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Abstract

We consider difference equations in balanced, i.i.d. environments which are not
necessary elliptic. In this setting we prove a parabolic Harnack inequality (PHI)
for non-negative solutions to the discrete heat equation satisfying a (rather mild)
growth condition, and we identify the optimal Harnack constant for the PHI. We
show by way of an example that a growth condition is necessary and that our
growth condition is sharp. Along the way we also prove a parabolic oscillation
inequality and a (weak) quantitative homogenization result, which we believe to be
of independent interest.

1. Introduction

1.1. Background

Consider the non-divergence form operator

d 2
a A d-f 2 d
(L fHx) = § ajj(x)——(x), (f,x) e C°(RY) xR, (1.1)
i =1 / dx,-dx]-

where a = (a; j)f.i =1 is a measurable function from R? into the set of symmetric
positive definite matrices which is uniformly elliptic, that is there is a constant
0 < A < 1 such that

d
1
MIYIP S ) ajyiyy < <lyIP, (x,y) € RY xR
i,j=I

For an open domain D in R?*! a function u: D — R is called caloric if it

solves the (backward) heat equation %u = —L%. In a seminal paper, KRyLOV
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and Saronov [13] proved a parabolic Harnack inequality (PHI) for non-negative
caloric functions from [0, R?] x Bg(0) to R.

More precisely, they proved the existence of a positive constant C = C())
such that, for any radius R > 0 and every (non-negative) caloric function # on
[0, R?] x Bg(0), it holds that

maxu < C minu, (PHI)
O+ 0-

where Q_ £ [0, ;R?] x Bg/2(0) and Q1 = [§R?, 2 R?] x Bg/2(0). The PHI has
many important applications such as a priori estimates in parabolic Holder spaces
(see [13]) or Holder regularity results (see [21]). PHIs for discrete uniformly elliptic
heat equations can be found in [14,20], see also [15] for its elliptic (that is time
independent) counterpart. A version for uniformly elliptic equations with time-
dependent coefficients is given in [8].

Remarkably, the constant in the PHI of Krylov and Safonov does not depend
on the regularity of the coefficient a but only on the ellipticity constant A. It is not
hard to see that as A goes to zero, the constant goes to infinity, and in particular the
proof method of [13] is not helpful in settings that are not uniformly elliptic.

More recently, there is a growing interest in PHIs for settings which are not
necessarily uniformly elliptic. We mention the paper [12], where heat equations
arising from random walks on percolation clusters (RWPC) are studied, and the
articles [1,3,7], where the PHI is proved for equations related to the random con-
ductance model (RCM). In these works the PHI was used to prove a local limit
theorem for the corresponding stochastic processes.

In contrast to (1.1), the equations associated to RWPC and RCM are in diver-
gence form, that is reversible. Discrete equations in non-divergence form appear in
the context of random walks in balanced random environment (RWBRE). An ellip-
tic Harnack inequality (EHI) for such equations in fully non-elliptic environments
has recently been proved in [5]. To the best of our knowledge, this result is the first
of its kind for such a degenerate framework.

1.2. Purpose of the current article

Our main result is Theorem 2.6, below, which is a PHI for random difference
equations associated to non-elliptic random walks in balanced i.i.d. random envi-
ronments, which is the setting from [5]. More precisely, we prove the PHI for all
non-negative caloric functions which satisfy a certain exponential growth condi-
tion (see discussion in Section 1.3 below) and we show by example that it can fail
without it. As the EHI holds in full generality, our result points to an interesting
difference between parabolic and elliptic frameworks. To the best of our knowledge,
a comparable phenomenon has not been reported before. The Harnack constant in
our PHI is optimal in the sense that it can be taken arbitrarily close to its counter-
part in the PHI of the limiting Brownian motion from the corresponding invariance
principle proven in [6].
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1.3. The growth condition

As alluded to above, in Theorem 2.6 the PHI is only proven for non-negative
caloric functions f: Bg(0) x [0, R?] — R satisfying the growth condition (2.1),
which roughly states that

2-¢&
max f < e® " min f,

for & arbitrarily small. We also find a counter example to the PHI satisfying

max f = R min f
showing that the growth condition (2.1) is sharp. We wish to make a few remarks

regarding this growth condition.

Remark 1.1. Our growth condition is quite mild. In particular, in most applications
(for example for local limit theorems) all functions that are considered are such that
the maximum to minimum ratio grows like a power of R, which easily satisfies our
growth condition.

Remark 1.2. To the best of our knowledge, our paper is the first time that a PHI is
proven under such a growth condition. We believe however that this phenomenon,
namely that a mild growth condition guarantees an otherwise false PHI, exists in a
large variety of models which are not uniformly elliptic. In particular, we believe
that for random conductances models which are elliptic but not uniformly elliptic,
and where the conductances have a thick enough tail around zero (see, for example
[4]), a similar phenomenon can hold.

1.4. Proof strategy

We now comment on the proof of our PHI. The basic strategy is borrowed
from FABES and STROOCK [10] and their proof for the continuous uniformly elliptic
case. In general, our Fabes—Stroock argument relies on two central ingredients
which are of independent interest: A parabolic oscillation inequality and a parabolic
quantitative homogenization estimate. The former is used for the iterative scheme
in the Fabes—Stroock argument and the latter yields estimates for the exit measure
of the random walker, which we use roughly the same way FABEs and STrRoOCK [10]
used heat kernel estimates. In contrast to the setting of Fabes and Stroock, our model
lacks connectivity in the sense that the movement of the random walker is restricted
by holes in the environment. In addition, we have to deal with local degeneracies,
as the positive transition probabilities in the random environments might not be
bounded away from zero. To control the sizes of the holes in the environments we
use percolation estimates which use the i.i.d. structure. Due to our parabolic setting
the speed of the random walker is a major issue. The growth condition ensures
that the random walker reaches certain parts of the environments fast enough. The
Fabes—Stroock method was also used in [5] to establish the EHI. In contrast to our
setting, the issue of speed plays no role in [5], which also explains why the EHI
holds in full generality.
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1.5. Possible future research directions

Before we turn to the main body of this paper, let us comment on follow up
questions which are left for future research. It is interesting to compare our result
to those for the RCM. In [1,7] it was shown that the PHI holds under certain
moment assumptions on the conductances, which are violated in degenerate cases.
Our result suggests that also for the RCM the PHI might hold when restricted to
a suitable class of functions. Conversely, the results from [1,7] suggest that a full
PHI might hold for elliptic RWBRE under suitable moment assumptions on the
ellipticity constant. We think our PHI is a first step into the direction of a local limit
theorem for non-elliptic RWBRE. At this point we stress that our PHI cannot be
used directly to solve this question as in [1], because the method there relies on
a PHI for adjoint equations. In the reversible (self-adjoint) framework from [1] it
is clear that the PHI also applies to adjoint equations, but in our non-symmetric
setting this is not the case.

The article is structured as follows: in Section 2 we introduce our setting and
state our main results. The proofs are given in the remaining sections, whose struc-
ture is explained at the end of Section 2.

2. Framework and Main Results

2.1. The framework

Letd > 2andlet{e;:i =1,...,d} be the unit vectors in Z¢. We set eqri =
—e; fori = 1,...,d and define M to be the space of all probability measures
on{e;:i =1,...,2d} endowed with the topology of convergence in distribution.
Moreover, we define the product space

Qe][M
74

and its Borel o-field F £ B(S2). An element w €  is called environment. Let P
be an i.i.d. Borel probability measure on €2, that is

P é®vf0rsome: v e M.
Zd

We denote the space of all paths Z, — Z?, equipped with the product topology,
by ID and the coordinate process by X = (Xp)uez,, thatis X, (a) = a(n) for
(a,n) € D x Z,. Forevery w € Q and x € Z¢ let P} be the (unique) Borel
probability measure on D which turns X into a time-homogeneous Markov chain
with initial value x and transition kernel w, that is

P Xo=x)=1, P (Xyu=y+elXn—1=Y)=w,e),
ze7% k=1,...,2d.
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Fig. 1. An illustration of Example 2.2 restricted to a small box

The coordinate process X is typically referred to as the walk and the law P is
called the quenched law of the walk. An environment w € 2 is called balanced if
forallz € Z9andk =1,...,d

w(z,er) = w(z, —eg).

The set of balanced environments is denoted by B. For n € Z, we set F, =
o(X,;,,m € [n]), where [n] £ {0, ..., n}. In what follows, all terms such as
martingale, stopping time, etc., refer to (Fy),ez, as filtration.

Remark 2.1. The Markov property of the walk yields an intuitive characterization
for balanced environments. Namely, X is a P}-martingale for all x € 74 if and
only if w € B.

We say that w € Q2 is genuinely d-dimensional if for every k = 1,...,2d
there exists a z € Z? such that w(z, ¢;) > 0. We denote the set of all genuinely
d-dimensional environments by G.

Example 2.2. An example for an environment measure P with P(BN G) = 1 is
the following:

1 1
P(a)eQ:w(O,ei)za)(O,—ei)zE)=E, i=1,...,d.

In this case the environment chooses uniformly at random one of the +¢; directions,
see Fig. 1.

For a finite set S C Z¢ and N € Z. we say thata functionu: S x [N+1] — R
is w-caloric on S x [N]if for every (x,m) € S x [N]

2d
u(x,m) = Ef)[u(Xl, 1 +m)] = Za)(x, e u(x +eg, 1 +m).
k=1
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The following simple observation provides a probabilistic interpretation for the
definition of a caloric function:

Lemma 2.3. Letw € Bandu: S x [N + 1] = R. Set
T, 2 infn € Zy: (Xp,n+m) €S x[N]), me[N].

The following are equivalent:
(a) u is w-caloric.

(b) For all (x,m) € S x [N] the process (u(Xunz,» 0 A T +m))pez, is a P)-
martingale.

Proof. The implication (b) = (a) follows from the fact that martingales have con-
stant expectation and P}-a.s. ,, = 1. For the converse implication, assume that
(a) holds and let n € Z,.. The Markov property of the walk yields that P}-a.s. on
{n<Tm}={n+1§Tm}€]:n

ES[u(Xpyng,, 1+ D ATy +m)|F] = ES[u(Xng1.n + 14 m)|F,]
= EX[u(Xi,n+1+m)]

=u(X,,n+m).
Since on {1, < n} there is nothing to show, we conclude that (b) holds. O
Finally, let us end this section with technical notation: For x=(x1, ..., x4) cR9,
define the usual norms
1
d d 2
A A 2 A
x| = xil, xll2 = X , Xl & max  |xgl.
Il ; el lxll2 (; k) Illoc £ max x|

ForR >0andy € RY, let
Br(y) £ {x e R?: lx — yl» < R}, Bgr 2BrpnZz.

We also write Bg 2 Br(0) and Bg £ Bg(0). For a set G C Z4, we define its
discrete boundary by

IG 2 {x e Z\G: 3y € G, |x — ylloo = 1}.
Furthermore, we set
Or £ {x € Bg: |x — ylloo =1 = y € Bg}.

In case R > 1, Op is the biggest subset of Bg such that Or 2 0RUJOR = Bg.
For a space-time point £ = (x, f) € R? xR, we define the continuous and discrete
parabolic cylinder with radius R > 0 and center X by

Kr(X) 2 Br(x) x [t,1 4+ R*) CRY xRy, Kgr(x) 2 KgX) N(Z! x Zy).
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We also set Kg £ Kz(0), Kgr 2 K(0) and
IPKg £ (9B x (0, R*]) U (B x {R?}),
dPKg = (0B x [[R*11) U (Bg x {TR*1}),

and Kg 2 Kg UdPKg, Kr £ Kgr U3”Kg. Here, 0B refers to the boundary of
Br in RY. We also define

Qr £ Op x [[R*] =11, 9”Qr = (30& x [LR*]1) U (Or x {LR?]}).
Moreover, we set
Kg = (Bg x (0, RH) N (27 x Zy), K2 (Br x QR%3RY)) N (29 x Zy).
To capture parities, we define

®%¢(G) £ {(x.1) € G: ||x|l; + 1 is odd/even}, G CRY x Z,.

Convention. Without explicitly mentioning it, all constants might depend on the
measure P and the dimension d. Moreover, constants might change from line to
line. We denote a generic positive constant by c.

2.2. Main results

Throughout this chapter, we impose the following:
Standing Assumption 2.4. P(BN G) = 1.
We recall the following invariance principle from [6]:

Theorem 2.5. [6, Theorem 1.1] The quenched invariance principle holds with a
deterministic diagonal covariance matrix 2, that is for P-a.a. ® € Q as N — 00
the law of the continuous R¢-valued process

1X JrtN—LtNJ
Ly NN
JN M JN

under P}, converges weakly (on C (R4, R?) endowed with the local uniform topol-
0gy) to the law of a Brownian motion with covariance 2l starting at x.

(Xyunjet — Xpiny), t€Ry,

Fora e (\/§ ,2],let H, € (0, 0o) be the following Harnack constant for Brow-
nian motion: For every non-negative solution u to the (backward) heat equation

d 2
du 1 d
—+= Qlij—u =
dr 2. | dxidxj

i,j=
in K, it holds that

sup u<H, inf u,

Brx(2R2,3R?) Bgx(0,R?)

see [19, Theorem 1]. The following parabolic Harnack inequality (PHI) is our main
result.
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Fig. 2. An example for the necessity of the growth condition

Theorem 2.6. Fix e € (0,2—+/3), & € (0, %) and v > 1. There are two constants
R*,8 > 0 such that for all R = R* there exists a set G € F such that P(G) =
1—e andforeveryw € G, p € {o, e} and every non-negative w-caloric function
u on Kop satisfying

max u < Wk min u, 2.1)
OF(K2R) OP(K2R)
it holds that
14+ 3¢e)H,_ .
max u < # min u. (2.2)
Or(Ky) (I—-8)7 errky

Example 2.7. In the following we provide an example which shows that in non
degenerate settings the PHI cannot hold in full generality without a certain growth
condition. Let us consider the setting of Example 2.2 with d = 2. More precisely,
take the environment given by Fig. 2. The red part in Fig. 2 is called the sink. It is
easy to see that once the walk has reached the sink, it cannot exit it. Consequently,
by its recursive definition, the values of a caloric function on the sink are not
influenced by the values outside of it. For contradiction, assume that the PHI holds
for all caloric functions u, that is there exists a constant C > 0 independent of u
and R such that

max # < C min u.

er(Ky) er(Ky)
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Denote the points in the green box in Fig. 2 by x and x;. Fix R large enough such

2 . . . . . .
that 2R” > C and take a non-negative caloric function « on the cylinder with radius
2R which takes the value one on the sink and

w(xy, 4R?) = u(xy, 4R%) 2 238,

Such a caloric function can be defined by recursion. We stress that # does not satisfy
the growth condition (2.1). Using the recursive definition, we note that

2
max u > 2K,
er(Ky)

and the PHI implies

2 < ¢ min u<C,
or(Ky)

which is a contradiction. We conclude that the PHI does not hold for u.

Remark 2.8. (i) The Harnack constant in Theorem 2.6 is optimal in the sense
that it can be taken arbitrarily close to H;.

(i1) In uniformly elliptic settings the growth condition (2.1) is not needed, see
[14,20].

(iii) Typically PHIs are formulated for forward equations. The time substitution
t — 4R?*—r transforms the PHI for backward equations into a PHI for forward
equations.

(iv) As the following simple example illustrates, it is necessary to compare cylin-
ders of the same parity. Let u be a solution to the (backward) heat equation
for the one-dimensional simple random walk in K g with terminal condition

1, |x|+todd,
0, |x|+teven.

flx, 1) =

The recursive definition of a caloric function shows that# = f, which implies

maxu =1, minu = 0.
K+ K-

Clearly, (2.2) does not hold when ®7 (K }') and ®P(K ) are replaced by K ;

and K, respectively. An alternative strategy to deal with the parity issue is
to formulate the PHI for

Ax,n) 2 u(x,n+ 1) +ulx,n)

instead of u. This has been done in [12] for random walks on percolation
clusters.
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The proof of Theorem 2.6 is given in Section 6. It borrows arguments by FABES
and STROOCK [10]. A version of the Fabes—Stroock argument has also been used in
[5] to prove an elliptic Harnack inequality (EHI) under Standing Assumption 2.4.
Some ideas in the proof of Theorem 2.6 are borrowed from [5].

Harnack inequalities are important tools in the study of path properties of
RWRE. As explained in the introduction, we think that Theorem 2.6 might be
the first step in direction of a local limit theorem. The EHI from [5] can for instance
be used to prove transience of the RWBRE for d = 3 in genuinely d-dimensional
environments. Since this result seems to be new, we provide a statement and a proof,
which is similar to those of [22, Theorem 3.3.22] and given in “Appendix A”.

Theorem 2.9. When d > 3, the RWRE is transient for P-a.a. environments.

One key tool for the proof of Theorem 2.6 is the following oscillation inequality,
which can be seen as a parabolic version of [5, Theorem 4.1].

Theorem 2.10. There are constants R',§ > 0,¢ > 1 and y € (0, 1) such that for
every R = R' there exists a set G € F such that P(G) = 1 — e R, and for every
w € G and every w-caloric function u on K g it holds that

osc uly osc u, pefoe}
©7(Kg) O (K¢ )

where

osc u = max u — m&nu, G C 74 x 7 finite.

The proof of Theorem 2.10 is based on the explicit construction of a coupling.
Let us sketch the idea: Suppose that X and Y are coupled space-time walks in a
fixed environment @ € B such that the probability that X and Y leave a subcylinder
of K¢ g in the same point is bounded from below by a uniform constant 1 —y > 0.
Denote the corresponding hitting times of the boundary by T and S, respectively.
Then, if X starts, say, atx € ®”(Kg) and )% starts, say, at y € ®”(Kg), the optional
stopping theorem yields for every w-caloric function u that

u®) —u@) = E[u(Xr) — u(¥s)]
= E[(M(XT) - M(YS))H{XT;EYS}]

< osc uPXr #+ Ys)
OP(K¢R)

<y osc u.
OP(K¢Rr)

This implies the oscillation inequality.
Another key tool for the proof of Theorem 2.6 is the following quantitative

homogenization estimate: Let F: K; — R be a continuous function of class C%3
on K; such that

aF 1 ¢ 42 F
+ i
dl‘ = dxidxj

=0 on K. 2.3)
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The existence of F is classical. We define Fr: Kg — R by
Fr,0 2 F(5.42), (.0 € Kg.

Foru: Qr — R, we define

2d
(Low) (v, $) 2 Y oy, edu(y +ei, 145) —u(y,s), (v,5) € Qr.
i=1

For w € 2, let G, : Qr — R be such that

L,G, =0, on Qg,
G, =Fg, on 0°Qg.

It is easy to see that G, exists in a unique manner: Indeed, first set G, = Fpg
on 37 Qg and then use L,G, = 0 on Qg to define G, recursively. The follow-
ing quantitative estimate is a parabolic version of [5, Theorem 1.4]. Quantitative
homogenization results for non-linear equations are given in [2].

Theorem 2.11. For all ¢ € (0, 1) there exist Ry = Ro(g) = siz, Ci=C|(F) >0,
Cy = Ca(e) > 0, C3 = C3(¢) > 0and § > 0 such that for all R Z Ry we have

P ({0) € Q: sup|Fr — Gol = ¢ C1}> > 1= Ce OF,
Or

The main tool in the proof of Theorem 2.11 is a new parabolic Aleksandrov—
Bakelman—Pucci maximum principle, see Theorem 3.1 below.

The remaining article is organized as follows: In Section 3 we prove the quan-
titative estimate (Theorem 2.11), in Section 4 we provided estimates on the exit
probabilities from a cylinder through a part of the boundary, in Section 5 we prove
the oscillation inequality (Theorem 2.10), in Section 6 we prove the PHI (Theo-
rem 2.6) and finally in “Appendix A” we prove transience for d = 3.

3. Proof of the Quantitative Estimate: Theorem 2.11

3.1. A parabolic maximum principle

In this section we provide a parabolic version of the Aleksandrov—Bakelman—
Pucci (ABP) maximum principle [6, Theorem 3.1]. For the uniform elliptic setting
related results are given in [14,20]. We need further notation: For k € Z_, set

9“Or £ {x ¢ Or: 3ycop, Ix = ylloo Sk},
Qg 2 (9 Or x [LR*] + k1) U (Og x {LR*], ..., [R*| +k}),
Ok £ QR U Q.
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Fix a function u : Q’I‘e — R and define, for (y, s) € Or,

L(y,s) = {p eRY: u(y,s) —u(x,t) Z {p,y—x)Vv(x,1) € Q];? with ¢t > s},
Ty £ {(y.5) € Qr: Li(y. s) # 0}

Let a(n) be the coordinate that changes between X,,_1 and X,, and define
T2inf(n e Zy: fa(l),...,am)} ={1,...,d}), TR2T k. (3.1)

The next theorem will be an important tool at several steps in the proof of Theo-
rem 2.6.

Theorem 3.1. There exists an R, > 0 such that forall R 2 R,,0 < k < R and
all w € B the following implication holds: If u < 0 on 3% Qg and for all z € Og

PYT > k) < e~ (0eB’, (3.2)

then

1
4 d+1
supu < ¢cRA+T Z |EX[u(Xpw. s+ 1+ T(k))] —u(y,s+ l)|d+1
Or (v.$)ely

(3.3)

This ABP maximum principle follows by combining arguments from the proofs
of [6, Theorem 3.1] and [9, Theorem 2.2]. For completeness, we give a proof in
“Appendix B”.

3.2. Proof of Theorem 2.11

We start with some general comments:

1. Wefixe >0,n0eN,K >0and a € (0, %). Here, ¢ is as in the statement of
the theorem and o = «(¢) is a free parameter, which we choose small enough
in the end of the proof. First, we determine K = K (d, P), then ¢ = «a(¢),
no = no(e) and Ry = Rp(¢).

2. We denote by C any constant which only depends on the dimension d, the
function F: K; — R and the environment measure P. The constant might
change from line to line.

3. We simplify the notation and write G instead of G,,. Moreover, we set

k=k(R) 2 |VR].
The idea is to control

H2Fr—G
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with the ABP maximum principle given by Theorem 3.1. By definition of F and
G, we see that

LoH =L,Fr, on Qg,
H =0, on 07Qg.

As H is only defined on Qp instead of Q];e we cannot apply Theorem 3.1 directly.
To overcome_this problem, we consider an extension & of H. Set R* L R+ Vdk
and let H': K g+ — R be a solution to

L,H' = (»CwFR)HQRv on Kgx,
H =0, on 07K p-.

Lemma 3.2. (i) maxg, |H — H'| < maxyrg, |H'|.
. 2
(i) maxge g, [H'| = NS

Proof. (i). Fix (y,s) € Qg, set p £ inf(r € Z,: (X;,s +1) € 3” Qr) and note
that £,(H — H’) = 0 on Qg. Thus, we deduce from the optional stopping theorem
that

|H(y,s) — H'(y,s)| = |EJ[H(X,. s+ p) — H (X, 5 + p)]|
= [EL[H'(Xp5 + ]|
< max |H'|.
P Op

Thus, (i) follows.
(ii). By Taylor’s theorem, we obtain for all (y, s), (x,f) € Or

Fr(y,s) = Fr(x, 1) = (VF(%. %),y = X) + 502 {y = x. V2F (5. ) (v — 1))
%ijl(% ) (s — 1) (3.4)
pils — 12+ p3lly — x5

where py is bounded by £ % and p} is bounded by . Thus, for all (x, 1) € Or
[(LoFrR)x, )| = |ES[FROX1, 1+ 0] = Fr(x, D] £ 5. (3.5
We set
T2inf(t € Zy: (X;,s+1) € 3’ Kp), p 2inf(t € Z,: X; € Bg+).
As (|| X, ||% —n)nez, is a P, -martingale, the optional stopping theorem yields that

max Ef[p] = xgdlkaéR (EX[1X,13] = I1x13) < cRk. (3.6)

xGBk OR
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Fix (v, s) € 3 Q. The optional stopping theorem also yields that

T—1
H'(y,s) = E(-f)[H/(Xt, s+ 1:)] - E) |:Z LoH (X, s+ t)j|

=0 (3.7)

—1
= —E) [Z LoFr(X(,s + DXy, s + r)] )

=0

If s > |R?], we have H'(y,s) = O and if s < [R?], then y € 9O and we
deduce from (3.5), (3.6) and (3.7) that

H' (v.)| < ZE] S mE[p] = & =

Bl

The proof is complete. O

Next, we add a quadratic penalty term to the function H'. Define

h(y,s) = H(y,S)-i- ||y||2, (v, 8) € Kps.

We will determine the constant ¢’ = ¢/(F) > 0 in Lemma 3.3 below.

To apply Theorem 3.1 to i, we have to control the upper contact set of 4 and
the w-Laplacian of 4. In the next lemma we show that ¢’ can be chosen such that
only a few points are in the upper contact set. To formulate the lemma, we need
more notation: Recall that we fixed a constant ng = ng(e). Set

1 . . . .
(MG )y 2 - E [(x9 = x@) (xi) = P)]. 1224

where X ,(,]f)) and x® denote the k™ coordinate of X no and x. Moreover, set
Apg() £ {w € Q: [MI0(x) — A < e},

where || - || denotes the trace norm, that is |M|| = tr(v'/MM*). Here, 2 is the
limiting covariance matrix as given by Theorem 2.5. Finally, set

Jng(R) £ {% € Qg: d(%,3”Qg) > no}, d = distance function.
We are in the position to formulate the lemma announced above.
Lemma 3.3. The constant ¢’ can be chosen such that the following holds: Let

R > @ Vg If (x,t) € Jpy(R) and w € A, (x), then (x,t) & T'p.

Proof. Take R > ‘/T'TO Vo, (x,1) € Juo(R) and w € A, (x). Recalling (3.4) and
using that the walk X is a P}j-martingale, we obtain

EZ) [FR(XH()a t +n0)] - FR(.X, t)

= st ({00 — 5.V (3 ) 0y =0
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+—%%_F(R*R2)+pt+non0+E [pX 1%, xllg].

Since w € Ay, (x), we have

Ee [<X — % ViF (R’ éz) (Xny — x)>] = notr <V2F (%, #) Mc(z)nO)(x)>

Using that % + %tr(?lsz ) = 0, we obtain

|ES [Fr(Xngs 1 +10)] = Frix, 0] < 505 4 24 (Sur (AV2F (5. %)) + 9 (5 %))

. 3
+ p;+no”% + E;) I:pgfﬂo 1 X0y — x||2]

[ t 2 s 3
= 2'}328 + Pryng™o T EZ) I:p;(”o 1 X0y — x”z]

Ci Cn 3
g 2’;?2‘9 + 0 + EX [HXHU XHZ] .

We deduce from the Burkholder—Davis—Gundy inequality that £ Z[HX ng — X ||§] <

3
cné . In summary, we have

|EQ[FR(Xng, t +10)] — FrOx, D] < 22 (5 + c(5% + CJﬁ)) <ol 259

=

As L,(H' — Fg) = 0 on Qg, we have
Eff)[H/(Xno, t +n0)] —H'(x,1) = Ejf,[FR(Xno, t+ no)] — Fr(x,1).
We obtain

EX[n(Xpg, t +no)] — h(x, 1)
= ES[FR(Xng. t +10)| — Fr(x. 1) + &' 5 ES[I1Xno 113 — lIx113]
EG[FR(Xng. t +no)] = Fr(x, 1) + 5%

¢/ 1oe /n()e _ A nge
z 2R2+C —Cm>0

Using this inequality and the fact that martingales have constant expectation, we
obtain for all p € RY

E}[h(Xng, t +10) + (P, x — Xng)| — h(x, 1) > 0.
Thus, for all p € RY, there exists a y in the P} -support of X, such that
(p,x —y)>h(x,t) —h(y,t +ngp).

We conclude that (x, t) & I'j,. The proof is complete. O
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Lemma 3.3 suggests that we should restrict our attention to environments which
are in A,,(x) for many x € Og. Motivated by this observation, we define

1
M AWy 2 . 2: —
A _AR () = Jwe Q: |Bxl H{a)EA,,O(x)} > 1 200 ¢,

x€Bgr

where o = «/(¢) is one of the free constants fixed in the beginning of the proof.
Next, we control the w-Laplacian of A:

(Loh)(v,5) £ Ej[A(X7w,s + 1+ T )] = h(y,s + D, (3,9) € K,
where T®) = T A k is the stopping time defined in (3.1).
Lemma 3.4. Forall (x,s) € Kg

CEX[T]
|(Loh)(x,9)] < O
Proof. Taylor’s theorem yields that [(L, Fg)(x, )| < % for all (x,t) € Kg. For

f(x) = |Ix[|3, note that (L, f)(x,1) = EX[IX1]3] — llx]|3 = 1. Consequently,
we obtain that

Lohl = |(LoFR)lg, +€ 5] < 5.

We deduce from the optional stopping theorem that

7® 1
(Lol x, )| = [E5 | D (La)(Xi,s+1+0) || £ ENTIS.
t=0

This completes the proof. O

Lemma 3.4 shows that the w-Laplacian of & can be controlled viax — E}[T].
Motivated by this observation, we define

AD 2 weQ:|B—IR| > EXTI|"T <K Y,

X€BgR

where K is one of the constants we fixed in the beginning.
As a last step before we apply Theorem 3.1, we introduce the following:

Ag) £ {a) €Q: P(T > k) < e~ W02 R forall x € OR},

which is in conjunction with the statement of Theorem 3.1.

We are in the position to complete the proof of Theorem 2.11. Take w € AV N
A@ N A® and let R be such that R, v ’fy—o \% @ V ng < R, where R, is as in
Theorem 3.1. Note that

R
ABR\BR_n,) = c/ rd=1dr < engR4.

R—ng
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Asw € A%), we have for s < [R%] — ng
1 Cng <
Bal Li(x,5) 20y (R) or oAy (0} = g + 2 = (C + 2)a = Car. (3.8)
R X€Bg
Moreover, because w € Ag), we deduce from Lemma 3.4 that
d+2 c 1 d+2 cK
< _ -z - y o
|B | DR (CADICHD] R R2@+D) | Bg| 2 BT < R2ATD)’
yeBR ye
(3.9
and
d+1 o C yppdt2 < K
|B | XB: (Lo (v, )[ T = R2ATD |B R Z LT[ = R2@+D
XE
(3.10)
Furthermore, Lemma 3.2 yields that
< / (R+k) ( )
;?gﬁh:;?giH + ¢/ f+€ 3.11)
Because o € A%), we can apply Theorem 3.1 and obtain that
1
d+1
max h — max h < RT3 |Luh)(y, )| (3.12)
Foo 00k (v.5)ely
Using Lemma 3.3, we obtain
1
1 d+1
2d_ d+1
(3.12) = CR@+T Br Z Li(x.s) g (R) or wngnO(x)}\(Lwh)(y, s)|
R (yusrery
| 7T
2d_ d+1
= ok |Bg| D i) (B or g )| (Lo (3, 9)]
RY (vsrekr

Using Holder’s inequality, (3.8), (3.9) and (3.10), we further obtain that

1
szn()fl d+2

2d_ 1
(3.12) ScR#HT [ 3" 1Brl D L)y (R) or ot ng ()
s=0 xeBgr
d+1
d+2

B Z (L) (v, )|

yeB
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1

R ar )
> o 2 e
s=R%—ng | R| X€EBR

1

R <R2[Ca]d*lf2 [cK]Z% R™2@HD 4 nocKR‘z(d“)) o

[IA

1

1 d
C(amK% +05K>d+1 .

[IA

Combining this bound with Lemma 3.2 and (3.11) shows that

max H < max H' +

Or Or «f
< maxh + f
s C(ow%ﬂKd+é +aK)% +c(%§ +e)+ 5
(W+2Kd+2 +otK)f% +ce+ JLE'

Replacing the roles of Fr with G yields that

By

1 + 1
o> s c
rréax|H|<C( adt2 K d+2 +aK)f’+1+Cs+\/—§.

To complete the proof we determine the constants. First, we choose K according
to the following lemma:

Lemma 3.5. [5, Lemma 2.3] One can choose K such that the following holds:
There exists an constant & such that

P(AP) > 1-Ke .
Next, we choose o = a(¢) such that (aﬁ + a)ﬁ < ¢. Then,

< c_
%1’('}” :Cs—i—ﬁ.

We choose ng = ng(¢) according to the following lemma:

Lemma 3.6. [5,Lemma?2.1] There exists anng = no(e) and constants c = c(ng) >
0 and C = C(ng) > 0 such that

1
P(AY NAR) > 1 —ce k7,

Now, we choose Ry = Ro(e) = Ry vV 22 V 812 Vv f V ng, where R, is as in
Theorem 3.1. In summary, for all R = Ry and w € Ag) Ag) Ag) we have
maxg, |H| < ce, and P(AY N A N AY) 2 1 - C(e)e @R’ The proof of
Theorem 2.11 is complete. O
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4. An Estimate for the Exit Measure

Take a Borel set A € 9K whose boundary has zero measure, that is

meas({x e dKi:d(x,A)=0=d(x, BpKl\A)}) =0, d = distance function,
4.1)

and define for (x, 1) € Z¢ x Z,

RA(x.1) £ {(y.9) € " Kr(x.0): (5=hvr: 7)) €A (42)

We also set RA £ RA(0). Furthermore, set
inf(r e Ry: (X1, t +5) €Kyp), se€l0,1]
ps 2inf(r € Zy: (X, t+5) & Kg), s € [[R*]],
x(x,8) 2 Pi((Xe,, T +5) € D), (x,5) e Ky, (4.3)
X 9) = x (%0 p2)s (6,9) € Kg,
Pr(x,s) = PX((X),, ps +5) € RA), (x,5) € Kg.

Ts

[I>

Here, Py, denotes the law of a Brownian motion with covariance matrix 2 and
starting value x.

Corollary 4.1. For every ¢ > 0 and 0 € (0, 1) there exist R, = R,(A,¢e,0) >
0,c1 =¢1(A, 8,0),c0 =c2(A, &,0) and § > 0 such that for all R > R,

P(loe: suplxr—@rl Sef) 21 —cre ek,
Kor

Proof. Step I: Fix a small number y > 0 and define

A+ {xeapKl d(x, A)<y}
Ay 2 {x e A:d(x,0"Ki\A) Z y}.

Note that
Ay, CA; gAgAng;},.
Let f (O f @ 9rK,| — [0, 1] be sufficiently smooth functions such that

- +
f(1)=!1’ on A f(2)= 1, on Ay,

0, on apKl\Azy, 0, on 97Ki\A;

Fork=1,2,let J® . KI — R be a solution to the boundary value problem

1 d 42 j® d7®
220 =1 Yijgnay, + S =0, on Ky,
J® = f®, on 9K,
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The optional stopping theorem yields that
IO, ) = Byl f P Xy, 1491 () €Ki k=12, (44)

Next, we set

(k) 2 (k) t 0
FR+1(x7t)_J (R)_Ci_lﬂ (R+1)2)’ (xﬂt)e QR+1'

Note that

N A}, = {x € 0PK;: d(x, A) = 0},

y>0
which implies that ﬂy>0 A;ry \A C 0A. Thus, due to (4.1) and (4.4), we obtain
that
max  (Fg), (6, 0) — xge1(x, 1))
(x,))EKg(R+1)
< max Piy((Xq,w +1) € A \A) > 0asy \, 0.
(x,1)eKy 4

Next, note that

U Ay =AN{x € dPK;: d(x, 97Ki\A) > 0},
y=>0

which implies that A\ Uy>0 A; C 0A. Due to (4.1) and (4.4), we obtain
(D
max (x,1) = Fpi(x,1))
(x,)€Kg(R+1) KR+l Rl

< max Piy((Xq,. 7w +1) € A\A)) — Oasy (0.
(x,1)eKy

Consequently, there exists a y = y (e, 6) > 0 such that the following holds:

2 1
FI(H)_] —& < Xrt1 = FI(Q_?_] + e on Kogr+1)- 4.5)

Take this y. Note that the function x is uniformly continuous on Kg, as it is
continuous on K. Thus, assuming that R is large enough, we have

max |xg — xr+1] = &.
Kor

Now, it follows from (4.5) that

@

Ryl — 26 < xg = Fl(elj-l + 2¢ on Kyg. 4.6)

Step 2: For P-a.a. w € Q and k = 1, 2, we define G%(—)H : Kgp — Ry as solutions
to the following boundary value problem:

{EwG%cil == 01 on QR+17

k k
T
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For k = 1,2, let C%k) = ka)(J(k)) = ka)(A, g,0) > 0 be the constant from
Theorem 2.11 and set

—~ A &
£ = ———.

VP
Using Theorem 2.11 with @ instead of ¢ yields that there existsaset G = G(A, &, 0,
R) € F such that, after eventually enlarging R,, for all w € G, all R = R, and
k=1,2,

max |Fy), — Gl | < cWz <. 4.7
OR+1
Step 3: In this step we show that
G, —2e < dr < GY) +2¢ on K. (4.8)

For (x,t) € dKr\RA, we obtain for sufficiently large R, that Fl(elfrl(x, t) <e.To
see this, recall that J(Y = 0 on 0PK 1\ A and note that for (x,7) € 0Kg\RA
F(l) ()C l) _ J(l) X ) J(l) _x __r_
R+1\W )= R+1° (R+1)2 IxI2VR’ TR21 )| -

Since

the uniform continuity of /() on K yields the claim. In the same manner, eventually

1 1
2 R [RZ] 2
s (1 - R+l) A (1 - (R+1)2)

— 0 as R — oo,

X _ X V4 ‘ N
R+1 lxll2VR |5 (R+1)2 [R2]

enlarging R, again, we obtain 1 — F,@l (x,1) < e for (x,t) € RA. In summary,

F,‘Jll —e=1Iga = F}Ql +¢& on 9Kg.
Together with (4.7), we conclude that on d K

G —26 STra S G, +2e.
Using once again the optional stopping theorem yields (4.8).
Step 4: Due to (4.6) and (4.8), we obtain that on Kgg

4 <W -z <GB _FP

(€8] (1
Gry1 — F ry1 — Friq +4e.

R+1 R+1

Finally, with (4.7), we conclude that on Kgg

|‘~II _ XR| é 48 _|_ G(l) _ F(l) G(z) _ F<2)

<
R+1 R—H’ + ‘ R+1 ~ Fri| = G

The proof is complete. O
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5. Proof of the Oscillation Inequality: Theorem 2.10

5.1. An oscillation inequality on a small scale

The main result of this section is the following oscillation inequality on a small
scale:

Proposition 5.1. There exist constants a > 0, ¢ € N such that for all R 2 1 there
is a constant C € (0, 1) and a set G € F with P(G) = 1—cR3* e~ R such that for
allw € G, p € {0, e} and every w-caloric function u : f(ﬁ_g)R — R the following
oscillation inequality holds:

osc u<C osc u. (5.1)
OPr(KRg) OP (K (c+3)R)

Proof. To prove this result we need input from [5]: For x, y € Z¢ we write x N y
in case

Pl (3nen: X, =) > 0.

We call aset A € Z¢ to be strongly connected with respect to € Q if x N y
for every x, y € A. Moreover, we call aset A C 74 to be a sink with respect to
w € Qif it is strongly connected with respect to w and forevery x € Aandy ¢ A

P(i(aneN: X, =y)=0.

In other words, a sink is a strongly connected set from which the walk cannot
escape. Due to [5, Proposition 1.13], for P-a.a. w € Q there exists a unique sink
Co-

We now turn to the main proof of Proposition 5.1. Fix two parameters ¢ € N
and £ > 0 and a radius R = 1, and define

.....

H ="H(R) 2 {w € Q: Veepy Breze suchthatz - x,x & Co, ¥ — zlloo = LRI},
S=8(R) £ |{w € Q: Yy yec,npy distu(x, y) < cR}.

Providing an intuition, we have the following:

— If w € &, the walk in w is elliptic in Cy, N B(c43)&.

— If w € 'H, when starting in Bg the worst case is that the walk in w is in a hole
of the sink C,, with radius | R].

— Ifw € S, all points in C, N Bag can be reached by a walk in w in at least [c¢R ]
steps.

We set G = G(R) £ £NS N H and take £ = £(R) small enough such that
P& < R3¢R* Due to [5, Proposition 3.1], there exists a constant « > 0
(only depending on the dimension) such that P(H¢) < cRYe~ K" Moreover, due
to [5, Proposition 3.2], we can choose ¢ (depending only on P) in the definition of
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the set S (and the statement of the proposition) such that P(S¢) < ¢R3e=R* In
summary, we have

P(G)=1—P(G)=1— P(E) — P(H") — P(S8°) =1 — cR¥ K,

It is left to show that the oscillation inequality (5.1) holds P-almost everywhere
on G. Let w € G NB and fix (x,1), (v,s) € ®”(Kg). Furthermore, let (Z,),eN
and (Y,),en be independent walks in w such that Zgp = x and Yy = y. With
abuse of notation, we denote the underlying probability measure by P,. Let u be
an w-caloric function on E(C+3) Rr. Denote

t2inf(n € Zy: (Zy,n+1t) & K(+3)R),
pEinf(n € Zy: (Ypn+s) & Ki3)r)-
Then,
ulx,t) —u(y,s) = Ew[u(Zf, T+1t)—ul¥,, p+ s)]
= Eo[(u(Ze. T+ 1) —u(Yp, p + )z, 404, p49)]

S ose uPy((Ze,t+1)# Y, p+9)).
= 0r(Reian) () T # 0> P

The oscillation inequality follows in case there exists a constant C = C(R) > 0
such that

Po((Zr,t+1) = (Yp, p+9) 2 C. (5.2)

Case 1: x,y € Cyp. As w € £EN S, we can guide the space-time walks to meet at
some point and afterwards to proceed together. Thus,

EARR < P (ZeiT+1) = (Vp, p +5)).

Case2: x & Cy or 'y ¢ Cy. In this case we first bring the walks into the sink. Since
w € H, the worst case is that the initial points x, y are in a hole of the sink of
radius | R |. Furthermore, using w € B, the walk can step in direction of the sink
with probability at least ﬁ. Consequently, again guiding the walks and using that
w € €N S, we obtain that

. 2 p2 2p2
(Zd)_z(H_S) R 52(C+3) R < Py((Ze,T+1) = (Yp9 P +5)).
Hence, (5.2) holds with C = (2d)~2(¢+3*R*£2(c+3R* () The proof is complete.
p p
O
The following is an application of Proposition 5.1:

Corollary 5.2. There exist constants o > 0, ¢ € Nsuchthat forall R 2 1 thereisa
constantC = C(R) € (0, 1) andaset G = G(R) € F with P(G) > 1—cR3* ¢~ K*
such that for all v € G, p € {o, e}

max osc p,(A) ZC,
ACIP K (c43)r OP(KR)

where

pr &inf(n € Zy: (Xp.n+1) & Keynr), b (A) £ PY((Xp,. pr+1) € A).
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Proof. The Markov property of the walk in the environment w yields that p,,(A)
is w-caloric in K(.43)r and consequently, Proposition 5.1 implies the claim. O

5.2. Multi-scale structure

Let R,, M, K, N, g, > 0 be parameters which we will determine later. The
constant M will be taken large (at least 10, say) and N, K € N.

Furthermore, let {A, ..., Ay} be a covering of 0K intersecting only in their
boundaries, which are supposed to have no measure, that is

meas ({x € 37K : d(x, A;) =d(x, 9’K;\A;) = 0}) =0.
Moreover, we assume that

N 3z € 0PK; 1 A CK 1 (z,) (5.3)

.....

In the following we will denote space—time points by x, 3, z, etc. For R = 1, j €
{1,...,N},2e€Z? xZ, and s € R, we define

piR Einf(t € Zy: (Xi.t +5) € Kr(2),
SRLinf(r e Ry: (Xp,1 +5) € Kr(2),
and

(xt)zR(]) Px((X SR, pt —}-t)ERAj(z)),

pl(;lvi) O PBM((X LR, ft Rine RA;(2)),

where RA;(x,1) £ {(y,5) € 0PKg(x,1): (3=, SR;;) € Aj}and RA;(Z) as in
4.2).

Definition 5.3. Let c € Nand C = C(R,) € (0, 1) be as in Corollary 5.2.
(i) For R £ R, we say that the cylinder K (2) is w-good, if

pi,i, (c+3)Ry _ pf).i, (c+3)R,

max max (
p=o.e

5.5 € O (Kp(2)) £ C

where || - ||;, denotes the total variation distance.
(ii) For R > R, we say that the cylinder K g (Z) is w-good, if for all X € Kg(Z)

X,Z,MR X,Z2,MR

P, pBM < &p.

v

The next lemma shows that in case R, is large the probability for a cylinder to
be good is high. The lemma follows from Corollaries 4.1 and 5.2.

Lemma 5.4. There exist constants R* = R*(Ay, ..., Ay, 60, M) Z 1 and § > 0
such that whenever R, 2 R*

P({o e Q: Kr() is w-good }) = 1= X forall R=1. (54
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In the following, let § be as in Lemma 5.4. Our next step is to set up a multi-scale
structure. Define

R 2 RX for ke,

and take a constant

Definition 5.5. (i) A cylinder of radius Rg is called w-admissible, if all sub-
cylinders of radius R, are w-good.
(ii) For k € N a cylinder of radius R,% is called w-admissible, if
— Every sub-cylinder of radius > Ry_1 is w-good.
— There are at most R; non-w-admissible sub-cylinders of radius Rk 1

Lemma 5.6. There exists a constant R* = R*(Ay, ..., Ay, &,, M) = 1 such that
for R, = R* the following holds: For all (,k) € Z¢ x 7 x 7

v/2

P({w e Q: KR,%(%) is w -admissible }) = 1 — e R,

Proof. We use induction. For k& = 0 the claim follows from Lemma 5.4 and a union
bound. For the induction step, assume that the claim holds for k € Z.. Denote
A2 {weQ:ink R2 (2) there exists a sub-cylinder
of radius > Ry_; which is notw-good},
B2 {weQ:in Kp (2) there are more than R}

non-w-admissible sub-cylinders of radius R,%fl ).

Due to Lemma 5.4, each sub-cylinder with radius > Rj_ is bad with probability
b} v
less than e~ Ri-1 < e~ R Thus, due to a union bound, we obtain for R, large enough
that

1 v/2
P(A) < 5e

We denote by A(x, R) the set of all w € Q such that Kz (x) is w-admissible. To
estimate P(B), we partition the cylinder K R? in p < polynomial of R; subsets

{Ui, ..., U,} such that A(X, R,%_l) and A(y, R,%_l) are independent for all X, y €
Upj,i=1,...,p.Fori=1,..., p, we have

. _pv/2
Zi 23 (1=Tpg . ) ~ bin(Uil, 1 = PAQ, RE_))) g bin(|U;, e~ 5im1),

xeU;

where < denotes the usual stochastic order. Note the following:
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Lemma 5.7. Forn € N, let Sy, ..., S, be i.i.d. Bernoulli random variables with
parameter p € (0, 1). Then, for all k € [n]

P(S|+--+ Sy 2 k) < (np)k.

Proof. We use induction over k € [n]. For k = 0 the claim is obvious. Assume the
claim holds for 0 < k < n. Then,

PSS+ S 2k+D)=PS1+-+S 2k+1,3,<,: Su=1)

n
S PSI+ A S =S 2k Su=1)

m=1

n
=Y PS4+ St 2P (S =1)
m=1

n
SY PGS+ 4 S Zhp

m=1
n
<> mp)p = mp)H.
m=1

The proof is complete. O
Using Lemma 5.7 and Chebyshev’s inequality, we obtain that

P

—1 pv —1pvpv/2

P(B) <Y P(Zi > p'RY)) £ pQR)X PP R gmr  RIRE,
i=1

v/2

IR} (l0g@2R2(d+2)- R < R}

= pe’ %e_ ,

v/2
provided R, is sufficiently large. We conclude that P(A U B) < e~ R~ The proof

is complete. o

5.3. The coupling

We use the notation from Section 5.2.

5.3.1. Definition In this section we define a coupling, which success will prove
the oscillation inequality. We define the coupling via a (random) sequence

{f(m), j}(m)’ 2(m), R(m)’ Y(m), Z(m)l m e Z+} .

The starting point is a so-called basic coupling: For £ € Z¢ x Z,,R > 1,y =
G1. $2).2 = (31, 52) € Kr(®), let ¢ %7*) be a Borel probability measure on the
product space (Z¢ x Z4) x (Z¢ x Zy) x D(Z4,7Z%) x D(Z., Z%) such that the

generic element (2 1 22, x' x 2) is sampled as follows:
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— If R > R,,then X' and X? are two walks in w starting at $; and 2 respectively,
such that the probability of (X,ll, V2 + n)pez, and (Xﬁ, 22 4+ n)pez, leaving
Kuyr(%) in the same element of {RMA{(X), ..., RMAy(X)} is maximized.
Moreover, Z! and Z?2 are the points where (X,ﬁ, Y2 + n)pez, and (X%, 2+
Mnez, leave Ky p(X).

— If R < R,,then X' and X? are two walks in o starting at $; and 2| respectively,
such that the probability of (Xn, V2 + n)pez, and (X,zl, 22 4+ n)yez, leaving
K(c43)R, (%) in the same point is maximized. Moreover, 71 and 22 are the
points where (X,ll, V2 + n)pez, and (X,zl, 22 + ez, leave Kc43)r, (X).

Before we turn to the main coupling, let us explain that on good cylinders there is a
reasonable probability that the walks leave a cylinder in the same region or point.

Lemma 5.8. Tuke £ € Z¢ x 7, R 2 1 and 3, % € Kg(X) of the same parity and
assume that w € Q is such that K g (X) is w-good.

(1) There exist two constant ¢, ¢3 > 0 only depending on the dimension d and the
covariance matrix 2l such that in case R > R,

qFRID (30 € 0P Kpp(R): 21, 2% € Kpyy1 (0)) > 1 — 1 M™% = 2¢,,.
(ii) If R < R, then
qFRINZ =28 > 1-C,
where C € (0, 1) is as in the definition of the good cylinder, see Corollary 5.2.

Proof. (i). The proof is based on the relation of oscillation, total variation and
couplings: In view of [16, Proposition 4.7, Remark 4.8] and of assumption (5.3), it
suffices to show that

v,X5,MR

llp; —pS MR <o M 4 26,

Take k € {1, ..., N}. Since Kg(X) is w-good, we have

oM ) = p MR | < Jody ™M ) — w0 |+ (65 MR ) — w0
+ lea ™ 0 = w0
< 2e0 + o X 00 — i 0| (5.5)

Furtherrnore because 0 — u(d) £ p%lf,[M solves the (backward) heat equation

dt u+ 2tr(QlV2u) = 0 on Ky g(x), [17, Theorem 6.28] yields the existence of two
constants ¢y, ¢ > 0 such that

piad ) — o R )| S M

Together with (5.5), we conclude (i).
(ii). This follows from [16, Proposition 4.7, Remark 4.8] and the definition of
a good cylinder. O
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We can (and will) take M and &, such that

- M2 —2¢, 2

z. (5.6)

In other words, on good cylinders the coupling is successful (in some sense) with
a reasonable probability.

From now on we fix R > R,,w € Q and two points y,z € Ky of the same
parity. The following are the initial values:

- RO 2R
- 70 2 (0, 0). B
— sample (5@, 2@, y©, Z®) according to qo; .

Now, we proceed inductively. Namely, once the m™ element of the sequence is
fixed, we generate the (m + 1) element as follows: Set R and £ according
to the following rule:

— Case I: R™~D > R,. If there exists a point © in the boundary of the cylin-
der KMR(mfl)(ﬁ(m_l)) such that =D zm=1 ¢ K -1 -1 (D), set RM) =
M—ITRM=D and £ = §. Otherwise, take R™ = MR™~D and ™ =
Fom=D)

— Case 2: R™=D < R,. We set R™ = (c + 3)R, and £ = x(m=D,

g(m) p(m) $m—1) s(m—1)
Then, sample (57, 20y 70m)y according to g R Finally,
let Y and Z be the walks in w that are obtained from ¥ ™ and Z™ by pasting. To
simplify our notation, we denote the probability measure underlying the coupling

by Q.

5.3.2. A technical lemma Fixk € Z,,% € Z¢ x Z, and let Ry < R < Riy1.
Further, define two stopping times:

(1>

T £inf (m € N: R™ < Ry),

[I>

S 2 inf (m eN: R™ 2 RE, or £ ¢ K o ]/2()2)).
+

Remark 5.9. If v € A(x, R,% +1)» then till 7 A S the coupling only sees w-good
cylinders.

Lemma 5.10. (i) There exist constants 6,C > 0 such that if ® € A(x, R,%_H),
then

—0K
Q(S < T) < cr K.

(i1) Ika_HM_lA <R thereAexist constants p, ¢ > 0 such that if o € A(x, RI%H)’
then for all 7 € KR;% ] (x)
+

QGD € Kg,(2) < cR K.
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Proof. (i). Note that

Qs <T)=Q ({%Rw > R}, or3yop: 2 ¢ KszH/Z()E)} Nn{s < T})

2 .2 A
<0 mgn, K2 R )+ @ (nesirs £ ¢ Kig o)
5.7
In view of Remark 5.9, [5, Lemma 4.10] yields that
K log(Ry,) ,
Q( max R™ >R2,, ) <2 T =ROK with ¢/ 2 log@)
m<SAT 10g(M)

To control the second term in (5.7), we first consider the process

» log(R™) —log(R)

L
" log(M)

, mSSAT.

Note that (L,,),,<s,7 has step size one and that it steps down with a probability

larger than %, see Lemma 5.8, Remark 5.9 and (5.6). Consequently, (L), <saT
is stochastically dominated by a biased random walk which steps down with
probability % This means that there exists a sequence of i.i.d. random variables

£, —&,...suchthat Q& = 1) = 1 —-Q¢& = —1) = % and Q-a.s. on
m<SAT)

Lm-H - Lm § srn+1 - Em~ (58)
Lemma 5.11.

EQ[S A T] <3 "10g(R) - IOg(Rk)—‘

log(M)
Proof. We set
T, 2infmeN:&, < —a), aecZ,.

It is well-known that E Q[Ta] = 3a, which follows from the fact that (&, + %)meZ "
is a martingale and the optional stopping theorem. Now, set

o [log(R) — log(Ry)
a log(M) ’

and note that Q-a.s. SAT =S AT A 1, < 1,. The claim follows. |

Next, set

B2 max R™ < RV21.
{m<SAT k41

Using again [5, Lemma 4.10] yields that

QB < R7E2,
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Denote £ = (x (™) and X = (x, ). By Lemma 5.11 and Chebyshev’s
inequality, we obtain

2
Q@En<sar: Ix™ —xll2 = R, 1/2, B) < E@[ Do —x("_])llzﬂg}

2
Rk'H n<SAT
2
Q (n—1)
gRZ E [Z 2MR }IB:|
k+1 n<SAT
C
Q
S S EY[SAT]
k+1
~ _C log(Res+1)
= 12
R/, log(M)
§ch_K/8.

Similarly, we obtain that
—K/8
Q@Enesar: 1™ =11 Z RE,, /4, B) S R K.
In summary, we have
Q@En<sar: 2™ ¢ Kgz p(®) = crR K,

for some suitable & > 0. We proved part (i).
(i1). Using (i) we see that

QG e Kp) S QS <T)+QE" € K, (8). T £9)
SeRK +QGTD e K (2), T £ 9).

It remains to control the second term.
Let (&§x)xez.. be as in the proof of part (i). For m € Z we set

oo
R(m) é sm—H — gm — _l7 Z M%‘kfgm+1 < l .
k=m-+2

We obtain thaton R(m) N{m +2 < T < §}

T T
e = < 37 @ = E < YT 2 RED
k=m+2 k=m+2

o0
< 2MRED + 2M Rm+D Z ME—Em+1
k=m+2
S AMRMTD = 4R,

and similarly, |7 — t@+D|3 < 2R™ Thus, on Rm) N {m +2 < T <
S, € Kg,(2)} we have ||Z; — x"*D |, < 2R, + 4R™ < 6R™, and
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|21 —t0mFD |% < 3R which happens with probability bounded from above by a
constant p = p(g,, M) < 1, because (x " +D Dy e (x(m) m)y 4 9P K, o)
and the definition of a good cylinder. Next, we need the following large deviation
estimate:

Lemma 5.12. There exist constants k, v > 0 such that for alln € N
1 n
- I < <™,

Proof. We call m € N a renewal, if

{sm > &, n>m,

Em <&, n<m.

For k € N, let 74 be the k™ renewal and note that brp2—épr1 S —(—k+1)=
k —i — 1 forevery i 2 k. Consequently, we see that

00 oo Tiy1+l
Z ME S+l — ppEut Z Z Méi
i=1+2 i=k j=1;4+2

oo
S MTEY (T = )M S (g — )M
i=k i=k

This shows that the event R(tx) happens in case (tj41 — 7;) M+~ 1 < 2k=i=1 for
all i 2 k. Now, the proof concludes identical to the proof of [5, Claim 4.12]. a

Let
N
ZN = ZHR(k), N e N.
k=1

Note that

Z[£E§£Q15n+l
2log(M)

because R > % and R = Rk+1M_1. Now, we obtain that

Q&M e Kp,(2).T <8 = QZy Skn) +QGET) € Kp(2), T = S, Zy > kn)

log(p)x

v
S Rk_4log(M)K +R,;Hog(M)

The claim of (ii) follows. O
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5.3.3. Success of the coupling Let k = max(n € N: R > R,) and define the
following sets:

k » Kk
A2 (NAGT RY, A2 ([T <59,
i=0 i=0

where 7*+1D £ 0 and
7O A 5nf (m Z T(i+1)1 R é Ri),

SO 2 inf (m > 7D RO > R2 or £0M ¢ KRI.ZH/Z()?(TUH)))) :

and

A3 2{(Ze T+ 20) = (Vo p+ 90},

Ay = {{(Zn/\r»n AT +21), Yupp.n Ap+31):n e Z+} c K(c+6)MR}’
where

ATy . © ~(T©
zET )+ inf (m €Zy: (Z ) m +Z§T

[l

) N 0
T ) & K+3)r, (X(T())))) ’
A(T©

) . ©) ~(TO ~(T©
p 25" dint (m e Zy: (T m+57) ¢ Kierar, (7).

|I>

Moreover, set

4

AéﬂA,-.

i=1

We define A(0, R?) to be the set of all environments w € 2 for which every
sub-cylinder of K> with radius R,f is w-admissible and every sub-cylinder with
radius > Ry is w-good.

Lemma 5.13. If § < pK there exist two constants R' € N and ¢ > 0 such that if
R, = R’ and o € A0, R?), then

Q) z¢.

Proof. Using Lemma 5.10 and the definition of admissibility, we conclude the
existence of a constant x > 0 such that

k+1
n ¢ i
Q (A (2T, R2) A (T, R})) S CR,*. nelkl,
i=n

where with abuse of notation £® = 0 and R;,; = R. Using the elementary
inequality:

n n
[Ja—a)z1-> ai, aie©0,
i=1 i=1
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we obtain that

k k 00 0
0 (mA (i, Rg)) YR 2 -3 R = 1= 3 R
i=0 i=0 i=0 i=0

Choosing R, large enough, we get

k
Q (ﬂA (;eT(”, R})) > -,
i=0
for a fixed € € (0, 1). Using Lemma 5.10 (i), we also obtain that

oo
QA z1-c) RE 21—
i=0

provided R, is large enough. Let

o0
= {ZM& < 1}.
i=1

We note that Q(R) > 0, see Lemma 5.12. Let X = (x, t) and note that on A; N
ANR

7O 70
e el € @ = xla + 3 @ — XDy < 2M R+ > 2MRED
i=2 i=2

o0
<2MR +2MR ZM&‘ < 4MR.

i=1

Similarly, we see that |¢7"") —¢| < 4M2R? on A; N A, N'R. Hence, Q(A; N A2 N
Ag) 2 Q(A1NA2NR). Due to Lemma 5.8, we also have Q(A3|A1NANAy) = C.
Finally, we conclude that Q(A) = C(Q(R)—2¢). Taking & small enough completes
the proof. O

5.4. Proof of Theorem 2.10

Let (Zn)nez, and (Y,)nez, be the coupled processes as defined in Section 5.3.1
and let T and p be as in Section 5.3.3. Take w € A(0, R?) and letu : Ktreymr — R
be w-caloric. Now, we have

u@ —u@ = QZr,t+21) #Xp,p+31))  osc  u
OP (K (c+6)MR)
<(1-¢) osc u,
OP(K(c+6)MR)

where ¢ > 0 is as in Lemma 5.13 and p is the parity of Z and §. In view of
Lemma 5.6, this proves Theorem 2.10. m]
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6. Proof of the PHI: Theorem 2.6

6.1. Some notation

In the following, fix a parity p € {o, e}. Take v € (0,1) and N € N, and let
{Ar,..., Ay} be a covering of 07K and let {Cy, ..., Cy} C 9”K;. Further, we
suppose that

max diam(A;) = 7.
i=1,....N

=

,,,,,

We assume that the boundary of each A; and C; has zero measure.
Let¢ > 1and y € (0, 1) be as in Theorem 2.10 and let O; p be the set of all
o € 2 such that the oscillation inequality

osc u<y osc u
Or(Kg(%)) Or (K¢r())

holds for all w-caloric functions u on ?g r(X).
Fori =1,..., N, define x; g ; and W g ; as in (4.3) with A replaced by A;
and Kg replaced by Kg (%). Moreover, set @ = 2 — ¢ and

[P .ar,i (D) — Xiar,i D] _ }
= Sey.
Xz.R.i(Y)
The w-dependence in the above definition stems from &.
Fori =1,..., N, define X}: R and CD; R3S in (4.3) with A replaced by C;

and Kp replaced by Kgr(x).Fixaby,...,0y > 1 and 8* € (0, 1), and set
Ui g = {0 € Qi Vegp@)Vizt, N [PE g o (D) = X{ g . (DI < 87

Letk € (0, %). Define the map J: Q- Q, 7(0)) £ & as follows: For x € Z¢

andi =1,...,2d, set

~ A |0, w(x,e) <k,
o(x,e) =

o, e)+ %, wk e) 2k,

where N £ Z%il ]I{w(x,e,')zlc} and M £ leil a)(x, ei)H{w(x’ei)<K‘}.
Next, take § € (&, %), where £ € (0, %) is as in the statement of Theorem 2.6,
and define

Tr = {a) € Q: Vyepyp Ayeza such thaty N 2,22 Cx 1z = xlloo = Ljo},
Ir & {a) € Q: Vyep,, all self-avoiding paths in w with length LoRé/ﬂ

and starting value y have visited Cg)] ,
Sg 2 la) e Q: Vx,yecg)mgm distz(x, y) < CR5} ,

where €, 0 > 0 are constants determined in the following lemmata. The proof of
the next lemma is given in Section 6.3 below.
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Lemma 6.1. If« is small enough, o > O can be chosen such that there are constants
R' > 0,c¢1, ¢y > 0and ¢ > 0 such that for all R =2 R’

P(Tr) =1 — cje k"
Finally, define

ZRé ﬂ ﬂ [Oy’rﬂuyA’rﬂu;’r]ij ﬂIR ﬂSR

yE€KR re(R5,R)

Lemma 6.2. If« is small enough, ¢ > 0 can be chosen such that there are constants
R > 0,c¢1,¢p > 0and ¢ > 0 such that for all R > R’

P(ZR) = 1 — ¢je®k’.

Proof. If « is small enough the probability measure P o J~1is balanced and gen-
uinely d-dimensional. Thus, the claim follows from Theorem 2.10, Corollary 4.1,
[5, Propositions 3.1 and 3.2] and Lemma 6.1 with a union bound. m]

From now on, we will assume that R > R’ and that w € Zg NB. It might be that
we enlarge R’ even further. Under these assumptions we will prove the parabolic
Harnack inequality, which completes the proof of Theorem 2.6.

6.2. The proof

Let u be a non-negative w-caloric function satisfying the growth condition (2.1)
in Theorem 2.6. For contradiction, assume that X* € ®p(K1}L) and y* € ©F(K)
satisfy

(1 +3e)Hy—cu(y*)
(1—¢)?

u(x*) 2 , H=Hy .= H,. (6.1)
Furthermore, let K(Jg_ /)R be the discrete version of Bix—¢/2)r x (2R2, 2 -

€/2)?R?) and let K" be the discrete version of Bog x (1.5R%, 4R?).
The proof of Theorem 2.6 is based on the following three lemmata:

Lemma 6.3. There exists a constant M 2> 1 such that every subcylinder of K2+ R+
with radius R® contains a point 2 of the same parity as £* such that

u(z) = Mu(3").
Moreover, there exists a subcylinder of K (E_ /)R with radius R® which contains a

point X of the same parity as X* such that

1-6
2

u(®) = Mu(3*)2F

From now on let X = (x, ¢) be as in Lemma 6.3.
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Lemma 6.4. For every z € Cz X Z4 N K(+275/2)R with the same parity as x* it
holds that
u(?) £ Mu(5* )2k,
Noting that (1 —§)/2 > % and 26 < %, we see that X & Cy x Zy. Let

T2inf(neZi: (X,,n+1) & Kygor X, €Cz). (6.2)

Lemma 6.5. PX(X7 ¢ Cz) < wo R

Next, we put these pieces together. The optional stopping theorem and Lem-
mata 6.4 and 6.5 yield that

u(®) = Eyu(Xr, T+ 0Oixpecy)] + En[u(Xr, T 4+ 0)|X1 & C3]Poy(X1 ¢ Ca)
< Mu(5*)c 2R 4 EX[u(Xr, T + 1) X1 & Ca]o R
Now, rearranging and using Lemma 6.3 shows that

1 §
EXu(Xr, T +0)|X7 & C5] = Mu(y*) (28 7 — 28R

1-6
Since 2¢R 7 — 2R S | for large enough R, we obtained a contradiction to the
growth assumption (2.1). Except for the proofs of Lemmata 6.3, 6.4 and 6.5, which
are given in the next subsection, the proof of Theorem 2.6 is complete. O

6.3. Proof of Lemma 6.1

For z € Z¢ and n € N we write
Cn(2) & [—n,n]’ + 2n + )z

Adapting terminology from [5], we call C,(z) to be w-good, if C»,(z) contains a
unique sink and for every x € C,(z) any self-avoiding path in  of length = n/10
reaches the unique sink in C,(z), cf. [5, Lemma 3.6].

Fix a small ¢ > 0. Then, by [5, Lemma 3.6] there exists an N € N such that

P({w € Q: Cn(2) isa)-good}) >1-— %
Next, take the parameter « € (0, ﬁ) in the definition of J small enough such that

&

. . < (N
P({w e Q:3imk,..20 @0, &) < k}) < 2|Con (O]

Let C; be a sink in Qon(z) with respect to the environment w. In case there are
several sinks, take one in an arbitrary manner. Now, we have

yeeey

P({w eQ:C;= Cé}) > P({w € Q: Vyetnn)Vh=1,...2a @(y, ex) = K})
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21— 1Cn@IP({w € 2 B, 20 00.e0) <x}) 21— 3.

We say that Con (2) is very w-good, if it is w-good and C%) = C»Za;. Now, define the
{0, 1}-valued random variables

G (w) 2 {Con(2) is very w-good}, z € Zd,
and note that
PG, =1)=21—¢.

As the environment measure P is an i.i.d. measure, the random variables G, and
G, are independent whenever ||x — y|loc = 2. Consequently, we can apply [18,
Theorem 0.0] and conclude that in case we have chosen ¢ small enough from the
beginning, the family (G;),c7« stochastically dominates supercritical Bernoulli
site percolation. With abuse of notation, this means that the percolation process
and (G;),cza can be realized on the same probability space such that a.s.

I{ze D} < G,, zeZ,

where D is the (a.s. unique) infinite cluster of the supercritical percolation process.
Thus, we note that a.s.
Z 4
Jesccs

z€D

Denote by A, the connected component of z in Z?\D. In case z € D we have
A; = . Furthermore, set

|A, UdA,|, z¢&D,
1, ze€D.

K; =
w
Of course, the w-dependence stems from D.

Lemma 6.6. For a.a. w every self-avoiding path in w with length |Con (0)|KZ + 1
and starting value z € 72 must have visited C;.

Proof. Note that every self-avoiding path in @ with length |Con (0)|KZ + 1 and
starting value z has visited a point y such that

yé J ovw.
ueA;UdA;

Consequently, the path has crossed a cube Cy (1) withu € dA,. AsdA, C D, for
a.a. w € 2 we have G, (w) = 1 and the definition of very w-good implies that the
path must have visited Cg. O

The following lemma follows from [11, Theorem 8, Remark 10]:
Lemma 6.7. There exists an o > O such that for all k € N

P(IA;| 2 k) < ce .
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Now, for 0 £ 2|C,x(0)| and large enough R, Lemmata 6.6 and 6.7 yield that
P(Tg) Z P(Tg. Veey 1Azl < LR¥))
= P(Yiehy |Ac] < [R¥))
> 1 — o Bagle ™R
This bound completes the proof of Lemma 6.1. O
6.3.1. Proof of Lemma 6.3 The proof is based on an iterative scheme in the spirit

of an argument by FABES and STRoOCK [10]. Let (r,),ez, be a sequence of radii
defined as follows:

o2 R, r 3§ T, ér—l
0 s 1 8(1” n nz
Note that
o0 o0
eR 1 R e
Zarn:aR—f—?Zm §aR+—<(2—§)R,
n=0 n=1
and that

22_ 2p2 &R ! ( 5)2 2
E =a°R —E — 2—--) R".
n:Oarn ¢ * 64 n4< 2

Set X £ max(n € N: r, > R®) and note that

TR o R s>n = xz| [—RT|. (63
n 8a 8a

Next, we construct two sequences (X,)nerx] and (3n)nerx] of points in Ko_g/2)r
with the same parity as £*. As initial points we take Xy = £* and jo = $*.

Before we explain mathematically how X, and y,4 are chosen once x,, and
In are known, we describe the idea in an informal manner, see also Fig. 3.

The initial step is to show the existence of a subset « RA; (red in Fig. 3) of
a” Ky g with the two properties that it can be reached by the space-time walk
starting at X9 and that maxy g4, # and maxqga, #/ mingga, u are reasonably large
compared to u(xg) and u(Xg)/u(3o), respectively. The oscillation inequality shows
the existence of a cylinder K“ (blue in Fig. 3) containing « R Ay in which the ratio
maxgw« u/ maxypga, u is reasonably large. Using these properties, we obtain that

max u > max u > u(Xp),
Ku aRAg

where b >> a means that b is in some sense larger than a. We now take X to be
the point in K* (with the correct parity) where u attains its maximum. The next
step then is to chose y; and to iterate. Before we comment on how ¥ is chosen,
let us stress that the sequence (X,),e[x] grows fast and the terminal point Xx will
have the properties as described in the second part of Lemma 6.3. Since we want
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— OPK*

T apKozR

time Yo *

space Kop K~

Fig. 3. An illustration of the first step in the iteration procedure

to iterate, the point y; should be an element of a shifted version of K*, say K !
(magenta in Fig. 3). Suppose that 6 RCy (green in Fig. 3) is a subset of K/ and part
of the boundary of a cylinder K*. We will chose 6 and Cy, such that the space—time
walk starting at $) has a reasonable probability of exiting K * through 6 RC}. Then,
we take ¥ to be the point in 6 RCy (with the correct parity) where u attains its
minimum. We proceed the iteration up to time X.

We now make this precise. The first step is based on the definition of iz, ,. .
Due the Harnack inequality for Brownian motion, we have

X2, arn i ()211) § HX%,,,ar,,,i (ﬁn)
Using w € Uf;, ., we obtain

(‘Dﬁn,arn,i(fn) =14+ qjﬁ,l,arn,i(jen) - X%,l,ar,,,i(x,\n)

— = = <1l+e.
Xﬁ,,,ar,,,i(xn) X%n,arn,i(xn)

Similarly, we see that ®; . ;(9,) = (1 —&)xz, ar,.i(In). Therefore, we obtain

qbin,arn,i(x,\n) § (1 + S)Xin,otrn,i()en)
§ H(l+ S)Xin,arn,i();n)
< I+ E)quﬁn,arn,i(),}n)

(6.4)

1—c¢

In the following we use the short notation A, x £ Or(ar,Ar(Zy)).
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Lemma 6.8. There existsak € {1, ..., N} such that

su(x,) (1—e) minAn,k uu(x,)
max u > —.
An 1436 Aux (I+3e)H  u(yn)

oL {k c{l,....N}: maxu > 5”(“)}.
Apk 1+ 3¢
Note that
814()2")
Zmaxu (Dzn ary.k (xn) =171 3¢ u(xn)q)zn ary.k (xn) =17+ 3¢ (6.5)
ko Ak kg®
This yields that

Z max u q)z Ay, k(xn) Zmaxu q)z A, k(xn) - Z max u q>zn ary, k(xn)

A
feo Ak kge "Mk

1+28
14+ 3¢

z u(fﬂ)'

Since the last term is positive, we conclude that ® # (.
For contradiction, assume that for all k € ®

1 — ¢)min X
max u < ( ) Ani ¥ u()f"). (6.6)
An,k (1 +38)H u(}’n)

Using the optional stopping theorem, (6.4), (6.5) and (6.6) yields that

u(x,) < Z{?axu chn,otrn,k()en) + Z IEaX” (bzn,ozr,,,k()%n)

ke® 55 Ak
eu(xy)
< kaar)fu q)Z" Al k(xn) T ;g
ke®
(1 —e)ming, , u u(x,) cui)
< n, ¢ R +
l;() (1 + 38)H u( n) Zn,ar,,,k(xn) 1+ 3¢
) g et
= (1 + 38)”(5\)”) et An,k Zn, Uy, n 1 + 38
< L+ 20)un)
N 1+ 3¢

This is a contradiction. The proof is complete. O
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Letk € {1,..., N} be as in Lemma 6.8 and take Z,, 11 € K»g such that
An,k - Kowrn (2n+l)-
Due to Lemma 6.8, we have

(I —ouEn) - MAXOP Ky, (Gu1)) ¥

< ) 6.7
(1 +3e)Hu(y,) — mingr(k,,,, (¢,1) 4 ©7

Now, we explain how v has to be chosen. Namely, take v such that

log(t) T
vea- Lot < inf <Z—H> ,

T iely v

where t > 1 is a constant we determine later. With this choice of v we can apply
the oscillation inequality and obtain that

0sc uzt 0sc u. (6.8)
(-)p(Krn+l (2)1+l)) ("')p(Kuvrn (271+l))

Using (6.7) and (6.8), we further obtain that

Maxer(k,,, G4 MMerk, G4 0SCork, G ¥

maxg, , U maxg, , U maxga, , U

< toscgr (Kgvry Gny1)) U

T MAXGP (K, (Gug1)) U

i mingp(l(w,n CGar) U
MaX@r (Kyyp, (Znt1)) 4

> <1 _ (1+ SE)HMA()AJ,,)) .
(I —&)uxy)

Let %, be the point where  attains its maximum on @7 (K, ., (Z,+1)).

Next, we explain how y,,41 and t are chosen. At this point we also explain how
{Cy,...,Cpn}, 61, ...,0y and 8* are chosen. Take C; and 6; such that there is a
cylinder Ky, ,, (it) with 3, € Kg,, (1) and O, Ci () C K, (Zng1) — (0, 2r3+1),
see Fig. 3. Here, 6;r,Cy(i1) is defined in the same manner as for {Ay, ..., Ay}.

Recalling that € U, we can take 8" small enough such that there exists a

(6.9)

Ok
. A _1 A
uniform constant m > 1 such that @Z’ Oern. k(yn) = m~ . Then, take ¥, to be

the point in ®7 (6xr, C(i1)) where u attains its minimum. The optional stopping
theorem yields that

u(dn) = “(y—m“) (6.10)

We now impose an assumption on t:

2m(1 4 3¢)

t
g2

1\

(6.11)
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Using Lemma 6.8 and (6.9), we obtain that

. (1+3¢)Hu(n)
nsn 24 (1= G e

Lt (1 _a+ 38>HuA(yn)> .
1+ 3¢ (1 —&)u(E)

6.12)

Lemma 6.9. Forn € [X — 1] we have

(30 HuGay1) <

¢ >
1 = outrn) Ze <© u(Xp41) 2

a +3€)HM(§n+1)>
(1—¢)?

Proof. We use induction. For n = 0 the claim follows from (6.1). Suppose that the
claim holds for n € [X — 2]. Together with (6.10), the induction hypothesis yields
that

(1+3e) Hu(Gny1) _ (1+3e)Hu(Gn) _ ()
(1—¢)2m - (1 —¢)? -

Using this bound, (6.12) and the induction hypothesis again, we obtain that

te?u (@) o te? Hu(Pn1)
143 = (1—¢)2m

u(in-‘rl) 2

The assumption (6.11) implies the claim. O

Now, (6.11), (6.12) and Lemma 6.9 yield that
82

I+ 38‘”()2") 2 2mu(X,).

M(fn-‘rl) 2

Inductively, we see that

u(Ex) 2 2% m*u (%)

and (6.3) completes the proof of the second claim in Lemma 6.3 with M = m*,

To see that the first claim holds, note that
u(Fx) = mruo) = m*uG).

Thus, the first claim follows from the argument we used to generate (y,),c[x]. The
proof is complete. O
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6.4. Proof of Lemma 6.4

By the first part of Lemma 6.3 there exists a point y of the same parity as t*
such that its space coordinate is in B and at most at distance R? from those of
2, the time coordinate of J is at least at distance R%® and at most at distance 2R%
from those of Z, and u(y) < Mu(y*). We now distinguish two cases.

First, if § € Cz we use w € Sg and the optional stopping theorem to obtain
that u(y) = u ()R, provided R is large enough. This yields the claim.

Second, if y ¢ Cz we guide the walk into Cg. Since w € Jg, the worst case is
that § is in a hole of C of radius | R® |. As @ € B, with probability at least % the
walk in w goes a step in direction of the boundary of the hole. Thus, with probability

at least (2d)~¢ LR®) the walk is in Cs. Recalling that § < § and that k < ﬁ, the
claim follows as before. |

6.5. Proof of Lemma 6.5

Recall that w € Zg. Thus, to be at time 7' not in Cg, the walk may not leave
the ball B, Jagren(x) = Begea(x) before it leaves the cylinder K,gr, which is
necessarily via its time boundary when R is large enough. In other words, we have

{Xr ¢Cslc{S> st},
where
S2inf(n € Zy: Xp & Bgess(x)).
Set o = | R>7% |. We show by induction that forn =1, ..., 0
sup (PY(S > nleR*|): y € Begers(x)) < 2" (6.13)
For the induction base note that for all y € B_pe/4(x)

, EJLS
PX(S > [eR°]) < stTESJ] <cR 7 < w72,

in case R is large enough. For the induction step assume that (6.13) holds for
n € {1, ..., o—1}. The Markov property of the walk yields thatforall y € B_gs/4(x)

PX(S >+ 1)|eR])=P)(S > n+1)|eR],S > [eR"])
— EJ[PXURD(S > nleRE D ige e ]
<w ?P)(S > |eR%])

< m—2(n+1).

Using (6.13) with n = o yields that
PX(S > eR?) < PX(S > oleRE]) S R

The lemma is proven. O
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Appendix A: Proof of Theorem 2.9

The proof is similar to those of [22, Theorem 3.3.22]. The only differences are that instead of
the EHI [22, Lemma 3.3.8] one has to use [5, Theorem 1.6] and that instead of [22, Eq. 3.3.23]
one can use the martingale property of the walk and the optional stopping theorem, see also
the proof of [11, Theorem 2 (i)].

We give some details: Let Ry > 1 be a large constant and set R; = Rf) and
B2 {xeZ |Ix —zlloo < R}, i€Zy.
We shall also write B! £ B! (0). Set
L Linf(neZy: Xy & B), i€ly.

Due to [5, Theorem 1.6], provided Ry is large enough, there exist constants y, § > 0 and a
set G; € F such that for every » € G, every z € dB' and every x € B'~!, it holds that

max  E),[# visits of x before 7;4»] <y min  Ep,[# visits of x before 7;45],
yeBi~1(z) yeBi~1(2)

and
$
P(Gj) 21 —e K,

Let (6%) 74 be the canonical shifts on €, that is (0¥ w)(y, €) = w(x + y, ). We obtain for
every w € G; and all z € 3B that

E Ej. ,[# visits of Obefore 7;1] < max E[# visits of x before 7,45 ]
; B~ (2)
xeBi-1 re

xeBi-1
< min Eg)[# visits of x before ;4]
xeBi—! yeBT @)
< y EG[# visits of B~ before Ti42]


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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S vEL[tis2]

2
S YRy
Using the shift invariance of P and the strong Markov property of the walk yields that
/ Eg[# visits of 0 in (7;, Tj 41 ]]P(da))
1
0 .. .
= e / Z Epy,[# visits of 0in (7, 7j41]] P(dw)
yeBi—l

l XT' . .
< Wf. D EQ [Epy [# visits of 0 before 7,1 ]| P(dw) + cRY, | P(GY)
" yeBi-1
2—d 2 —R
So(RTTH R e ).

1

Recalling that d = 3 and summing over i shows that
/ E [# visits of 0] P(dw) < oo,

which implies that the walk is transient for P-a.a. environments. O

Appendix B: Proof of Theorem 3.1

We borrow ideas from the proofs of [6, Theorem 3.1] and [9, Theorem 2.2]. Define

M2suwpu, ©2{(y.s) R Q+ VDRIV <5 < ¥}
Or

W.Lo.g. we assume that M > 0. Note that

Y Y d d+1
2 2 s%s M
@) 2/0 (/Rd H{nxnz<ﬁ}dx) ds = C/O R4 T T Rd

where A denotes the Lebesgue measure. Consequently, we have

d
M = cRAFIN(®)d+T
In other words, (3.3) follows once we show that

AO ¢ Y |ENuXgw.s + 14+ T —u(y,s + | (B.1)
(v,s)€ly

The proofs of the following lemmata are postponed till the proof of Theorem 3.1 is complete.

Lemma B.1. We have

MO S D wly, ) —uly,s + AUy, 9).
(v.s)€ly

(Note that u(y, s) — u(y, s + 1) = 0 whenever (y, s) € T'y.)
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Lemma B.2. There exists an R, > 0 such that whenever R = R, for all (y,s) € Ty
AU (y,9) < 4% (ES[uX g5 + 1+ TE)] —u(y, ).
Set
W2 (y,s) € Tyt Ep[uXgw.s + 1+ T®)] —u(y,s) > 0}.

Using Lemmata B.1 and B.2 and the arithmetic—geometric mean inequality, we obtain for
allR = R,

MO)Y e Y (uy,s) —uly,s + D(EY[uXpw, s + 1+ TH)] —u(y, )

(y.s)ew
<o Y (u(ys) —u(ys + 1) +dENuXpw. s + 1+ TO)] = du(y. )"
(y,5)ev
<¢ > (ENuXrw.s + 1+ TO)] —u(y,s + D)™
(y,5)ev
<c Z |E5)[1/1(XT(1<),S +1+ T(k))] —u(y,s+ 1)|d+1.
(y.5)€ly
The claim of Theorem 3.1 follows. O
It remains to prove the Lemmata B.1 and B.2.
Proof of Lemma B.1. We borrow arguments from the proof of [9, Theorem 2.2]. Set
X $) 2 {(p,g — (v, p)): p € Lu(y,s) and g € [u(y, s + 1), u(y, )]} ¢ RIF,
The key observation is the following inclusion:
ocxrw2 |J xt.9. (B.2)

(y,8)el’y,

Letus accept (B.2) for a moment. Then, using that the map (y, z) — (y, z— (B, y)) preserves
volume, because it has determinant one, we obtain

AO) = A(x(Ty) = Z w(y,s) —uy, s+ D)HAUu(y, s)),
(v,s)ely

which is the claim.
It remains to prove (B.2). Let (y, s) € ® and define

O, ) 2 ux, 1) —(y,x)—s, (x,1)€ Q%.

Let (yg, s9) € Qg be such that u(yg, so) = M. Recalling the definition of ®, we see that
¢ (v, s9) > 0 and that ¢ (x, ) < O forall (x, 1) € Q];? with u(x, 1) < 0. Let

Ny 2 max(r: (x,1) € Q% and ¢ (x,1) 2 0), max(¥) £ —c0.

Note thatso < Ny, < 51 2 max(Ny: x € OgUd¥Og) = max(Ny: x € Og) < [R?] 1.
Let y; be such that s1 = Ny, and note that (y;,s1) € Qg. For all (x,?) € Qlje with
t > s1 we have ¢ (x, t) < 0, which yields that u(x, t) — (v, x) < s < u(yi,s1) — {y, y1),
because ¢(y1,s1) = 0. This implies that y € I,(y1, s1). By definition of s, we have
¢(y1,s1+1) <0, and hence u(yy, s1 +1) < (y, y1) +s. We conclude that u(yq, s1+1) <
(v, y1) + s < u(y1, s1), which finally implies (v, s) € x (y1, s1) and thus (B.2) holds. O
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Proof of Lemma B.2. We borrow the idea of the proof of [6, Lemma 3.4]. Fix (y, s) € Qg.
Fori =1,...,d, define

u; £inf(n € Zy:a(n) =1i).
Furthermore, we define the following events:

Az('+) EA{Xu; — Xyj—1 = €i,u; Sk},
Alg_) £ {Xu,- — Xy—1=—¢j,u; < k}‘
Let W be a random variable independent of the walk, which takes the values £1 with
probability % Finally, define
B 2 AP U (W = +1) 0w > k).
BT 2 AP u(w = —1y 0w > k).
B and B are disjoint and that the union is P)-full. Th
; ; joint and that the union is P, -full. Thus, due to symmetry,

We note that and

we have
Py = PyB ) = 1.

As w € B, the walk X is a Pay)—martingale and E)[X 1] =y follows from the optional
stopping theorem. In summary, we obtain

Eb[Xpw|B] = 2E5)[XT<1<)HB;+>]
=2(Ep[Xpm] — Ec%[XT(A,)]IB;_)])
=2y — E)[Xy0IB 7).
Hence, we have
0; £ E)[Xpw B =y =y — EN[X7001B 7).

Take B € I, (y, s). Using the definition of 1, (y, s), we obtain

(B, O;) > Bx—NPOXpw =xIBT)

erRuakOR
> (B.x = )Py (Xgao =2, T® =1 —5 — 1B
(x,1)€QRU* Qg
> Y @) —u NPy Xpw =x, TO =1 —5 —11B{)
(x,HEQRU* Qg
= EQ[uXpa. s + 1+ T®) B —u@y, s).

Similarly, we see that
_ON> Y (GNY IS
(B, =0i) Z Ep[u(Xpay, s + 1+ TN[B; | —u(y, s).
Consequently, (8, O;) lies in an interval which length is bounded by 2L, where

L2u(y,s)— Ep[uXpa,s+1+T0)].
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Notice that L is non-negative by the existence of 8. We conclude that

Ay, 9) SMJz e R Vimr g (2 O;) €10,2L1)}).

.....

Note that

Mz e R Vo a4 (2,0;) €10,2L1)) = L) |det (M)],

where M = (O] e Od) . Due to Hadamard’s determinant inequality, we have

d
detm)| = [T ]0i-

i=1

For large enough R, we deduce from [6, Claim 3.5] that

||ei - O; H < exp ( — (log R)2).

Consequently, by the triangle inequality, we have

|det(M)] < (1 +exp ( — (log R)?))“.

Now, the claim of the lemma follows. O

10.

11.

12.

References

. ANDRES, S., DEUSCHEL, J.-D., SLowik, M.: Harnack inequalities on weighted graphs

and some applications to the random conductance model. Probab. Theory Relat. Fields
164, 931-977, 2016

. ARMSTRONG, S.N., SMART, C.K.: Regularity and stochastic homogenization of fully

nonlinear equations without uniform ellipticity. Ann. Probab. 42(6), 2558-2594, 2014

. BELLA, P., SCHAFFNER, M.: Non-uniformly parabolic equations and applications to the

random conductance model. arXiv:2009.11535v1, 2020

. BERGER, N., Biskup, M., HOFrmAN, C.E., KozMA, G.: Anomalous heat-kernel decay for

random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab.
Stat. 44(2), 374-392, 2008

. BERGER, N., COHEN, M., DEUSCHEL, J.-D., Guo, X.: An elliptic Harnack inequality for

random walk in balanced environments. arXiv:1807.03531v1, 2018

. BERGER, N., DEUSCHEL, J.-D.: A quenched invariance principle for non-elliptic random

walk in i.i.d. balanced random environment. Probab. Theory Relat. Fields 158(1), 91—
126, 2014

. BOUKHARDRA, O., KuMaGaAl, T., MATHIEU, P.: Harnack inequalities and local central

limit theorem for the polynomial lower tail random conductance model. J. Math. Soc.
Jpn. 67(4), 1413-1448, 2015

. DEUSCHEL, J.-D., Guo, X.: Quenched local central limit theorem for random walks in

a time-dependent balanced random environment. arXiv:1710.05508v2, 2019

. DEUSCHEL, J.-D., Guo, X., RAMIREZ, A.: Quenched invariance principle for ran-

dom walk in time-dependent balanced random environment. Ann. Inst. Henri Poincaré
Probab. Stat. 54(1), 363-384, 2018

FaBes, E.B., STROOCK, D.W.: A new proof of Moser’s parabolic Harnack inequality
using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327-338, 1986

Guo, X., ZEITOUNI, O.: Quenched invariance principle for random walks in balanced
random environment. Probab. Theory Relat. Fields 152(1), 207-230, 2012

HawmBLY, B.M., BaArLOW, M.T.: Parabolic Harnack inequality and local limit theorem
for percolation clusters. Electron. J. Probab. 14(1), 1-26, 2009


http://arxiv.org/abs/2009.11535v1
http://arxiv.org/abs/1807.03531v1
http://arxiv.org/abs/1710.05508v2

13.

14.

16.

17.

18.

19.

20.

21.

22.

A PHI for Difference Equations in RE 947

KryLov, N.V,, SAFoNov, M.V.: A certain property of solutions of parabolic equations
with measurable coefficients. Math. USSR-Izvestiya 16(1), 151-164, 1981

Kuvo, H.-J., TRUDINGER, N.S.: Evolving monotone difference operators on general
space-time meshes. Duke Math. J. 91(3), 587-607, 1998

. LAWLER, G.E.: Estimates for differences and Harnack inequality for difference opera-

tors coming from random walks with symmetric, spatially inhomogeneous, increments.
Proc. Lond. Math. Soc. s3-63(3), 552-568, 1991

Levin, D.A., PEREs, Y., WILMER, E.L.: Markov Chains and Mixing Times. American
Mathematical Society, Providence, RI (2009)

LiEBERMAN, G.: Second Order Parabolic Differential Equations. World Scientific, Sin-
gapore (1996)

L1GGETT, T.M., SCHONMANN, R.H., STACEY, A.M.: Domination by product measures.
Ann. Probab. 25(1), 71-95, 1997

MOSER, J.: A Harnack inequality for parabolic differential equations. Commun. Pure
Appl. Math. 17(1), 101-134, 1964

MUSTAPHA, S.: Gaussian estimates for spatially inhomogeneous random walks on z4.
Ann. Probab. 34(1), 264-283, 2006

SaroNov, M.V.: Harnack’s inequality for elliptic equations and the Holder property of
their solutions. J. Sov. Math. 21(5), 851-863, 1983

ZEITOUNL, O.: Part II: Random walks in random environment. Lectures on Probability
Theory and Statistics: Ecole d’Eté de Probabilités de Saint-Flour XXXI—2001 (Ed. J.
Picard), Springer, Berlin, pp. 190-312, 2004

NoAM BERGER AND DAVID CRIENS
Center for Mathematics,
Technical University of Munich,
Munich
Germany.
e-mail: david.criens @tum.de; david.criens @stochastik.uni-freiburg.de
NoAM BERGER
e-mail: noam.berger @tum.de

(Received July 19, 2021 / Accepted April 29, 2022)
Published online June 13, 2022
© The Author(s) (2022)



	A Parabolic Harnack Principle for Balanced Difference Equations in Random Environments
	Abstract
	1 Introduction
	1.1 Background
	1.2 Purpose of the current article
	1.3 The growth condition
	1.4 Proof strategy
	1.5 Possible future research directions

	2 Framework and Main Results
	2.1 The framework
	2.2 Main results

	3 Proof of the Quantitative Estimate: Theorem 2.11
	3.1 A parabolic maximum principle
	3.2 Proof of Theorem 2.11

	4 An Estimate for the Exit Measure
	5 Proof of the Oscillation Inequality: Theorem 2.10
	5.1 An oscillation inequality on a small scale
	5.2 Multi-scale structure
	5.3 The coupling
	5.3.1 Definition
	5.3.2 A technical lemma
	5.3.3 Success of the coupling

	5.4 Proof of Theorem 2.10

	6 Proof of the PHI: Theorem 2.6
	6.1 Some notation
	6.2 The proof
	6.3 Proof of Lemma 6.1
	6.3.1 Proof of Lemma 6.3

	6.4 Proof of Lemma 6.4
	6.5 Proof of Lemma 6.5

	References




