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Abstract
To enable multi-query analyses, such as optimisations of large-scale crashworthiness problems, a numerically efficient model 
is crucial for the development process. Therefore, data-driven Model Order Reduction (MOR) aims at generating low-fidelity 
models that approximate the solution while strongly reducing the computational cost. MOR methods for crashworthiness 
became only available in recent years; a detailed and comparative assessment of their potential is still lacking. Hence, this 
work evaluates the advantages and drawbacks of intrusive and non-intrusive projection based MOR methods in the frame-
work of non-linear structural transient analysis. Both schemes rely on the collection of full-order training simulations and a 
subsequent subspace construction via Singular Value Decomposition. The intrusive MOR is based on a Galerkin projection 
and a consecutive hyper-reduction step. In this work, its inter-and extrapolation abilities are compared to the non-intrusive 
technique, which combines the subspace approach with machine learning methods. Moreover, an optimisation analysis 
incorporating the MOR methods is proposed and discussed for a crashworthiness example.

Keywords  Reduced order model · Crashworthiness · Optimisation · Nonlinear model order reduction · Intrusive reduced 
order modelling · Non-intrusive modelling

1  Introduction

Complex and highly detailed Finite Element (FE) models 
have been developed to assess the structural performance 
in crash scenarios. However, the conflicting requirements 
of weight reduction and passenger safety urge for advanced 
numerical methods such as optimisation, uncertainty quan-
tification or robustness studies. Due to the high computa-
tional cost of these multi-query assessments simplification 
techniques to obtain efficient surrogate models are inevitable 
(Duddeck 2008).

For the creation of such low-fidelity models data-driven 
reduction techniques have gained popularity in recent 
years. Thereby, previously computed results from full order 

FE-simulations are collected and combined into a so-called 
snapshot matrix. With this matrix a subspace can be identi-
fied, which approximates the system by a reduced number of 
unknowns. The main advantage of data-driven model order 
reduction (MOR) is its capability to represent non-linear 
problems, which cannot be reduced by classical projection 
methods. Moreover, if a database of already existing simula-
tions is available data-driven MOR techniques are especially 
beneficial. In general, non-intrusive and intrusive techniques 
are available. They are categorised according to the required 
changes within the FE-program. The intrusive method is 
implemented within the solver environment itself, whereby a 
Galerkin projection is applied to set up the system of motion 
in a smaller subspace (Farhat et al. 2014). The procedure 
consists of a Proper Orthogonal Decomposition (POD) via 
Singular Value Decomposition (SVD) in order to construct 
the reduced basis. In the case of non-linear problems an 
additional so-called hyper-reduction step is required to cre-
ate an efficient surrogate model. Various approaches have 
been developed to combine a projection method with hyper-
reduction techniques, e.g. gappy POD (Willcox 2006) or 
the Discrete Empirical Interpolation Method (Chaturantabut 
and Sorensen 2010). In this work, the Energy Conserving 
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Sampling and Weighting Technique (ECSW) (Farhat et al. 
2014, 2015; An et  al. 2008; Hernández et  al. 2017) is 
adopted due to its superior numerical stability properties 
within FE-analysis. For a comprehensive discussion the 
reader is referred to Rutzmoser (2018).

The intrusive MOR scheme here presented has been 
recently studied within varying fields of applications. For 
example Zahr et al. (2017); Caicedo et al. (2019); Hernández 
(2020) and Rocha et al. (2020a, b) demonstrated its poten-
tial within the scope of multi-scale analysis and fracture 
mechanics.

Furthermore, the present intrusive MOR scheme was 
applied to explicit structural dynamics and crashworthiness 
problems (Bach et al. 2019b). Hereby, Bach et al. (2018); 
Krysl et al. (2001) revealed that the Galerkin projection has a 
beneficial effect on the critical time step within the scope of 
explicit dynamics. Bach et al. (2019a) also compared differ-
ent algorithms to evaluate the SVD for large scale snapshot 
matrices, which typically appear in industrial applications. 
Other approaches suggest an efficient snapshot selection to 
reduce the dimension of the snapshot matrix e.g. (Phalip-
pou et al. 2020). Moreover, in the field of structural topol-
ogy optimisation first principal component based surrogate 
models have been developed by (Alaimo et al. 2018; Xiao 
et al. 2020).

In contrast to the intrusive MOR, the non-intrusive MOR 
technique uses data-fitted meta-models or machine learn-
ing techniques to construct the surrogate model. Thereby, 
subspace procedures as for the intrusive scheme are utilised 
to compute the reduced basis. However, the basis vectors 
are then weighted and combined with the help of a machine 
learning approach. In this context, Gaussian regression mod-
els are a popular choice as presented in (Kast et al. 2020; 
Guo and Hesthaven 2017, 2019). K-nearest neighbours and 
neural networks were also successfully applied in the scope 
of MOR schemes (Swischuk et al. 2019; Kneifl et al. 2021). 
Additionally, Yu et al. (2019) published a comprehensive 
survey regarding developments towards fluid applications.

In a recent study, Kneifl et al. (2021) have shown that 
multiple machine learning algorithms are suitable for struc-
tural dynamic applications in the field of crashworthiness. 
Moreover, Le Guennec et al. (2018) reduce the frontal part 
of a car with a non-intrusive model, which combines a CUR 
matrix decomposition with a k-means clustering method. 
The so-called ReCUR technique was further enriched with a 
random forest model and the empirical interpolation method 
(Assou et al. 2019; Gstalter et al. 2020). Also Fehr et al. 
(2016) analysed and Ren et al. (2020) optimised crash prob-
lems by splitting the domain into linear and non-linear parts, 
whereby only linear reduction techniques were tested.

As intrusive and non-intrusive MOR are classically two 
independent research areas, the aim of this work is to evalu-
ate the efficiency of both methods by comparing its training 

phase, training data, computational cost and complexity to 
highlight their benefits and limits for non-linear structural 
examples. The novelty of the presented work lies in the 
application of both schemes to an optimisation study for 
a crashworthiness problem. With the presented studies it 
can be shown that the mentioned MOR schemes are able to 
support multi-query analysis also for non-linear transient 
structural problems. Furthermore, the presented work shall 
provide a general guideline for the application of intrusive 
and non-intrusive schemes. Limitations and potentials for 
future developments are further discussed to provide a com-
prehensive review.

In the following, the theoretical background of both 
projection based non-linear MOR methods are individu-
ally described and compared regarding crashworthiness. 
Section 2 focuses on the SVD and hyper-reduction for the 
intrusive scheme, and Sect. 3 explains the applied non-intru-
sive MOR technique. To assess both projection methods for 
crashworthiness a dynamic crash box test case is evaluated 
and their benefits and drawbacks are discussed in terms of 
inter- and extrapolation in Sect. 5. Afterwards, an optimisa-
tion scheme including both MOR techniques is presented 
in Sect. 6, whereby its theoretical background is given in 
Sect. 4.

2 � Intrusive model order reduction

The key idea of intrusive MOR is to construct a new sub-
space, such that the desired solution can be represented in 
a lower dimension. During every classical FE-analysis the 
system of equations is solved for a resultant vector with N 
degrees of freedom. To reduce the number of unknowns, 
the output resultants, e.g. the displacement vector, can be 
multiplied with a projection matrix. Thus, the projection of 
the degrees of freedom � ∈ ℝ

N breaks down to a linear affine 
transformation with the reduced basis � ∈ ℝ

N×k , which are 
added to the initial state �0:

Thereby, �� ∈ ℝ
k denotes the vector of unknowns of size 

k in the reduced subspace. Finally, we aim on a reduction 
such that k ≪ N , with N being the number of unknowns in 
the full order model. To this end, the system of equations is 
projected into the reduced subspace. For dynamic structural 
problems the partial differential equation takes the following 
well-known form:

with � ∈ ℝ
N×N being the mass matrix, � , �̇ and �̈ denot-

ing the displacement, velocity and acceleration, � and � rep-
resenting the internal and external forces. In this work, a 

(1)� ≈ �0 + ��� .

(2)��̈ + � (�, �̇) = �,
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Galerkin projection-based model order reduction with a lin-
ear affine transformation is adopted to approximate the solu-
tion manifold. Due to the nature of the Galerkin projection 
the over-determined system is constrained to be orthogonal 
to the space spanned by the residual. Thus, introducing the 
approximation of Eq. (1) into the equation of motion for 
general non-linear dynamics yields:

Consequently, an optimal construction of the orthonormal 
projection matrix � is crucial to construct an efficient and 
accurate surrogate model. Therefore, the subspace is built 
in a previous training phase, which is also referred to as 
offline phase. After the training is completed the system of 
equations (3) is evaluated in the online phase as illustrated in 
Fig. 1. The figure also depicts that the subspace construction 
is followed by a hyper-reduction step. In the next sections, 
both training steps are explained in detail.

2.1 � Reduced subspace

For the construction of the projection matrix Sirovich (1987) 
first proposed a data-driven technique, as classical 
approaches are not suitable for non-linear problems. 
Thereby, a quantity of interest ��(t,�) with t ∈ T as time and 
� ∈ P with the parameter domain P, are extracted from full-
order training simulations. These resultant vectors, here dis-
placements, have N entries corresponding to each degree of 
freedom. To construct a snapshot matrix � ∈ ℝ

N×n , n so-
called snapshots �� ∈ ℝ

N are collected and concatenated 
along the horizontal axis. The total number of snapshots n 
consists of the snapshots at varying time instances 
t1, t2, ..., tnt ∈ T  and different parameter configurations 
�1,�2, ...,�n�

∈ P , such that n = ntn� . A reduction based on 
a snapshot matrix from multiple simulations is also known 
as global POD (Taylor 2001; Taylor and Glauser 2004; 
Schmit and Glauser 2004).

As the number of snapshots can be arbitrarily large, 
matrix � is reformulated to retrieve a practically feasible 
reduced subspace.

(3)

�T��
���

�r

�̈ + �T �
���

�r

(��,��̇, t)

= �T�
���

�r

.

Applying the Singular Value Decomposition (SVD) on 
� yields the left-singular vectors � ∈ ℝ

N×n , the diagonal 
matrix Σ ∈ ℝ

n×n containing non-negative singular val-
ues �i in descending order and the right-singular matrix 
� ∈ ℝ

n×n . In a next step, the decomposed terms are trun-
cated to approximate matrix � by a reduced matrix of rank 
k, as shown in Eq. (4). Thereby, �k can be identified as the 
projection matrix � ∶= �k ∈ ℝ

N×k , which resembles the 
mapping from the full order space to the reduced subspace.

An optimal low rank approximation can be assured by the 
Eckart-Young-Mirsky theorem (Eckart and Young 1936; 
Mirsky 1960). As a lower bound for k is not known a priori, 
an optimal value k̃ under the constraint of an approximation 
error � is obtained, such as:

However, for large scale matrices a conventional evaluation 
of SVD can be infeasible as its complexity exhibits O(n2) . 
To tackle such problems randomised or incremental SVD 
techniques (Bach et al. 2019a; Oxberry et al. 2017) may be 
applied.

2.2 � Hyper‑reduction

In case of linear problems the projection, as described 
by Eq. (3), directly results in efficient surrogate models. 
However, for non-linear problems the internal forces still 
depend on the system variables in the full space. To cir-
cumvent the underlying dependencies hyper-reduction is 
employed. Thereby, a subset of all elements is selected 
to approximate the non-linear internal forces without the 
need of the full order model (Farhat et al. 2014, 2015). 
The Energy Conserving Sampling and Weighting (ECSW) 
technique, from the field of global cubature methods, is 
a promising hyper-reduction approach for structural FE 
analysis. By applying the ECSW technique the internal 
forces are evaluated over a reduced number of elements, 
while conserving the global energy of the system. Moreo-
ver, ECSW yields symmetric system matrices and exhibits 
superior numerical stability properties compared to other 
hyper-reduction methods.

To identify potential candidates for the hyper-reduc-
tion, a non-negative weighting factor is computed for each 
element to quantify its impact on the solution vector. In 
general, the global internal force vector �int is assembled 
through the connectivity matrix �e with the force vectors 
� e
int

 for all elements e ∈ � . Through the hyper-reduction 

(4)� = �Σ�T ≈ �kΣk�
T
k
= �Σk�

T
k
.

(5)k = min k̃ with
‖� − �k̃Σk̃�

T

k̃
‖F

‖�‖F ≤ 𝜖.

Fig. 1   The workflow for intrusive MOR divided into online and 
offline phase
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the full-order space � is approximated by a sub-set E and 
a weighting vector �∗ of a weights �∗

e
 for each element:

The product of �T �int can be interpreted as the virtual work, 
which constitutes virtual displacement multiplied by a force 
vector. Consequently the energy can be conserved by choos-
ing appropriate weighting factors (Farhat et al. 2014). To 
compute the weights �∗

e
 , the unassembled training forces are 

collected in the matrix � ∈ ℝ
n×Ne

with � (i)
e

 being defined as the i-th snapshot of the unassem-
bled internal force vector of element e, Ne the number of 
elements, and n the number of snapshots. Next the vector 
� ∈ ℝ

n , the sum over all elements �i =
∑

e∈� Gi,e is set up. 
The linear equations � = �� are formulated, whereby all 
entries of � are ones. A a minimization problem is solved 
with a predetermined tolerance � , such as:

Equation (8) is approximated by a sparse non-negative least 
square method. A solution can be obtained using greedy 
algorithms, where elements are added until the condition of 
Eq. (8) is satisfied.

3 � Non‑intrusive model order reduction

In contrast to the intrusive scheme, the non-intrusive 
method is independent of the FEM solver and merely based 
on data-fitted meta-models. However, the workflows share 
many similarities such as the distinction between online and 
offline phase, as illustrated in Fig. 2. Besides the constructed 
reduced basis the non-intrusive MOR relies on an additional 
regression model. This meta model represents the full order 

(6)�T �int = �T
∑
e∈�

�T
e
� e
int

≈ �T
∑
e∈E

�∗
e
�T
e
� e
int
.

(7)� =

⎡⎢⎢⎣

G1,1 ⋯ G1,Ne

⋮ ⋱

Gn,1 Gn,Ne

⎤⎥⎥⎦
, �i,e = (�T )e�

(i)
e

(8)argmin‖𝜁‖0 s.t. ‖�𝜁∗ − �‖2 < 𝜏‖�‖2 and 𝜁∗ ≥ �.

system in the subspace spanned by the reduced basis (Guo 
and Hesthaven 2017; Swischuk et al. 2019; Kast et al. 2020).

3.1 � Training phase

Figure 2 depicts the workflow of the presented non-intrusive 
MOR approach divided in an offline (training) and online 
phase. Consistent with the construction of intrusive models, 
a snapshot matrix � ∈ ℝ

N×ntn� is built from displacement 
snapshots of full order analysis. However, dimensionality 
reduction is not limited to displacement data. In principle, 
the described procedure could be applied to every quantity 
of interest.

Compared to intrusive approaches, a list of time ti ∈ T  
and parameter configurations �i ∈ P corresponding to the 
snapshots is prepared, since the non-intrusive meta models 
explicitly parameterise them. Hence, this data is additionally 
required as an input of the training phase. POD is performed 
on the snapshot matrix � and a truncated set of basis vectors 
is chosen , as discussed in Sect. 2.1.

Next, a machine learning approach is introduced, in par-
ticular a regression or supervised learning technique. The 
three different regression models, polynomial regression 
function (poly), k-nearest neighbour regression (kNN), 
and Gaussian Process regression (GPR) are tested for this 
study. The corresponding model � ∶ X → Y  maps the input 
t,� ∈ X to the outputs �r(t,�) ∈ Y  . Note, that �r(t,�) is the 
vector of unknowns in the reduced space. To prepare the 
training data, a multiplication with the transposed matrix � 
projects the data into the reduced space.

To approximate an unknown regression function f we 
assume a training set �, � ∈ D is available, where for each 
pair xi, yi ∶ yi = f (xi) . With a k-nearest neighbour algorithm 
(Friedman et al. 1977) new data points are approximated 
by linear combinations of their k-nearest neighbours in the 
training set D. Each neighbour is weighted by its distance 
to the data point. In contrast to the local approximation of 
the kNN algorithm, the polynomial regression function 
belongs to the global approximation techniques. Therefore, 
the weights vector � of a polynomial function

Fig. 2   The workflow for non-
intrusive MOR divided into 
online and offline phase
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with order d are fitted to the output quantity vector f (�) . The 
weights are computed by a least square solver minimizing 
the error of the approximation function and the training data.

Gaussian Process regression is a probabilistic regression 
approach, whereby training points are treated as random var-
iables with joint Gaussian distributions. A Gaussian Process 
can be completely defined with a mean m(�) and covariance 
function �(�, ��).

describing a real process f (�) . The correlation between two 
random variables at locations x and x′ can be formulated 
with correlation functions, most commonly by the squared 
exponential function

However, many other kernels could be chosen. These kernel 
functions include a set of hyper-parameters, e.g. the cor-
relation length lc , which are optimized for the training set. 
In general, a prediction for new test data can be computed 
through a reformulation of its joint distribution with the 
existing covariance matrix. For a detailed description the 
reader is referred to Rasmussen and Williams (2006).

3.2 � Online phase

A low fidelity model to predict the system’s behaviour is 
constituted by the regression model in the reduced subspace. 
The online phase of the presented scheme is further depicted 
in Fig. 2 represented by the the lower grey bar. For a param-
eter configuration � and time instance t the chosen regres-
sion model provides a system answer ur(t,�) . To interpret 
the predicted output a back projection into the physical space 
is required. Moreover, the projection � = ��r can also be 
interpreted as a weighted linear combination of the basis 
vectors � . Recalling Sect. 2.1, every column �� in the matrix 
� ∈ ℝ

N×k , represents one of the reduced basis vectors:

The full order displacement vector � as stated in Eq. (13) is 
weighted by ��� = �r , such that:

Depending on the input parameter of the surrogate model 
the scalar values �i define the influence of each basis vector.

(9)f (�) = �� + ��� + ���
2 +⋯ + ���

d

(10)f (�) ∼ GP(m(�), �(�, ��))

(11)�(x, x�) = exp

(
−
||x − x�||2

l2
c

)
.

(12)� =
[
�� �� ⋯ ��.

]

(13)� ≈

k∑
i=1

���i(t,�).

In comparison to conventional surrogates, which are 
commonly used for multi-query analysis, the non-intrusive 
MOR method operates in the subspace and does not pre-
dict the full order system directly. Moreover, the corre-
sponding model is restricted to physical solutions based on 
a strongly reduced number of degrees of freedom.

4 � Optimisation

Equipped with the surrogate models an optimisation study 
for large scale problems can be performed. In general, an 
optimisation problem can be formulated as following:

The overall aim is to find the minimum of the objective func-
tion, whereby multiple objective functions can be expressed 
by the sum of r single functions fi(x) (Fang et al. 2017). 
The objectives fi are normalised with respect to their initial 
values f 0

i
 and may be weighted with a factor wi according to 

a user-defined significance criterion.

In addition, m number of constraints gj(x) are formulated 
for the design variables � with lower limits �� and upper 
limits ��.

In the present work, we focus on population based 
algorithms, such as the differential evolution optimisa-
tion technique (Storn and Price 1997). This non-gradient 
based method is initialised by a population of candidates, 
whose fitness levels are evaluated in an iterative manner. 
To further scan the design space, a trial vector is set up 
by the principle of mutation and crossover. The best per-
forming candidates are selected and a new generation is 
built. The iterating process is continued until the algo-
rithm terminates if a predefined error tolerance is achieved 
or a maximum number of generations is exceeded. For a 
more detailed explanation it is referred to (Storn and Price 
1997).

5 � Crashworthiness test case

In this section, the results of a transient, non-linear exam-
ple including contact formulations are presented.For the 
intrusive MOR scheme the software LS-Dyna including a 

(14)
min

∑r

i=1
fi(x) for i = 1, 2, ..., r

s.t gj(x) ≥ 0 for j = 1, 2, ...,m

�� ≤ � ≤ ��.

(15)f (x) = w1

f1

f 0
1

+ w2

f2

f 0
2

+⋯ + wr

fr

f 0
r

.
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special implementation interface is utilised. The implemen-
tation was done within a previous work by Bach (2020) and 
has been further extended to perform optimisation stud-
ies. A stand-alone Python code holds the algorithm for the 
non-intrusive scheme, which was developed for this study.

To assess the two algorithms, a crash box example1 is 
introduced. The crash box, as depicted in Fig. 11, is mod-
elled as an elasto-plastic tube with a wall thickness of 2.0 
mm and a length of 272.5 mm, whereby imperfections are 
introduced along the tube to trigger the folding mechanism. 
A rigid plate with an initial velocity of 40 km/h in negative 
z-direction crushes the tube, which is clamped at the bottom.

All deformable parts are discretised with fully integrated 
Reissner-Mindlin shell elements (ELFORM=16), which have 
translational and rotational degrees of freedom. In contrast 
to the element formulation the remaining contact and mate-
rial parameter have not been changed in comparison to the 
template1 . Penalty formulations are applied to model the 
contact between plate and crash box as well as the self-
contact (CONTACT_AUTOMATIC_SINGLE_SURFACE). 
The material properties for the crash box are as follows: 
The mass density is � = 7830 kg/m3 , the Young’s modulus 
is E = 200 GPa, the Poisson’s ratio is � = 0.30 and the yield 
strength is �y = 0.366 GPa with a piece-wise linear plastic-
ity model. The reduced order models are constructed for the 
tube discretised by 1924 nodes and a termination time of T 
= 20 ms is set.

For the intrusive scheme, the projection matrix � is 
orthonormalised with respect to the mass matrix and built 
up for displacement and rotational degrees of freedom sepa-
rately. As the focus is on transient analysis an error measure 
considering the full time domain is defined. To evaluate the 
accuracy the global mean relative error (GMRE) is com-
puted using the full order displacements, � , and the reduced 
order displacements �� for the full time domain T as follows:

In the following, the intrusive and non-intrusive MOR 
schemes are applied to the crash box example and their 
results are compared regarding accuracy and numerical 
effort. The discussion of the results is split into training 
accuracy and online accuracy. The former evaluates the 
ability to reproduce the training data, while the latter exam-
ines the performance on parameters that are not present in 
the training data. Furthermore, their inter- and extrapola-
tion capabilities are studied, whereby the impacting kinetic 

(16)�GMRE ∶=

�∑
t∈T

(�(t) − ���(t))
T (�(t) − ���(t))

�∑
t∈T

�T (t)�(t)

.

energy and the thickness of the crash box are varied. To eval-
uate their overall computational cost a comparative analysis 
is presented. In Sect. 6 the reduced models of the crash box 
are embedded into an optimisation workflow.

5.1 � Training accuracy

To test the intrusive and non-intrusive scheme for transient 
analysis the first study evaluates a model reproducing the train-
ing simulation. Thereby, the parameter domain P is neglected 
and only the time domain T is considered. Uniformly, every 
t = 0.01 ms a snapshot is allocated to the snapshot matrix.

Figure 3 shows the results of two crash box simulations 
computed by the intrusive MOR, whereby the grey wire-
frame represents the full order model (FOM) and the orange 
and green shells indicate the selected hyper-reduction ele-
ments for two different reduction levels (Bach 2020). The 
parameter k is the number of basis vectors for the Galerkin 
projected reduced order model (ROM), and � is the tolerance 
value for the hyper-reduction algorithm in Eq. (8).

The Galerkin ROM and the hyper-reduced model 
(HROM), as depicted in Fig. 3, result in a computational 
speed-up factors of 4.7 and 7.1, respectively.

To further validate the approach, Fig. 4 shows the dis-
placement using intrusive and non-intrusive MOR of two 
reference nodes (highlighted in blue and green in Fig. 5), 
which are included in the folding mechanism. The intrusive 
reduced order model (ROM) on the left shows the nodal 
displacement result of the FOM and the Galerkin ROM and 
HROM with larger Δt , as Galerkin projection leads to a 
higher critical time step for explicit solvers (Bach et al. 2018; 
Krysl et al. 2001). On the right of Fig. 4 the results of the 
reference node are plotted utilising the non-intrusive model 
with k = 20 basis vectors and a Gaussian Process regression 
(isotropic Matérn kernel2). Hereby, no physical system is 
solved and no contact algorithm is evaluated.

Fig. 3   The deformed crash box at t = 20 ms for two different reduc-
tion levels, with the FOM as grey wireframe and the HROM results 
shown by the coloured elements (Bach 2020)

2  Python: scikit-learn library, https://​scikit-​learn.​org, retrieved 
28.02.22.

1  Similar to Reid J. Crashbox. Available at https://​www.​dynae​xampl​
es.​com/​intro​ducti​on/​intro-​by-​j.-​reid/​crash​box.

https://scikit-learn.org
https://www.dynaexamples.com/introduction/intro-by-j.-reid/crashbox
https://www.dynaexamples.com/introduction/intro-by-j.-reid/crashbox
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This example illustrates, that the non-intrusive regres-
sion model can be fitted to the example data. To analyse the 

quality of non-intrusive ROMs, different regression models 
are fitted and tested with varying input parameter configura-
tions in the next section.

5.2 � Online accuracy

The previous section presented the ability of the MOR 
schemes to create a simplified model for a non-linear struc-
tural simulation. However, a replication of the training 
simulation is not the intention of MOR methodology as no 
computational efficiency is gained. Considering a multi-
query analysis, such as optimisation or probabilistic analy-
sis, the idea is to roughly identify the parameter space and 
perform a couple of high-fidelity simulations beforehand. 
These are utilised for the construction of the reduced model 
to enable fast online simulations within the multi-query 
analysis. Therefore, the inter- and extrapolation capabilities 
within the online phase are the key point for an efficient 
application. A study investigating two different non-linear 
manifolds should illustrate and compare the capabilities of 
intrusive and non-intrusive models for transient analysis. 
We first restrict us to a one-dimensional parameter space, 
whereby a larger space is evaluated within the optimisation 
study in the next section.

To evaluate the effect of parameter variations the kinetic 
energy of the impacting plate and the thickness of the crash 
box are identified as suitable variables. For both parameters 
individual models are created for a variation of ±20% for all 
following studies. To change the kinetic energy applied to 
the crash box, the mass of the impacting plate is varied by 
±20% , as it deviates proportionally.

The variation of kinetic energy and thickness under con-
stant velocity has a drastic impact on the folding mechanism 
of the crash box depicted in Fig. 5. It is also noticeable, 
that the effects of the varying kinetic energy have a smaller 
impact on the system than 20% deviation of thickness. By 
discussing both variables we can investigate the different 
“levels” of non-linearity and their effects on the online 
accuracy.

To analyse the capabilities of ROMs representing vary-
ing manifolds, first a study focusing on the non-intrusive 
approach is presented. The non-intrusive ROMs exploiting 
the machine learning (ML) techniques3 polynomial regres-
sion (poly), k-nearest neighbour regression (kNN) and 
Gaussian Process regression (GPR) are compared individu-
ally for the two cases: impacting kinetic energy and thick-
ness of the tube. As the models highly depend on the qual-
ity of the training phase, not only the different regression 

Fig. 4   Displacement-time curve for two reference nodes (marked 
in Fig.  5 in blue and green correspondingly) using the intru-
sive ( k = 20, � = 0.01 ) and non-intrusive ( k = 20 , Matérn kernel) 
approach

Fig. 5   Crash box deformation for a variation of ±20% of the tube’s 
thickness and the impacting kinetic energy realised by a variation of 
the plate’s mass

3  Python: scikit-learn library, https://​scikit-​learn.​org, retrieved 
28.02.22.

https://scikit-learn.org
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techniques are assessed, but also an increasing number of 
training simulations.

To judge data-driven meta models, a prior distinction 
between training and test data enables the computation of 
multiple error measures such as the R2 - value or global mean 
relative error (GMRE). A training data set is created by 
Sobol  sampling4 with increasing sample set 
�1,�2, ...,�n�

∈ P with n� of 2, 4, 8, 16, and 32. In addition, 
a testing set of 32 samples is built by a random Sobol 
sequence, whereby each number is multiplied by a scaled 
random value. The distribution of the corresponding training 
and test samples are depicted in Fig. 6, whereby the test 
points are highlighted with vertical blue lines.

The training and testing configurations are scaled for the 
parameter space thickness of the crash box ttube ∈ P and 
energy of the impacting plate eimpact ∈ P . Full order analy-
ses are simulated accordingly and snapshots are collected 
uniformly every 0.1ms. Five ROMs �(t, ttube) are individu-
ally built for the sets of 2, 4, 8, 16, and 32 training points 
n� , whereby each simulation contributes 200 snapshots 
t1, t2, .., t200 ∈ T . To create five ROMs �(t, eimpact) the proce-
dure is repeated. All models are based on a reduced subspace 
with k = 20 basis vectors.

In Fig. 8 the displacement GMRE of Eq. (16) is plotted, 
as an error measure for all 32 test samples. The bar is drawn 
from the smallest to the largest GMRE and the mean GMRE 
of all samples is highlighted individually by a marker for 
kNN, poly and GPR. For all models, the accuracy increases 
with the number of training simulations. One can notice, 
that the poly models of order seven, constructed from two 
training simulations do not provide useful surrogates, pos-
sibly due to over fitting. Despite this exception, the regres-
sion techniques kNN with five neighbours, poly and GPR 
using an anisotropic Matérn kernel show a GMRE in similar 
ranges.

Table 1 compares the GMRE and R2 for the models 
�8(t, ttube) and �8(t, eimpact) built from 8 training simulations 
for all three ML techniques. It is noticeable, that the GPR 

performs best in the framework of non-intrusive MOR with 
a GMRE of 0.28% and R2 = 0.999 for the parameter space 
eimpact . For this example, the models built by kNN have a 
higher accuracy than those obtained by polynomial regres-
sion. As the kNN technique averages a data point with the 
k-nearest neighbours, its quality to approximate the very 
first and last time step is reduced. The performance of kNN 
trained on sparse data, especially in the time domain can 
drop significantly, as also observed by Kneifl et al. (2021). 
However, kNN is a fast and robust technique and especially 
for high number of data points a simpler regression model 
can be beneficial.

Comparing R2 and GMRE for the different parameter 
domains, all �(t, eimpact) regression models show a higher 
R2 than �(t, ttube) . This can also be observed in Fig. 8 for 
models with increasing training sets. On the left �(t, ttube) 
models have continuously higher GMREs as �(t, eimpact) sur-
rogates. As a smaller range of displacement patterns (Fig. 5) 
corresponds to the variation of the impacting kinetic energy 
eimpact , this could be expected.

To further understand the particular meta models, the 
displacement in x, y, and z direction of the first test sim-
ulation are visualised for two folding points (marked in 
Fig. 5) in Fig. 7. Similar to the table 1 poly, kNN, and 

Fig. 6   Visualisation of training sets �1,�2, ...,�n�
∈ P with varying 

sample number n� for the ROMs �(t, ttube) , �(t, eimpact) corresponding 
to study of Fig. 8 and its 32 test samples, represented by blue lines

Fig. 7   Displacement-time curve for two reference nodes (marked in 
Fig. 5 in blue and green correspondingly) for varying regression mod-
els poly (p = 7), kNN (k = 5), GPR (anisotropic Matérn kernel) and a 
subspace k = 20

4  Python: scipy library: https://​scipy.​github.​io/​devdo​cs/​refer​ence/​
gener​ated/​scipy.​stats.​qmc.​Sobol.​html, retrieved 25.02.22.

https://scipy.github.io/devdocs/reference/generated/scipy.stats.qmc.Sobol.html
https://scipy.github.io/devdocs/reference/generated/scipy.stats.qmc.Sobol.html
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GPR are based on snapshots from 8 transient training 
simulations and a subspace of k = 20 basis vectors.  An 
artificially smooth function can be observed for the poly-
nomial regression of order seven. Compared to the other 
techniques, GPR using an anisotropic Matérn kernel has 
superior accuracy (Fig. 8) and is able to depict more irreg-
ular data points, as also exploited by Guo and Hesthaven 
(2019).

The next study compares the non-intrusive to the intru-
sive approach for varying parameter domains. For the 
intrusive MOR the question rises if the projected system 
of equation enables an extrapolation of design variables. 
Therefore, the projection matrix is constructed from a sin-
gle training simulation and tested in the online phase with 
extrapolating design variables.

The displacement GMRE by Eq. (16) of the intrusive 
MOR are plotted on the right of Fig. 9a and b. The model 
is trained, collecting snapshots every 0.01ms, using a plate 
mass of 150 kg and a wall thickness of 2.0 mm. It can be 
observed, that the error increases with the distance to the 
training configuration. Also the relative error due to a 
change in wall thickness is generally higher than the error 
associated with a change of the plate’s mass. This further 
supports the observation of higher nonlinearities associated 
with a varying tube thickness.

In contrast to the small extrapolation capabilities of the 
intrusive ROMs, the non-intrusive scheme is restricted to 

Fig. 8   Displacement GMRE of 
32 test simulations and its mean 
for varying ROMS with a sub-
space k = 20 and poly (p = 7), 
kNN (k = 5), GPR (anisotropic 
Matérn kernel) for sets of 2, 4, 
8, 16, 32 training simulations

Table 1   Comparison of mean error measures R2 and GMRE for varying ROMS with a subspace k = 20 and poly (p = 7), kNN (k = 5), GPR 
(anisotropic Matérn kernel) for 8 training simulations and 32 test simulations

Poly kNN GPR
ttube eimpact ttube eimpact ttube eimpact

R2 0.981 0.992 0.900 0.995 0.994 0.999
GMRE 1.93 1.20 1.25 0.87 0.36 0.28

(a)

(b)

Fig. 9   Comparison of the displacement GMRE with parameter vari-
ation of intrusive (Bach 2020) and non-intrusive ROMs (anisotropic 
Matérn kernel) with a subspace k = 40 . (a) Overall displacement 
GMRE for non-intrusive and intrusive ROMs with varying mass of 
the impacting plate. (b) Overall displacement GMRE for non-intru-
sive and intrusive ROMs with varying thickness of the crash box
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interpolation. Training a non-intrusive model with snapshots 
corresponding to one parameter instance would yield unrea-
sonable results, as the surrogate is essentially a regression 
model and only enriched by physical phenomena. For a com-
parison of the techniques, the minimum number of training 
simulations to reach a similar accuracy level is investigated. 
The snapshot time increments are enlarged to 1ms, such that 
a total number of 20 snapshots are collected from each tran-
sient analysis. The number of training simulations was suc-
cessively increased until the non-intrusive ROMs achieved 
GMREs in the same range as the intrusive approach. As for 
non-intrusive models the computational cost mainly depends 
on the number of training simulations; this is an import fac-
tor to compare the overall efficiency gains.

On the left of Fig. 9a and b the displacement GMRE of 
the non-intrusive MOR results are depicted. The training 
samples are obtained by Latin hypercube sampling and 
marked with grey circles in Fig. 9a and b. Hence, three 
training simulations are needed for varying mass and thir-
teen for varying thickness, in order to obtain similar error 
values compared to the intrusive MOR method. As already 
observed before, the accuracy of the simplified model 
strongly depends on the non-linear manifold and the quality 
of the training phase. Note, that for the variation of thick-
ness in Fig. 9b the number of training data rises to thirteen, 
which would be equivalent to an increasing online error 
while keeping the same number of training simulations.

It could be shown, that non-intrusive ROMs are capable 
of representing the crash box example, whereby especially 
kNN and GPR provided reliable regression models. The 
GPR is the most accurate technique and kNN is favorable in 
terms of efficiency and robustness. Moreover, the accuracy 
of ROMs highly relies on the amount of training simula-
tions and snapshot intervals in time and parameter domain. 
Note, that the characteristic change in time and parameter 
space defines the non-linear manifold and therewith the 
required training set. A comparison to the intrusive approach 
illustrates, that similar accuracy can be achieved by non-
intrusive ROMs with a higher number of training data. For 
the intrusive ROMs of the crash box, extrapolation within 
the parameter domain is possible for a 20% range, however 
a general conclusion cannot be drawn from this example 
analysis. Further studies in the field of crashworthiness are 
required e.g. including error measures.

5.3 � Computational cost

After examining the accuracy of the models, we now focus 
on the computational speedup of the reduced models. The 
construction cost of the machine learning model is negligi-
bly small compared to the evaluation of the training simula-
tions for all techniques. One ROM evaluation using kNN 
or poly is 4 orders of magnitude and for GPR 3 orders of 

magnitude smaller than a full order analysis. However, for a 
higher number of DOFs, but especially for a higher number 
of design parameters and snapshots, the cost of constructing 
a Gaussian Process can significantly increase. For a detailed 
comparison of online and offline costs for the different ML 
techniques it is referred to Kneifl et al. (2021).

Here, we focus on the comparison of costs of the intru-
sive and non-intrusive method. Table 2 shows the elapsed 
time for the crashbox example of Fig. 9. The single online 
simulations of the corresponding ROMs are measured on a 
Intel Xeon 3.5 GHz processor with 4 CPUs. The intrusive 
scheme has a speed-up factor of approximately 4.7 and the 
non-intrusive scheme with GPR is of 3 magnitudes faster 
than the FOM. However, including the offline phase into the 
evaluation of the computational cost the results appear to be 
different. Figure 10 compares the cost function of intrusive 
and non-intrusive with �(t, eimpact) and �(t, ttube) , in grey, 
blue and green respectively. The x-axis shows the number 
of online evaluations, whereby the start represents the train-
ing effort. The values on the y-axis are normalised by the 
computational cost of one full order simulation. Thus, the 
intrusive training cost equals to 1 and the non-intrusive to 3 
and 13. With a speed-up factor of four and 104 the efficiency 
of the non-intrusive scheme overtakes the performance of 
the intrusive for 10 and 57 online evaluations of �(t, eimpact) 
and �(t, ttube) respectively. Note, that the costs of SVD and 
hyper-reduction are neglected here. The interested reader is 
referred to a detailed evaluation by Bach (2020).

Fig. 10   Normalised computational cost for the crashbox example of 
Fig.  9 comparing full order simulation (FOM) intrusive (Galerkin 
ROM and HROM) and non-intrusive ROM for an increasing number 
of online simulations

Table 2   Elapsed time for the crashbox example of Fig. 9 comparing 
full order simulation (FOM), intrusive (Galerkin ROM and HROM) 
(Bach 2020) and non-intrusive ROM

FOM Galerkin ROM HROM Non-intrusive ROM

56.55s 20.75s 11.95s 0.01s
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6 � Optimisation study

The previous section evaluated the effects of training param-
eters on the online accuracy exemplarily for the crash box 
example. Next, an optimisation is proposed to further illus-
trate the capabilities of the presented schemes. Therefore, 
the crash box is adapted for a dimensional optimisation of 
tailor welded blanks. The automotive industry discovered 
that for thin-walled structures tailor welded blanks can be 
exploited to improve its lightweight and crashworthiness 
properties simultaneously (Fang et al. 2017). The task is to 
combine multiple blanks with different thicknesses or mate-
rial properties to a single structure to advance its mechanical 
behaviour. In literature multiple optimisation studies search-
ing for the best thickness distribution of welded (Chen et al. 
2019; Xu et al. 2014) or rolled (Duan et al. 2016; Sun et al. 
2017; Klinke and Schumacher 2018) blanks can be found. 
All optimisation schemes commonly employ surrogate mod-
els such as radial basis function (Klinke and Schumacher 
2018; Sun et al. 2017) or support vector regression (Duan 
et al. 2016). Here, the two MOR schemes are used as sur-
rogate models during an optimisation analysis, inspired by 
(Chen et al. 2019), but utilizing a differential evolution5 
algorithm. Notice, that we focus on the performance of the 
surrogate models in a realistic application rather than the 
finding of new results of the optimisation study itself.

For the optimisation the crash box of Sect. 5 is divided 
into three circles representing three blanks, as shown with 
the colour highlighted parts in Fig. 11. Starting from the 
top, the thickness of the first ring t1 and the second ring t2 
are unknown design parameters, whereby t3 is assumed to 
be a constant thickness of 2 mm. The blanks are simpli-
fied to rings, whereby the transition zones are neglected, 

such that the design parameters x = [t1, t2] are varied in the 
range from xl = 1.0 to xu = 2.0 mm. In addition, the mass 
of the impacting plate mplate is set as a design variable with 
a range of 80 − 170kg. The termination time is extended to 
35ms, such that the tube is completely folded for all possible 
choices of design variables.

As a first objective the kinetic energy of the impacting 
plate should be maximized, which is denoted by the objec-
tive f1 in [J]. Secondly, the acceleration a(t) and force F(t) 
resulting from the impacting plate are expected to be con-
stant for optimal crashworthiness designs. Therefore, the 
objective function includes a term corresponding to the 
displacement curve over time u(t) of the impacting plate. 
Starting from t = 1m s, the displacement of the middle 
node of the impacting plate is observed, whereby the peak 
forces are neglected here. Transferring the objective to the 
accelerations ü(t) = a(t) , the deviation to the ideal quadratic 
displacement curve (i.e. related to a constant acceleration) 
is minimised with the second objective function f2(u, t) in 
[mm]. A conflicting requirement is a light weight structure, 
therefore also the mass of the crash box is minimised with 
f3(t1, t2) in [mm]. 

T h u s ,  t h e  t o t a l  o b j e c t i v e  f u n c t i o n 
f (x) = w1f1 + w2f2 + w3f3 , with the weights wi , as also 
depicted in Table 3, maximizes the energy absorption and 
minimizes the acceleration and mass to improve the crash 
box design. Note, that normalized values of f1 − f3 are com-
bined, to avoid problems due to dissimilar units.

The optimisation algorithm terminates if the tolerance 
𝜖 < 0.01 , a population’s standard deviation divided by the 
average of its energy, or a maximum iteration number is 
reached.

First the study was performed with the FOM and repeated 
for ten runs with varying population sizes (12−21) , recombi-
nation factors (0.7−0.9) and max. iterations number ( 30−50 ) 
to gain a reference solution. With the resulting thicknesses t1 
and t2 of all runs being similar, as marked in Fig. 12c under 
Reference, one can conclude that a defined minimum is 
found. Moreover, the resulting design parameters are aver-
aged over all trials and listed in Table 4 under Reference.

In Fig. 12a, the objective function is plotted over the full 
two-dimensional design space t1 and t2 and in vicinity of the 
optimum. Within the design space, 200 points are analysed by 
full order simulation and the minimum is marked. The results 

Fig. 11   Initial and folded crash box of the optimisation study at 
t = 0 ms and t = 35 ms with optimised design variables t1 = 1.08 mm 
and t2 = 1.85mm

Table 3   Combined objective functions with corresponding weights 
f (x) = w1f1 + w2f2 + w3f3 for the optimisation study

Objective Function Weights

↑ Energy −f1(m, v) =
1

2
mplatev

2 2

↓ Acceleration f2(u, t) = u(t) −
umax

T2
(t − T)2 − umax1

↓ Mass f3(t1, t2) = (2t1 + t2)� 2

5  Python: SciPy library, https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​
ated/​scipy.​optim​ize.​diffe​renti​al_​evolu​tion.​html, retrieved 18.09.21.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
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of the optimisation algorithm can be confirmed by the clear 
minimum of the objective function observable in Fig. 12a.

The thickness of the first ring t1 is at the lower bound-
ary of the range and the second ring t2 at the upper limit, 
which also relates to the ideas of an optimised crash box 
by Chen et al. (2019). Corresponding to the objective f1 of 
maximising the kinetic energy, the mass of the plate mplate 
has reached the upper range. Exemplarily, the convergence 
of the design parameter t1 and t2 with a population size of 
18 is displayed for 600 evaluations in Fig. 12b and the cor-
responding deformed crash box is depicted in Fig. 11.

Next the optimisation is performed with the intrusive 
and the non-intrusive MOR scheme. For the non-intrusive 
scheme 150 training simulations are created with a Latin 
hyper cube sampling corresponding to the ranges of the 
three design variables. The subspace is spanned by 50 basis 
vectors and a Gaussian regressor with an anisotropic Matérn 
kernel6 is optimised to create the meta-model. The averaged 
results of the design variables are also listed in Table 4 and 
visualised in Fig. 12c in blue. In addition, the optimised val-
ues of the intrusive MOR scheme using Galerkin projection 
are plotted in green. It is built with 30 training simulations 
and set up by 50 degrees of freedom in the reduced space.

Both approximation methods can replicate the overall 
minimum and result in similar optimised design variables. 
The error of the optimised design variable lies in the range 
of 0.1−7 percent. However in other regions, especially at 
the borders of the design space the system answers deviate 
more from the reference solution. The interested reader is 
referred to Fig. 13 in appendix A, which depicts the objec-
tive function over the design space t1 and t2 with mplate = 
170kg. The approximation by the intrusive scheme has a 
larger area of low objective values in the vicinity of the mini-
mum and therefore shows less robust optimization results in 
comparison to the non-intrusive approximation. This also 
explains that the intrusive MOR has a higher error than the 
non-intrusive approach, which is in contrast to the previous 
studies of Sect. 5.2, e.g. Fig. 9.

The former analysis included ROMs for a single parame-
ter, whereas for the optimisation a parameter space of dimen-
sion three is spanned. Within the construction of the intrusive 
ROM it was noticeable, that the enlarged parameter space 
reduces its accuracy significantly, as more variance is present 
in the data and therefore more basis vectors in the reduced 
basis have to be considered. Hereby, the subspace projec-
tion restricts the intrusive MOR capturing higher parameter 
spaces, also observed by Bach (2020). As the projection is 

(a)

(b)

(c)

Fig. 12   Evaluation of optimisation algorithm applied to the crash box 
example simulated via full order (FOM), intrusive (Galerkin ROM) 
and non-intrusive ROM. (a) Objective function plotted over the 
design space t1 and t2 for mplate = 170kg computed by full order refer-
ence simulation. (b) Convergence of the design variables t1 and t2 of 
FOM reference optimisation with a population size of 18 and recom-
bination factor 0.7 terminated after 646 iterations. (c) Optimised 
design variables t1 and t2 resulting from reference (FOM), intrusive 
and non-intrusive MOR models after 783 (FOM), 819 (non-intrusive 
) and 452 (intrusive) evaluations in average

6  Python: scikit learn library https://​scikit-​learn.​org/​stable/​modul​es/​
gener​ated/​sklea​rn.​gauss​ian_​proce​ss.​Gauss​ianPr​ocess​Regre​ssor.​html, 
retrieved 28.02.22.

Table 4   Average optimised design variables for the thickness of ring 
t1 , ring t2 and the mass of the impacting plate mplate comparing full 
order simulation (FOM), intrusive (Galerkin ROM) and non-intrusive 
ROM

Design variable t1 (mm) t2  (mm) mplate (kg)

Range 1.0–2.0 1.0–2.0 80–170
Reference 1.08 1.85 170
Intrusive 1.00 1.80 170
Non-intrusive 1.05 1.87 170

https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
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the decisive reduction step, only Galerkin ROM is utilised 
for the optimisation study. Since intrusive and non-intrusive 
methods differ in speedup by the order of 4 in magnitude, this 
limitation does not affect the conclusion of this study and the 
estimate presented in Sect. 5.3 is reasonable.

Multiple aspects for intrusive and non-intrusive MOR are 
still challenging and require further analysis. For the non-
intrusive scheme, the system of equation is exchanged by a 
pure data-driven regressor. In general, a regression model 
can suffer from over-fitting or sensitive hyper-parameters. 
Moreover, the amount of training simulations has a large 
impact on the quality of the subspace. Both points can lead 
to an unstable model, which was, however, not observed 
as a high challenge within this study. Following the nature 
of a data-driven approach, non-intrusive MOR can only be 
applied for online simulations interpolating between the 
parameter configuration of the training simulations.

As shown in Sect. 5.2 the intrusive MOR scheme also 
enables extrapolation as a higher amount of physical knowl-
edge is included in the model. However, one can notice that 
the optimized design variables deviate from the reference 
solution by up to 7% , which can be critical for certain appli-
cations. Since an optimisation requires large parameter varia-
tion, a global POD was used to combine training simulations 
within the parameter space. During the performed analysis 
one could observe that the dimension of the subspace must 
be increased if the design space is enlarged. Thus, the global 
POD can be critical as it destroys the optimal approximation 
property of Galerkin projection. A detailed discussion about 
Galerkin projection and optimality can be found in Carl-
berg et al. (2017). In addition, if the underlying manifold is 
non-linear, it is critical to fit a low-dimensional hyper-plane 
through the data with a linear method.

The results show that especially the non-intrusive MOR is 
capable to be used in applications with considerable param-
eter changes although extrapolation should be avoided. In 
contrast, the intrusive ROM shows slight extrapolation and 
interpolation capabilities (see Sect. 5.2), however, the usabil-
ity for optimization has to be further investigated. In sum-
mary, the application of intrusive and non-intrusive MOR 
lead to reasonable results for the presented optimization 
study, but can be critical for large parameter spaces with 
underlying highly non-linear manifolds.

7 � Conclusion and outlook

Within this contribution, data-driven model order reduc-
tion (MOR) techniques for structural transient, multi-
query applications were discussed. We focused on intru-
sive MOR, which projects the system of equations into 
a reduced subspace in comparison to a non-intrusive 
approach, a pure data-driven technique. First, similarities 

and opposite concepts of the implemented techniques are 
explained. However, the main interest lies in their appli-
cability and efficiency within optimisation schemes for 
crashworthiness.

Multiple studies showed, that projection based MOR 
can provide suitable surrogate models for crashworthi-
ness analysis, which reduce the computational effort while 
maintaining acceptable accuracy. In addition to the Galer-
kin projection for intrusive MOR, hyper-reduction over-
comes the bottleneck for non-linear equations.

Through a sensitivity study the inter- and extrapola-
tion abilities of intrusive and non-intrusive MOR were 
compared for a crashworthiness example. In comparison 
to the non-intrusive MOR methods, intrusive MOR is able 
to extrapolate input parameters in a small range, and needs 
fewer training simulations than non-intrusive. Additional 
modifications to the solver are needed, which increases 
the complexity of implementation and normally excludes 
the usage of commercial FEM solvers. In contrast, non-
intrusive methods are easier to implement and lead to 
much faster online evaluations. They need generally more 
training simulations to achieve acceptable accuracy and 
are more sensitive to hyper-parameter changes.

Moreover, a parameter study illustrated the performance 
of non-intrusive approaches in relation to its training set, 
whereby the performance strongly depends on the non-lin-
ear underlying manifold. In general, non-intrusive ROMs 
require a large amount of training data and its efficiency 
is only assured if the number of training simulations does 
not exceed that of the online evaluations of the multi-query 
analysis.

With an exemplary optimisation study we could show 
that the non-intrusive MOR scheme is able to perform effi-
cient multi-query analyses for structural, highly non-linear 
problems. However, when increasing the number of design 
parameters especially the presented intrusive scheme 
reaches its limits. To increase accuracy and robustness of 
the ROM while maintaining low dimension of the reduced 
space non-linear dimensionality reduction methods such 
as kernel principal component analysis (kPCA) or basis 
interpolation methods (Amsallem and Farhat 2008) may be 
used. Moreover, sampling methods are of high importance 
for non-intrusive schemes. They should be further inves-
tigated to assure the quality of the snapshot matrix. In the 
field of crashworthiness only smaller test cases have been 
conducted, the application to a full-scale crash simulation 
is still missing.

Appendix

See Fig. 13.
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