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Abstract
Objectives To evaluate a compressed sensing artificial intelligence framework (CSAI) to accelerateMRI acquisition of the ankle.
Methods Thirty patients were scanned at 3T. Axial T2-w, coronal T1-w, and coronal/sagittal intermediate-w scans with fat
saturation were acquired using compressed sensing only (12:44 min, CS), CSAI with an acceleration factor of 4.6–5.3 (6:45 min,
CSAI2x), and CSAI with an acceleration factor of 6.9–7.7 (4:46 min, CSAI3x).Moreover, a high-resolution axial T2-w scan was
obtained using CSAI with a similar scan duration compared to CS. Depiction and presence of abnormalities were graded. Signal-
to-noise and contrast-to-noise were calculated. Wilcoxon signed-rank test and Cohen’s kappa were used to compare CSAI with
CS sequences.
Results The correlation was perfect between CS and CSAI2x (κ = 1.0) and excellent for CS and CSAI3x (κ = 0.86–1.0). No
significant differences were found for the depiction of structures between CS and CSAI2x and the same abnormalities were
detected in both protocols. For CSAI3x the depiction was graded lower (p ≤ 0.001), though most abnormalities were also
detected. For CSAI2x contrast-to-noise fluid/muscle was higher compared to CS (p ≤ 0.05), while no differences were found
for other tissues. Signal-to-noise and contrast-to-noise were higher for CSAI3x compared to CS (p ≤ 0.05). The high - resolution
axial T2-w sequence specifically improved the depiction of tendons and the tibial nerve (p ≤ 0.005).
Conclusions Acquisition times can be reduced by 47% using CSAI compared to CSwithout decreasing diagnostic image quality.
Reducing acquisition times by 63% is feasible but should be reserved for specific patients. The depiction of specific structures is
improved using a high-resolution axial T2-w CSAI scan.
Key Points
• Prospective study showed that CSAI enables reduction in acquisition times by 47% without decreasing diagnostic image
quality.

• Reducing acquisition times by 63% still produces images with an acceptable diagnostic accuracy but should be reserved for
specific patients.

•CSAI may be implemented to scan at a higher resolution compared to standard CS images without increasing acquisition times.
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Abbreviations
BMEP Bone marrow edema pattern
CNN Convolutional neural network
CNR Contrast-to-noise ratio
CS Compressed sensing
CSAI Compressed sensing artificial intelligence
CSAI2x CSAI with an acceleration factor of 4.6–5.3
CSAI3x CSAI with an acceleration factor of 6.9–7.7
CSAIHR CSAI high-resolution axial

T2-weighted sequence
ETL Echo train length
GAN Generative adversarial network
IM Intermediate-weighted
ISTA Iterative shrinkage–thresholding algorithm
MR Magnetic resonance
PI Parallel imaging
ROI Region of interest
SNR Signal-to-noise-ratio
SPIR Spectral presaturation with inversion recovery
TSE Turbo-spin-echo

Introduction

The ankle is one of the most complex joints with multiple
oblique oriented ligaments and tendons [1–6]. In the United
States, approximately 10,000 people suffer an ankle injury per
day, the most frequent type of injury being sprains [7, 8].
Magnetic resonance (MR) imaging is one of the main imaging
modalities for the assessment of musculoskeletal disorders on
account of its high soft tissue contrast. However, the data
acquisition process is inherently slow due to long encoding
times [9]. This leads to long scan times and subsequently
increased exam costs and reduced patient throughput.
Moreover, the image quality is frequently compromised by
motion artifacts, since remaining motionless for several mi-
nutes is a challenge even for healthy subjects [10].

Developments such as parallel imaging (PI) and, later,
compressed sensing (CS) have accelerated MR image acqui-
sition. CS reduces the number of acquired lines in k-space and
restores the missing data through an iterative reconstruction
algorithm [11, 12]. The combination of CS and PI was shown
to reduce MR image acquisition times of the ankle by 20%
without compromising diagnostic performance [13, 14]. More
recently deep learning–based methods such as convolutional
neural networks (CNNs) and generative adversarial networks
(GAN) have shown promising results to accelerate the MR
imaging data acquisition process [15]. These methods apply
deep learning–based reconstruction schemes to create high-
quality images from undersampled MR data [9, 16–21].

The aim of this study was to conduct a validation study to
evaluate a compressed sensing artificial intelligence frame-
work (CSAI) combining PI, CS, and deep learning–based

artificial intelligence, for additional twofold and threefold ac-
celeration of multi-contrast and multi-planar ankle MR imag-
ing compared to conventional CS imaging and to compare the
image quality and diagnostic performance between both tech-
niques. In a secondary analysis, we compared the depiction of
anatomical structures using high-resolution images recon-
structed with CSAI.

Materials and methods

Subject selection

Thirty patients were prospectively enrolled in our study be-
tween January and June 2021 (15 female, age 19–84 years).
Informed consent was obtained from all participants; the study
was approved by the local institutional review board (42/21S).
All patients were referred by the orthopedic department with
various disorders including trauma, degeneration, and unclear
pain. Individuals with conditions excluded by MR safety
guidelines such as pacemakers, other implanted electronic de-
vices or pregnancy, were not included.

Data acquisition

In this study, the utility of a novel CNN that integrates and
enhances the conventional CS algorithm referred to as
Adaptive-CS-Network as presented by Pezzotti et al [15]
was investigated (CSAI). The Adaptive-CS-Network mimics
the iterative shrinkage–thresholding algorithm (ISTA) ap-
proach presented by Zhang et al [22] and integrates multiscale
sparsification in a problem-specific learnable manner and
combines a CNN-based sparsifying approach with the image
reconstruction approach of compressed sense, which ensures
data consistency and incorporates domain-specific prior
knowledge such as coil sensitivity distribution and location
of the image background. In this regard the Adaptive-CS-
Network basically replaces the wavelet transform by a CNN
as sparsifying transform in the compressed sense algorithm,
still keeping domain-specific knowledge and a term ensuring
data consistency in place in the reconstruction process. In
contrast to the network presented by Pezzotti et al [15], the
Adaptive-CS-Network employed in this work was pre-trained
on about 740,000 sparsifyingMR images using both 1.5T and
3T images of various anatomies and contrasts. Furthermore,
the algorithm was optimized to allow execution on standard
reconstruction hardware.

All examinations were performed on a 3T MR scanner
(Ingenia Elition; Philips Healthcare) using a 16-channel ankle
coil. The ankles were fixated within the coil to reduce motion
artifacts. The examination protocol included the following 2D
sequences: axial T2-weighted turbo spin echo (TSE) se-
quences, coronal T1-weighted TSE sequences and coronal

European Radiology (2022) 32:8376–8385 8377



as well as sagittal intermediate-weighted (IM) TSE sequences
with spectral presaturation with inversion recovery (SPIR) for
fat saturation. All sequences were obtained three times: (1)
with an acceleration factor of 2.5 reconstructed using CS, (2)
with an acceleration factor of 4.6–5.3 reconstructed using
CSAI (CSAI2x), and (3) with an acceleration factor of 6.9–
7.7 reconstructed using CSAI (CSAI3x). In addition, we ob-
tained a high-resolution axial T2-weighted sequence recon-
structed using CSAI (CSAIHR), with a similar scan duration
but increased in-plane resolution and smaller slice thickness
compared to the axial T2-weighted reference sequence recon-
structed using CS only. To assess signal-to-noise (SNR) and
contrast-to-noise (CNR), coronal and axial MR sequences
were performed twice in 8 patients on the same ankle without
repositioning between scans. The total scan duration of the CS
protocol was 12:44 min. The scan duration of the CSAI2x

protocol was 6:45 min (47% shorter compared to CS). The
scan duration of the CSAI3x protocol was 4:46 min (63%
shorter compared to CS). The reconstruction times of a
multi-slice 2D scan were in the order of about 2 min.
Further details of the imaging protocols are shown in Table 1.

Quantitative image analysis

The subtraction method was used to determine SNR and CNR
values for CS, CSAI2x, and CSAI3x, as described previously
[13, 23, 24]. Sequences acquired twice in the same exam
session were subtracted to create noise maps. Regions of in-
terest (ROIs) were placed in the same location on three con-
secutive slices in each series and the noise maps. SNR was
calculated for the following tissues: fluid, muscle, and tendon.
CNR was calculated for fluid/muscle, fluid/tendon, and mus-
cle/tendon.

Table 1 Sequence parameters of the sequences acquired using CS, CSAI2x, and CSAI 3x

Pulse sequence ax T2w TSE ax T2w TSE HR cor T1w TSE cor IMw TSE sag IMw TSE

TR [ms] 2791 4733 705 2288 3631

TE [ms] 80 80 18 50 50

Echo train length (ETL) 15 15 6 15 8

Acquired resolution [mm] 0.3 × 0.5 0.2 × 0.3 0.3 × 0.4 0.4 × 0.6 0.4 × 0.5

Slice thickness [mm] 3 2 3 3 3

Field of view [mm] 130 × 130 130 × 130 140 × 140 140 × 140 140 × 140

Number of slices 31 46 23 23 24

Acceleration factor/scan time [min]

CS 2.5/2:25 - 2.5/3:04 2.5/2:54 2.5/2:47

CSAI2x 5.1/1:30 5/2:50 5.2/1:44 5.2/1:45 4.6/1:34

CSAI3x 7.7/1:04 - 7.5/1:15 7.6/1:13 6.9/1:05

Fig. 1 SNR of fluid, muscle, and tendons. No significant differences
were found in SNR between the sequences acquired with CS only and
the CSAI2x sequences. SNR was higher for fluid and muscle in the
CSAI3x sequences compared to CS

Fig. 2 CNR calculated for the tissues fluid/muscle, fluid/tendon, and
muscle/tendon
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Semi-quantitative image analysis

CS, CSAI2x, CSAI3x datasets, and CSAIHR images were an-
alyzed in a randomized order with an interval of 4 weeks be-
tween readings to prevent recall bias. MR images were ana-
lyzed separately by two radiologists (25 and 7 years of experi-
ence; K.W. and S.C.F.), blinded to all clinical and other infor-
mation. Readers graded depiction and presence of abnormali-
ties of the tibiofibular syndesmosis, the medial and lateral liga-
ment complex, the sinus tarsi ligaments, the extensor, flexor
and peroneal tendons, the articular cartilage of the ankle joint,
the bone, and the tibial nerve. Depiction of anatomical struc-
tures was graded using an ordinal 5-point Likert scale (1 = poor,
2 = below average, 3 = fair, 4 = good, 5 = excellent) evaluating
the following criteria: partial volume effect, blurring, discrimi-
nation from adjacent structures, and signal homogeneity [23].
Abnormalities of the ligaments were graded in analogy to the
Schweitzer classification system [25] as 0, no abnormality; 1,
degenerative changes; 2, partial tear; 3, complete tear.
Abnormalities of the tendons were graded as present/absent.
Degenerative changes of the articular cartilage were graded as
0, no abnormality; 1, abnormal signal; 2, surface defect; 3,
osteochondral defect. Bone abnormalities were graded as 0,
no abnormality; 1, bone marrow edema pattern (BMEP); and
3, other abnormalities. Diagnostic confidence was recorded for
all detected abnormalities with a 5-point ordinal scale as applied
previously (1 = not detectable; 5 = 100% depicted, sharp) [23].

Statistical analysis

The statistical analysis was performed with SPSS, version
25.0 (IBM) using a two-sided 0.05 level of significance
(S.C.F.). We also differentiated between p ≤ 0.05, p ≤ 0.005,
and p ≤ 0.001, since previous studies have shown that using
p values above 0.005 may lead to a lack of reproducibility of
scientific findings [26]. CS was used as standard of reference
for all statistical comparisons since this is currently the stan-
dard imaging technique in our clinical routine. The Wilcoxon
signed-rank test was used to assess differences in image qual-
ity and detection and classification of abnormalities between
CS and CSAI protocols. Interobserver correlation and
intersequence correlation of detected abnormalities were de-
termined using Cohen’s kappa.

Results

Quantitative image analysis

No significant differences were found in SNR between the CS
and CSAI2x protocols. Compared to CS, SNR in the CSAI3x
protocol was higher for fluid (94.2 ± 48.3 vs. 163.6 ± 77.7, p =
0.035) and muscle (127.8 ± 45.9 vs. 442.0 ± 17.3, p = 0.011);
Fig. 1. Compared to CS, CNR in the CSAI2x protocol of
fluid/muscle was higher (81.8 ± 37.6 vs. 241.1 ± 183.1, p =

Fig. 3 High-resolution axial T2-weighted CSAI TSE image (a, 2:50 min)
and conventional CS TSE image (b, 2:25 min) of a 30-year-old female
patient. Note the detailed depiction of the tendons and the tibial nerve and

the improved discrimination from adjacent structures in the high-
resolution CSAI TSE image compared to the CS TSE image
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0.035), while no significant differences were found for other
investigated tissues. CNR was higher for all tissues in the
CSAI3x protocol compared to CS only (fluid/muscle: 81.8 ±
37.6 vs. 278.4 ± 94.8, p = 0.011; fluid/tendon: 52.6 ± 37.7 vs.
120.6 ± 47.8, p = 0.011; muscle/tendon 92.4 ± 68.9 vs. 399.0
± 49.2, p = 0.011; Fig. 2).

Depiction of anatomical structures

No significant differences were found for the depiction of
all structures when comparing CS and CSAI2x. In CSAI3x
the depiction was graded significantly lower (p ≤ 0.001)
compared to CS for all anatomical structures apart from the
tibionavicular ligament, which already had a low Likert
score in CS and only marginally decreased in CSAI3x.

Both readers found the high-resolution axial T2-weighted
CSAIHR scan to improve the depiction of the peroneal
tendon and the tibial bone structure (p ≤ 0.05, respective-
ly), the anterior fibulotalar ligament and the extensor ten-
don (p ≤ 0.005, respectively), and the tibial nerve (p ≤
0.001) (Fig. 3). In addition, reader 1 also graded the pos-
terior tibiofibular ligament to be better depicted, reader 2
graded the flexor tendons, and the bone structure of the
talus and fibula to be significantly better depicted (p ≤
0.05, respectively). Detailed information on all graded an-
atomical structures is shown in Table 2. Magic angle arti-
facts were observed in all cases for CS, CSAI2x, CSAI3x,
and CSAIHR. Moreover, no difference was noted for the
markedness of the magic angle artifacts between different
MR protocols.

Table 2 Depiction of anatomical structures

Anatomical complex Reader 1 Reader 2

CS CSAI 2x CSAI 3x CSAI HR CS CSAI 2x CSAI 3x CSAI HR

Tibiofibular syndesmosis

Anterior tibiofibular ligament 4.1 ± 0.5 4.0 ± 0.6 3.5 ± 0.6*** 4.2 ± 0.5 4.3 ± 0.6 4.1 ± 0.7 3.4 ± 0.6*** 4.2 ± 0.5

Posterior tibiofibular ligament 4.6 ± 0.5 4.5 ± 0.5 3.9 ± 0.5*** 4.8 ± 0.4* 4.7 ± 0.5 4.5 ± 0.7 4.0 ± 0.7*** 4.8 ± 0.4

Lateral collateral ligament complex

Anterior fibulotalar ligament 4.3 ± 0.6 4.2 ± 0.7 3.5 ± 0.7*** 4.6 ± 0.6** 4.3 ± 0.6 4.3 ± 0.7 3.4 ± 0.7*** 4.7 ± 0.5**

Calcaneofibular ligament 4.4 ± 0.5 4.3 ± 0.5 3.5 ± 0.7*** 4.1 ± 0.7 4.1 ± 0.6 4.1 ± 0.6 3.4 ± 0.7*** 4.2 ± 0.7

Posterior fibulotalar ligament 4.5 ± 0.5 4.4 ± 0.6 3.7 ± 0.6*** 4.4 ± 0.5 4.5 ± 0.6 4.4 ± 0.6 3.6 ± 0.6*** 4.4 ± 0.5

Medial collateral ligament complex

Anterior tibiotalar ligament 3.7 ± 0.9 3.6 ± 0.9 3.2 ± 1.0*** 3.8 ± 0.6 3.7 ± 1.0 3.7 ± 1.0 3.3 ± 1.0*** 4.0 ± 0.7

Tibionavicular ligament 2.2 ± 1.2 2.1 ± 1.2 2.0 ± 1.2 n/a 2.1 ± 1.1 2.0 ± 1.1 2.0 ± 1.2 n/a

Tibiospring ligament 4.5 ± 0.5 4.5 ± 0.5 3.7 ± 0.4*** n/a 4.3 ± 0.7 4.3 ± 0.7 3.8 ± 0.6*** n/a

Tibiocalcaneal ligament 4.5 ± 0.6 4.6 ± 0.6 4.0 ± 0.4*** n/a 4.5 ± 0.6 4.6 ± 0.6 3.9 ± 0.5*** n/a

Posterior tibiotalar ligament 4.3 ± 0.5 4.6 ± 0.5 3.7 ± 0.5*** 4.6 ± 0.5 4.7 ± 0.5 4.5 ± 0.6 3.7 ± 0.6*** 4.7 ± 0.5

Ligaments within the sinus tarsi 4.3 ± 0.5 4.3 ± 0.5 3.8 ± 0.6*** n/a 4.4 ± 0.5 4.4 ± 0.6 3.8 ± 0.7*** n/a

Tendons

Extensor tendons 4.5 ± 0.6 4.4 ± 0.6 3.8 ± 0.4*** 5.0 ± 0.2** 4.5 ± 0.6 4.4 ± 0.6 4.1 ± 0.2*** 4.9 ± 0.3**

Peroneal tendons 4.7 ± 0.4 4.7 ± 0.4 3.9 ± 0.5*** 4.9 ± 0.3* 4.7 ± 0.5 4.7 ± 0.5 4.0 ± 0.5*** 4.9 ± 0.3*

Flexor tendons 4.9 ± 0.3 4.9 ± 0.3 4.0 ± 0.4*** 5.0 ± 0.0 4.9 ± 0.3 4.8 ± 0.4 4.1 ± 0.2*** 5.0 ± 0.0*

Cartilage

Fibulotalar cartilage 3.3 ± 0.6 3.0 ± 0.8 2.4 ± 0.7*** 3.4 ± 0.8 3.3 ± 0.6 3.2 ± 0.8 2.5 ± 0.6*** 3.5 ± 0.9

Tibiotalar cartilage 3.3 ± 0.5 3.2 ± 0.6 2.3 ± 0.5*** n/a 3.3 ± 0.6 3.3 ± 0.7 2.4 ± 0.6*** n/a

Bone

Talus 4.9 ± 0.3 4.8 ± 0.4 3.5 ± 0.6*** 5.0 ± 0.2 4.9 ± 0.3 4.8 ± 0.4 3.5 ± 0.6*** 5.0 ± 0.0*

Fibula 4.9 ± 0.3 4.9 ± 0.3 3.7 ± 0.6*** 5.0 ± 0.0 4.8 ± 0.4 4.8 ± 0.4 3.8 ± 0.6*** 5.0 ± 0.0*

Tibia 4.9 ± 0.3 4.8 ± 0.4 3.7 ± 0.6*** 5.0 ± 0.0* 4.8 ± 0.4 4.7 ± 0.5 3.8 ± 0.6*** 5.0 ± 0.0*

Tibial Nerve 4.0 ± 0.5 4.0 ± 0.5 3.2 ± 0.7*** 4.8 ± 0.4*** 4.0 ± 0.5 4.0 ± 0.6 3.2 ± 0.7*** 4.9 ± 0.3***

Data are presented as means ± standard deviations

5-point Likert scale (5 = best; 1 = worst)

*p ≤ 0.05 using CS as standard of reference

**p ≤ 0.005 using CS as standard of reference

***p ≤ 0.001 using CS as standard of reference
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Table 3 Detected abnormalities and diagnostic confidence

Anatomical complex Grade CS CSAI 2x CSAI 3x

n Rating n Rating n Rating

Reader I

Tibiofibular syndesmosis I

II 1 1 1

III

Total 1 4.0 ± 0.0 1 4.0 ± 0.0 1 4.0 ± 0.0

Lateral collateral ligament complex I 5 5 5

II 5 5 6

III 5 5 4

Total 15 4.5 ± 0.5 15 4.4 ± 0.5 15 3.9 ± 0.5**

Medial collateral ligament complex I 2 2 2

II

III

Total 2 4.0 ± 0.0 2 4.0 ± 0.0 2 3.0 ± 0.0

Tendons 13 4.6 ± 0.5 13 4.5 ± 0.5 12 4.1 ± 0.5

Cartilage I

II

III 4 4 4

Total 4 5.0 ± 0.0 4 4.8 ± 0.5 4 4.0 ± 0.0*

Bone I 7 7 6

II 7 7 7

Total 14 5.0 ± 0.0 14 5.0 ± 0.0 13 4.3 ± 0.5**

Reader II

Tibiofibular syndesmosis I

II 1 1 1

III

Total 1 4.0 ± 0.0 1 4.0 ± 0.0 1 4.0 ± 0.0

Lateral collateral ligament complex I 4 4 4

II 5 5 6

III 5 5 4

Total 14 4.3 ± 0.5 14 4.2 ± 0.6 14 3.8 ± 0.4**

Medial collateral ligament complex I 1 1 1

II

III

Total 1 4.0 ± 0.0 1 4.0 ± 0.0 1 3.0 ± 0.0

Tendons 11 4.5 ± 0.5 11 4.3 ± 0.5 11 3.7 ± 0.5*

Cartilage I

II 1

III 4 4 3

Total 4 4.5 ± 0.6 4 4.5 ± 0.6 4 4.0 ± 0.0

Bone I 7 7 6

II 7 7 7

Total 14 5.0 ± 0.0 14 5.0 ± 0.0 13 4.2 ± 0.4**

Data are presented as means ± standard deviations

5-point Likert scale (5 = best; 1 = worst)

*p ≤ 0.05 using CS as standard of reference

**p ≤ 0.005 using CS as standard of reference
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Assessment of abnormalities

Details of the assessment of abnormalities and the diag-
nostic confidence are given in Table 3. All abnormali-
ties detected on images reconstructed with CS were also
detected on CSAI2x images, and there was no signifi-
cant difference in the diagnostic confidence recorded for
all detected abnormalities between both protocols (Fig.
4). Moreover, most abnormalities detected on images
obtained with CS were also detected on CSAI3x images
(n = 47/49, reader 1; n = 44/45, reader 2). Only one
longitudinal split tear of the peroneus brevis tendon and
one bone abnormality (bone marrow edema of the talus,
< 3 mm diameter) recorded on images acquired using
CS were not seen in CSAI3x images, due to increased
blurring of the anatomical structures. Both readers re-
corded a significantly lower diagnostic confidence for
abnormalities of the lateral ligament complex and the
bone on CSAI3x compared to CS images (p ≤ 0.005).
Reader 1 also recorded a lower diagnostic confidence
for abnormalities of the cartilage, while reader 2 record-
ed a lower diagnostic confidence for tendon abnormali-
ties on CSAI3x compared to CS images (p ≤ 0.05). No
new, artificial abnormalities were created by CSAI
reconstructions.

Interreader correlation was excellent for all criteria with κ =
0.86–1.0. Intersequence correlation was perfect for CSAI2x
and CS for both readers with κ = 1.0, respectively.
Intersequence correlation was excellent for CSAI3x and CS
for both readers with κ = 0.93–1.0 for reader 1 and κ = 0.86–
1.0 for reader 2, respectively (Fig. 5).

Discussion

In this study, we implemented an artificial intelligence frame-
work for additional twofold and threefold acceleration of an-
kle MR imaging compared to conventional CS. The correla-
tion was perfect for CS and CSAI2x and excellent for CS and
CSAI3x. No significant differences were found for the depic-
tion of anatomical structures between CS and CSAI2x and the
same abnormalities were detected in both sequences. For
CSAI3x the depiction was graded significantly lower com-
pared to CS; however, most abnormalities were also detected.
The high-resolution axial T2-weighted sequence was found to
specifically improve the depiction of tendons, bone and the
tibial nerve, with only minimally increased scan time com-
pared to the axial T2-weighted CS reference scan.

Previous studies have used deep learning to accelerate MR
imaging. One method is to create high-resolution from low-
resolution data [27–29]. Chaudhari et al used deep learning
CNNs to generate thin-slice knee MR images from thicker
input slices [27]. Moreover, different deep learning methods
have been applied to reconstruct MR images from
undersampled MR data [17, 30]. Akçakaya et al used a k-
space-based deep learning technique to estimate missing k-
space lines from acquired k-space data [17]. Liu et al used a
generative adversarial network (GAN) to enforce data consis-
tency for a robust reconstruction of accelerated MR images
[30]. In a similar approach to our study, Hammernik et al used
an image-space-based technique for reconstruction of acceler-
ated MR images with a so-called variational network [16].
The overall image quality of the variational network recon-
structions with an acceleration factor of 4 was graded equal or

Fig. 4 Axial T2-weighted TSE
images of a 52-year-old male ac-
quired using CS (a), CSAI2x (b),
and CSAI3x (c), approximately
reducing the acquisition time by
half and two-thirds compared to
CS, respectively. The images
show a complete tear of the ante-
rior talofibular ligament (black
arrow). Note the slightly in-
creased blurriness of the tibia on
the CSAI3x images. However,
the tear of the anterior talofibular
ligament is clearly depicted on all
three images
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better compared to conventional PI compressed sensing im-
ages, though anatomical structures and pathologies were not
separately evaluated [16]. In accordance, we found no signif-
icant differences for the depiction of anatomical structures
between CS and CSAI2x with an acceleration factor of 4.6–
5.3 equating to approximately half the acquisition time of CS
only. Moreover, the same abnormalities were detected in both
sequences with no significant difference in the recorded diag-
nostic confidence. These findings suggest that CSAI2x proto-
cols could be implemented in clinical practice without de-
creasing diagnostic image quality, though further validation
studies are warranted to confirm these results.

In addition, we also evaluated the diagnostic image quality
for CSAI3x with a threefold acceleration of acquisition times
compared to the CS protocol. The depiction and diagnostic
confidence for the detection of abnormalities was graded low-
er for most structures compared to CS. The reduction in diag-
nostic image quality was caused by increased image blurring,
resulting in a reduced sensitivity in the detection of abnormal-
ities. No spurious artifacts, which overlaid or mimicked a

pathology, have been observed. However, it should be noted
that only one peroneal tendon disorder and one bone abnor-
mality of the talus recorded in CS were not seen in CSAI3x,
while all other abnormalities were detected. These findings
suggest that CSAI3x could be used in specific cases when
the patient is in significant pain or only able to remain mo-
tionless for a short time.

Measured values of SNRwere higher in CSAI3x, but not in
CSAI2x compared to CS. For CSAI3x the higher SNR values
were offset by image blurring and a related, significantly
worse depiction of anatomical structures and abnormalities.
This indicates that SNR and CNR values do not represent
the total perceived image quality, when comparing iterative
image reconstructions and image denoising. While image de-
tails and abnormalities were depicted worse in CSAI3x, no
artificial details or abnormalities were observed.

Despite promising results, some limitations are pertinent to
this study that should be addressed in further studies. No ex-
ternal standard of reference, such as arthroscopy, was avail-
able to serve as ground truth for detected pathologies of the

Fig. 5 Coronal T1-weighted and
intermediate-weighted TSE im-
ages with spectral presaturation
with inversion recovery (SPIR)
for fat saturation of a 42-year-old
male, acquired using CS (a, d),
CSAI2x (b, e), and CSAI3x (c, f)
showing an osteochondral defect
of the medial talar shoulder (white
arrowheads) as well as degenera-
tive changes of the subtalar joint
(white arrow). The depiction of
bone was rated equally on CS and
CSAI2x images with a Likert
score of 5 (excellent), but slightly
lower on CSAI3x images with a
Likert score of 4 (good)
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ankle. Therefore, it was not possible to verify the diagnosed
pathologies using an external standard of reference.
Moreover, our series included only 30 subjects with a limited
number of different pathologies and, thus, further studies in-
cluding more patients are warranted to confirm these results.
The aim of this study was to conduct a validation study on an
internal data set. However, further studies are warranted to
validate these results. Next steps include temporal validation
(evaluation on a second data set from the same center) and
external validation (evaluation on data from one or more other
centers) [31]. To implement CSAI in the clinical workflow, it
may also be beneficial to initially introduce these imaging
sequences in addition to standard routine imaging protocols.
This approach would allow for radiologists to develop a better
understanding of CSAI sequences and when to best imple-
ment them.

In conclusion, we conducted a validation study from a sin-
gle institution to evaluate a compressed sensing artificial in-
telligence framework and found that acquisition times can be
reduced by 47% using CSAI without decreasing diagnostic
image quality. Reducing acquisition times by 63% still pro-
duces images with an acceptable diagnostic accuracy but
should be reserved for specific cases when patients are in
significant pain or only able to remain motionless for a short
time. This study is the foundation for further validation
studies.
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