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Introduction

According to the US government, 116,690 patients in 
the USA were waiting for an organ for transplant at 
the end of February 2022 (OPTN.Transplant 2022), 
indicating the need for alternatives to allotransplanta-
tion, which is the transplantation of organs between 
humans. Xenotransplantation, the transfer of living 
cells, tissues or organs between different species, has 
long been viewed as a feasible solution. After the ini-
tial focus on non-human primates (NHPs), the ani-
mal of choice soon became the pig. Pigs are physi-
ologically similar to humans, reach sexual maturity 
within several months and have large litter sizes, have 
a lower risk of zoonosis than NHPs and they can be 
reared under specific pathogen free (SPF) housing 
conditions further reducing risk of infections. How-
ever, transplantation of porcine organs into humans 
triggers a severe immune response resulting in imme-
diate rejection of the xenograft due to binding of pre-
formed antibodies, activation of the complement- and 
coagulation system, cellular responses, inflammation 
and apoptosis. Consequently, porcine organs had to 
be genetically engineered to overcome hyperacute-, 
acute vascular- and cellular rejection to enable long-
term graft acceptance.
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The evolving design of multi‑modified xeno‑pigs

Following xenotransplantation from pigs to humans, 
hyperacute rejection (HAR) involving complement 
activation, lysis of endothelial cells, vascular disrup-
tion and subsequent graft failure (Platt et  al. 1991) 
occurs within minutes to hours. It is caused by pre-
formed human antibodies directed against the cell 
surface glycosylation galactose-α1,3-galactose (α1,3-
Gal). The responsible gene GGTA1—encoding the 
enzyme α1,3-galactosyltransferase—is non-func-
tional in humans and ~ 1% of all circulating human 
antibodies are directed against this antigen (Galili 
2005). As methods to inactivate GGTA1 in pigs were 
lacking in the 1980s, the first xeno-pigs solely carried 
human mmcomplement regulatory transgenes (CD46, 
CD55 or CD59). It alone did not inhibit complement 
binding and together with safety concerns regarding 
porcine endogenous retroviruses (PERVs) dimmed 
the enthusiasm for xenotransplantation until in 2002 
the first gene targeted pigs—with inactivation of 
GGTA1—were published (Dai et  al. 2002; Lai et  al. 
2002).

Proving that HAR could now be overcome (Chen 
et  al. 2005) was an essential first step for moving 
xenotransplantation towards the clinic. But inactiva-
tion of GGTA1 also revealed the next hurdle acute 
vascular rejection (AVR), due to activation of the 
endothelium, complement- and coagulation system 
and resulting in inflammation, platelet aggregation, 
thrombosis and necrosis (Platt et  al. 1998). But by 
now more tools to modify the porcine genome were 
also becoming available: somatic cell nuclear transfer 
to engineer pigs with more complex transgene arrays 
or to carry out gene targeting experiments. Efficien-
cies of the latter dramatically improved with arrival 
of genome editing systems especially CRISPR/Cas9. 
Non-Gal epitopes were identified (N-glycolylneu-
raminic acid and the SDa blood group antigen) and the 
responsible genes (N-acteylneuraminic acid hydrox-
lase, CMAH; β-1,4-N-galactosaminyltransferase 2, 
B4GALNT2 and B4GALNT2L were also inactivated 
(Hurh et al. 2016, Byrne et al. 2018).

Inactivation of Gal and non-Gal epitopes was 
still not sufficient to overcome all incompatibilities, 
endothelium activation and cellular rejection. To alle-
viate these rejection responses, close to 50 different 
human transgenes have by now been tested in pigs. 
The most important ones are summarised in Table 1. 

With regard to cellular rejection, different approaches 
are being assessed e.g. inactivation or downregulation 
of the porcine MHC class I and class II, or expression 
of immunosuppressant transgenes either in a tissue-
specific (Martin et  al. 2005; Vabres et  al. 2014) or 
cytokine-inducible (Fischer et  al. 2020a, b, c) man-
ner (Table  1). To adjust the size of porcine organs 
some groups have also inactivated the porcine growth 
hormone receptor (GHR) (Hinrichs et  al. 2021) in 
commercial pig breeds, whose body weight can 
reach > 200 kg.

Increased numbers of modifications resulted in 
complex and very inefficient breeding strategies. 
To circumvent this, targeted-placement of multi-
transgene constructs (Fischer et  al. 2018) has now 
become the standard method. Genetic engineering 
could also help to overcome safety concerns, e.g. by 
generating pigs with inactivated PERVs (Niu et  al. 
2017), which significantly increased the confidence in 
the whole field. However, PERV inactivation is not a 
general regulatory requirement to proceed towards the 
clinic as transmission of PERVs has so far only been 
observed in in vitro co-culture experiments (Patience 
et al. 1997) but not in vivo.

Towards clinical approval

Multi-modified xeno-pigs can now be generated with 
reasonable efficiency. To show functionality and to 
prove that a given modification is necessary for all 
organs or needed for specific organs, requires both 
specialised in vitro assays and finally in vivo experi-
ments generally carried out in NHPs, being the clos-
est model animal to humans (Fig. 1).

In vitro assays can determine the effects of cer-
tain genetic modifications and thus reduce the num-
ber of animal experiments in accordance with the 
3R concept (Replace, Reduce, Refine). Activation 
of the complement system can be assessed through 
incubation of porcine cells with human blood serum 
and subsequent detection of complement protein 
deposition (Fischer et  al. 2016). Thrombus forma-
tion, IgM and IgG binding can be examined based 
on porcine endothelial cells, grown in artificial 
3D vessels and perfused with human blood (Fis-
cher et  al. 2020a, b, c). Inflammation and apop-
totic responses can be quantified by measurement 
of caspase activities, MHC class II upregulation or 
E-selectin levels (Fischer et al. 2016). Whole organ 
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Table 1   Summary of gene knockouts and human transgenes, thought to be most relevant for xeno-organ transplantation. KO indi-
cates gene inactivation

Genes Full gene name Inhibition of

Incompatibilities GGTA1 KO α1,3-Galactosyltransferase knockout Hyperacute rejection (Dai et al. 2002)
CMAH KO N-acteylneuraminic acid hydroxlase knock-

out
Acute vascular rejection (Hurh et al. 2016)

B4GALNT2 KO
B4GALNT2L KO

β-1,4-N-galactosaminyltransferase-2 knock-
out

Acute vascular rejection (Byrne et al. 2018)

GHR KO Growth hormone receptor knockout Organ overgrowth (Hinrichs et al. 2021)
SLAI KO Swine leukocyte antigen class I knockout Cross-reactive HLA antibodies (Fischer et al. 

2020a, b, c)
hCD46 Human Membrane cofactor protein, MCP Complement activation (Fischer et al. 2016)
hCD55 Human Decay accelerating factor, DAF Complement activation (Fischer et al. 2016)
hCD59 Human MAC-inhibitory protein Complement activation (Fischer et al. 2016)
hTM, THBD Human Thrombomodulin Blood coagulation (Petersen et al. 2009; Kim 

et al. 2015)
hEPCR, PROCR Human Endothelial Protein C receptor Blood coagulation (Navarro et al. 2011; Iwase 

et al. 2014)
hCD39, ENTPD1 Human Ectonucleoside triphosphate diphos-

phohydrolase-1
Platelet aggregation (Wheeler et al. 2012; 

Iwase et al. 2014)
hTFPI Human tissue factor pathway inhibitor Blood coagulation (Iwase et al. 2014; Ji et al. 

2015)
hA20, TNFAIP3 Human TNF α-induced protein 3 Apoptosis and inflammation (Oropeza et al. 

2009; Fischer et al. 2016)
hHO1, HMOX1 Human Heme oxygenase 1 Apoptosis and inflammation (Ahrens et al. 

2015; Rieblinger et al. 2018)
Cellular response hCD47 Human Leukocyte surface antigen 47 Macrophages (Ide et al. 2007)

HLA-E/B2M Human Leukocyte antigen E/ Human beta 2 
microglobulin

NK cells (Weiss et al. 2009)

CTLA4/LEA29Y Cytotoxic T-lymphocyte-associated antigen T cells (Phelps et al. 2009)
PDL-1 Programmed cell death ligand 1 T cells (Buermann et al. 2018)

Viral safety PERV KO Porcine endogenous retrovirus knockout Viral transmission (Niu et al. 2017)

Fig. 1   Evaluation of knockout and transgene functions. Suc-
cessfully genetically engineered cells are used for somatic cell 
nuclear (SCNT) to generate humanised xeno-pigs. Porcine 
organs are assessed in  vitro prior to in  vivo experiments in 

NHP. If the outcome is promising and once all regulatory and 
clinical requirements are met, xeno-organs can proceed into the 
clinic
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perfusion systems provide more detailed informa-
tion on physiological parameters (Abicht et  al. 
2016).

Despite sophisticated in  vitro assays, rejection 
responses and graft function have to be validated 
in  vivo prior to clinical application. This has to be 
done separately for each organ type (Table 2), requir-
ing access and permission to work with NHPs. Prior 
to transplantation into NHPs, mixed lymphocyte reac-
tions, i.e. incubating porcine peripheral blood mono-
cytes with NHP serum, can be carried out for prese-
lection of the most suitable donor animals (Mickelson 
et al. 1994; Wang et al. 2020). By using an efficient 
immunosuppressive regimen, the survival time of 
some porcine transplants has now excided 1 year for 
heart and kidney transplantations. Survival has been 
even longer for islets or neurons which is less chal-
lenging than the vascularised organs. Islets can also 
be encapsulated to protect them from the immune 
system (Reichart et al. 2015; Safley et al. 2018) and 
are fully functional as a heterotopic transplant.

Xenotransplantation is an extremely complex 
undertaking with multiple factors determining the 
success of pre-clinical experiments. These include—
besides the stability of the transgene loci or transgene 
expression levels in the graft—also organ storage 
(e.g. perfusion solutions and temperature), immuno-
suppression protocols, including preceding thymus 
transplantation to induce tolerance or pre-screening 
of donors by mixed lymphocyte reactions, size and 
age of the donor and recipient, their health status 
[e.g. cytomegalovirus infections can significantly 
reduce graft survival (Denner 2018)], blood groups, 
and finally the skill of the surgeon. Consequently with 
so many variables a comparison of results from dif-
ferent groups (Iwase et al. 2017; Adams et al. 2018; 
Kim et  al. 2019) or even to pinpoint which genetic 

modifications or transgene expression levels are 
essential for organ survival is difficult.

Furthermore, although NHP are the closest human 
relatives with greatest immune system similarity they 
too have their limitations when assessing xenotrans-
plants. Immune suppressive drugs such as anti-CD40 
ligand antibodies (anti-CD154) work well in NPH 
but cause severe side effects in humans (Bottino 
et  al. 2017). While GGTA1/CMAH double-knockout 
in porcine cells reduced IgG and IgM binding after 
incubation with human serum more efficiently than 
just inactivation of GGTA1 alone, the reverse is true 
when using NHP serum (Estrada et  al. 2015). This 
indicates that Neu5Gc glycosylation masks an anti-
gen in pigs, which is recognized by (some) NHPs but 
not by humans. Of course, the reverse may also apply, 
but might only be detected after transplantation into 
humans.

At the end of 2021, the first xeno-kidney trans-
plantations were performed in brain-dead humans. 
In the first experiment, a kidney of a GGTA1 KO pig 
was simply attached to the upper leg blood vessel for 
54 h. No hyperacute rejection occurred and the por-
cine kidney produced urine and showed normal cre-
atinine levels (Cooper 2021). Next, two multi-modi-
fied porcine kidneys were orthotopically transplanted 
into a 57-year-old brain-dead human host (Porrett 
et  al. 2022). Both kidneys were able to overcome 
hyperacute rejection and no intraoperative compli-
cations, measured by vascular integrity and hemo-
dynamic stability, occurred. However, histological 
analysis on postoperative day 1 could detect throm-
botic microangiopathy and severe tissue damage 
with both kidneys not being able to restore normal 
creatinine levels. These results may indicate a lim-
ited success, but the host was already brain-dead for 
5 days prior to transplantation and died after 74 h due 

Table 2   Survival times of 
xenotransplants in NHPs

KO, indicates gene 
inactivation; all other genes 
are human transgenes

Xenograft Genetic modification of donor pig Survival 
time (days)

Reference

Islet cells Wild type 950 Shin et al. (2016)
Neurons CTLA4-Ig 549 Badin et al. (2013)
Lung GGTA1KO/CD55/CD47 14 Watanabe et al. (2020)
Liver GGTA1KO 29 Shah et al. (2017)
Kidney GGTA1KO/CD55 499 Kim et al. (2019)
Heart (heterotopic) GGTA1KO/TM/CD46 945 Mohiuddin et al. (2016)
Heart (orthotopic) GGTA1KO/TM/CD46 195 Längin et al. (2018)
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to multi-organ failure (Porrett et  al. 2022). All such 
experiments require an extensive ethical review and 
formal approval. Still, using humans for experiments 
might make some people feel uncomfortable. On the 
other hand, humans donate organs, while here they 
donated their immune system to assess organ func-
tion and possibly bring lifesaving xeno-organs closer 
to the clinic.

The first in patient xeno‑organ transplant

The US Food and Drug Administration and other 
national regulatory authorities have published guide-
lines for xenotransplantation (EMA.EUROPA.EU 
2022, FDA.GOV 2022; Liu et  al. 2020). But some-
what surprisingly the first step towards clinical 
xenotransplantation was the approval by the FDA 
of meat from GGTA1 knockout pigs to be used as a 
food product. The target group was people with an 
α-Gal allergy (red meat allergy) (Dolgin 2021). This 
established the requirements necessary for marketing 
approval of organs from genetically modified pigs.

The same group then provided the pigs for the 
first transplant of a porcine heart into a 57-year-old 
patient, David Bennett Sr., for whom no other treat-
ment options remained. Both he himself and his fam-
ily gave consent for this risky, but possibly lifesaving 
experiment, to go ahead. Xenotransplantation may 
not provide a cure, but in some cases might bridge the 
gap until a suitable human heart becomes available. 
Currently few details have been published regard-
ing the procedure or the immune suppression regime 
used, except that the xeno-pigs carried 10 genetic 
modifications: inactivation of GGTA1, CMAH, 
B4GALNT2 and GHR and expression of human 
CD46, CD55, TM, EPCR, CD47 and HO1. This is 
the same combination of genetic modifications as 
used for the orthotopic kidney transplant in a brain-
dead patient with limited success (see above). David 
Bennett Sr. died almost two months after receiving 
the porcine graft. A detailed assessment of the precise 
cause of death, of the function and possible rejection 
of the xeno-heart is ongoing.

After more than 3 decades, has xenotransplantation 
finally made it into the clinic? Probably it is still too 
early to make definite conclusions. So far, one human 
patient survived for two months with a porcine heart. 
But hopefully this initial success will provide the 

confidence needed not only for the scientist and med-
ics but especially for the patients and their families 
to consider xenotransplantation as a life-saving, life-
extending option, or as donor organ to bridge the gap 
until a human donor could be found. Other organs 
have more complex functions compared to the heart, 
as such they may need their own specific combination 
of genetic modification to overcome species differ-
ences. Novel technologies such as single cell RNAseq 
or spatial single-cell transcriptomics may help to 
elucidate organ specific incompatibilities, which can 
then be addressed. The current results inspire opti-
mism for the future of xeno-organ transplantation and 
it is fair to say, the future has come one step closer for 
xenotransplantation.
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