
Vol.:(0123456789)1 3

Production Engineering (2022) 16:847–856
https://doi.org/10.1007/s11740-022-01133-y

PRODUCTION MANAGEMENT

Automation software architectures in automated production systems:
an industrial case study in the packaging machine industry

Eva‑Maria Neumann1 · Birgit Vogel‑Heuser1,2,3 · Juliane Fischer1  · Sebastian Diehm4 · Michael Schwarz4 ·
Tobias Englert4

Received: 11 August 2021 / Accepted: 13 April 2022 / Published online: 16 May 2022
© The Author(s) 2022

Abstract
In the era of Industry 4.0, advances in production engineering are driven by modern machines and equipment, whose evolu-
tion depends primarily on software nowadays. These machines are combined in automated Production Systems (aPS), whose
software is characterized by high complexity, long lifetimes, and strong coupling of mechatronic disciplines. The development
of modular, flexible software architectures that adapt to company- and process-specific boundary conditions is an essential
prerequisite for companies to compete globally. While there are many approaches in computer science, a clear definition
of control software architecture in aPS and systematic approaches to analyze company-specific software architectures and
the underlying design decisions are still missing. This gap is addressed by defining control software architecture in aPS,
including architectural views to address the heterogeneity of influencing factors on control software. To enable a systematic
architecture analysis, templates are defined for visualizing design decisions to derive concrete recommendations to support
practitioners in improving software. An in-depth interview study in three renowned companies from packaging machinery
confirmed the benefit of the proposed architecture analysis to systematically identify optimization potentials and concrete
starting points for the implementation.

Keywords  Automation software architecture · IEC 61131-3 · Design decisions · Automated Production Systems

1 � Introduction and motivation

The current technological advances in production engi-
neering require highly-flexible, evolvable machines and
equipment combined to so-called automated Production

Systems (aPS) [1]. Nowadays, the evolution of aPS is
predominantly realized via software and thus places
high demands on control software architecture. While
there are numerous software architecture (SWA) analysis
approaches in the embedded systems area, this field has
been hardly researched for control software architecture in
aPS (CSWA). The hard real-time requirements, lifecycles
of several decades, and code change during runtime of the
operating machine [2] hamper the development of univer-
sal guidelines for high-quality architecture. However, a

The Institute of Automation and Information Systems thanks
Harro Höfliger Verpackungsmaschinen GmbH, SIG Combibloc
Systems GmbH, and SOMIC Verpackungsmaschinen GmbH & Co.
KG for taking part in the interview study and for providing insights
into their software and processes.

 *	 Eva‑Maria Neumann
	 eva-maria.neumann@tum.de

	 Birgit Vogel‑Heuser
	 vogel-heuser@tum.de

	 Juliane Fischer
	 juliane.fischer@tum.de

	 Sebastian Diehm
	 sebastian.diehm@se.com

	 Michael Schwarz
	 michael.schwarz@se.com

	 Tobias Englert
	 tobias.englert@se.com

1	 Institute of Automation and Information Systems, TUM
School of Engineering and Design, Technical University
of Munich, Garching, Germany

2	 MDSI, Munich, Germany
3	 MIRMI, Munich, Germany
4	 Schneider Electric Automation GmbH, Marktheidenfeld,

Germany

http://orcid.org/0000-0002-3218-7397
http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-022-01133-y&domain=pdf

848	 Production Engineering (2022) 16:847–856

1 3

cleanly modularized, evolvable, and maintainable CSWA
is the key to implementing future-oriented technologies
and, thus, staying competitive.

A major challenge in improving CSWA often lies in rec-
ognizing influences between design decisions and identi-
fying concrete starting points for optimization. This paper,
therefore, presents an approach to define CSWA for aPS
based on previous analyses of industrial use cases, includ-
ing five architectural views for considering influencing fac-
tors on CSWA. Using an in-depth industrial interview study
with renowned control software experts of three packaging
machinery companies, the suitability of CSWA types for
different company-specific boundary conditions and produc-
tion processes is investigated. Templates for documenting
architectural design decisions are introduced to visualize the
connections, drivers, and consequences to derive recommen-
dations for improving the architecture. The benefits of the
architecture analysis and the derived recommendations are
proven in follow-up meetings with the interviewed experts.

In the following, first, the state of the art of analyzing
SWA is introduced (Sect. 2) to derive a definition for CSWA
(Sect. 3). Section 4 introduces morphological boxes to struc-
ture influencing factors on CSWA. Section 5 defines tem-
plates for documenting design decisions and formulating
recommendations for action used for the interview study
described in Sect. 6. The paper closes with an outlook in
Sect. 7.

2 � Related work on SWA of production
systems

The following subsections outline the state of the art of con-
trol software in aPS and analyzing SWA.

2.1 � Boundary conditions of CSWA in aPS

aPS are mechatronic systems of high complexity [2], usually
programmed using Programmable Logic Controllers (PLCs)
characterized by cyclic program execution. PLCs are mainly
programmed according to the IEC 61131-3, defining two
textual and three graphical languages and structural ele-
ments, i.e., so-called Program Organization Units (POUs)
as reusable software units. Since 2013, the object-oriented
programming paradigm is officially integrated into IEC
61131-3 (OO-IEC [3]) as object-oriented language elements
analogous to high-level language programming. However, it
is currently barely used in PLC programming, e.g., because
the software is often maintained by technicians without a
software background, who can handle a procedural program-
ming style more easily [4].

2.2 � Related work on analyzing SWA and quality

In computer science, one of the most cited definitions of
SWA is “all major facets of a software system, including
its structural elements—components […], connectors […],
and configurations” [5]. These fundamental elements of
SWA are confirmed in further established definitions [6,
7]. SWA is determined by design decisions, which need to
consider the system’s non-functional properties [5]. Desir-
able SWAs solving recurring issues can be formulated as
reusable design patterns to support software develop-
ers facing similar issues [5, 8]. The architectural design
directly affects the software’s quality attributes, including
performance, development cost, or maintainability [9].

Previous industrial analyses [10] revealed the chal-
lenges of defining well-structured CSWAs in aPS since
PLC software must cope with boundary conditions that
strongly differ from the ones in embedded systems, includ-
ing platform constraints such as limited cycle times or
software changes during operation of the running system
[2, 4].

Static code analysis [11] is beneficial for measuring
SWA quality attributes, e.g., using software metrics [12].
Vogel-Heuser et al. [10] identified a typical five-level mod-
ule architecture in PLC software, which complies with the
ISA-88 levels and comprises modules of different granu-
larity, Maga et al. [13] controlling individual actuators
such as cylinders or drives (basic modules) up to control-
ling the behavior of whole machines (facility modules) or
plants (plant modules). However, an exact definition for
CSWA in aPS and systematic approaches for evaluating
its strengths and weaknesses to provide concrete recom-
mendations for optimization are still missing.

3 � Definition of CSWA in aPS

The basic elements of SWA definitions in computer sci-
ence can be also be found in CSWA. Components can be
POUs (individual ones or groups arranged to modules),
actions, variables, or OO-IEC elements (e.g., properties
or methods), which are connected by data exchange (calls
or reading/writing variables) or by structural connec-
tions resulting from OO-IEC, i.e., inheritance or inter-
faces. However, the core characteristics of CSWA, such as
the need for hard-real time and software changes during
operation, are not considered in definitions from computer
science [2]. To address this gap, representative control
software projects and architectural guidelines of three
companies with different boundary conditions are com-
pared (cf. Table 1), i.e., a packaging machine manufacturer

849Production Engineering (2022) 16:847–856	

1 3

(A) with mature CSWA and quality management as proven
in a preceding questionnaire study [10], a plant manufac-
turer (B) from automotive applying precise programming
guidelines to ensure high software quality, and a plant
manufacturer from the field of wood industry (C).

The results show that CSWA is strongly influenced
by the particularities of aPS elaborated and confirmed in
preliminary work [2] and is mainly determined by design
decisions in the following architectural views, i.e., specific
subsets of the system's structural elements [14].

Hardware influences on hierarchy and modularization
The significant hardware complexity in aPS and the long
lifetime require mature CSWAs to enable evolvability dur-
ing the system’s operation via software changes during
runtime [2]. Depending on the aPS size and motion tasks,
different automation hardware architectures are required
(e.g., usage of multiple PLCs or sophisticated drive tech-
nology), which also strongly influence the CSWA.

Reuse strategies CSWA is affected by the applied reuse
strategy, ranging from systematic reuse of quality-tested
library POUs or software templates to unplanned reuse
via Copy, Paste & Modify, which is still predominant in
CSWA development, usually leading to uncontrolled soft-
ware growth and drawbacks regarding maintainability.

Extra-functional tasks Extra-functional tasks such as
exception handling, connection to the human–machine
interface (HMI) or operation mode switching account for
up to 75% of an control software project [15]. These tasks
are usually modularized differently from the functional
software parts but are also closely coupled with them,
making variability management for CSWA a major chal-
lenge [16].

Programming paradigm and software development Soft-
ware changes during operation are often carried out by tech-
nicians with little programming background making it dif-
ficult to apply object-oriented programming paradigms that
are standard in computer science [2]. In addition, certain
OO-IEC constellations can cause runtime issues and thus
conflicts with the hard real-time requirements of aPS [17].

Company-specific boundary conditions This is not an
architectural view per se since company characteristics can-
not be mapped directly to the software. However, company-
specific boundary conditions, e.g., the workflow of interdis-
ciplinary cooperation [4], strongly influence CSWA.

Summarizing, the consensus of SWA definitions from
computer science is not sufficient to define CSWA. Thus, to
understand and optimize CSWA, the definition is enlarged
by the architectural views as introduced above.

4 � Morphological boxes for architectural
influencing factors

Since the analysis and comparison of architectural design
decisions is a multidimensional problem, morphological
boxes are introduced to describe different architectural
views. The morphological boxes are derived from previous
industrial case studies [10] and substantiated by consulta-
tions with experts from academia and industrial automation.

While there is a broad consensus in high-level language
software on desirable design principles leading to high qual-
ity (cf., e.g., [18]), the definition of universal best practices
for CSWA in aPS is challenging due to company-specific
differences in the understanding of software quality and vari-
ous stakeholders with different background working on the
software (Table 2). In plant and special-purpose machinery,
e.g., technicians with little programming skills often need
to change software under time pressure during commission-
ing, thereby potentially impairing CSWA in case it is not
intuitively understandable. Experience of industrial code
analyses shows, e.g., that larger companies, especially when
operating at multiple locations, are more urged to cleanly
modularize and document the software since an exchange
"on-demand" during development is hardly possible, e.g.,
to compensate for difficult-to-understand code fragments.
Depending on the industry, there can be specific standards
(e.g., OMAC for packaging machines) or legal requirements
(e.g., in the medical sector) that require or support the main-
tenance of a high-quality CSWA (cf. Table 2). Safety-related
standards such as the Good Automated Manufacturing Prac-
tice 5 (GAMP 5) in the pharmaceutical and food industry
enable risk assessment throughout the system’s lifecycle to
ensure product quality and safety. Certification according to
GAMP requires the fulfilment of design specifications by the
CSWA and the integration of validation procedures into the
system’s development workflow.

Regarding hierarchy and modularization, experience
from previous case studies [10] shows that machines, which
are expendable by well-defined reusable stations to address
different customer needs, also require a well-modularized
CSWA (cf. Table 3). Unlike direct data exchange via POU
interfaces and calls, indirect data exchange via global vari-
ables often inhibits reusability. A hierarchical CSWA struc-
ture is generally rated as beneficial. Structuring the CSWA
towards the physical layout of the aPS enhances the system’s
understandability and thus facilitates its evolution and main-
tenance [10].

Table 1   Overview of use cases to derive the architecture definition

Use case Industrial sector aPS type

Company A Packaging machinery Series machine manufac-
turing

Company B Automotive Plant manufacturing
Company C Woodworking machinery Plant manufacturing

850	 Production Engineering (2022) 16:847–856

1 3

Copy, Paste & Modify is rated to have a strong negative
effect on the CSWA (cf. Table 4) due to the reasons derived
in Sect. 3. On the other hand, systematically reusing control
software, e.g., using templates, libraries, or code generation,
is expected to enhance CSWA quality.

5 � Templates for analyzing architectural
design decisions and recommendations
of action

Documenting and, thus, understanding industrial CSWA
design decisions requires a comprehensible form of presen-
tation that provides a quick overview of the design decision
itself, the drivers leading to it, its consequences, and where
to find it in the software. Therefore, the following four-part
template is proposed (see Fig. 1).

Analyzing the design decisions and their consequences
allows a clear understanding of the strengths and weak-
nesses of the existing CSWA to identify starting points
for CSWA improvement and to assess influences between
planned adaptations and the design decisions already made.
Therefore, understandable recommendations for action are
required, which cover the following aspects that are based

on [19] and enlarged by precise categories for the individual
aspects (Table 5):

6 � Interview study to analyze architectural
design decisions in the field of packaging
machinery

The applicability of the architecture analysis using the tem-
plates of Sect. 5 and the assumptions on influencing factors
on CSWA (cf. morphological boxes in Sect. 4) are analyzed
by conducting expert interviews in three aPS manufacturing
companies.

6.1 � Comparability of companies

To ensure the comparability of the results, companies
from the same industrial sector using PLC platforms of
the same supplier are analyzed. Thus, the companies are
confronted with similar challenges (e.g., similar com-
plexity of motion tasks) but also have similar resources to
cope with these challenges, such as solutions offered by
the platform supplier or domain-specific standards. On the
other hand, to investigate the impact of different company-
specific boundary conditions and production processes, the

Table 2   Morphological Box
to classify company-specific
boundary conditions

851Production Engineering (2022) 16:847–856	

1 3

interviewed companies show significant differences in the
number of employees, locations, and requirements for the
respective machines (cf. Table 1). Food and packaging
machinery is one of Germany's most important industrial

sectors in machine and plant manufacturing and is a highly
heterogeneous industry [20]. Therefore, it is ideal for ana-
lyzing CSWA design decisions under different boundary
conditions. This leads to selecting the following three
companies (cf. Table 1).

Table 3   Morphological Box
to classify hierarchy and
modularization

Table 4   Morphological Box to
classify reuse strategies

852	 Production Engineering (2022) 16:847–856

1 3

•	 Company D with approximately 400 employees operating
globally with one central location producing machines
for the final packaging for pre-packaged products (food
and beverage)

•	 Company E with more than 1400 employees operating in
around 40 countries producing machines for packaging
medical and pharmaceutical products

•	 Company F with approximately 5500 employees operat-
ing in around 40 countries with strict requirements on the
aseptic packaging of food and beverage products

All companies apply company-internal programming
guidelines to enhance and maintain their software quality.

6.2 � Interview conduction and results

To evaluate the relevance of the architectural views on
CSWA (cf. Sect. 3), questions on all views are formulated
in cooperation with experienced practitioners from industrial

automation. These questions are discussed in each company
within 3-h interviews with eight software experts from the
companies, including PLC programmers, HMI experts, and
project managers, to cover different perspectives on CSWA.
The interviews are conducted by a mixed team of two
academic researchers and three senior engineers from the
platform provider to classify the CSWA both in the context
of preceding research and in the current state of technical
practice. The identified design decisions and derived recom-
mendations are prepared using the templates introduced in
Sect. 5 and discussed in follow-up meetings with the inter-
view participants to obtain feedback on the results, prevent
misunderstandings, and clarify open questions.

In the following, the analysis results in the views hierar-
chy and modularization and reuse strategies are introduced.

6.2.1 � Hierarchy and modularization

Company D follows a strict modularization approach ori-
ented towards the functional structure, which serves as the
common basis between the involved disciplines and is, there-
fore, also reflected in the physical layout of the machine.
The central element is the so-called Functional Unit (FU), a
clearly defined sub-function of the machine controlled by a
corresponding POU. The function-oriented modularization
makes the structure intuitively understandable across disci-
plines. However, there are FUs without direct hardware rep-
resentation, e.g., extra-functional software parts used across
modules, which hamper the maintainability of the CSWA.

The software hierarchy in Company E is oriented towards
the physical machine layout starting from the MainMachine,
calling the underlying modules controlling autarch machine Fig. 1   Template for documenting architectural design decisions

Table 5   Template for formulating recommendations for actions

Category Specification

Recommendation (Selection of one option) Type 1: Addition/deletion/modification of components, connectors or configuration
Type 2: Appliance of an architecture analysis method to monitor/understand the architecture

Details (Both options need to be specified) Reason, why the current solution is not optimal
Explanation how the recommendation solves this problem

Architectural View (AV) AV1: Main View (Hierarchy and Modularization, Reuse, (Extra-)functional Tasks, Programming
Paradigm)

AV2: Optional specification of affected individual aspects of the respective AV1
(Extra-) Functional Task Functional: Application logic (on plant, facility, application, basic, atomic basic level)

Extra-functional: Operation Mode Switch, Fault Handling, Linkage to HMI, Operating Data
Collection, Hardware Control, Other/Further

Non-functional property Non-functional attributes of the architecture affected by the recommendation
Classification according to ISO 25010

Scope S1: Whole software structure (project level)
S2: Modules, POU libraries, POU constellations for extra-functional tasks
S3: Individual POUs, library elements
S4: Functionally related code sections within POUs
S5: Individual Operators/Operands

853Production Engineering (2022) 16:847–856	

1 3

parts, e.g., for feeding parts to be packed together. The mod-
ules call the required stations, i.e., process steps that belong
together. Underneath the stations, basic modules to control
individual actuators such as cylinders are called.

To meet the stringent aseptic requirements for packaging
food and beverage products, Company F chooses a CSWA
in the form of two parallel tree structures—one to control
the machine behavior and one to control the production
cycle consisting of production, cleaning, and sterilization
to ensure continuous compliance with hygiene requirements
(Fig. 2, bottom right). The software controlling the machine
behavior is oriented toward its physical layout. The Pro-
cessHandler ensures compliance with the production cycle
and allows only specific process steps. Depending on the
current production cycle phase, the ActorMapping specifies
the possible output values of the valves in the ValveGroup.

Comparing the software hierarchies shows that all com-
panies decided to structure the software in a hierarchical
tree-like pattern reflecting the physical machine layout.
However, the different boundary conditions cause the trees
to take different shapes. The interviewed experts confirmed
that although a hardware-oriented modularization approach
increases the comprehensibility, it is usually not applicable
for the whole software, since, e.g., extra-functional tasks
have no direct representation in the hardware and thus do
not fit into the structure, e.g., the production cycle in Com-
pany F.

6.2.2 � Reuse strategies

The companies apply different strategies for reusing con-
trol software, each tailored to their respective boundary
conditions and requirements. Company D uses a universal

Application
module

Basic module

Facility
module

MainMachine

Basic
Module 1

Functional Unit nFunctional Unit 1Functional Unit 1Functional Unit 1

Action
Sub-Step 1

Action_n

Action
Sub-Step n

Action_1Action_1Action_n

Basic
Module … Basic

Module n

Company D

MainMachine

Equipment
Module (EM)

1

Module
Valve
Group

Sub
Module

(SM)
1.1

BM1
….

MM_Process

ProcessHandler

Actor
Mapping Producion Cleaning SterilizationValve Group

Valve
1

Valve
n

Call / Instantiation
Data exchange
POU or action

Equipment
Module (EM)

1

Equipment
Module (EM)

1
Module

…
Module 1

Application
module

Basic module

Facility
module

Company F

MainMachine

Basic
Module …

Basic
Module …

Basic
Module …

Action
Sub-Step …

Action
Sub-Step …

Action
Sub-Step …

Action
Sub-Step …

BM1
….
SM1
….

SM
1.n

Valve
…

Valve
…

Valve
…

SM
2.1

BM1
….
BM1
….
SM2
….

SM
2.n

Module 1
Equipment Module

(EM) 1
Equipment Module

(EM) 1
Equipment Module

(EM) 1Module … Module n

Sub Module 1 Sub Module n
Sub Module 1Sub Module 1Sub Module 1Sub Module 1

Basic Module 1
Basic Module … Basic Module nBasic Module …Basic Module …Basic Module …

Company E

Fig. 2   Call Tree Structure in the three investigated companies (visualization oriented towards [9])

854	 Production Engineering (2022) 16:847–856

1 3

template, i.e., a master project containing all theoretically
available FUs and sub-modules. All unnecessary parts are
deleted to create a concrete machine project. A prerequi-
site for this design decision are the small team sizes, which
enable work on-call and thus keep the probability of errors
low due to good communication. However, the universal
template is challenging to understand for new employees due
to its large size and is laborious to maintain. In addition, the
reuse method leads to a high proportion of dead code since
empty FBs must remain after reducing the master project
to enable compilability without modifying calling POUs.
New variants are created using Copy, Paste and Modify of
existing FUs. OO-IEC, which would enable new variants
using inheritance, is not widely accepted by older employ-
ees. However, the programmers of Company D criticized an
increased maintenance effort and inefficiency due to double
implementation.

Company F decided on a reuse concept based on mature
module libraries combined with OO-IEC. In addition to sup-
plier libraries, company-internal libraries are applied, e.g.,
for error handling. For Company F, a universal template as
in Company D would not be reasonable due to the high com-
plexity of the CSWA and the much larger teams. To avoid
Copy, Paste, and Modify and thus, the long-term quality and
maintainability issues, FBs that are potentially suitable for
reuse are stored in a separate folder to be standardized for
later inclusion in the libraries.

Company E develops most of the software using code
generation based on design decisions taken in mechani-
cal and electrical engineering. A new project is generated
for each machine based on reusable templates (cf. Fig. 1).
Some (sub-)modules (e.g., for cartoning) are used in many
different machines, resulting in a high level of reuse. One
advantage is the cross-disciplinary consistency in engineer-
ing. However, during the generation process, POUs of very
small granularity are sometimes created, hampering the soft-
ware's understandability.

Regarding reuse of control software, it can be concluded
that the applied reuse strategies are tailored to the company-
specific requirements and challenges and would not fit the
respective other companies without drawbacks or necessary
adaptions.

6.3 � Documentation of results
and recommendations for action

The results of the interviews are prepared using the template
(cf. Fig. 1) to derive recommendations for action, which,
together with the design decisions, are evaluated with the
interview partners. The approach is demonstrated using the
design decision of Company D to reuse software based on
a universal template.

Applying the template to the design decision (cf. Fig. 3)
reveals that many advantages accompany the reuse strategy

Fig. 3   Structured visualization of the design decision of Company D to use universal modules using the proposed template

855Production Engineering (2022) 16:847–856	

1 3

as it is tailored to the company-specific boundary condi-
tions. However, it also reveals the disadvantages outlined in
Sect. 6.2. These negative consequences are then addressed
by concrete recommendations applying the table schema (cf.
Table 4), in the following exemplarily demonstrated for the
disadvantage "Hampered understandability of the universal
template” (cf. Table 5), which can be enhanced by visual-
izing the structure and functional distribution analogous to
Fig. 1 (see Table 6):

All participants confirmed that visualizing the CSWA
analogous to Fig. 1 enhances understandability and sup-
ports the familiarization of new employees with the software
architecture. The template-based representation of design
decisions proved to be a helpful means of making software
architecture and the connections between different deci-
sions comprehensible. In particular, the analysis of CSWA
from different views provides significant benefits since only
the combination of information from different views and
their interrelationships allows the systematic, target-ori-
ented planning of optimizations of the existing software.
Moreover, the analysis of design decisions in different views
enables the systematic derivation of recommendations to
improve CSWA. This was strengthened particularly dur-
ing the follow-up discussion in Company D: Some of the
derived recommendations for action have already been iden-
tified by the company itself, and implementation is already
in progress. The experts considered the table-like format
very helpful, and the template's granularity is sufficient to
understand and implement the recommendations.

7 � Conclusion and outlook

This paper proposes a definition of CSWA by introducing
architectural views that consider the particularities of aPS
affecting control software [2], including the complexity

of hardware layout and motion tasks, the need to adapt to
changes during operation, and the challenges of implement-
ing extra-functional tasks. The impact of the architectural
views is examined with experts from academia and industrial
automation based on morphological boxes. To analyze and
enhance industrial CSWA, templates are defined to docu-
ment and analyze architectural design decisions and their
impact and formulate concrete recommendations for action
to enhance an existing CSWA. The benefit of the templates is
demonstrated by an industrial interview study in three pack-
aging manufacturing companies, and the identified design
decisions in different architectural views are compared and
discussed.

The positive feedback from the experts in the interview
study shows the great potential of a systematic architecture
analysis to optimize existing software and enable the imple-
mentation of pioneering technologies in production engi-
neering. Therefore, future research will analyze how such
an architecture analysis can be integrated into the industrial
software development workflow. Especially for small compa-
nies, it is financially and capacity-wise unrealistic to set up
separate departments for systematic quality management, so
their empowerment to optimize CSWA with given resources
efficiently will be the focus of future research. Currently, the
analysis is done manually, but there are already considerations
regarding which aspects of the analysis can be automated to
facilitate the implementation in industrial practice. This could,
e.g., identify violations of existing architecture specifications.
In addition, the combination of different views in the architec-
ture assessment and the resulting knowledge about influences
between design decisions can support the development of new
software projects in the design phase with best practices and
design patterns.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Table 6   Recommendation for action to address the hampered understandability of the universal template (Company D)

Category Specification

Recommendation Type 2: Visualization of the structure and functional distribution of the master project
Details Reason: Large scope of master project and therefore difficult to understand

Explanation: Visualization facilitates orientation in the project and prevents errors
Architectural View (AV) AV1:

1. Hierarchy and Modularization
AV2:
1. Structure of the Software
2. Data Exchange
3. Available module hierarchy levels

(Extra-) Functional Task Both functional and extra-functional tasks
Non-functional property Maintainability (including modularity, reusability and analyzability)
Scope S1: Whole software structure of the master project

856	 Production Engineering (2022) 16:847–856

1 3

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Brecher C, Rawat DB, Song H, Jeschke S (eds) (2017) Cyber-
physical systems: foundations, principles and applications. Aca-
demic Press, London

	 2.	 Vogel-Heuser B, Fay A, Schaefer I, Tichy M (2015) Evolution
of software in automated production systems: challenges and
research directions. JSS 110:54–84

	 3.	 Werner B (2009) Object-oriented extensions for IEC 61131–3.
IEEE Ind Electron Mag (IEEE Industrial Electronics Magazine)
3:36–39

	 4.	 Neumann E-M, Vogel-Heuser B, Fischer J, Ocker F, Diehm S,
Schwarz M (2020) Formalization of Design patterns and their
automatic identification in PLC software for architecture assess-
ment. IFAC-PapersOnLine 53:7917–7924

	 5.	 Medvidovic N, Taylor RN (2010) Software architecture. In:
Kramer J, Bishop J, Devanbu P, Uchitel S (eds) Proceedings of the
32nd ACM/IEEE International Conference on Software Engineer-
ing—ICSE '10. ACM Press, New York, New York, USA, p 471

	 6.	 Reussner RH, Schmidt HW, Poernomo IH (2003) Reliability
prediction for component-based software architectures. JSS
66:241–252

	 7.	 Bass L, Clements P, Kazman R (2010) Software architecture in
practice, 2nd edn. Addison-Wesley, Boston (14. print)

	 8.	 Gamma E, Helm R, Johnson R, Vlissides J (2011) Design pat-
terns: elements of reusable object-oriented software, 39. Printing.
Addison-Wesley, Boston

	 9.	 Lytra I, Carrillo C, Capilla R, Zdun U (2020) Quality attributes
use in architecture design decision methods: research and practice.
Computing 102:551–572

	10.	 Vogel-Heuser B, Fischer J, Feldmann S, Ulewicz S, Rösch S
(2017) Modularity and architecture of PLC-based software for
automated production Systems: an analysis in industrial compa-
nies. JSS 131:35–62

	11.	 Prähofer H, Angerer F, Ramler R, Grillenberger F (2017) Static
code analysis of IEC 61131–3 programs: comprehensive tool sup-
port and experiences from large-scale industrial application. IEEE
TII 13:37–47

	12.	 Nair A (2012) Product metrics for IEC 61131–3 languages. In:
Proceedings of the 17th International Conference on Emerging
Technologies & Factory Automation (ETFA 2012), vol 17, pp
1–8

	13.	 Maga C, Jazdi N, Göhner P (2011) Reusable models in industrial
automation: experiences in defining appropriate levels of granu-
larity. IFAC Proc Vol 44:9145–9150

	14.	 Clements P, Garlan D, Little R, Nord R, Stafford J (2003) Docu-
menting software architectures: views and beyond. In: Proceed-
ings 25th International Conference on Software Engineering, vol
25, pp 740–741

	15.	 Güttel K, Weber P, Fay A (2008) Automatic generation of PLC
code beyond the nominal sequence. In: Proceedings of the 13th
International Conference on Emerging Technologies & Factory
Automation (ETFA 2007). IEEE, vol 13, pp 1277–1284

	16.	 Vogel-Heuser B, Fischer J, Hess D, Neumann E-M, Wurr M
(2022) Boosting Extra-Functional Code Reusability in Cyber-
Physical Production Systems: The Error Handling Case Study.
TETC 10:60–73

	17.	 Neumann E-M, Vogel-Heuser B, Fischer J, Keller J, Weis I,
Diehm S, Schwarz M, Englert T, Stoll M, Zell U (2020) Identi-
fying runtime issues in object-oriented IEC 61131-3-compliant
control software using metrics. IEEE IECON 2020:259–266

	18.	 Martin RC (2012) Clean code: A handbook of agile software
craftsmanship, [Repr.]. Prentice Hall, Upper Saddle River

	19.	 Vogel-Heuser B, Fischer J, Neumann E-M (2020) Goal-lever-
indicator-principle to derive recommendations for improving IEC
61131–3 control software. In: 14th IEEE International Conference
on Industrial Engineering and Engineering Management (IEEM
2020), vol 14, pp 1131–1136

	20.	 VDMA (2020) Food Processing and Packaging Machinery. https://​
nuv.​vdma.​org/​en/​ueber-​uns. Accessed 17 Apr 2022

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://nuv.vdma.org/en/ueber-uns
https://nuv.vdma.org/en/ueber-uns

	Automation software architectures in automated production systems: an industrial case study in the packaging machine industry
	Abstract
	1 Introduction and motivation
	2 Related work on SWA of production systems
	2.1 Boundary conditions of CSWA in aPS
	2.2 Related work on analyzing SWA and quality

	3 Definition of CSWA in aPS
	4 Morphological boxes for architectural influencing factors
	5 Templates for analyzing architectural design decisions and recommendations of action
	6 Interview study to analyze architectural design decisions in the field of packaging machinery
	6.1 Comparability of companies
	6.2 Interview conduction and results
	6.2.1 Hierarchy and modularization
	6.2.2 Reuse strategies

	6.3 Documentation of results and recommendations for action

	7 Conclusion and outlook
	References

