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Abstract
Modern, flexible, and easy-to-use robotic technologies have the potential to support companies to increase their productivity 
within today’s dynamic and volatile production. In this context, we introduce a skills-based software framework that makes 
it possible to configure the functional capabilities of industrial robots flexibly. In addition, we have structured the software 
framework into three consecutive expansion stages. In this way, it is possible to expand the robot’s reasoning capabilities 
step by step so that the robot is enabled to be instructed at higher abstraction levels and to process increasingly complex 
tasks. The contribution of our work is the further development of previous approaches and ideas from the research field of 
skills-based industrial robotic frameworks by considering new and previously unaddressed design issues within the structure 
of our software framework. We demonstrate the application of the framework using the example of an industrial robot for 
assembling a diverse range of LEGO products. The example of use consists of three consecutive scenarios. To begin with, 
the robot assembles different predefined product variants. Subsequently, we extend the robot application in a step-by-step 
manner to allow the robot to execute more and more complex tasks until it can finally plan individual tasks autonomously. 
On the one side, our approach shows how to enable companies with little robotic experience to start developing robotic 
applications and thereby gain further expertise. On the other side, by using this approach the effort and time for developing 
industrial robot applications will be reduced in the long term.
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1  Introduction

Today’s industry faces the challenges of increasing product 
variety, cost pressure and market dynamics [1]. To remain 
competitive, the constant flexibilization of manufacturer’s 
production processes is essential. In this context, modern 
robotic technologies are seen as a key enabler and will help 
companies to further increase their productivity [2]. How-
ever, considering the current state of the art, industrial robots 
are still lacking in the flexibility required to be quickly and 
easily reconfigured to process diverse tasks [3]. The devel-
opment and programming of robotic applications require 
expert knowledge and are time-consuming [4].

Service-oriented solutions, which can be equated to the 
skills-based approaches addressed in this paper, promise to 

address these challenges [4]. The robot’s capabilities are first 
encapsulated in so-called skills, which can then be applied 
in different situations by simple parameterization. Subse-
quently, individual skills can be combined in a modular fash-
ion to process complex tasks.

Building on this idea, we derived our long-term vision 
for the development and operation of future robotic appli-
cations as follows [5–7]: Individual developers of robotic 
software deploy their solutions as robot skills via a cen-
tral market place. In it, users can browse available skills. 
Different solutions can be combined in a modular way to 
individualize the robot’s skills to fulfill the requirements 
of diverse applications. Then, suitable skills can be easily 
downloaded to the robot. During operation, the robot can be 
intuitively instructed to complete various tasks. If required, 
the robot plans its task autonomously and handles variations 
and uncertainties in the task itself and/or its surroundings. 
If the task range of the robot changes over time, the skills 
of the robot are adapted dynamically and on a situation-
specific basis.
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This paper focuses on the necessary software architec-
ture of a robot within the outlined vision. We present the 
REpac framework, a skills-based software framework for 
industrial robots that makes it possible to easily REconfig-
ure the robot’s functionalities and provides autonomous task 
planning and control based on skills. We build on previous 
research and address the new combination of three previ-
ously unconsidered aspects in the design of our framework: 

1.	 Within the REpac framework, the robot’s skills should 
be freely configurable. Afterward, it should be possible 
that a user instructs the robot to process diverse tasks 
by composing its skills, or the robot even plans its task 
autonomously.

2.	 The REpac framework should provide modular usable 
components to equip the robot with different reasoning 
capabilities depending on the requirements of an appli-
cation scenario. In this way, the robot can be instructed 
at different abstraction levels and process tasks of 
diverse complexity.

3.	 The REpac framework should be structured in succes-
sive expansion stages to support a user in learning how 
to build intelligent robotic applications. Thus, the user 
can start with a simple application in which the robot 
processes a predefined task and expands it step by step 
until the robot plans its tasks autonomously.

Aspects 1 and 2 intend to significantly reduce the effort and 
time required for developing and operating industrial robotic 
applications. Aspect 3 aims to support companies with little 
robotics expertise in acquiring the necessary competencies.

The remainder of the paper is as follows: Sect. 2 reviews 
related research. Sect. 3 presents the REpac framework. 
Sect. 4 describes an example of use for the REpac frame-
work. Based on this, Sect. 5 discusses the results. Finally, 
Sect. 6 concludes the paper.

2 � Related works

2.1 � Robot operating system (ROS) and related tools

ROS is widely used in the robotics community. As a platform 
for the development of robotic applications, it provides a 
wide range of tools for common tasks (e.g. motion planning 
or visualization) and thus supports the exchange of knowl-
edge about these topics [8]. To support the development 
and organization of robot behaviors, there are, for example, 
the ROS packages SMACH based on state machines [9] or 
py_trees_ros based on behavior trees [10] in the ROS eco-
system. In addition, the ROS package ROSPlan provides 
automated task planning [11]. However, these tools cover 
only a part of the functionalities required by a skills-based 

software framework for industrial robots as considered in 
this paper.

2.2 � Skills‑based industrial robotic frameworks

With reference to our vision for future skills-based robots, 
several conceptual aspects need to be taken into account 
when designing the framework. Firstly, we consider the defi-
nition and modeling of skills and tasks. In the state of the 
art for industrial skills-based systems, an overriding struc-
turing into at least three abstraction levels can typically be 
identified [12–19, 21–25, 28]. Primitive skills at the lowest 
level are the actions directly performed by the robot sys-
tem. Composite skills are reoccurring higher-level behaviors 
and are described by an organized collection of primitive or 
lower-level composite skills. In turn, tasks are specified by 
an organized sequence of skills. As [15] already noted, the 
exact distinction of abstraction levels is often difficult due to 
the underlying idea of flexible combining and composing of 
the functionalities offered by a system. In related research, 
several authors, for example [12–15], have already studied 
the definition and conceptual modeling of skills and/or the 
classification of production skills in more detail. We build 
on these aforementioned results.

Secondly, a well-defined system structure is needed to 
organize the implementation of skills and control them based 
on a given task. In [16], the authors present a skills execution 
management system based on state machines. New skills 
can be added in a modular manner. Through the integration 
of sensors, a robot perceives its environment and adapts the 
execution of its skills to the individual situation (e.g. detects 
variations in object’s poses). The programming and control 
frameworks of [17] or [18] allow the easy use of developed 
programs on robots of different vendors and/or with diverse 
kinematics. The approach of [19] supports a seamless transi-
tion between the simulated and the physical robot system. 
Commercially, [20] already offers a programming frame-
work that can easily be used with different robot systems and 
equipment. Common to all these approaches is the idea of 
building a system structure and/or implementing skills that 
are robust and thus reusable in diverse settings, resulting in 
a reduced development effort. This is in line with our vision 
stated in the introduction.

In our work, we progress from the idea that skills are dis-
tributed via a central market place. Users can browse availa-
ble skills and download a set of suitable skills for their robot 
application. Following, in the third step we consider the 
selection, composition and configuration of suitable skills 
for an application. In [21], a model-based engineering tool 
to support users in this process was developed. The authors 
of [22] present a knowledge-based architecture to also share 
skills and additional knowledge between different systems 
and to provide various knowledge-based services to simplify 
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the creation of robot applications. As can be seen from these 
examples, diverse approaches for sharing and choosing skills 
from a central market place already exist. Hence, we do not 
consider it any further. However, to meet the requirements 
of today’s constantly changing and evolving production, we 
envisage the possibility of freely combining different skills 
in the robot architecture as a key requirement.

Lastly, we review existing approaches for instructing the 
robot in the task to be performed. Task-level programming 
represents the modeling of tasks based on the available skills 
of the robot and is also used by most of the works mentioned 
in the two previous paragraphs. For task-level programming, 
a wide range of concepts have been researched. A two-part 
procedure is promising as, for example, presented by [13, 
23, 24] and described below based on these works. The task 
is first specified as a structured flow of skills, and then, the 
skills are parameterized. In the second step, the skills param-
eterization, the user is supported by intuitive interfaces or 
guidelines, or can teach the robot in an interactive way, for 
example, by demonstration or gestures. As programming 
based on this approach is done at a quite high abstraction 
level, it is especially suited to non-robotics experts. Never-
theless, each action to be performed by the robot as well as 
the detailed organization of all actions to complete a task 
needs to be exactly specified. This is still time-consuming 
for larger tasks. An alternative to task-level programming is 
automated task planning based on skills. This was, for exam-
ple, explored in the research papers of [13, 25–28]. Here, the 
user only specifies the goal state to be achieved and does not 
need to specify all the actions to be performed. These are 
planned by the robot itself based on its available skills. For 
this, the robot maintains an internal model of its world con-
taining its own state as well as that of its operating environ-
ment. In the following, we look at the above papers again on 
an individual basis with a focus on the robot system archi-
tecture. In [13] and [25], the underlying robot architecture is 
not described. [26, 27] consider mainly kitting applications, 
focus on the knowledge modeling and related technologies 
and see their robot architecture more as an example of how 
these approaches can be used. Within the skills-based con-
trol platform of [28], an internal world model for the robot is 
first specified and then based on that developers implement 
skills with which defined actions can be executed and thus 
the state of the robot or its environment changed. The well-
defined interfaces of this architecture ease the software inte-
gration in a shared development team. However, we think 
that the binding of skills to a central world model reduces 
their reusability in a different context and thus restricts the 
possibility of freely combining skills from different sources. 
Therefore, for automated task planning, it can be summa-
rized that it allows a further increase in the abstraction 
level of the task instruction. However, it also results in an 
increased effort to set up, for example, central knowledge 

management. To conclude, both presented approaches, task-
level programming and automated task planning, simplify 
the task instruction of industrial robots, but also have their 
individual advantages and disadvantages. We think that for 
different applications one or the other approach is benefi-
cial or even applicable, and thus, it is desirable to have the 
option of selecting the most suitable procedure as required. 
We want to address this aspect in more detail in the design 
of our framework.

2.3 � Conclusions and need for research

From the literature review, we derive three main conclusions 
for our work: 

C1	 The effort required to develop various robot applications 
can be reduced considerably in the long term by imple-
menting reusable skills and combining them flexibly in 
different robot applications.

C2	 The level of abstraction for task instruction can be 
increased by enabling the robot to reason independently 
or even plan specific tasks. In addition, a robust skill 
design allows the robot to adapt the task execution based 
on the individual situation. In total, this way, the effort 
and required expertise for instructing and maintaining 
robotic applications during operation can be reduced.

C3	 However, the comparison of existing works on task 
instruction also shows that, for example, the effort 
and expertise required to develop a robot application 
that is programmed at the task level is less than if the 
robot plans its tasks itself. Therefore, it is desirable to 
equip the robot with more or less reasoning capabilities 
depending on the application area of the robot and the 
resulting requirements.

Based on these considerations, we highlight the current chal-
lenges and related need for research that we address in this 
paper: 

R1	 To the best of our knowledge, the current skills-based 
development frameworks that support automated task 
planning [13, 25–28] do not explicitly consider the 
idea to deploy and share robot skills via a central mar-
ket place and freely combine these on an application-
specific basis. To fully exploit the potentials stated in 
C1 and C2, we see a need for research to investigate to 
what extent it is possible to select and flexibly combine 
diverse skills from a central market place in the robot 
architecture and use these also with automated task plan-
ning.

R2	 Based on our considerations C1–C3, we think it is desir-
able to freely combine the skills available in a central 
market place in any skills-based robot application, equip 
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the robot with reasoning capabilities as required, and in 
this way instruct it either using task-level programming 
or at a higher abstraction level that enables autonomous 
task planning. In the works of [12, 13, 25, 28], both 
methods for task instruction are utilized. However, [12, 
13, 25] do not present their underlying robot system 
architectures. The approach of [28] does not foresee the 
use of the skills without the specified world model and 
thus has the restrictions mentioned above on the free 
composition of the robot’s skills. Therefore, we see a 
need for research to design a suitable robot architecture 
for this purpose.

R3	 Although intelligent systems offer high added value in 
operation, their development is still subject to a certain 
complexity (see C2 and C3). So, from our point of view, 
it is advisable to start with a simple robot application, for 
example, processing predefined tasks, and then enhance 
this subsequently with reasoning capabilities until the 
robot plans its tasks autonomously. In this way, the 
knowledge required for building intelligent robot appli-
cations can be acquired step by step. Thus far, this has 
not been considered in any skills-based robotic frame-
work that we know and therefore should be addressed in 
future research.

3 � REpac framework

This paper presents an extendable framework for autono-
mous task planning and control for easily reconfigurable 
skills-based industrial robots, the REpac framework. Based 
on the identified need for research, we follow three objec-
tives within the design of the REpac framework: 

1.	 Reusability and flexible composition of skills: The 
robot’s functionalities should be flexibly configurable. 
Developers should design their software solutions as 
robust skills reusable in various situations on diverse 
robot systems and provide these via a central market 
place. Based on the available skills, the skills of a robot 
should be freely composable within the REpac frame-
work as required for an application.

2.	 Modular configuration of the robot’s reasoning capabili-
ties: To allow users to adapt their robot to their needs, 
the REpac framework should further provide different 
components for task control, knowledge management, 
and task planning that can be integrated in a modular 
manner as required. In this way, it should be possible 
to equip the robot with various reasoning capabilities 
so that it can be instructed at different abstraction levels 
depending on the requirements of the individual applica-
tion.

3.	 Learning how to build intelligent robotic applications 
through step-by-step expansion: Within the design of 
the REpac framework, the system architecture should be 
structured into three expansion stages. First, the robot 
should process different tasks specified by the user based 
on its available skills. Second, the robot architecture 
should be extendable by a shared knowledge manage-
ment system for skills that can be used for information 
exchange or decision making during the execution of a 
task. Third, it should be possible to integrate automated 
task planning easily. Thus, the user can start with a sim-
ple skills-based robot application which she/he further 
develops. This step-by-step expansion will support the 
user in learning how to use the different components of 
the REpac framework and how to build intelligent robot 
applications.

The presented REpac framework builds on our previous 
research [5–7, 29]. Below, we define the modeling of tasks 
and skills. Based on this, we present the modules of the 
framework and their interaction with reference to the three 
mentioned expansion stages. Next, we firstly describe the 
structure of the skills and the underlying development pro-
cedure. Secondly, we present the possibilities of using the 
common knowledge management for skills and thirdly the 
integration steps for automated task planning.

3.1 � Modeling of tasks and skills

In the presented REpac framework, the modeling of tasks 
and subordinate skills is derived from the state of the art, 
mainly [15] and [30]. We have also previously published 
our definition of skills in [6]. The modeling of tasks and 
skills is divided into four abstraction levels. In doing so, 
tasks for the robot are specified on one of two abstraction 
levels:

–	 A mission describes a goal state to be achieved by the 
robot.

–	 An action plan describes an organized sequence of 
actions to be executed by the robot’s skills. If the task is 
specified as a mission, the plan contains the necessary 
actions to complete the mission.

Action plans are subsequently executed using the robot’s 
skills. Skills are in turn hierarchically modeled on different 
levels of abstraction:

–	 Composite skills combine subordinate skills in a struc-
tured flow to complete complex behaviors.

–	 Primitive skills are the lowest level actions, which are 
performed directly by the robotic system.
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3.2 � Overview of the modules and expansion stages

The REpac framework provides functionalities for task plan-
ning and control of skills-based industrial robots and can 
be used for a wide range of applications. Figure 1 gives an 
overview of the framework and its modules. By selecting 
different skills from the skills database and combining them 
within the framework, the robot can be configured for a spe-
cific application. The skills and related data are marked in 
blue. Building on this, the REpac framework offers three 
expansion stages. The modules required for these expansion 
stages are colored in different gray levels. In the following 
subsections, the expansion stages are used as a basis for 
presenting the framework. The whole REpac framework is 
built based on ROS.

3.2.1 � Expansion stage 1

The first expansion stage consists of a control platform for 
robot skills. Based on its available skills, the robot can com-
plete various tasks. This first expansion stage more or less 
corresponds to the state of the framework as we presented 
it in [6].

The skills are the central building blocks for determining 
the functionalities offered by the robot. Thus, they define in 
which applications the robot can be used and which tasks 
it can perform. As it is expected that future robots will be 
used for a wide range of tasks at short notice, not all possible 
skills and related knowledge can be permanently stored on 
the robot. For this reason, robotic skills are deployed via a 
central skills database. From there, robot skills can be down-
loaded onto the robot on demand. Until now, this has been 
performed manually. In the future, however, it would also 

be conceivable for the robot itself to reload the necessary 
skills on a situation-specific basis. The REpac framework 
allows free combination of diverse skills as required by the 
current application.

Upon start-up of the robot system, the skills manager is 
responsible for correctly loading all skills currently installed 
on the robot. After a successful start-up, all skills register 
themselves with the skills manager and in this way allow 
it to check whether all skills have been loaded correctly. 
Afterward, the robot is ready to receive tasks. Within the 
first expansion stage, task instruction is done at the level 
of an action plan based on the available skills. The robot 
controller accepts the tasks specified by the user and super-
ordinately coordinates the processing of the tasks during 
operation. It forwards the plan to the task controller. Based 
on the defined action plan, the task controller controls the 
corresponding skills and supervises task execution using the 
skill’s status messages. Furthermore, it provides status feed-
back to the robot controller.

3.2.2 � Expansion stage 2

In the second expansion stage, the skills blackboard extends 
the REpac framework and offers a common memory and 
communication platform for the skills. The blackboard cen-
trally stores information about the objects in the robot’s envi-
ronment. All skills can access and edit the data on the black-
board during their execution. In this way, an information 
exchange between the skills is realized. Furthermore, the 
data on the blackboard can be used for reasoning purposes. 
Now, that all information about the objects relevant for the 
robot is available centrally, and in a structured manner, skills 
can also be called directly with reference to specific objects 
relevant for their execution. The skill itself knows which fur-
ther information about the objects it needs for its execution 
and queries these from the blackboard. This simplifies the 
task instruction. The blackboard can be saved and reloaded 
for later applications.

3.2.3 � Expansion stage 3

In the third expansion stage, automated task planning is 
integrated into the REpac framework. In [7], we presented 
our first concept to integrate automated task planning into 
skills-based industrial robots and a draft for the robot archi-
tecture. In this paper, we describe the elaborated concept, 
its integration into the overall framework and the concrete 
implementation details.

This third expansion stage introduces two new modules, 
the task planner and the symbolic knowledge base. Using 
automated task planning, task instruction can be further sim-
plified for the user. Tasks are then specified at the mission 
level by defining the goal state that is to be achieved by the Fig. 1   Overview of the REpac framework

6273The International Journal of Advanced Manufacturing Technology (2022) 120:6269–6285



1 3

robot. The task planner derives an action plan to complete 
the mission based on the actions the robot can perform based 
on its current skills set. In doing so, the task planner utilizes 
the symbolic knowledge base, which always represents the 
current state of the robot’s world that is relevant for this 
purpose. It is updated by the robot’s skills and is automati-
cally synchronized with the skills blackboard. The exact dis-
tinction and connection between the skills blackboard and 
the symbolic knowledge base will be described later in the 
paper. Next, the robot controller forwards the action plan to 
the task controller to be executed by the skills.

3.3 � Structure and development of skills

The idea behind our work is that developers can provide 
their individual robot skills independently of each other. 
Afterward, different skills can be combined in the REpac 
framework as demanded by the current application case. For 
the development of skills, this means firstly that they must 
be reusable in various tasks/situations and/or on different 
robot systems as previously demonstrated by [16–18]. Sec-
ondly, they must be designed as modular, independent and 
self-contained building blocks. Thirdly, they must provide 
a self-description about their functionality and characteris-
tics similar to that requested by [15]. Finally, they must be 
externally controllable as well as monitorable and offer a 
standardized interface for this purpose [6]. These charac-
teristics are essential for all skills. Thus, all skills are built 
based on a unified control structure and interface. Based on 
this, the individual functionality of a skill is implemented 
and completed by a description of its characteristics. We first 
describe the unified control structure of skills, and afterward, 
how to describe and implement skills based on this.

3.3.1 � Unified control structure and interface

We presented the uniform control structure and interface to 
implement skills in our framework previously in [6, 29]. It 
is built based on an adapted version of the PackML interface 
state model as it is described in the PackML unit/machine 
implementation guide [31] that itself is based on the ANSI/
ISA TR88.00.02-2015. Figure 2 illustrates the slightly more 
developed approach.

The control structure defines at a high level, and based on 
the adapted version of the PackML interface state model, the 
states a skill can adopt. The PackML interface state model 
distinguishes between waiting and acting states. This was 
taken over for the control structure of the skills. The execu-
tion of a skill happens in the acting states. During the later 
implementation of skills, a developer defines the routines 
that will be executed when the related state is entered. In 
doing so, it is defined what will happen when starting, exe-
cuting, completing, etc., a skill. The waiting states function 

as stable intermediate states between the acting states. After 
the routine defined for an acting state has been processed, 
it transitions to the subsequent waiting state. Waiting states 
wait for a command in order to transition to their subsequent 
state. These commands are defined as the control functions 
of the skill to start, stop, un-/hold and reset it. Only the exe-
cuting state is acting and waiting state at the same time. The 
stopping and aborting state can be reached from all states 
within the related dashed boxes.

The execution of a skill is externally controlled via the 
control interface based on the previously described control 
structure. The control functions are used for this purpose. 
The execution status of a skill corresponds to the state within 
the skill’s control structure in which it is currently situated. 
In addition, a parameters list can be passed to the skill, when 
starting it. In turn, the skill returns its results after comple-
tion during resetting.

This unified control structure and interface is imple-
mented by means of a skill meta-class. This skill meta-class 
forms the basis for all skills. Based on this, we introduce 
two distinct meta-classes for primitive and composite skills. 
These meta-classes inherit from the skill meta-class and 
extend it by further functionalities necessary for the develop-
ment of concrete primitive and composite skills. In this way, 
developers are provided with a template for the development 
of skills that they can use for their custom skills. This is 
summarized in Fig. 3. For example, based on the primitive 
skill meta-class two skills for moving the robot to a pose or 
linear have been developed. These skills are further used to 

Fig. 2   Unified control structure and interface of skills
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develop a set of composite skills to pick, place and assemble 
LEGO bricks.

3.3.2 � Description and implementation

The development of skills comprises two steps. First, the 
developer describes the functionalities and characteristics of 
the newly designed skill. These descriptions serve as infor-
mation for other people who want to use the skill and are 
also required for the execution of it. Second, the developer 
must implement the procedures to be executed by the skill.

The state of the art presents different approaches for 
describing skills. In [15], skills are described from a pro-
cess-oriented point of view as capabilities that are offered 
by a device or a combination of devices and are not bound 
to a specific hardware design or vendor. The authors of [13] 
describe skills as object-centered capabilities applied to 
physical entities that can be referred to. We think that it is 
best to combine these descriptive approaches depending on 
the selected abstraction level.

Primitive skills are the lower-level capabilities that are 
directly offered by the robot system. Thus, we describe these 
from a purely process-oriented point of view. As a basis 
for development, we use and extend the skills taxonomy of 
[15]. Within the description of a primitive skill, the devel-
oper specifies its name, provides a general description of the 
primitive skill and defines the parameters necessary for its 
execution as well as the results it returns after completion. 
The skill parameters and results are passed to or returned by 
the skill when calling it via the unified control interface pre-
sented in the previous section. By way of example, Table 1 
shows the description of the primitive skill move to pose.

Based on the primitive skill’s description, the developer 
implements its internal processes. For this, the developer has 
to specify what to do within the acting states of the skill’s 
control structure. For this purpose, the skill meta-class pro-
vides a template with the related functions to be filled by the 
developer. Based on this and utilizing the previously defined 

parameters and results, the developer scripts the steps to be 
performed.

Composite skills are composed of subordinate skills and 
represent complex behaviors the robot uses to change the 
state either of itself or its environment. Thus, composite 
skills perform actions that are related to concrete objects in 
the world of the robot. In this context, it is easier to describe 
an action to be processed in relation to the objects involved. 
Thus, we describe composite skills from a process-oriented 
and object-centered point of view. In the first expansion stage 
of the framework, a purely process-oriented description of 
composite skills is still possible. If composite skills are to 
be used within the second and third expansion stage, an 
object-centered description of these skills is necessary. For 
the object-centered description of composite skills, it is pos-
sible to proceed as exemplified in Table 2 for the composite 
skill pick brick, which can be used by the robot to pick up a 
LEGO brick from its current location with the robot’s grip-
per. Analogous to primitive skills, composite skills are iden-
tified by a name, provide a general description and have a 
set of parameters and results. In addition, the objects consid-
ered by the composite skill as well as parameters and results 
related to these objects are defined. When the skills black-
board is used in the second expansion stage, these object 
parameters/results are queried/updated by the skill from the 
skills blackboard. This means the skill parameters can be 
reduced to the objects involved and it is no longer necessary 
to pass all the underlying object parameters when calling 
the skill. As shown in the example of the skill pick brick in 
Table 2, this skill is simply parameterized with the brick that 
should be picked up with the robot’s gripper at its current 
location. In this case the location represents an imaginary 
object. The object brick has assigned the parameters pose, 
which is composed subordinately of the elements describ-
ing the brick’s position and orientation, and type. These 
object parameters are queried from the skills blackboard.  
If composite skills are to be used for automated task plan-
ning, their preconditions and effects need to be defined 

Fig. 3   Class structure of skills

Table 1   Exemplary description of the primitive skill move to pose. 
Individual parameters/results, such as the pose, are composed of sev-
eral subordinate elements. This is simplified for better readability
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[13]. Thus, to enable the use of a composite skill in com-
bination with task planning in the third expansion stage, 
we additionally describe its preconditions and effects in the 
skill’s description. This will be explained in more detail in 
Sect. 3.5.

To model the process to be executed within a composite 
skill, a choice can be made between two approaches: finite 
state machines or scripting. Using the first approach, the 
process sequence of a composite skill is modeled by a finite 
state machine as shown for the skill pick brick on the left 
side in Fig. 4 in a typical and slightly simplified manner. The 
states represent the actions executed by subordinate skills 
and the transitions define the control flow of the actions 
to be proceeded. The previously defined skill and object 
parameters are used to parameterize the subordinate skills 
to execute the defined actions. Furthermore, results of the 
execution of a subordinate skill can be forwarded as input 
parameters to a succeeding skill. As primitive and compos-
ite skills are on different abstraction levels, parameters may 
have different names and meaning within their namespaces. 
For example, within the namespace of the primitive skill 
move to pose the pose describes the pose to which the TCP 
of the robot should move. Within the namespace of the com-
posite skill pick brick, different poses for the brick itself 
and the grasp pose of the brick are defined. As a primitive 
skill may be used several times to execute different actions 
within a superordinate composite skill, a remapping of the 
parameters between their namespaces is necessary. We 
specify this on the level of the superordinate skill. Thus, 
subordinate skills can be easily and independently inte-
grated into the procedure of a superordinate skill without 

any modification. For the underlying implementation of the 
state machine approach, we use SMACH [9]. As an alterna-
tive approach for programming composite skills, scripting 
based on python can also be used. For this purpose, a simple 
to use interface to call subordinate skills is provided. Both 
of the mentioned approaches and related functionalities for 
programming composite skills are offered by the composite 
skill meta-class. A developer can either select one of the two 
approaches or combine them. Furthermore, the meta class 
can be extended by further programming approaches (e.g. 
behavior trees as used by [32, 33]) in the future. The ability 
to use and combine different approaches for implementing 
skills provides more design freedom for the developers of 
these. This allows them to better choose a design approach 
based on the requirements of the process to be implemented 
or their own technical skills. Most existing works are limited 
to one approach.

Finally, Fig. 4b shows how composite skills are embed-
ded into the unified control structure. The execution of a 
composite skill takes place in its executing state based on 
the defined process model. In the first expansion stage, all 
required skill and object parameters must be passed to the 
skill, when starting it. For the second and third expansion 

Fig. 4   (a) Components of a composite skill and modeling of the 
skill pick brick as a state machine. The presentation is simplified for 
clearer visualization and easier understanding. (b) Embedding of a 
composite skill into the unified control structure of skills

Table 2   Exemplary description of the composite skill pick brick. 
Analogous to Table 1, the representation of the parameters/results has 
been partially simplified
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stage, the composite skill meta-class offers functions to 
interact with the knowledge management during the start-
ing and completing routine. These will be introduced in the 
following two subsections.

3.4 � Usage of the skills blackboard

In the second expansion stage, the skills blackboard is inte-
grated into the robot architecture. The skills blackboard 
functions as common memory and platform for informa-
tion exchange for skills. As composite skills are built in an 
object-centered manner, the skills blackboard also applies 
an object-centered structure to its data. It stores all objects 
of interest for the skills and their parameters. All skills can 
access the blackboard and use it as a platform for informa-
tion exchange or reasoning purposes. When utilizing the 
blackboard, the skills need to be expanded by the interaction 
with the blackboard. Composite skills can then be used in an 
object-centered manner. Thus, it is no longer necessary to 
pass all single parameters to them, but they can be param-
eterized directly with the objects for which they should per-
form the action and the skill itself queries further necessary 
parameters of these objects from the skills blackboard. Fig-
ure 5 illustrates a simplified example of the use of the skills 
blackboard. In the example, the robot builds a given LEGO 
product. The related task is passed to and controlled by the 
task controller using the subordinate skills. The supplied 
bricks and related data are stored on the skills blackboard. 
The task controller calls the skills accordingly to the action 
plan. The two skills pick brick and assemble brick are 
called to pick up brick “brick1” from location “loc2” and 
assemble it at location “loc4”. The skills are easily called 
for the related objects and query the parameters required for 

execution (e.g. concrete poses) from the blackboard. After 
completion, the skills update the data on the blackboard.

Below, we describe how the skills blackboard can be 
used. Use of the skills blackboard is mainly specified within 
the development of the skills. It is not mandatory to spec-
ify the blackboard content in advance. For use of the skills 
blackboard by a composite skill, the related meta-class pro-
vides the functionalities to easily integrate the usage of the 
skills blackboard into a skill. For this, the developer first 
needs to specify the data to be exchanged with the black-
board. These are the objects and their parameters/results 
that are necessary for the skill’s execution, as already shown 
in Table 1 for the skill’s description. As shown in Fig. 4b, 
based on these specifications the skills query the data about 
the objects necessary for their execution from the blackboard 
during their starting routine. Subsequently, they perform the 
requested action within their executing routine based on the 
specified process model. At this point, the blackboard data 
may be used for the parameterization of the process, reason-
ing or also for other purposes that a developer may think of. 
During their completing routine, the skills update all data 
on the blackboard, which has been changed during their 
execution. In conclusion, the data exchange with the skills 
blackboard is integrated in the starting and completing state 
of the skill using the functions of its meta-class and based 
on the skill’s description. Then, the skill can use these data 
for its process execution.

The meta-class for primitive skills does not offer special 
functions to interact with the skills blackboard. Neverthe-
less, it is possible to use the blackboard within a primitive 
skill. This can be defined within its implementation by 
directly using the services offered by the blackboard. But, 
we recommend to primarily interact with the skills black-
board via the composite skills.

When using the skills blackboard, it is important to use 
a uniform naming convention for objects and their param-
eters considered on the blackboard so that they are named 
consistently between different skills and on the blackboard. 
For future work, it might be interesting to integrate a transla-
tion mechanism into the blackboard to enable the usage of 
different naming conventions between different skills. Fur-
thermore, the REpac framework allows storing a blackboard 
when shutting down the robot, as well as loading of an exist-
ing one when starting the robot system.

3.5 � Integration of automated task planning

In the third expansion stage, automated task planning can 
be integrated into the robot architecture. Thus, a task can 
be specified as a mission by a goal state to be reached and 
the robot autonomously plans the action plan to complete it.Fig. 5   Exemplary use of the skills blackboard in the second expan-

sion stage
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Before we describe the integration of automated planning 
into the REpac framework, we first give a short introduc-
tion to it based on [34]. A planning domain models the rel-
evant object types, their properties and the possible execut-
able actions. Based on this, a planning problem consists of 
a description of the actually existing objects, their initial 
state and the goal state to be achieved. Planning domain and 
problem can be specified by means of the planning domain 
definition language (PDDL). A planning algorithm takes the 
planning domain and problem as input and solves the plan-
ning problem by finding an action plan to proceed from the 
initial state to the goal state.

To illustrate this explanation, we again use the already 
considered example of a robot picking and placing LEGO 
bricks. For this example, the planning domain contains as 
object types the gripper of the robot, available bricks and 
their possible locations. In the planning domain, these 
objects can have the following properties: gripper-free, 
brick-at-location, brick-in-gripper. These properties can 
either be true or false. Based on these specifications, the 
executable actions are modeled in the planning domain. 
These correlate to the skills of the robot. The actions are 
parameterized by a set of objects and have a set of precondi-
tions, which must be fulfilled to execute the action, as well 
as a set of effects that are caused by the execution of the 
action [34]. Table 2 illustrates the preconditions and effects 
of the skill pick brick. Based on this description of a plan-
ning domain, we specify a planning problem. We assume 
that there are three objects: the robot’s gripper, one brick 
“brick2” and one location “loc3”. In the initial state, the 
gripper of the robot is free and the brick “brick2” is at loca-
tion “loc3”. In the goal state, the brick “brick2” should be 
in the robot’s gripper. The solution of this planning problem 
is an action plan containing of one action to pick up brick 
“brick2” from location “loc3”.

The REpac framework is extended by the task planner 
and the symbolic knowledge base for integration of auto-
mated task planning within the third expansion stage. The 
current planning domain is described by means of PDDL. 
Using the specifications from the planning domain, the 
symbolic knowledge base stores the current state of the 
robot. When a new mission is handed over by the user to 
the robot, the task planner generates a planning problem by 
using the information of the symbolic knowledge base for 
the initial state and the task specification within the mis-
sion for the goal state. In the next step, the task planner 
plans a suitable action plan based on the planning domain 
and the created planning problem. For the implementation 
of the task planner and the symbolic knowledge base, we 
used ROSPlan [11] and integrated it into the framework. 
After completion, the task planner returns the found action 
plan to the robot controller. The robot controller hands the 

generated action plan over to the task controller to execute 
it using the robot’s skills. During execution, in addition to 
the blackboard, the skills also update the symbolic knowl-
edge base. The skills have to be expanded by this interac-
tion when they are used in combination with task planning. 
The composite skills meta-class provides an interface for 
this purpose. The blackboard and the symbolic knowledge 
base are interconnected in the framework. Both represent the 
objects known by and relevant for the robot. The symbolic 
knowledge base represents the objects at a higher abstrac-
tion level and describes their interconnections in a symbolic 
way (e.g. brick “brick2” at location “loc3”). Subordinate to 
this, the blackboard stores concrete data for the individual 
objects, which is necessary for the skill’s execution (e.g. the 
concrete pose of brick “brick2”). Objects added to or deleted 
from the blackboard are also automatically updated in the 
symbolic knowledge base.

Below, we describe the necessary steps for extending an 
application by automated task planning: First, the user has 
to decide which skills should be used for task planning. Sec-
ond, the PDDL planning domain needs to be described. The 
selected skills represent the actions that should be usable in 
the planning domain and determine the relevant object types 
and their properties. Third, the preconditions and effects 
assigned to the actions in the planning domain also have 
to be added to the description of the related skills as shown 
in Table 2. As illustrated in Fig. 4b, the skills interact with 
the symbolic knowledge base to check their preconditions 
during their starting routine and to update their effects upon 
completion. We are currently working on simplifying the 
creation of the planning domain by automatically generating 
the planning domain for specific application fields based on 
the selected robot skills.

4 � Example of use

In this section, we present an example of use for the REpac 
framework. We use the simulation of a small robot cell that 
contains an ABB IRB140 robot and a ABB IRC5 compact 
control unit. The robot is equipped with a 2F-85 two finger 
gripper and a FT 300 force torque sensor from Robotiq. In 
front of the robot is a table which is its working area. A 
Microsoft Kinect camera is mounted above the table. As an 
example product we use LEGO. In the following, we pre-
sent three application scenarios that build on each other. 
All scenarios are illustrated in Table 3. The application sce-
nario is always introduced first. Based on it, we derive the 
requirements for the robot architecture. Then, we describe 
the implementation of the scenario using the REpac frame-
work. Finally, we demonstrate how to instruct a task to the 
robot to use the application in operation.
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4.1 � Assembly of predefined products

Scenario  First, the robot is tasked with assembling different 
predefined product variants. The parts required for assembly 
are provided in defined sets.

Requirements  For this application the robot needs capa-
bilities for moving and gripping that are encapsulated into 
modular function blocks. It further needs to be able to com-
bine these capabilities in different variations to complete the 
assembly of the different product variants.

Implementation  We realized this scenario using the 
first expansion stage of the REpac framework. We 

implemented the required capabilities as robot skills. 
Thus, we developed the primitive skills move to pose, 
move linear and grip for moving the robot to defined 
poses or in a linear direction and opening/closing its 
gripper. As we use MoveIt [35] for motion planning, we 
additionally added some skills to interact with MoveIt 
and the digital model of the robot and its environment 
for this purpose. All implemented skills are stored in 
a designated folder. In this way, the implementation is 
completed. When starting the robot system, the skills 
manager automatically loads all stored skills. Based on 
the available skills, it is possible to specify different 
tasks as action plans and send them to the task control-
ler for execution.

Table 3   Summary of the scenarios of the example of use
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Task instruction  We specify one action plan for each product 
variant. An extract of one action plan is shown in Table 3. 
The task is modeled using the previously implemented prim-
itive skills which are parameterized to complete the current 
assembly (e.g. by the characteristic poses). Depending on 
the product variant to be assembled, the related action plan 
is passed to the robot.

4.2 � Assembly of customized products

Scenario  In the next scenario, we also want to use the robot 
for the assembly of customized products. At this point, it 
is no longer possible to provide the required parts as pre-
pared sets. Thus, we supply the parts in a buffer storage to 
be assembled as required. The assembly should be processed 
based on an assembly plan defining the sequence and assem-
bly locations of the related parts. For example, this informa-
tion can be automatically derived from the CAD model of a 
product as shown by [36].

Requirements  For this application, the robot now needs to 
internally store information about the currently available 
parts in its buffer storage as well as monitor which parts 
have been assembled. Based on this knowledge, it needs to 
select the parts to be assembled in the next step and param-
eterize the execution of the individual actions to complete 
the overall task.

Implementation  For this purpose, we have extended the 
robot architecture by the skills blackboard and use the sec-
ond expansion stage of the REpac framework. The robot 
stores all information about the relevant parts and their 
parameters as well as related storage and assembly locations 
on the skills blackboard. The management of the bricks sup-
ply is handled by a set of skills. For example, the skill assign 
target decides about the part to be assembled in the next 
step. Using the information on the blackboard, it selects an 
appropriate part based on its type and characterizing param-
eters (e.g. a brick of type 2x2 that has not been assembled). 
For the assembly of the requested products, we implemented 
two new composite skills pick brick and assemble brick 
for picking and assembling LEGO bricks. As can be seen 
in Table 2, the picking skill is parametrized by the brick to 
be picked up and its current location. The assembly skill is 
parametrized by the brick and its dedicated assembly loca-
tion. Both skills are defined as finite state machines using 
the subordinate primitive skills. Within its execution, these 
composite skills request necessary information (e.g. poses) 
from the skills blackboard. The new skills are also added to 
the designated folder. Thus, they can be found and started 
by the skills manager at start-up.

Task instruction  As in the previous scenario, we specify 
the task as an action plan. However, now we do not need 
to explicitly specify all poses within the task description. 
Instead, we can specify the task with reference to specific 
objects. This is exemplified in Table 3 by the excerpt of a 
possible action plan for this scenario. The skill assign tar-
get determines a suitable brick and its current location for 
the next assembly step and passes this information as input 
parameters to the skills pick brick and assemble brick. 
Assembly locations (e.g. assemble_location_4) are prede-
fined during the creation of the action plan and stored with 
all their parameters on the skills blackboard. These two 
skills will pick up the designated brick from the storage and 
assemble it. This simplification within the task instruction 
makes it affordable to also use the robot system for product 
variants with smaller unit numbers or even for customized 
products.

4.3 � Autonomous refill of parts storage

Scenario  Lastly, the second scenario is expanded. After 
assembling some products, the robot is to refill its storage 
autonomously. For this purpose, the parts are randomly 
placed in its working area. Using the camera, the robot is to 
detect the provided parts and sort them into the predefined 
layout of its storage.

Requirements  In this scenario it is not possible to spec-
ify the task to refill the parts storage as an action plan in 
advance. Depending on the previously assembled products, 
the number and type of parts to be refilled differs and, in 
addition, the parts are randomly placed. Thus, the robot 
should autonomously plan the necessary actions to sort all 
missing parts into its buffer store.

Implementation  The third expansion stage of the REpac 
framework offers automated task planning and is used for 
this scenario. At a functional level, we need additional skills 
for determining the missing parts in the storage, detecting the 
bricks offered to the robot by the camera and placing these 
into the storage. To enable the robot to autonomously plan 
its tasks, we created a PDDL planning domain file and used 
this to configure the task planner of the robot. Furthermore, 
we expanded the robot’s skills with preconditions and effects.

Task instruction  During operation, the tasks to assemble dif-
ferent products are specified as in the previous application 
scenario. The task instruction to refill the parts storage com-
prises two parts as shown in Table 3. First, we call the action 
plan to determine the missing parts in the storage and to then 
detect these missing bricks among the randomly provided 
new bricks in the robot’s working area. Second, we specify 
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the desired layout of the parts in the storage as the goal state 
in the mission and send it to the robot. By means of auto-
mated planning, the robot plans the pick and place actions 
to complete the mission and executes them using its skills.

5 � Discussion

Based on the experience from the example of use in the pre-
vious section and our resulting assessments, we first discuss 
in this section how our work serve the need for research that 
we identified in Sect. 2 and state the resulting advantages. 
Afterward, we identify current limitations and challenges 
that arise and provide recommendations for future research.

5.1 � Reusability and flexible composition of skills

Utilizing the benefits of the skills-based approach, we 
could flexibly configure and extend the functionalities of 
our robot system. This is shown in Fig. 6. Whereas in the 
first scenario, we had to develop all skills, we continued to 
use an increasingly large part of the skills in the following 
scenarios. By reusing previously implemented skills within 
new application scenarios the development effort for these 
applications can be reduced. This confirms our observations 
from the review of the related works. Based on that and to 
the best of our knowledge, the REpac framework is the first 
skills-based industrial robotic framework that follows the 
idea to share robot skills via a central market place, freely 
combine these on an application-specific basis, and also use 
these with automated task planning. For the first and second 
application scenarios, we instructed the tasks at different 
abstraction levels using task-level programming. In contrast, 
the robot partly plans its task autonomously in the third sce-
nario. We could reuse a large proportion of the skills in all 
three scenarios. Some of these skills had to be expanded 
to interact with the knowledge management or be usable 
with automated task planning. However, the effort for this 
is relatively small compared to the initial implementation of 

the skill’s functionality. This demonstrates that the REpac 
framework provides the prerequisites to fulfill the stated 
idea. However, further research should be done to real-
ize more diverse application scenarios within the REpac 
framework and investigate the potentials and limitations 
of this approach in more detail. To conclude, in the long 
term, we expect that the reuse of robots’ skills and their 
composition in various application scenarios will lead to 
the great advantage of reducing the working effort for new 
applications significantly. As the number of implemented 
scenarios increases, so will the number of available skills. 
Thus, when developing new application scenarios, more and 
more skills can be reused, and fewer skills need to be newly 
created. This advantage is valid regardless of how the robot 
is instructed for different tasks and strengthened by reusing 
the same skills in diverse system settings.

5.2 � Modular configuration of the robot’s reasoning 
capabilities

The REpac framework allows on the one side to configure 
the functional capabilities of a robot by selecting suitable 
skills and combining these within the robot architecture 
based on the requirements of the current application. On 
the other side, a user can further equip the robot with dif-
ferent reasoning capabilities offered through the REpac 
framework. Thus, the robot can be instructed at different 
abstraction levels using task-level programming or auto-
mated task planning. Looking back at the discussion of 
previous works in Sect. 2, the REpac framework is the 
first skills-based industrial robotic framework that consid-
ers combining these properties in one framework as far as 
we know. In this context, our contribution is the combina-
tion of existing approaches from this subject area in a new 
way. Following, we discuss the possibilities arising from 
the REpac framework structure in a qualitative way using 
Table 4. First, we look at the possibilities for the applica-
tion characteristics. The successive expansion stages allow 
to start with task control based on skills and further integrate 
components for knowledge management and task planning 

Fig. 6   Extension of robot functionalities across application scenarios. 
For each scenario, the diagram shows the percentage of skills that 
were newly developed for that scenario or continued to be used from 
the previous scenario

Table 4   Qualitative comparison of the expansion stages of the REpac 
framework
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in a modular manner. In this way, the robot can be equipped 
with increasing reasoning capabilities across the expansion 
stages. Our three application scenarios also reflect this, 
using the three different expansion stages. When the rea-
soning capabilities of the robot increase, we can instruct 
tasks for the robot at higher abstraction levels during opera-
tion. Whereas we predefined all movement sequences in the 
first scenario, we only needed to specify the target poses 
for the LEGO bricks in the parts storage in the third sce-
nario. Second, based on these considerations, we discuss the 
working effort and required expertise to implement robotic 
applications based on the three expansion stages. The REpac 
framework must be initially set up for the considered robot 
application; the necessary skills must be implemented or 
downloaded from a central repository and composed within 
the REpac framework for all three expansion stages. Within 
the second expansion stage, the skills need to be addition-
ally extended to interact with the knowledge management in 
the form of the skills blackboard, and the skills blackboard 
must be initially set up if required. Furthermore, within the 
third expansion stage, the skills need to be expanded for use 
within task planning, and the PDDL planning domain must 
be described. If necessary, knowledge management must be 
initialized again at the beginning. These additional working 
steps allow a user to equip a robot with increasing reason-
ing capabilities. However, compared to the first expansion 
stage, these additional working steps also cause a higher 
working effort and require further expertise in knowledge 
management and automated task planning. In contrast, the 
effort and necessary expertise for task instruction decrease 
across the expansion stages within the operation of a robot 
application due to the possibility to specify tasks at higher 
abstraction levels. The advantage of these mentioned devel-
opment options offered by the REpac framework is the pos-
sibility to better design a robotic application tailored to its 
individual requirements (see also Table 4). A user can com-
pare additional effort and resulting benefits to decide what 
reasoning capabilities its robotic application requires and 
select the appropriate expansion stage. For example, the first 
expansion stage may be sufficient for applications with high 
product units and static environmental conditions. If product 
units decrease or variations in tasks increase, we recommend 
using the second or third expansion stage. Variations in tasks 
can result from diverse sources. For example, in the second 
scenario, the parts to be assembled are selected based on the 
current state of the parts storage. Whereas in the third sce-
nario, parts are randomly placed, and the number of parts to 
be manipulated as well as the part’s types differ within each 
task. Partly unknown and dynamic environmental conditions 
are further examples that result in a high task variety for the 
robot. We expect that the possibility to configure the robot 
architecture depending on the requirements of an application 
and thus only use the components required will reduce the 

development effort for each application. Furthermore, we 
assume to strengthen this advantage, as the resulting mani-
fold possibilities of using the framework will increase its 
applicability for diverse application scenarios. In addition, 
the possibilities to reuse once developed skills will increase, 
which in turn has a positive effect on the development effort 
for new applications.

5.3 � Learning how to build intelligent robotic 
applications through step‑by‑step expansion

The example of use demonstrates that the REpac framework 
allows a step-by-step realization of more advanced scenar-
ios. By increasing the reasoning capabilities of the robot 
across the expansion stages, the robot can process more 
complex tasks while simultaneously task instruction during 
operation is simplified. In the first scenario, we developed 
a set of primitive skills and combined them in a modular 
fashion in different action plans to process the assembly of 
various predefined product variants. In the second scenario, 
we used the skills blackboard for joint knowledge manage-
ment. In doing so, we could specify the action plans at a 
higher abstraction level with less parameterization effort. 
In the third scenario, we enabled the robot to plan its tasks 
autonomously partially. Thus, we could specify a task as a 
mission that describes the goal state to be achieved. The task 
control, knowledge management, and task planning modules 
are integrated independently across the expansion stages. 
Thus, a user can learn the required expert knowledge for 
using these modules step-by-step. Summing up, the design 
of the REpac framework supports a user in learning how to 
build intelligent robotic applications that is a novelty com-
pared to the related works. This results in the advantage that 
companies with less expert knowledge can start building 
robotic applications and expand their expertise as required 
to realize increasingly diverse and complex application 
scenarios.

5.4 � Limitations, challenges and recommendations 
for future research

Finally, we discuss our work’s current limitations and chal-
lenges and derive recommendations for future research. 
Firstly, it is essential to consider that we are not aiming 
to develop fully autonomous robots. Based on our review 
of the related works in Sect. 2, we would recommend an 
approach like the one of [28] for this purpose. Considering 
the evolving industrial requirements, the REpac framework 
addresses an easy configuration of robotic applications based 
on skills combined with the possibility to equip the robot 
with intelligent capabilities. The estimation of the necessary 
development effort compared to the later benefit in operation 
is a challenge here (see also Sect. 5.2), and future research 
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should consider this aspect in more detail. Secondly, infor-
mation exchange between skills, such as via the blackboard, 
requires a common understanding of the related data. If 
skills are developed independently of each other and after-
ward combined to complete a specific task, this does not 
exist. For example, skill development sometimes required 
an iterative approach across application scenarios. There-
fore, suitable solution approaches should be investigated, 
and initiatives for standardization should be strengthened in 
the future. As considered previously, integrating a system to 
translate different naming conventions might be a solution 
approach. Thirdly, manual creation of the PDDL planning 
domain is time-consuming and requires expert knowledge 
when using automated task planning. [26] or [28] present 
approaches to automating the generation of these knowledge 
models. Simplifying the usage of automated task planning 
techniques is essential to promote their use in production and 
thus should further be explored in future research. Lastly, we 
used LEGO as an example product in the example of use. 
We assume that the presented results can be transferred to 
more complex industrial scenarios in the real world. The 
framework itself and the implementation guidelines for skills 
can be used in the same way. Nevertheless, and as already 
stated in Sect. 5.1, we recommend realizing more diverse 
industrial application scenarios to investigate the benefits 
and limitations of our approach in more depth.

6 � Conclusion and outlook

This paper presents the REpac framework, an extendable 
skills-based software framework for industrial robots. By 
designing various robot skills and combining them in the 
robot architecture, the robot’s capabilities can be easily 
and flexibly configured as demanded by an individual 
application. Furthermore, the REpac framework offers 
modules for task control, knowledge management, and 
task planning, which can also be deployed in a modular 
manner as necessary. These modules are structured into 
three expansion stages to increase the robot’s reasoning 
capabilities in a step-by-step manner. Thus, it is possible 
to start with a simple application such as assembling pre-
defined product variants and extend this until the robot 
plans its tasks autonomously. We presented an example 
of use for the REpac framework that allowed us to dem-
onstrate the following benefits: The reuse of robot skills 
in diverse application scenarios combined with the pos-
sibility to equip the robot with reasoning capabilities as 
required by the individual application will decrease the 
working effort for developing new applications in the long 
term. In addition, the structuring of the REpac framework 
in consecutive expansion stages allows companies with 
less expertise to start developing robotic applications and 

gain further expert knowledge during the realization of 
increasingly complex application scenarios. In total, we 
expect that these benefits will simplify the development 
and operation of industrial robotic applications, make their 
usage options more flexible and thus allow using industrial 
robots for new application areas.

Based on the identified recommendations for future 
research in the previous chapter, we plan to work on the 
following topics in the future: First, we want to explore 
concepts for the automated generation of the related PDDL 
planning models in the context of the REpac framework to 
simplify the use of automated task planning techniques in 
production. Second, we intend to evaluate the REpac frame-
work in real-world applications to transfer our research 
approaches into industrial practice. In this context, the con-
crete design of the skills will play a crucial role. Finally, we 
aim to investigate the integration of the REpac framework 
into the higher-level production planning layer. For this pur-
pose, we intend to use the REpac framework as an execution 
layer in a planning system for the automated setup of process 
monitoring in reconfigurable assembly systems [37].
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