
to specify what to do within the acting states of the skill’s
control structure. For this purpose, the skill meta-class pro-
vides a template with the related functions to be filled by the
developer. Based on this and utilizing the previously defined

parameters and results, the developer scripts the steps to be
performed.

Composite skills are composed of subordinate skills and
represent complex behaviors the robot uses to change the
state either of itself or its environment. Thus, composite
skills perform actions that are related to concrete objects in
the world of the robot. In this context, it is easier to describe
an action to be processed in relation to the objects involved.
Thus, we describe composite skills from a process-oriented
and object-centered point of view. In the first expansion stage
of the framework, a purely process-oriented description of
composite skills is still possible. If composite skills are to
be used within the second and third expansion stage, an
object-centered description of these skills is necessary. For
the object-centered description of composite skills, it is pos-
sible to proceed as exemplified in Table 2 for the composite
skill pick brick, which can be used by the robot to pick up a
LEGO brick from its current location with the robot’s grip-
per. Analogous to primitive skills, composite skills are iden-
tified by a name, provide a general description and have a
set of parameters and results. In addition, the objects consid-
ered by the composite skill as well as parameters and results
related to these objects are defined. When the skills black-
board is used in the second expansion stage, these object
parameters/results are queried/updated by the skill from the
skills blackboard. This means the skill parameters can be
reduced to the objects involved and it is no longer necessary
to pass all the underlying object parameters when calling
the skill. As shown in the example of the skill pick brick in
Table 2, this skill is simply parameterized with the brick that
should be picked up with the robot’s gripper at its current
location. In this case the location represents an imaginary
object. The object brick has assigned the parameters pose,
which is composed subordinately of the elements describ-
ing the brick’s position and orientation, and type. These
object parameters are queried from the skills blackboard.
If composite skills are to be used for automated task plan-
ning, their preconditions and effects need to be defined

Fig. 3   Class structure of skills

Table 1   Exemplary description of the primitive skill move to pose.
Individual parameters/results, such as the pose, are composed of sev-
eral subordinate elements. This is simplified for better readability

6275The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

[13]. Thus, to enable the use of a composite skill in com-
bination with task planning in the third expansion stage,
we additionally describe its preconditions and effects in the
skill’s description. This will be explained in more detail in
Sect. 3.5.

To model the process to be executed within a composite
skill, a choice can be made between two approaches: finite
state machines or scripting. Using the first approach, the
process sequence of a composite skill is modeled by a finite
state machine as shown for the skill pick brick on the left
side in Fig. 4 in a typical and slightly simplified manner. The
states represent the actions executed by subordinate skills
and the transitions define the control flow of the actions
to be proceeded. The previously defined skill and object
parameters are used to parameterize the subordinate skills
to execute the defined actions. Furthermore, results of the
execution of a subordinate skill can be forwarded as input
parameters to a succeeding skill. As primitive and compos-
ite skills are on different abstraction levels, parameters may
have different names and meaning within their namespaces.
For example, within the namespace of the primitive skill
move to pose the pose describes the pose to which the TCP
of the robot should move. Within the namespace of the com-
posite skill pick brick, different poses for the brick itself
and the grasp pose of the brick are defined. As a primitive
skill may be used several times to execute different actions
within a superordinate composite skill, a remapping of the
parameters between their namespaces is necessary. We
specify this on the level of the superordinate skill. Thus,
subordinate skills can be easily and independently inte-
grated into the procedure of a superordinate skill without

any modification. For the underlying implementation of the
state machine approach, we use SMACH [9]. As an alterna-
tive approach for programming composite skills, scripting
based on python can also be used. For this purpose, a simple
to use interface to call subordinate skills is provided. Both
of the mentioned approaches and related functionalities for
programming composite skills are offered by the composite
skill meta-class. A developer can either select one of the two
approaches or combine them. Furthermore, the meta class
can be extended by further programming approaches (e.g.
behavior trees as used by [32, 33]) in the future. The ability
to use and combine different approaches for implementing
skills provides more design freedom for the developers of
these. This allows them to better choose a design approach
based on the requirements of the process to be implemented
or their own technical skills. Most existing works are limited
to one approach.

Finally, Fig. 4b shows how composite skills are embed-
ded into the unified control structure. The execution of a
composite skill takes place in its executing state based on
the defined process model. In the first expansion stage, all
required skill and object parameters must be passed to the
skill, when starting it. For the second and third expansion

Fig. 4   (a) Components of a composite skill and modeling of the
skill pick brick as a state machine. The presentation is simplified for
clearer visualization and easier understanding. (b) Embedding of a
composite skill into the unified control structure of skills

Table 2   Exemplary description of the composite skill pick brick.
Analogous to Table 1, the representation of the parameters/results has
been partially simplified

6276 The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

stage, the composite skill meta-class offers functions to
interact with the knowledge management during the start-
ing and completing routine. These will be introduced in the
following two subsections.

3.4 � Usage of the skills blackboard

In the second expansion stage, the skills blackboard is inte-
grated into the robot architecture. The skills blackboard
functions as common memory and platform for informa-
tion exchange for skills. As composite skills are built in an
object-centered manner, the skills blackboard also applies
an object-centered structure to its data. It stores all objects
of interest for the skills and their parameters. All skills can
access the blackboard and use it as a platform for informa-
tion exchange or reasoning purposes. When utilizing the
blackboard, the skills need to be expanded by the interaction
with the blackboard. Composite skills can then be used in an
object-centered manner. Thus, it is no longer necessary to
pass all single parameters to them, but they can be param-
eterized directly with the objects for which they should per-
form the action and the skill itself queries further necessary
parameters of these objects from the skills blackboard. Fig-
ure 5 illustrates a simplified example of the use of the skills
blackboard. In the example, the robot builds a given LEGO
product. The related task is passed to and controlled by the
task controller using the subordinate skills. The supplied
bricks and related data are stored on the skills blackboard.
The task controller calls the skills accordingly to the action
plan. The two skills pick brick and assemble brick are
called to pick up brick “brick1” from location “loc2” and
assemble it at location “loc4”. The skills are easily called
for the related objects and query the parameters required for

execution (e.g. concrete poses) from the blackboard. After
completion, the skills update the data on the blackboard.

Below, we describe how the skills blackboard can be
used. Use of the skills blackboard is mainly specified within
the development of the skills. It is not mandatory to spec-
ify the blackboard content in advance. For use of the skills
blackboard by a composite skill, the related meta-class pro-
vides the functionalities to easily integrate the usage of the
skills blackboard into a skill. For this, the developer first
needs to specify the data to be exchanged with the black-
board. These are the objects and their parameters/results
that are necessary for the skill’s execution, as already shown
in Table 1 for the skill’s description. As shown in Fig. 4b,
based on these specifications the skills query the data about
the objects necessary for their execution from the blackboard
during their starting routine. Subsequently, they perform the
requested action within their executing routine based on the
specified process model. At this point, the blackboard data
may be used for the parameterization of the process, reason-
ing or also for other purposes that a developer may think of.
During their completing routine, the skills update all data
on the blackboard, which has been changed during their
execution. In conclusion, the data exchange with the skills
blackboard is integrated in the starting and completing state
of the skill using the functions of its meta-class and based
on the skill’s description. Then, the skill can use these data
for its process execution.

The meta-class for primitive skills does not offer special
functions to interact with the skills blackboard. Neverthe-
less, it is possible to use the blackboard within a primitive
skill. This can be defined within its implementation by
directly using the services offered by the blackboard. But,
we recommend to primarily interact with the skills black-
board via the composite skills.

When using the skills blackboard, it is important to use
a uniform naming convention for objects and their param-
eters considered on the blackboard so that they are named
consistently between different skills and on the blackboard.
For future work, it might be interesting to integrate a transla-
tion mechanism into the blackboard to enable the usage of
different naming conventions between different skills. Fur-
thermore, the REpac framework allows storing a blackboard
when shutting down the robot, as well as loading of an exist-
ing one when starting the robot system.

3.5 � Integration of automated task planning

In the third expansion stage, automated task planning can
be integrated into the robot architecture. Thus, a task can
be specified as a mission by a goal state to be reached and
the robot autonomously plans the action plan to complete it.Fig. 5   Exemplary use of the skills blackboard in the second expan-

sion stage

6277The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

Before we describe the integration of automated planning
into the REpac framework, we first give a short introduc-
tion to it based on [34]. A planning domain models the rel-
evant object types, their properties and the possible execut-
able actions. Based on this, a planning problem consists of
a description of the actually existing objects, their initial
state and the goal state to be achieved. Planning domain and
problem can be specified by means of the planning domain
definition language (PDDL). A planning algorithm takes the
planning domain and problem as input and solves the plan-
ning problem by finding an action plan to proceed from the
initial state to the goal state.

To illustrate this explanation, we again use the already
considered example of a robot picking and placing LEGO
bricks. For this example, the planning domain contains as
object types the gripper of the robot, available bricks and
their possible locations. In the planning domain, these
objects can have the following properties: gripper-free,
brick-at-location, brick-in-gripper. These properties can
either be true or false. Based on these specifications, the
executable actions are modeled in the planning domain.
These correlate to the skills of the robot. The actions are
parameterized by a set of objects and have a set of precondi-
tions, which must be fulfilled to execute the action, as well
as a set of effects that are caused by the execution of the
action [34]. Table 2 illustrates the preconditions and effects
of the skill pick brick. Based on this description of a plan-
ning domain, we specify a planning problem. We assume
that there are three objects: the robot’s gripper, one brick
“brick2” and one location “loc3”. In the initial state, the
gripper of the robot is free and the brick “brick2” is at loca-
tion “loc3”. In the goal state, the brick “brick2” should be
in the robot’s gripper. The solution of this planning problem
is an action plan containing of one action to pick up brick
“brick2” from location “loc3”.

The REpac framework is extended by the task planner
and the symbolic knowledge base for integration of auto-
mated task planning within the third expansion stage. The
current planning domain is described by means of PDDL.
Using the specifications from the planning domain, the
symbolic knowledge base stores the current state of the
robot. When a new mission is handed over by the user to
the robot, the task planner generates a planning problem by
using the information of the symbolic knowledge base for
the initial state and the task specification within the mis-
sion for the goal state. In the next step, the task planner
plans a suitable action plan based on the planning domain
and the created planning problem. For the implementation
of the task planner and the symbolic knowledge base, we
used ROSPlan [11] and integrated it into the framework.
After completion, the task planner returns the found action
plan to the robot controller. The robot controller hands the

generated action plan over to the task controller to execute
it using the robot’s skills. During execution, in addition to
the blackboard, the skills also update the symbolic knowl-
edge base. The skills have to be expanded by this interac-
tion when they are used in combination with task planning.
The composite skills meta-class provides an interface for
this purpose. The blackboard and the symbolic knowledge
base are interconnected in the framework. Both represent the
objects known by and relevant for the robot. The symbolic
knowledge base represents the objects at a higher abstrac-
tion level and describes their interconnections in a symbolic
way (e.g. brick “brick2” at location “loc3”). Subordinate to
this, the blackboard stores concrete data for the individual
objects, which is necessary for the skill’s execution (e.g. the
concrete pose of brick “brick2”). Objects added to or deleted
from the blackboard are also automatically updated in the
symbolic knowledge base.

Below, we describe the necessary steps for extending an
application by automated task planning: First, the user has
to decide which skills should be used for task planning. Sec-
ond, the PDDL planning domain needs to be described. The
selected skills represent the actions that should be usable in
the planning domain and determine the relevant object types
and their properties. Third, the preconditions and effects
assigned to the actions in the planning domain also have
to be added to the description of the related skills as shown
in Table 2. As illustrated in Fig. 4b, the skills interact with
the symbolic knowledge base to check their preconditions
during their starting routine and to update their effects upon
completion. We are currently working on simplifying the
creation of the planning domain by automatically generating
the planning domain for specific application fields based on
the selected robot skills.

4 � Example of use

In this section, we present an example of use for the REpac
framework. We use the simulation of a small robot cell that
contains an ABB IRB140 robot and a ABB IRC5 compact
control unit. The robot is equipped with a 2F-85 two finger
gripper and a FT 300 force torque sensor from Robotiq. In
front of the robot is a table which is its working area. A
Microsoft Kinect camera is mounted above the table. As an
example product we use LEGO. In the following, we pre-
sent three application scenarios that build on each other.
All scenarios are illustrated in Table 3. The application sce-
nario is always introduced first. Based on it, we derive the
requirements for the robot architecture. Then, we describe
the implementation of the scenario using the REpac frame-
work. Finally, we demonstrate how to instruct a task to the
robot to use the application in operation.

6278 The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

4.1 � Assembly of predefined products

Scenario  First, the robot is tasked with assembling different
predefined product variants. The parts required for assembly
are provided in defined sets.

Requirements  For this application the robot needs capa-
bilities for moving and gripping that are encapsulated into
modular function blocks. It further needs to be able to com-
bine these capabilities in different variations to complete the
assembly of the different product variants.

Implementation  We realized this scenario using the
first expansion stage of the REpac framework. We

implemented the required capabilities as robot skills.
Thus, we developed the primitive skills move to pose,
move linear and grip for moving the robot to defined
poses or in a linear direction and opening/closing its
gripper. As we use MoveIt [35] for motion planning, we
additionally added some skills to interact with MoveIt
and the digital model of the robot and its environment
for this purpose. All implemented skills are stored in
a designated folder. In this way, the implementation is
completed. When starting the robot system, the skills
manager automatically loads all stored skills. Based on
the available skills, it is possible to specify different
tasks as action plans and send them to the task control-
ler for execution.

Table 3   Summary of the scenarios of the example of use

6279The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

Task instruction  We specify one action plan for each product
variant. An extract of one action plan is shown in Table 3.
The task is modeled using the previously implemented prim-
itive skills which are parameterized to complete the current
assembly (e.g. by the characteristic poses). Depending on
the product variant to be assembled, the related action plan
is passed to the robot.

4.2 � Assembly of customized products

Scenario  In the next scenario, we also want to use the robot
for the assembly of customized products. At this point, it
is no longer possible to provide the required parts as pre-
pared sets. Thus, we supply the parts in a buffer storage to
be assembled as required. The assembly should be processed
based on an assembly plan defining the sequence and assem-
bly locations of the related parts. For example, this informa-
tion can be automatically derived from the CAD model of a
product as shown by [36].

Requirements  For this application, the robot now needs to
internally store information about the currently available
parts in its buffer storage as well as monitor which parts
have been assembled. Based on this knowledge, it needs to
select the parts to be assembled in the next step and param-
eterize the execution of the individual actions to complete
the overall task.

Implementation  For this purpose, we have extended the
robot architecture by the skills blackboard and use the sec-
ond expansion stage of the REpac framework. The robot
stores all information about the relevant parts and their
parameters as well as related storage and assembly locations
on the skills blackboard. The management of the bricks sup-
ply is handled by a set of skills. For example, the skill assign
target decides about the part to be assembled in the next
step. Using the information on the blackboard, it selects an
appropriate part based on its type and characterizing param-
eters (e.g. a brick of type 2x2 that has not been assembled).
For the assembly of the requested products, we implemented
two new composite skills pick brick and assemble brick
for picking and assembling LEGO bricks. As can be seen
in Table 2, the picking skill is parametrized by the brick to
be picked up and its current location. The assembly skill is
parametrized by the brick and its dedicated assembly loca-
tion. Both skills are defined as finite state machines using
the subordinate primitive skills. Within its execution, these
composite skills request necessary information (e.g. poses)
from the skills blackboard. The new skills are also added to
the designated folder. Thus, they can be found and started
by the skills manager at start-up.

Task instruction  As in the previous scenario, we specify
the task as an action plan. However, now we do not need
to explicitly specify all poses within the task description.
Instead, we can specify the task with reference to specific
objects. This is exemplified in Table 3 by the excerpt of a
possible action plan for this scenario. The skill assign tar-
get determines a suitable brick and its current location for
the next assembly step and passes this information as input
parameters to the skills pick brick and assemble brick.
Assembly locations (e.g. assemble_location_4) are prede-
fined during the creation of the action plan and stored with
all their parameters on the skills blackboard. These two
skills will pick up the designated brick from the storage and
assemble it. This simplification within the task instruction
makes it affordable to also use the robot system for product
variants with smaller unit numbers or even for customized
products.

4.3 � Autonomous refill of parts storage

Scenario  Lastly, the second scenario is expanded. After
assembling some products, the robot is to refill its storage
autonomously. For this purpose, the parts are randomly
placed in its working area. Using the camera, the robot is to
detect the provided parts and sort them into the predefined
layout of its storage.

Requirements  In this scenario it is not possible to spec-
ify the task to refill the parts storage as an action plan in
advance. Depending on the previously assembled products,
the number and type of parts to be refilled differs and, in
addition, the parts are randomly placed. Thus, the robot
should autonomously plan the necessary actions to sort all
missing parts into its buffer store.

Implementation  The third expansion stage of the REpac
framework offers automated task planning and is used for
this scenario. At a functional level, we need additional skills
for determining the missing parts in the storage, detecting the
bricks offered to the robot by the camera and placing these
into the storage. To enable the robot to autonomously plan
its tasks, we created a PDDL planning domain file and used
this to configure the task planner of the robot. Furthermore,
we expanded the robot’s skills with preconditions and effects.

Task instruction  During operation, the tasks to assemble dif-
ferent products are specified as in the previous application
scenario. The task instruction to refill the parts storage com-
prises two parts as shown in Table 3. First, we call the action
plan to determine the missing parts in the storage and to then
detect these missing bricks among the randomly provided
new bricks in the robot’s working area. Second, we specify

6280 The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

the desired layout of the parts in the storage as the goal state
in the mission and send it to the robot. By means of auto-
mated planning, the robot plans the pick and place actions
to complete the mission and executes them using its skills.

5 � Discussion

Based on the experience from the example of use in the pre-
vious section and our resulting assessments, we first discuss
in this section how our work serve the need for research that
we identified in Sect. 2 and state the resulting advantages.
Afterward, we identify current limitations and challenges
that arise and provide recommendations for future research.

5.1 � Reusability and flexible composition of skills

Utilizing the benefits of the skills-based approach, we
could flexibly configure and extend the functionalities of
our robot system. This is shown in Fig. 6. Whereas in the
first scenario, we had to develop all skills, we continued to
use an increasingly large part of the skills in the following
scenarios. By reusing previously implemented skills within
new application scenarios the development effort for these
applications can be reduced. This confirms our observations
from the review of the related works. Based on that and to
the best of our knowledge, the REpac framework is the first
skills-based industrial robotic framework that follows the
idea to share robot skills via a central market place, freely
combine these on an application-specific basis, and also use
these with automated task planning. For the first and second
application scenarios, we instructed the tasks at different
abstraction levels using task-level programming. In contrast,
the robot partly plans its task autonomously in the third sce-
nario. We could reuse a large proportion of the skills in all
three scenarios. Some of these skills had to be expanded
to interact with the knowledge management or be usable
with automated task planning. However, the effort for this
is relatively small compared to the initial implementation of

the skill’s functionality. This demonstrates that the REpac
framework provides the prerequisites to fulfill the stated
idea. However, further research should be done to real-
ize more diverse application scenarios within the REpac
framework and investigate the potentials and limitations
of this approach in more detail. To conclude, in the long
term, we expect that the reuse of robots’ skills and their
composition in various application scenarios will lead to
the great advantage of reducing the working effort for new
applications significantly. As the number of implemented
scenarios increases, so will the number of available skills.
Thus, when developing new application scenarios, more and
more skills can be reused, and fewer skills need to be newly
created. This advantage is valid regardless of how the robot
is instructed for different tasks and strengthened by reusing
the same skills in diverse system settings.

5.2 � Modular configuration of the robot’s reasoning
capabilities

The REpac framework allows on the one side to configure
the functional capabilities of a robot by selecting suitable
skills and combining these within the robot architecture
based on the requirements of the current application. On
the other side, a user can further equip the robot with dif-
ferent reasoning capabilities offered through the REpac
framework. Thus, the robot can be instructed at different
abstraction levels using task-level programming or auto-
mated task planning. Looking back at the discussion of
previous works in Sect. 2, the REpac framework is the
first skills-based industrial robotic framework that consid-
ers combining these properties in one framework as far as
we know. In this context, our contribution is the combina-
tion of existing approaches from this subject area in a new
way. Following, we discuss the possibilities arising from
the REpac framework structure in a qualitative way using
Table 4. First, we look at the possibilities for the applica-
tion characteristics. The successive expansion stages allow
to start with task control based on skills and further integrate
components for knowledge management and task planning

Fig. 6   Extension of robot functionalities across application scenarios.
For each scenario, the diagram shows the percentage of skills that
were newly developed for that scenario or continued to be used from
the previous scenario

Table 4   Qualitative comparison of the expansion stages of the REpac
framework

6281The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

in a modular manner. In this way, the robot can be equipped
with increasing reasoning capabilities across the expansion
stages. Our three application scenarios also reflect this,
using the three different expansion stages. When the rea-
soning capabilities of the robot increase, we can instruct
tasks for the robot at higher abstraction levels during opera-
tion. Whereas we predefined all movement sequences in the
first scenario, we only needed to specify the target poses
for the LEGO bricks in the parts storage in the third sce-
nario. Second, based on these considerations, we discuss the
working effort and required expertise to implement robotic
applications based on the three expansion stages. The REpac
framework must be initially set up for the considered robot
application; the necessary skills must be implemented or
downloaded from a central repository and composed within
the REpac framework for all three expansion stages. Within
the second expansion stage, the skills need to be addition-
ally extended to interact with the knowledge management in
the form of the skills blackboard, and the skills blackboard
must be initially set up if required. Furthermore, within the
third expansion stage, the skills need to be expanded for use
within task planning, and the PDDL planning domain must
be described. If necessary, knowledge management must be
initialized again at the beginning. These additional working
steps allow a user to equip a robot with increasing reason-
ing capabilities. However, compared to the first expansion
stage, these additional working steps also cause a higher
working effort and require further expertise in knowledge
management and automated task planning. In contrast, the
effort and necessary expertise for task instruction decrease
across the expansion stages within the operation of a robot
application due to the possibility to specify tasks at higher
abstraction levels. The advantage of these mentioned devel-
opment options offered by the REpac framework is the pos-
sibility to better design a robotic application tailored to its
individual requirements (see also Table 4). A user can com-
pare additional effort and resulting benefits to decide what
reasoning capabilities its robotic application requires and
select the appropriate expansion stage. For example, the first
expansion stage may be sufficient for applications with high
product units and static environmental conditions. If product
units decrease or variations in tasks increase, we recommend
using the second or third expansion stage. Variations in tasks
can result from diverse sources. For example, in the second
scenario, the parts to be assembled are selected based on the
current state of the parts storage. Whereas in the third sce-
nario, parts are randomly placed, and the number of parts to
be manipulated as well as the part’s types differ within each
task. Partly unknown and dynamic environmental conditions
are further examples that result in a high task variety for the
robot. We expect that the possibility to configure the robot
architecture depending on the requirements of an application
and thus only use the components required will reduce the

development effort for each application. Furthermore, we
assume to strengthen this advantage, as the resulting mani-
fold possibilities of using the framework will increase its
applicability for diverse application scenarios. In addition,
the possibilities to reuse once developed skills will increase,
which in turn has a positive effect on the development effort
for new applications.

5.3 � Learning how to build intelligent robotic
applications through step‑by‑step expansion

The example of use demonstrates that the REpac framework
allows a step-by-step realization of more advanced scenar-
ios. By increasing the reasoning capabilities of the robot
across the expansion stages, the robot can process more
complex tasks while simultaneously task instruction during
operation is simplified. In the first scenario, we developed
a set of primitive skills and combined them in a modular
fashion in different action plans to process the assembly of
various predefined product variants. In the second scenario,
we used the skills blackboard for joint knowledge manage-
ment. In doing so, we could specify the action plans at a
higher abstraction level with less parameterization effort.
In the third scenario, we enabled the robot to plan its tasks
autonomously partially. Thus, we could specify a task as a
mission that describes the goal state to be achieved. The task
control, knowledge management, and task planning modules
are integrated independently across the expansion stages.
Thus, a user can learn the required expert knowledge for
using these modules step-by-step. Summing up, the design
of the REpac framework supports a user in learning how to
build intelligent robotic applications that is a novelty com-
pared to the related works. This results in the advantage that
companies with less expert knowledge can start building
robotic applications and expand their expertise as required
to realize increasingly diverse and complex application
scenarios.

5.4 � Limitations, challenges and recommendations
for future research

Finally, we discuss our work’s current limitations and chal-
lenges and derive recommendations for future research.
Firstly, it is essential to consider that we are not aiming
to develop fully autonomous robots. Based on our review
of the related works in Sect. 2, we would recommend an
approach like the one of [28] for this purpose. Considering
the evolving industrial requirements, the REpac framework
addresses an easy configuration of robotic applications based
on skills combined with the possibility to equip the robot
with intelligent capabilities. The estimation of the necessary
development effort compared to the later benefit in operation
is a challenge here (see also Sect. 5.2), and future research

6282 The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

should consider this aspect in more detail. Secondly, infor-
mation exchange between skills, such as via the blackboard,
requires a common understanding of the related data. If
skills are developed independently of each other and after-
ward combined to complete a specific task, this does not
exist. For example, skill development sometimes required
an iterative approach across application scenarios. There-
fore, suitable solution approaches should be investigated,
and initiatives for standardization should be strengthened in
the future. As considered previously, integrating a system to
translate different naming conventions might be a solution
approach. Thirdly, manual creation of the PDDL planning
domain is time-consuming and requires expert knowledge
when using automated task planning. [26] or [28] present
approaches to automating the generation of these knowledge
models. Simplifying the usage of automated task planning
techniques is essential to promote their use in production and
thus should further be explored in future research. Lastly, we
used LEGO as an example product in the example of use.
We assume that the presented results can be transferred to
more complex industrial scenarios in the real world. The
framework itself and the implementation guidelines for skills
can be used in the same way. Nevertheless, and as already
stated in Sect. 5.1, we recommend realizing more diverse
industrial application scenarios to investigate the benefits
and limitations of our approach in more depth.

6 � Conclusion and outlook

This paper presents the REpac framework, an extendable
skills-based software framework for industrial robots. By
designing various robot skills and combining them in the
robot architecture, the robot’s capabilities can be easily
and flexibly configured as demanded by an individual
application. Furthermore, the REpac framework offers
modules for task control, knowledge management, and
task planning, which can also be deployed in a modular
manner as necessary. These modules are structured into
three expansion stages to increase the robot’s reasoning
capabilities in a step-by-step manner. Thus, it is possible
to start with a simple application such as assembling pre-
defined product variants and extend this until the robot
plans its tasks autonomously. We presented an example
of use for the REpac framework that allowed us to dem-
onstrate the following benefits: The reuse of robot skills
in diverse application scenarios combined with the pos-
sibility to equip the robot with reasoning capabilities as
required by the individual application will decrease the
working effort for developing new applications in the long
term. In addition, the structuring of the REpac framework
in consecutive expansion stages allows companies with
less expertise to start developing robotic applications and

gain further expert knowledge during the realization of
increasingly complex application scenarios. In total, we
expect that these benefits will simplify the development
and operation of industrial robotic applications, make their
usage options more flexible and thus allow using industrial
robots for new application areas.

Based on the identified recommendations for future
research in the previous chapter, we plan to work on the
following topics in the future: First, we want to explore
concepts for the automated generation of the related PDDL
planning models in the context of the REpac framework to
simplify the use of automated task planning techniques in
production. Second, we intend to evaluate the REpac frame-
work in real-world applications to transfer our research
approaches into industrial practice. In this context, the con-
crete design of the skills will play a crucial role. Finally, we
aim to investigate the integration of the REpac framework
into the higher-level production planning layer. For this pur-
pose, we intend to use the REpac framework as an execution
layer in a planning system for the automated setup of process
monitoring in reconfigurable assembly systems [37].

Funding  Open Access funding enabled and organized by Projekt
DEAL. The research was developed with the support of the Bavarian
Research Foundation in the research network FORobotics (AZ-1225-
16) and of the Franco-German Alliance for Factory Supported by the
Federal Ministry of Education and Research (BMBF) and the Free
State of Bavaria under the Excellence Strategy of the Federal Govern-
ment and the Laender, and the French alliance for the industry of the
future, in the context of the German-French Academy for the Industry
of the Future of Institut Mines-Telecom (IMT) and Technical Univer-
sity of Munich (TUM) in the research project RDS2-Production. We
thank them for their funding and thank all participating project partners
for their support in these projects.

Code availability  The code that supports the findings of this article
is available from the corresponding author upon reasonable request.

Declarations 

Ethics approval  Not applicable.

Consent to participate  Not applicable

Consent for publication  Not applicable

Competing interests  The authors have no competing interests to
declare that are relevant to the content of this article.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

6283The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

1 3

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Koren Y, Gu X, Guo W (2018) Reconfigurable manufacturing
systems: Principles, design, and future trends. Front Mech Eng
13(2):121–136. https://​doi.​org/​10.​1007/​s11465-​018-​0483-0

	 2.	 International Federation of Robotics (2018) The impact of robots
on productivity, employment and jobs. https://​ifr.​org/​papers.
Accessed 6 Jul 2021

	 3.	 SPARC (2016) Robotics 2020 Multi-annual roadmap. https://​
www.​eu-​robot​ics.​net/​cms/​upload/​topic_​groups/​H2020_​Robot​ics_
​Multi-​Annual_​Roadm​ap_​ICT-​2017B.​pdf. Accessed 06
Jul 2021

	 4.	 Hägele M, Nilsson K, Pires JN, Bischoff R (2016) Industrial
robotics. In: Siciliano B, Khatib O (eds) Springer Handbook of
Robotics. Springer, Berlin, Heidelberg, pp 1385–1421

	 5.	 Heuss L, Lux-Gruenberg G, Hammerstingl V, Schnös F, Rinck
P, Reinhart G, Zäh M (2018) Mobile autonome roboter in der
smart factory: Dynamische planung und adaption mobiler robo-
ter für die flexible produktion. wt Werkstattstechnik Online
108(9):574–579

	 6.	 Heuss L, Blank A, Dengler S, Zikeli GL, Reinhart G, Franke
J (2019) Modular robot software framework for the intelligent
and flexible composition of its skills. In: Ameri F, Stecke KE,
Cieminski G, Kiritsis D (eds) Advances in Production Manage-
ment Systems. Production Management for the Factory of the
Future. APMS 2019. IFIP Advances in Information and Com-
munication Technology, vol 566. Springer, Cham. https://​doi.​
org/​10.​1007/​978-3-​030-​30000-5_​32

	 7.	 Heuss L, Reinhart G (2020) Integration of autonomous task
planning into reconfigurable skill-based industrial robots. In:
2020 25th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pp 1293–1296.
https://​doi.​org/​10.​1109/​ETFA4​6521.​2020.​92120​05

	 8.	 Lentin J, Cacace J (2018) Mastering ROS for robotics program-
ming: Design, build, and simulate complex robots using the
Robot Operating System, 2nd edn. Packt Publishing Limited,
Birmingham

	 9.	 Bohren J, Cousins S (2010) The smach high-level executive [ros
news]. IEEE Robot Autom Mag 17(4):18–20. https://​doi.​org/​10.​
1109/​MRA.​2010.​938836

	10.	 Stonier D, Staniaszek M., Usmani N (2021) py_trees_ros. http://​
wiki.​ros.​org/​py_​trees_​ros. Accessed 6 Jul 2021

	11.	 Cashmore M, Fox M, Long D, Magazzeni D, Ridder B, Carrera
A, Palomeras N, Hurtos N, Carreras M (2015) Rosplan: Plan-
ning in the robot operating system. In: Proceedings of the 25th
International Conference on Automated Planning and Schedul-
ing, pp 333–341

	12.	 Huckaby J, Christensen H (2012) A taxonomic framework for
task modeling and knowledge transfer in manufacturing robot-
ics. AAAI Workshop - Technical Report, pp 94–101

	13.	 Pedersen MR, Nalpantidis L, Andersen RS, Schou C, Bøgh S,
Krüger V, Madsen O (2016) Robot skills for manufacturing:
From concept to industrial deployment. Robot Comput-Integr
Manuf 37:282–291. https://​doi.​org/​10.​1016/j.​rcim.​2015.​04.​002

	14.	 Backhaus J, Reinhart G (2017) Digital description of prod-
ucts, processes and resources for task-oriented programming
of assembly systems. J Intell Manuf 28(8):1787–1800. https://​
doi.​org/​10.​1007/​s10845-​015-​1063-3

	15.	 Hammerstingl V, Reinhart G (2018) Skills in assembly. https://​
media​tum.​ub.​tum.​de/​14282​86. Accessed 6 Jul 2021

	16.	 Herrero H, Moughlbay AA, Outón JL, Sallé D, de Ipiña KL
(2017) Skill based robot programming: Assembly, vision
and workspace monitoring skill interaction. Neurocomputing
255:61–70. https://​doi.​org/​10.​1016/j.​neucom.​2016.​09.​133

	17.	 Halt L, Tenbrock P, Nägele F, Pott A (2018) On the implementa-
tion of transfareable assembly applications for industrial robots.
In: ISR 2018, 50th International Symposium on Robotics, pp 1-7

	18.	 Stenmark M, Malec J, Stolt A (2015) From high-level task
descriptions to executable robot code. Adv Intell Syst Comput
323:189–202. https://​doi.​org/​10.​1007/​978-3-​319-​11310-4_​17

	19.	 Sorensen LC, Mathiesen S, Waspe R, Schlette C (2020) Towards
digital twins for industrial assembly - improving robot solutions
by intuitive user guidance and robot programming. In: 2020
25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pp 1480–1484. https://​doi.​org/​
10.​1109/​ETFA4​6521.​2020.​92120​72

	20.	 drag and bot (2021) drag & bot website. https://​www.​draga​ndbot.​
com/​de/. Accessed 6 Jul 2021

	21.	 Wenger M, Eisenmenger W, Neugschwandtner G, Schneider B,
Zoitl A (2016) A model based engineering tool for ros compo-
nent compositioning, configuration and generation of deploy-
ment information. In: 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), pp
1–8. https://​doi.​org/​10.​1109/​ETFA.​2016.​77335​59

	22.	 Stenmark M, Malec J (2015) Knowledge-based instruction of
manipulation tasks for industrial robotics. Robot Comput-Integr
Manuf 33:56–67. https://​doi.​org/​10.​1016/j.​rcim.​2014.​07.​004

	23.	 Steinmetz F, Wollschlager A, Weitschat R (2018) Razer–a hri
for visual task-level programming and intuitive skill parameteri-
zation. IEEE Robot Autom Lett 3(3):1362–1369. https://​doi.​org/​
10.​1109/​LRA.​2018.​27983​00

	24.	 Franka Emika (2021) Franka Emika website. https://​www.​
franka.​de/. Accessed 6 Jul 2021

	25.	 Huckaby J, Vassos S, Christensen HI (2013) Planning with a
task modeling framework in manufacturing robotics. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp 5787–5794. https://​doi.​org/​10.​1109/​IROS.​2013.​
66971​94

	26.	 Kootbally Z, Schlenoff C, Lawler C, Kramer T, Gupta SK
(2015) Towards robust assembly with knowledge representa-
tion for the planning domain definition language (PDDL). Robot
Comput-Integr Manuf 33:42–55. https://​doi.​org/​10.​1016/j.​rcim.​
2014.​08.​006

	27.	 Kootbally Z, Schlenoff C, Antonishek B, Proctor F, Kramer T,
Harrison W, Downs A, Gupta S (2018) Enabling robot agility
in manufacturing kitting applications. Integr Comput-Aid Eng
25(2):193–212. https://​doi.​org/​10.​3233/​ICA-​180566

	28.	 Rovida F, Crosby M, Holz D, Polydoros A, Großmann B,
Petrick R, Krüger V (2017) Skiros—a skill-based robot con-
trol platform on top of ros. In: Koubaa A (ed) Robot Operat-
ing System (ROS). Studies in Computational Intelligence, vol
707. Springer, Cham. pp 121–160. https://​doi.​org/​10.​1007/​
978-3-​319-​54927-9_4

	29.	 Berger J, Colceriu C, Blank A, Franke J, Haerdtlein C, Hellig T,
Henrich D, Heuss L, Hiller M, Krae M, Leichtmann B, Lottermoser
A, Lu S, Nitsch V, Reinhart G, Riedl M, Roder S, Schaefer K, Schilp
J, Vogt L, Zaeh MF (2021) Abschlussbericht: FORobotics - mobile
ad-hoc kooperierende Roboterteams. https://​doi.​org/​10.​24406/​igcv-
n-​624794. http://​publi​ca.​fraun​hofer.​de/​dokum​ente/N-​624794.​html.
Accessed 19 Sep 2021

	30.	 Ingrand F, Ghallab M (2017) Deliberation for autonomous
robots: a survey. Artif Intell 247:10–44. https://​doi.​org/​10.​
1016/j.​artint.​2014.​11.​003

6284 The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11465-018-0483-0
https://ifr.org/papers
https://www.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
https://www.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
https://www.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
https://doi.org/10.1007/978-3-030-30000-5_32
https://doi.org/10.1007/978-3-030-30000-5_32
https://doi.org/10.1109/ETFA46521.2020.9212005
https://doi.org/10.1109/MRA.2010.938836
https://doi.org/10.1109/MRA.2010.938836
http://wiki.ros.org/py_trees_ros
http://wiki.ros.org/py_trees_ros
https://doi.org/10.1016/j.rcim.2015.04.002
https://doi.org/10.1007/s10845-015-1063-3
https://doi.org/10.1007/s10845-015-1063-3
https://mediatum.ub.tum.de/1428286
https://mediatum.ub.tum.de/1428286
https://doi.org/10.1016/j.neucom.2016.09.133
https://doi.org/10.1007/978-3-319-11310-4_17
https://doi.org/10.1109/ETFA46521.2020.9212072
https://doi.org/10.1109/ETFA46521.2020.9212072
https://www.dragandbot.com/de/
https://www.dragandbot.com/de/
https://doi.org/10.1109/ETFA.2016.7733559
https://doi.org/10.1016/j.rcim.2014.07.004
https://doi.org/10.1109/LRA.2018.2798300
https://doi.org/10.1109/LRA.2018.2798300
https://www.franka.de/
https://www.franka.de/
https://doi.org/10.1109/IROS.2013.6697194
https://doi.org/10.1109/IROS.2013.6697194
https://doi.org/10.1016/j.rcim.2014.08.006
https://doi.org/10.1016/j.rcim.2014.08.006
https://doi.org/10.3233/ICA-180566
https://doi.org/10.1007/978-3-319-54927-9_4
https://doi.org/10.1007/978-3-319-54927-9_4
https://doi.org/10.24406/igcv-n-624794
https://doi.org/10.24406/igcv-n-624794
http://publica.fraunhofer.de/dokumente/N-624794.html
https://doi.org/10.1016/j.artint.2014.11.003
https://doi.org/10.1016/j.artint.2014.11.003

1 3

	31.	 Nokleby C (2016) Omac packml unit machine implementation
guide. https://​www.​omac.​org/​wp-​conte​nt/​uploa​ds/​2016/​11/​
PackML_​Unit_​Machi​ne_​Imple​menta​tion_​Guide-​V1-​00.​pdf.
Accessed 16 Nov 2021

	32.	 Paxton C, Hundt A, Jonathan F, Guerin K, Hager GD (2017)
CoSTAR: Instructing collaborative robots with behavior trees
and vision. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp 564-571. https://​doi.​org/​10.​1109/​
ICRA.​2017.​79890​70

	33.	 Rovida F, Grossmann B, Krueger V (2017) Extended behav-
ior trees for quick definition of flexible robotic tasks. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp 6793-6800. https://​doi.​org/​10.​1109/​IROS.​
2017.​82065​98

	34.	 Ghallab M, Nau DS, Traverso P (2016) Automated planning and
acting. Cambridge University Press, New York. https://​doi.​org/​
10.​1017/​CBO97​81139​583923

	35.	 Sucan IA, Chitta S (2021) Moveit. https://​moveit.​ros.​org/.
Accessed 6 Jul 2021

	36.	 Michniewicz J, Reinhart G, Boschert S (2016) CAD-based
automated assembly planning for variable products in modular
production systems. Proc CIRP 44:44–49. https://​doi.​org/​10.​
1016/j.​procir.​2016.​02.​016

	37.	 Gonnermann C, Reinhart G (2019) Automatized setup of process
monitoring in cyber-physical systems. Proc CIRP 81:636–640.
https://​doi.​org/​10.​1016/j.​procir.​2019.​03.​168

6285The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285

https://www.omac.org/wp-content/uploads/2016/11/PackML_Unit_Machine_Implementation_Guide-V1-00.pdf
https://www.omac.org/wp-content/uploads/2016/11/PackML_Unit_Machine_Implementation_Guide-V1-00.pdf
https://doi.org/10.1109/ICRA.2017.7989070
https://doi.org/10.1109/ICRA.2017.7989070
https://doi.org/10.1109/IROS.2017.8206598
https://doi.org/10.1109/IROS.2017.8206598
https://doi.org/10.1017/CBO9781139583923
https://doi.org/10.1017/CBO9781139583923
https://moveit.ros.org/
https://doi.org/10.1016/j.procir.2016.02.016
https://doi.org/10.1016/j.procir.2016.02.016
https://doi.org/10.1016/j.procir.2019.03.168

	An extendable framework for intelligent and easily configurable skills-based industrial robot applications
	Abstract
	1 Introduction
	2 Related works
	2.1 Robot operating system (ROS) and related tools
	2.2 Skills-based industrial robotic frameworks
	2.3 Conclusions and need for research

	3 REpac framework
	3.1 Modeling of tasks and skills
	3.2 Overview of the modules and expansion stages
	3.2.1 Expansion stage 1
	3.2.2 Expansion stage 2
	3.2.3 Expansion stage 3

	3.3 Structure and development of skills
	3.3.1 Unified control structure and interface
	3.3.2 Description and implementation

	3.4 Usage of the skills blackboard
	3.5 Integration of automated task planning

	4 Example of use
	4.1 Assembly of predefined products
	4.2 Assembly of customized products
	4.3 Autonomous refill of parts storage

	5 Discussion
	5.1 Reusability and flexible composition of skills
	5.2 Modular configuration of the robot’s reasoning capabilities
	5.3 Learning how to build intelligent robotic applications through step-by-step expansion
	5.4 Limitations, challenges and recommendations for future research

	6 Conclusion and outlook
	References

