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Abstract
Robot-guided computed tomography enables the inspection of parts that are too large for conventional systems and allows,
for instance, the non-destructive and volumetric evaluation of mechanical joining components within already assembled
cars in the automotive industry. However, the typical scan time required by such setups is still significant and represents a
major barrier for its industrial large-scale application. As an approach to mitigate the necessary time demand, we propose a
part-specific adjustment of the acquisition trajectory. Common circular standard trajectories are inherently inefficient, since
they are applied independently of the considered inspection task, while the use of acquisition orbits tailored particularly to
the investigated object effectively allows a reduction of the required number of projections, which in turn has the potential to
directly decrease the scan time significantly. In contrast to former simulation-guided approaches, this work is considered to
be the first successful task-specific trajectory optimization being performed on a robot-based industrial CT platform and aims
towards providing a first proof of concept that such methods can be practically applied in a shop floor environment. Based on
representative results, a reduction of the number of required projections by approx. 55% or an image quality improvement
according to the root-mean squared error by approx. 40% compared to the conventionally applied planar acquisition trajectory
was achieved.
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1 Introduction andMotivation

Since the introduction of the first commercially available sys-
tems at the beginning of this century [1], industrial computed
tomography (CT) has become a valuable and popular inspec-
tion tool for the automotive sector. One of its most important
use cases in this field is the quality assurance for joining
methods, such as riveting, screwing, welding and various
adhesive-based variants. While in series production one can
typically rely on a constant part quality, this is quite different
in the field of prototyping. Suppliers often do not use the final
version of their tools to produce the individual components.
Instead, suppliers themselves run through a process of pro-
totyping that includes constant improvement and evaluation
in order to empower their machines (like punching machines
or casting moulds). As a consequence, it has to be expected
that individual parts change slightly in size or shape during
the prototype production phase. Joining parameters have to
be adjusted accordingly, in particular for the sensitive tools
of cold joining technology. Thus, the previous validation and
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fine-tuning through a test series can become invalid. Even
if only individual joining sites need to be inspected again,
the entire car body would—at least for completion—become
unusable. This leads to additional time-wise and financial
efforts.

The current evaluation methods for mechanical joining
sites are on one hand destructive and on the other hand limited
with regard to their ability to provide extensive volumetric
information with reasonable effort. Common steps involve
(1) forcefully removing the joining element with parts of its
structural surroundings (2) cutting it through its longitudinal
axis of symmetry (3) polishing it (4) treating itwith chemicals
in order to removemetallic residue and finally (5) dimension-
ing its characteristic features with the help of a microscope
and a suitable software [2].

While the use of CT can in principle partially replace this
costly procedure, it is still limited by the maximum size of
the test object and sample parts or destructive cutouts often
have to be used. Unfortunately, in typical X-ray and CT sys-
tems, only small test objects can be inspected as a whole
and up until now there was no practically feasible method to
scan major body parts or even entire cars with the required
resolution. While special applications are nevertheless avail-
able for the scan of such large-volume objects [3], these are
still reserved for particular use cases and are by no means
readily available or time- and cost-efficient for ever day use.
However, the requirements imposed on NDT methods con-
cerning cost, personnel and material resources as well as
time spent per evaluation, are becoming ever greater, so that
new approaches are required to supplement the previously
applied methods. As such, robot-assisted CT systems, where
either the X-ray source and detector or the inspected object is
connected to a robotic manipulator head, has recently turned
into a viable option, due to its increased scanning volume
and positioning flexibility. While such methods represent
an enormous further development in non-destructive testing,
their broad application is unfortunately still impeded due to
various restrictive factors and long evaluation times are one of
themost crucial ones. For this reason, the technology canonly
be used for individual tests in the laboratory environment at
the moment, instead of being applied to series inspection as
well.

Since modern reconstruction algorithms can provide vol-
umetric data almost in real-time, the scan itself remains the
bottleneck for the examination ofmultiple parts [4]. The posi-
tioning time of the setup can typically also be disregarded [5],
which ultimately leaves the duration of the X-ray exposure
required to obtain a single projection as the limiting fac-
tor. Higher tube current settings and fast read-out electronics
allows a reduction of this acquisition time, but, unfortunately,
this method is inherently linked to a decreased image quality
aswell as a higher noise level.While novel tube designs [6,7],
post-processing algorithms [8–10] or multi-source setups

[11] aim to mitigate this effect, reducing the number of pro-
jections required for a sufficient outcome appears still to be
the most viable option for the majority of application scenar-
ios.

While reducing the number of projections will typically
decrease the resulting image quality and may lead to arti-
facts, it has also been shown that not every projection
carries the same degree of information and the selection
of the acquisition trajectory influences the achievable out-
come of the reconstructed volume [12–14] and the reliability
of metrological analysis building on this result [15–18] to
a high degree. Consequently, focusing only on the acqui-
sition of such valuable projections enables a significantly
increased part throughput and lower cost and might finally
even lead to the broader availability of new concepts such
as inline-CT that improve future mass inspection beyond the
capabilities achievable by conventional CT imaging systems.
Trajectory optimization methods are especially valuable for
robot-guided systems, due to the typically high distance
between X-ray source and detector and the inverse-square
law of radiography, which turns the acquisition of each sep-
arate projection into a costly endeavour. Also, depending on
the requirements, it is not always necessary or reasonable to
demand that the best possible scan quality is achieved. The
motto “as much as necessary, as little as possible” is applied
instead, which gives us room to reduce the number of projec-
tions even more. This is analogous to the ALARA-principle
[19],which is oftenheeded inmedical applications and stands
for “As Low As Reasonably Achievable”. In medicine, how-
ever, the objective is to minimize the dose to the patient’s
body, whereas in industrial applications it is valuable acqui-
sition time itself, that has to be kept at a minimum.

In order for trajectory optimization methods to reach their
full potential, CT systemswith asmanydegrees of freedomas
possible are required. While robot-based platforms can offer
this versatility, recently a growing number of highly flexi-
ble experimental CT systems has been engineered [20,21]
and many conventional setups which can offer the adaptive-
ness that is necessary for optimized and non-standard orbits
are already available. Such installations comprise setups for
radiotherapy [22, p. 907f] or angiography, mobile C-arms
[22, p. 557f] and laminography systems [23], but are by no
means restricted to such. On the other hand, many appli-
cations that benefit from said approaches are conceivable.
Among such are setups with fixed and limited source posi-
tions [24] or adjustable fire sequences [25], the dynamic
imaging of fast processes [26] and inline-CT formass inspec-
tion asmentioned above.Whilemedical use cases are beyond
the scope of this work, such methods can in principle also
help, for instance, to reduce artifacts caused by patient move-
ment due to increased imaging speed or to minimize the
radiation delivered to the patient [27]. Particular concerning
the latter, it has been shown that sparse projection acquisi-
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tion holds even more potential than the automatic exposure
control mechanisms [28], which have already been applied
for decades. While it has been demonstrated that the position
of valuable acquisition angles remains constant for differ-
ent tube parameters, trajectory optimization approaches are
considered particularly beneficial for low power setups due
to their ability to avoid projections related to a poor signal-
to-noise ratio (SNR) [29].

Trajectory optimization can be well included in the con-
cept of a digital twin. The current approach is to scan a
part using a universally applicable standard trajectory and
manually or automatically classify the part as usable or
scrap. However, computed tomography is able to generate
a volumetric representation of the actual state of a part or
assembly, which can be leveraged to a much more holistic
part inspection and tracking concept. To start with, geometri-
cal information concerning the object is typically available,
e.g., in form of a CAD file. This data can then be used to
optimize the trajectory before the actual acquisition and then
to conduct the CT scan using this optimized pattern. Addi-
tional information, for instance from optical scans, other
non-destructive modalities or historical data from previous
imaging can then be used to improve the reconstruction or
generate new insights, e.g., by training neural networks on the
data, automatically classify the object, track occurring geo-
metric deviations over time, apply predictive maintenance
if certain trends can be identified, and much more. Finally,
this information can be used to improve the manufacturing
processes and the part design, which closes the circle that
is also referred to as “cyber-physical loop” [30]. In short,
instead of only scanning parts, the addition of a pre-scan
stage (e.g., trajectory optimization) in combination with pro-
viding additional information (e.g., CAD or historical data),
a post-scan stage (e.g., machine learning based evaluation),
and linking these to each other has the potential to drastically
improve the value chain and make use of currently unused,
but available data.

2 Outline of the Problem

Generally, the CT reconstruction problem can be formulated
as solving

p = Af, (1)

where p ∈ R
m describes themeasurements (i.e., all pixel val-

ues of all acquired projections), f ∈ R
n is the inspected object

(which is equivalent to the “perfectly” reconstructed image)
and A ∈ R

m×n denotes the system matrix that describes
the imaging process with respect to the setup geometry [31,
p. 205]. Note that in reality f is infinite-dimensional and an

infinite amount of line integrals would be required to solve
Eq. 1 accurately.

Since the system of equations given by Eq. 1 is ill-posed
and the inversion of A is typically not feasible, we define the
reconstruction operator Z as an abstract process that yields
an estimate f̃ for the true image f from the projections:

Z (p) = f̃ �= f . (2)

Equation 1 describes the imaging process that is typically
performed by industrial CT systems, where the number of
measurements is high, so that the system is usually overde-
termined. In this context, we consider the projection number
to be sufficient if the Nyquist-Shannon criterion or its alter-
native formulation, the Crowther criterion [32], is met. As
a practical rule of thumb, the projection count should be on
the order of the number of horizontal detector elements or
more [31, p. 261], which can easily comprise thousands of
separatemeasurements. The final goal of trajectory optimiza-
tion as formulated and discussed in this work is to reduce this
number to a smaller subset ofmeasurements g. This selection
is described by the measurement matrix � as

g = �p = �Af . (3)

It shall be noted that � cannot be selected completely arbi-
trarily, as measuring a single pixel element is equivalent to
acquiring all elements in the same projection, since the imag-
ing process for conventional CT is based on projections as
the smallest unit of obtainable information. Unsurprisingly,
the reconstruction of a subset yields a different estimate for
the image:

Z (g) = Z (�p) �= Z (p) = f̃ . (4)

We can now formulate the trajectory optimization task as
finding an optimal measurement strategy �N,opt for a prede-
fined number of projections N so that

�N,opt = argmax
�∈�N

(‖Z (�p)‖) , (5)

where �N denotes the set of all feasible measurement
matrices that include N projections. The norm ‖·‖ is an
appropriately selected metric to quantify the achieved image
quality, which has to be chosen in accordance with the imag-
ing task and intention, e.g., visual inspection by a human
or further automatized procession by algorithms. Unfortu-
nately, it is typically very difficult to quantify image fidelity
for the resulting volume, even if all frame conditions are pre-
cisely known. Instead, it is more viable to compare it with a
reference image that is considered to be optimal and quantify
the difference by use of a suitable metric. The most straight-
forward choice for such a referencewould be f , i.e., the image

123



55 Page 4 of 23 Journal of Nondestructive Evaluation (2022) 41 :55

itself. In practice, however, f is usually not known and can
also not be readily obtained, since only the surrogate f̃ is
available by the reconstruction of a sufficiently high number
of images by Eq. 4. Consequently, by relying on this next
best option we require that

�N,opt = argmin
�∈�N

(‖Z (g) ,Z (p)‖) , (6)

= argmin
�∈�N

(‖Z (�Af) ,Z (Af)‖) , (7)

where the notation of the norm ‖A, B‖ denotes the image
quality of A with respect to the reference B. Several prob-
lems appear that prevent us from solving Eq. 7. For one, it
is an in general ill-posed and for real data even inconsistent
problem due to the high dimensionality of its terms as well
as the non-linear properties and the particular high compu-
tational burden of the reconstruction operator. Furthermore,
the choice of an appropriate image quality metric is diffi-
cult and disproportionately influences the achievable results.
Since the size of non-zero entries related to �N increases
according to

( k
N

)
, with k being the number of projections

in p (i.e., a vast number of combinations exist), typically no
absolute minimum can be found for higher values of N . Last,
Eq. 7 inherently assumes that the image quality achieved by
all projections (i.e., the reference) is always better than the
subset. It has been shown for medical CT that this is typi-
cally not the case and, given a time budget for the entire scan,
a range of projections can be identified that yields a partic-
ularly good image quality due to the interplay of different
noise sources and aliasing artifacts [33]. While this study is
not directly comparable to our case due the frame condition
of arbitrary scan time and the peculiarities of industrial CT
systems with different exposure times, photon energies and
detector properties, it has been observed that over a broad
range of projections basically no improvements are feasible
[4]. Furthermore, exceeding a certain number of projections
does not further enhance the image quality [34] and cer-
tain part-dependent ranges of particularly valuable projection
numbers can be identified [35]. It shall be stressed that these
restrictions are only relevant if a solution for a high N is
required. Since we focus particularly on very low N in this
work, the assumption of an inferior image quality is fulfilled
and this point therefore omitted for further discussion.

It has been shown that in general at least two part-
dependent projection ranges exist where trajectory optimiza-
tion can be reasonably applied. For low projection numbers,
each image is costly and greatly influences the achievable
reconstruction result. Consequently, reducing the number of
acquired images in this domain can have a high impact on
the required scan time and an appropriate choice of mea-
surement positions can lead to clearly visible improvements.
However, if a very high number of measurements is con-

ducted, as is usually the case for metrological applications,
it can be beneficial to exclude those related to a poor signal-
to-noise ratio, as they might increase the overall noise level
and deteriorate the achievable image quality [35]. This work
explicitly deals only with the optimization problem for low
projection counts and it seems reasonable that Eq. 7 can-
not be applied for the high-projection problem. Instead, a
reference-less metric (i.e., Eq. 5) has to be used and the com-
putational effort is significantly higher (e.g., due to higher
computational burden of the reconstruction of many projec-
tions), which makes this task much more difficult to solve
[35]. While some approaches that aim to solve Eq. 7 approx-
imately have nevertheless been proposed, othermethods have
also been developed, which will be outlined in Sect. 3.

3 State of the Art

Nowadays, the planar (partial) circle is still the most com-
monly applied trajectory design, owing to its mechanical
simplicity, which only requires a single degree of freedom.
However, this trajectory does not fulfill the well-known Tuy-
Smith sufficiency condition, which leads to the formation of
cone beam artifacts and several alternative shapes, such as
the helix or the circle-and-line trajectory, have been proposed
to overcome this limitation. An overview is provided in the
literature [36]. Unfortunately, such designs are still inher-
ently sub-optimal, since they do not consider the individual
shape of the inspected object and the concept of part-specific
trajectories that are tailored towards the particular imaging
task appears to hold the potential for further improvements.

Trajectory optimization is a relatively young field of active
research with most methods being developed in the last five
years and no commercially available system has yet entered
the market. However, the fundamental concepts were pro-
posedmuch earlier as indicated in Table 1. Since the potential
of advances related to computational performance has been
exhausted, the advent of highly flexible and robot-based CT

Table 1 Overview of existingmedical and industrial CT trajectory opti-
mization concepts proposed in the literature

Approach Year Source

Capture tangential to edges 2011 [37,38]

Avoid high attenuation 2010 [17,29,39–44]

Tuy–Smith completeness 2020 [18,45–47]

Reconstruction quality 1991 [13,48–52]

Model observer 2013 [53–63]

Other 2000 [48,64,65]

Some of the listed methods use more than one approach. The indicated
year refers to the earliest published method
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platforms that offer new opportunities has recently lead to
increasing attention.

So far, most methods have focused on medical appli-
cations; however, in the industrial field different frame
conditions apply, so that these algorithms are only applicable
under certain conditions. The requirements are different in
terms of accuracy, properties of the objects to be inspected,
possible trajectories, machine parameters and much more.
Therefore, different approaches might be necessary to allow
for trajectory optimization with respect to industrial CT. In
the following, a coarse classification of different optimiza-
tion methods proposed so far will be suggested, while many
algorithms can be counted towardsmore than one category.A
detailed discussion of various optimization realizations [35]
and trajectory designs [36] can be found in the literature,
while only a brief summary will be provided in the follow-
ing. It shall be stressed that former industrial approaches
which address this thematic complex are to the best of our
knowledge, merely based on simulations. As consequence,
this work is considered to be the first successful part-specific
trajectory optimization using an industrial robot-based setup,
while it shall be noted that similar investigations have never-
theless already been performed multiple times using medical
equipment and continuous trajectories.

To start with, it is well known that X-rays tangential to
the object edges are necessary [66] to resolve these struc-
tures sufficiently. While this fact can be directly derived
from the Fourier-slice theorem, several methods have been
developed in order to adjust X-ray source and detector posi-
tion accordingly, for instance based on the edge-detecting
Hough transform [37] or the wavelet transform [38]. Simi-
larly important, long X-ray paths or those corresponding to
particularly dense materials should be avoided in order to
obtain a good signal-to-noise ratio in the projections. Gross
violation of this condition leads to photon starvation [67],
which can culminate in the well-known metal artifacts and
facilitates the formation of beam hardening artifacts [39]. As
a consequence, multiple approaches have been developed
to automatically position the object with respect to these
restrictions. While the simplest of such methods accumulate
the pathlength or attenuation coefficients within the part for
certain possible viewing directions and aim to avoid angles
associatedwith high attenuation,more sophisticated versions
also exist that are based, for instance, on the expected sig-
nal intensity deviation between a mono- and poly-energetic
X-ray source [43,44].

Recently, several methods have been developed that quan-
tify the extent to which a discrete pendant of the Tuy-Smith
sufficiency condition is fulfilled for a particular pixel [68]
or volume [69] and related optimization approaches attempt
to maximize this property. Tuy-complete trajectories do not
suffer from unsampled regions in Fourier space and avoid
therefore the formation of the famous cone-beam artifacts

that can locally lead to a drastically decreased image quality
[70]. Such approaches are typically combined with measures
to avoid long X-ray paths, since very noisy images can be
considered as missing parts in Fourier space [46].

Another group of optimization algorithms heuristically
reconstructs various projection combinations that stem from
a pool of feasible acquisition poses and quantify the image
quality with respect to a predefined criterion. This is equiv-
alent to directly solving Eq. 7 incrementally and by brute
force. While being relatively straightforward, these methods
inherently lack computational efficiency due to the expensive
reconstruction step and are difficult to handle owing to the
critical choice of the quality criterion and the high dimen-
sionality, but can nevertheless be facilitated, e.g., by use of a
greedy optimization algorithm or the separation into partial
trajectories.

Among the most frequently applied approaches is the
use of so-called model observers as figure of merit (opti-
mization criterion), which essentially are an image quality
criterion that determines how well a certain feature or object
can be detected in the acquired data. To accomplish this,
frequency-dependent expressions for noise and signal power
are calculated andweighted according to one of several avail-
able models with respect to the expected feature expressed
in Fourier space. In a certain sense, model observers act
here as a matched filter discriminators attempting to quan-
tify the detectability of a certain object. While usually a
reconstructionwould be necessary to obtain the noise and sig-
nal information, efficient approximations have been derived
[71,72] that are based solely on the projection data and
allow relatively fast computations. Recently, these compu-
tations have been supplemented using a machine learning
based approach [61,62] or the Tuy-Smith sufficiency condi-
tion mentioned above [60]. This work is also primarily based
on a model observer as outlined in Sect. 4. The detailed
discussion of further methods is omitted, since these are
typically computationally expensive or restricted to very par-
ticular applications and the interested reader is referred to the
literature for an overview of such [35].

4 Methodology

4.1 Optimization and Evaluation Approach

The proposed method is shown schematically in Fig. 1. This
section aims to briefly outline the workflow for our approach,
while further details concerning the data generation and the
optimization criterion will be given in Sects. 4.2 and 4.3. It
shall be noted that the evaluation workflow, which comprises
in particular the data generation and evaluation parts, has pre-
viously been published as a separate work [36] where further
details are provided, so that only a short summary related to
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Fig. 1 Overview of the entire proposed optimization and evaluation framework. Adapted from [35]

these parts will be given at this point.Most components of the
framework have already been used in previous work, where
further information can also be found [36,58,59].

First, an input projection pool consisting of k projections
needs to be defined in the data generation step, which is
basically a set of projections acquired from different feasible
poses. The images in the pool can stem, for instance, from
simulations or former scans, and can comprise an arbitrary
number of entries that should ideally stem from as many
different angles as possible.

For this work, we fixed source-detector and source-object
distances and moved the robotic setup around the investi-
gated part as explained in Sect. 4.3; however, in theory one
is not restricted to these limitations if the applied reconstruc-
tion method is able to process the data. If simulations are
used to generate the set, it can be necessary to restrict the
input projections so that only poses that can mechanically be
reached by the setup remain. We refer to this pool as the full
projection set, in which all feasible poses are included. At
the present time, the mechanical accessibility of the robotic
arms is ensured by previously manually moving to the later
scanning positions. In the future, ensuring accessibility and
freedom of collisions is to be validated and provided by an
external path planning system.

Next, in the preprocessing step of the prediction pipeline,
for each projection the corresponding Fisher information

matrix (FIM) is computed and stored in order to speed up the
computations performed by this part of the framework dur-
ing the actual optimization. This part is explained in detail
in Sect. 4.2. In each iteration of the optimization loop, a fig-
ure of merit (optimization criterion) is calculated for every
projection in the evaluation set and the best one is selected
with respect to a greedy algorithm and added to the solu-
tion (selection). This projection is then removed from the
evaluation set to avoid picking a projection twice and the
optimization criterion is computed for each remaining pro-
jection (updated evaluation set) again under consideration of
the momentary content of solution set. Consequently, with
this implementation, in the i-th iteration of the optimization
loop, (k + 1 − i) separate projections need to be evaluated
and the number of projections forming the optimized tra-
jectory increases by one. The optimization criterion itself
comprises a model observer and the geometric weighting
function, which are explained in Sect. 4.2. For the computa-
tion of the model observer, predicted values for some image
properties are required. These values are provided by the sec-
ond part of the prediction pipeline that is carried out in each
iteration (marked orange and green).

In theory, the optimization loop is computed k times,
i.e., until all projections in the full set are also included in
the optimized trajectory, which is the trivial solution that has
no practical value. In practice, however, the user is required
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to define a termination criterion, which can be a certain
reached image quality threshold or a predefined number of
iterations. For the course of this work the definition of this
criterion is avoided, and the image quality is evaluated at pre-
defined projection steps of four until 72 projections and 10
from 80 to 150, i.e., [4, 8, 12, . . . , 72, 80, 90, . . . , 150]. By
thismethodweaim todemonstrate that the optimization algo-
rithm is able to optimize the trajectory for an arbitrary number
of desired projections without performing worse than con-
ventional approaches for any projection number.

For this course, the optimized trajectory is passed over to
the evaluation pipeline at the projection steps defined above.
The optimized trajectory is reconstructed and compared to
a reconstruction using all available projections (i.e., the full
projection pool) using the reference-based structural similar-
ity index (SSIM), which is equivalent to solving the norm in
Eq. 7.While this index aims towards quantifying the achieved
image quality with respect to the visual impression provided
by human perception, we also used the root-mean-square
error (RMSE) as generally accepted metric. High values of
the SSIM and low ones for the RMSE denote good image
quality, and per definition the reconstruction originating from
the full projection set corresponds to 1 or 0, respectively.
Since the optimization aims towards improving the image
quality locally around the relevant feature, the evaluation is
also restricted towards this volume of interest (VOI). The
result is a projection-quality curve as shown in Fig. 6. Since
such a curve for the optimized trajectory alone is not very
meaningful, two reference trajectories were defined that act
as benchmark and need to be outperformed as proof of a
successful optimization. We used a conventional planar half-
circle (PHC) as the typically used standard approach and
its three-dimensional pendant, which is referred to as low-
discrepancy spherical trajectory (LDS). Both designs were
slightly varied several times (as often as possible for the PHC
and fixed 10 samples for the LDS) for a given projection
number to compensate for a potential systematic bias intro-
duced by an accidentally especially good or bad positioning
of the acquisition poses. Due to the particular definition of
the input projection set, results could not be provided for
all shown projection numbers, as outlined in Sect. 4.3. The
detailed definition of both reference trajectories is introduced
in a separate work [36].

For all reconstructions in this work we use a modi-
fied SART algorithm provided by the commercially avail-
able CERA 6.0 reconstruction package (Siemens Healthi-
neers AG, Erlangen, Germany). The reconstruction method
is known to perform well—and clearly better than the
conventional filtered backprojection—in the presence of
undersampled data, irregular sampling patterns and noise
[73] and is sufficiently fast with respect to the dimensions
of the volumes and images used in this work. However, we
want to stress that the optimization loop itself is entirely

reconstruction-free for performance reasons and the genera-
tion of the final volume data is only required for evaluation
purposes. Consequently, the final choice of the reconstruc-
tion algorithm also is independent of our approach and does
not alter the shape of the optimized trajectory provided by
the framework, so that the proposed method can easily be
integrated in already existing workflows without the need of
far-reaching modifications.

4.2 Basic Idea and Optimization Criterion

Three fundamental properties have been identified that need
to be fulfilled to ensure a reasonable optimization framework
and a good image quality, which are discussed in detail in a
separate work [35]. The basic ideas of our framework will be
outlined in the following and it will be shown why a model
observer based approach is considered to be generally well
suited for trajectory optimization purposes.

We do relate to the first criterion as acquiring the most
informative components of Fourier space,which is illustrated
inFig. 2:Here, a simple-shapedobject is Fourier-transformed
and its signal power spectrum is shown on the right. It is a
well-known fact that salient edges of the original part can be
detected in its transformed spectrum [74], and in fact all of
such edges can easily be identified to correspond with high
coefficients as indicated.

This point of view is also inspired by the fundamental
idea of compressed sensing, in which a high dimensional
representation (i.e., in a pixel basis in this case) of the object
is transformed into a more suited basis in which it appears
sparse, which means that most coefficients appear to be close
to zero (i.e., in the Fourier-transformed representation). If it
were possible to acquire only these parts of Fourier space,
one would be able to obtain most of the information related
to the original object with very few measurements. Luckily,
the Fourier slice theorem, which is one of the most important
relations in the field of CT reconstruction, tells us that each
straight line passing through the origin in Fourier space is
inherently connected to the projection acquired from a per-
pendicular angle.We conclude that a certain weighting has to
take place with respect to the expected Fourier-transformed
signal—which is nothing else than the object in the volume of
interest itself. Naturally, this requires that certain geometric
information about the VOI has to be provided. Since CAD
files, blueprints or similar a priori information is typically
readily available, this represents only a minor limitation for
industrial CT, while the definition of the imaging task can be
significantly more demanding in medical disciplines.

However, it is straightforward to realize that this approach
alone will not succeed in many cases, since no knowledge
about the signal strength itself is taken into account. If highly
attenuating objects are introduced in the horizontal direction
of our example in Fig. 2, it would be significantly more dif-
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Fig. 2 Salient edges and
features of an object can be
identified in its
Fourier-transformed power
spectrum as well. This fact can
be used to sparsify the expected
signal and subsequently
concentrate data acquisition
only onto the most important
coefficients, which are directly
linked to distinct acquisition
poses owing to the Fourier-slice
theorem. Adapted from [35]

ficult, if even possible, to acquire the coefficients related to
the green edge/arrow. Projections acquired in this direction
are likely to be very noisy andmight even decrease the image
quality of the final reconstruction. If the acquisition of high
Fourier coefficients were a formulation of the “capture tan-
gential to edges” approach of Table 1, this condition would
relate to the avoidance of long or highly attenuating paths.
We conclude that a proper signal-to-noise ratio is additionally
required to achieve a good reconstruction result for objects
that do not exhibit a comparable attenuation in all directions,
which is the case for most parts encountered in practice.

Model observers are a helpful concept that lets us ele-
gantly deal with these two points simultaneously. Essentially,
they are based on frequency-dependent measures for signal
(themodulation transfer function) and noise (the noise power
spectrum), which are weighted with the Fourier-transformed
expected signal with respect to a certain model. As in all
related work listed in Table 1, we use a non-prewhitening
model observer, which is defined as

d ′2 =
(∫∫∫

(MTF · WTask)
2 dudvdw

)2
∫∫∫

NPS · (MTF · WTask)2 dudvdw
, (8)

with modulation transfer function MTF and noise power
spectrum NPS being three-dimensional expressions in the
Fourier space defined by its coordinates u, v and w. In
our case, an iterative reconstruction using all available pro-
jections was carried out, from which the VOI containing
the feature to be optimized was extracted, binarized using
an appropriate threshold value, and Fourier-transformed to
obtain the three-dimensional signal templateWTask. Last, d ′
denotes the scalar detectability index, which is a figure of
merit that describes how well the feature can be detected in
the provided data. The detailed background leading to the
particular formulation of Eq. 8 is much more complex than
outlined here and comprises ideas from signal detection the-
ory, assumptions about the statistical nature of the expected
noise, the application of matched filters and further concepts.
Since a derivation of model observers at this point is nei-

ther necessary nor helpful, the interested reader is referred to
related literature [75,76] for more detailed information.

Unfortunately, this expression relies on expressions for
the local MTF and local NPS, which are not readily avail-
able without extensive computational effort. The global NPS
can be calculated by evaluating several VOIs that contain the
background noise and the feature. However, to obtain a local
NPS expression, it is necessary to determine an invertible
noise covariance matrix, which would require a vast number
of projection images for each view, reconstructions and mea-
surements. The local MTF can theoretically be obtained by
calculating the point spread function from a dirac impulse in
the original image.This approach is practically also not possi-
ble, since the interaction between several of such impulses is
not considered (i.e., object-dependent scattering effects) and
the resolution of the reconstructed volume being too coarse
for a detailed analysis. Further discussions concerning the
practical determination of local MTF and NPS values are
provided in the literature [77–81].

Luckily, efficient predictor functions have been proposed
[71,72], which also have been extensively used by most
model observer based approaches in Table 1. The approx-
imation for a particular position j , which is chosen to be the
center voxel of the VOI, is given by

MTF j ≈ F (
ATDAe j

)

F (
ATDAe j + βRe j

) (9)

and

NPS j ≈ F (
ATDAe j

)

‖F (
ATDAe j + βRe j

) ‖2 , (10)

where A is the system matrix introduced in Eq. 1, D
is a diagonal vector containing the measured pixel values
of the respective projection, R is a quadratic regularization
matrix as proposed in the literature [71] and F denotes a
Fourier transform. The division is element-by-element and
the expression e j is a vector encoding the location of interest
as a Kronecker delta function (i.e., all entries are zero except
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the desired location, which is one). The image properties are
considered to vary insignificantly in close proximity to the
evaluation voxel, so that the achieved result is assumed to
be representative for the entire VOI. Since we observed dif-
ferent choices of the regularization parameter β to perform
well in different projection ranges, we performed a parameter
sweep over a broad range of possible values and selected the
one performing best with respect to the root-mean-squared
error quality criterion for each projection number separately.
The method is analogous to our previously applied work-
flow in related work [36,58,59] and differs from most other
approaches where only a single fixed parameter is used and
typically no investigation over several projection numbers is
provided. The term ATDA is referred to as Fisher informa-
tionmatrix, which is computed for each projection separately
before the optimization loop is carried out. In the loop itself,
the Fisher information matrices related to the projections
under evaluation are summed up and Eqs. 9 and 10 are calcu-
lated using the resulting volume in order to obtain the values
forMTF andNPS necessary to compute Eq. 8 for each poten-
tial evaluation combination in each iteration.

Similar to the other two properties, our third and last cri-
terion is connected to already existing approaches in Table 1.
Violating theTuy-Smith completeness can lead to cone-beam
artifacts or, if larger parts of the Fourier space are missing,
to characteristic small angle artifacts that should be avoided.
While an algorithm focusing only on the dominant parts of
Fourier space is by no doubt highly efficient, it might also
lead to acquisition poses clustering close to each other and
give rise to the formation of said artifacts.

We used a simple approach to avoid this: the detectability
for projections within a 15◦ angle centered on already picked
ones is weighted with a factor of 0.9, which was determined
empirically. This weighting is only applied maximum one
time for each projection, i.e., the the weighting can take only
the values 1.0 (initial state), 0.9 (weighted) or 0 (projection
already picked for the solution). This measure effectively
avoids projection clustering and leads to a better covering
of Fourier space and less artifacts [35]. Since the signal-to-
noise ratio in the reconstructed volume locally depends on
the number of source points backprojecting to each voxel [5],
distributing the acquisition poses over a broader geometrical
range can also help to achieve relatively uniform image prop-
erties. For similar investigations, we additionally weighted
projections in a 15◦ range opposed to already selected ones
with a factor of 0.8, which, however, has no effect for this
work since only projections approximately in a half-sphere
were acquired, so that no opposed projections exist. It shall
further be noted that recently a optimization method very
similar to ours was proposed by Herl et al., who combined
a model observer directly with a Tuy-Smith completeness
condition [60] and achieved good results for simulated data.

While this method is certainly more complex, we consider it
to be very promising for future investigations.

4.3 Used Setup, Data Acquisition and Inspection
Task

For this investigation we used the robotic CT system
(“RoboCT”) of the car manufacturer BMW that was devel-
oped together with the Fraunhofer institute in 2018. Since
detailed information concerning this particular setup was
provided in the literature [82,83], we outline only the most
important specifications in brief. As shown in Fig. 3, the
entire setup consists of four cooperating industrial robots of
the type Kuka Quantec extra KR90 R3100 HA (Kuka AG,
Augsburg, Germany) that are assembled on two linear axes
in a radiation protected chamber. The robots are absolutely
accurate models with a position repeatability of ± 0.04mm
[84].

The robots are prepared for cooperative tasks (“Kuka
RoboTeam”), but this functionality is not used in this attempt.
Instead, the software, which runs on a separate computer, is
used for performing the scans and controlling the robots sep-
arately from point to point. Therefore a master/slave mode
that is operated by the robot controller itself is not necessary.
A lifting table is mounted in the cell, which makes it possi-
ble to raise car bodies for better accessibility. A group-wide
standardized assembly system enables the lifting of differ-
ent vehicle sizes from small to large and allows an accurate
positioning in the identical pose. This installation is also
important to assure a repeatable registration as discussed
in Sect. 6. All robots have a common coordinate system,
which has its origin in the center of the front area of the cell.
For this work only the two robots in the foreground will be
used, which are equipped with a Varex XRD 3025 detector
(Varex Imaging Corporation, Salt Lake City, Utah, USA) and
a Comet MXR-225VF X-ray tube (COMET AG, Flamatt,
Switzerland).

All communication between the computer, which runs
the software, and the robots is carried out via ethernet. The
entire scanning process is controlled by a separate software
(“Volex”, Fraunhofer EZRT, Fürth, Germany), which con-
tains functions for circular trajectory planning, robot control
and X-ray image acquisition. The software calculates the
robot coordinates after entering all required parameters. The
necessary information consists of the VOI in Cartesian coor-
dinates, start and end angles, the distances to the VOI (from
source and detector) and possible tilting information given in
pitch, yaw and roll. Since it is only designed for contiguous
rows of points on a circular trajectory, several of such parts
had to be linked together for this experiment as described
below. The system was originally intended as experimen-
tal setup and consecutive developments have focused on
improvements on the X-ray acquisition and calibration site
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Fig. 3 Test setup for this work. Two cooperative robots were equipped with a detector (left) and an X-ray source (right) and move around the
sample holder (middle). At the top of the stand a black polystyrene block is attached, on which the Ethernet switch (see Fig. 4) was placed. Adapted
from [35]

so far. Because of this, several capabilities are still in an
early stage, which brings some practical limitations to this
particular system. For instance, due to the current lack of
automatic path planning functionality for collision-free robot
paths in the used software, the individual positions and the
necessary additional points to connect the path sections had
to be checked carefully. Coppelia Sim (Coppelia Robotics,
Ltd., Zürich, Switzerland) supports this with the virtual sim-
ulation of the robot positions approached. Despite this, the
robot tracks had to be approached manually at critical points
and checked for possible collisions. The automatic planning
of a collision-free path will be implemented with an alter-
native software solution in the future. For the given part
trajectories, the software controls the two robots either simul-
taneously or separately (depending on the operator’s choice)
to the recording position and triggers the image capture.

As test object we selected a Siemens CSM12/24 industrial
Ethernet switch (Siemens AG,Munich, Germany) as depicted
inFig. 4.Thepart has a base plate size of 90×70mm, aheight
of approx. 60mm and consists of a mostly X-ray transparent
polymer housing and two circuit boards that are located in
different height levels in the inside. The electronic compo-

nents are significantly more absorbing than the surrounding
polymer box and unevenly distributed in each layer.

A screw nut of size M6, which will act as signal template,
was glued into approximately the center of the lower circuit
board. The inspection task is to resolve this object within
the Ethernet switch as well as possible for each investigated
number of projections, while a deterioration in image quality
for the remaining volume is acceptable in return. Since both
parts are typical industrial items with respect to shape and
material composition, this task is considered to bewell suited
as demonstration for the practical feasibility of our approach.
The Ethernet switch was closed again again and fixed on
a X-ray transparent polystyrene block for easy separation
between part and sample holder, which was assembled to the
movable stand as shown in the middle of Fig. 3.

The center of movement of the robotic setup was adjusted
to correspond approximately with the center of the Ethernet
switch with the source-object and source-detector distances
to be fixed to 600mm and 1200mm, respectively. To acquire
the image necessary for the input pool, we obtained 28 pro-
jections in 5◦ steps by tilting both robot arms out of the
horizontal plane defined by the azimuth (horizontal rotation)
angle θ , spanning an inclination angleφ from70◦ towards the
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Fig. 4 The test object used for
this work is an industrial
Ethernet switch (left). While the
housing is almost entirely
transparent to X-rays, the
electronic components in the
inside are clearly more
attenuating. The imaging task is
to resolve a screw nut (white
arrow), which was glued
approximately in the center of
the lower circuit board (right),
as well as possible. The right
image is rotated by 180◦
compared to the left one for
better visibility of the feature.
Adapted from [35]

ceiling and 65◦ in ground direction. This range was selected
according to the limited accessibility and further motion
restrictions of the robots. To avoid collision with the sample
holder, the acquisition arc extends 5◦ less to the ground than
in the opposite direction. After this first partial trajectory,
both robots were rotated in 5◦ steps horizontally, acquir-
ing a new arc with the same parameters at each position.
With respect to the restrictionsmentioned above, a horizontal
range of motion of θmax = 190◦ was selected, i.e., 39 partial
arcs, which are defined as points with constant θ as shown
left in Fig. 5. Due to the restricted range of motion, the arms
carrying X-ray source and detector had to be rotated by 180◦
for the last arcs. Since both parts were rotated by the same
angle, no new detector calibration was required; however,
projections related to these positions were rotated as well
and had to be aligned back in position manually in an addi-
tional preprocessing step.

As result of this acquisition pattern, the X-ray source was
moved in 5◦ steps horizontally and vertically (i.e., sampling
a half-sphere) and resulting in 1092 projections (39 times 28
projections) in total. Furthermore, additional support move-
ments had to be added manually to avoid collision with the
stand between two separate arcs, i.e., when the setup moves
from an inclination of − 65◦ to + 70◦. Given these param-
eters and a detector size of 354–304mm, the maximal cone
beam angle is in the range of approx. 16.8◦, so that the sam-
pling conditions required for the typical short scan trajectory
(180◦ plus cone beam angle) are just not met. However, since
the actual part was clearly smaller than the illuminated field
in each projection, we assume that the full Fourier space is
sufficiently sampled in the horizontal direction so that the
formation of cone beam artifacts is avoided.

After acquisition, the detector images were binned in a
4 × 4pattern, so that an effective resolution of 620 × 744
pixels and a pitch of 400µm was achieved. Further tube
parameters were an acceleration voltage of 150kV, a cur-
rent of 1.3mA and no beam prefiltering was applied. Every

final projection was generated by averaging three separately
taken images with 600ms exposure time each.

5 Results

After generation of the input data, the optimization and eval-
uation method outlined in Sect. 4 was carried out. The entire
reconstructed volume consisted of 512 × 512 × 512 voxels,
the VOI was selected to be of 49 × 49 × 49 voxels and the
isotropic voxel size was determined to be 200µm. Quantita-
tive evaluation results for the optimized trajectory and both
reference designs are provided in Fig. 6. For the planar half
circle and the low-discrepancy trajectory, several different
possible designs are evaluated for each number of projections
and the average image quality is reported together with the
standard error of themean. Due to the limited available poses
in the horizontal plane, the sample number also varies with
respect to the projection number. Since only 39 projections
are available, no rotational shift of the planar reference trajec-
tory is feasible anymore for 20 projections or higher (i.e., no
standard error is provided beyond that number), while the
sample size was fixed to 10 trajectory variations for each
projection number for the low-discrepancy trajectory. For
the same reason this benchmark can only be provided for up
to 36 projections for the planar design, since it is the next
lower sampled step size (see Sect. 4.1).

According to bothmetrics, the planar half-circle trajectory
performs clearly worst, while the low-discrepancy trajectory
as the second part-independent design already significantly
improves the results. However, the proposed optimized tra-
jectory performs best for all projection numbers, even though
the further improvement is comparably lower. We believe
this is caused by the particular shape of the object. If we
neglect the housing entirely, which is reasonable to assume,
since it is almost completelyX-ray transparent for the applied
acceleration voltage, the inner structure in proximity to the
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Fig. 5 Input dataset including all reachable poses of the system. Shown
is the position of the X-ray source as scatter plot in three-dimensional
space and encoded as spherical coordinates. The scan process was
performed by acquiring the projection associated with the highest incli-
nation angle (φ = −65◦) and lowering the source until the lowest
position is reached (φ = 70◦), while keeping θ constant. Subsequently,

the robot arm is lifted again into the highest position and the scan process
is repeated with the next θ value, i.e. the next arc. The latter reposition-
ing had to be performed manually in some cases to prevent collision
with the test stand. Exemplary trajectories using the three investigated
designs are provided in Fig. 7

Fig. 6 Quantitative results for the optimized, planar half-circle and
low-discrepancy spherical trajectory. The optimized trajectory clearly
outperforms both reference designs with respect to the provided mea-

sures, with the conventional planar circle trajectory yielding the worst
image quality. Cross sections for the indicated projection numbers are
provided in Figs. 8 and 9. Adapted from [35]

screw nut is in relation almost entirely two-dimensional.
The highly absorbing electronic components are arranged
horizontally around the VOI and cannot be avoided by a
planar trajectory. The three-dimensional LDS and optimized
designs, however, are able to avoid these highly attenuat-
ing structures and achieve a better signal-to-noise ratio in the
related projections. This can be seenwell in for the optimized
trajectory in Fig. 7, where mostly high inclination angles or
planar positions are preferred to cover the horizontal planes
of the feature and avoid high penetration lengths. It shall be

noted that the upper-level circuit board is smaller than the
lower one and consist of fewer electronic components, so
that its influence onto the location of the most valuable poses
is relatively small. We assume that most three-dimensional
trajectories are likely to improve the image quality for this
particular part with respect to a purely planar and horizontal
design. However, while the acquisition positions related to
a good signal intensity are only achieved by chance by the
low-discrepancy trajectory, the optimized design can identify
and include them more efficiently. In addition, projections
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Fig. 7 Exemplary trajectories for 36 projections. The gaps in the planar
circle trajectory (left) are introduced since the full dataset consists of
39 partial arcs, i.e. three positions are not filled. This is also the rea-
son why this design can only be defined until 39 projections, while the

LDS (center) and the optimized design (right) can be defined until all
projections of the full dataset are included. Since the results in Fig. 6
are provided in steps of four, the PC trajectory is only shown until 36
projections

tangential to the edges of the screw nut are selected systemat-
ically and improve the edge contrast as a direct consequence.
Example trajectories for 36 projections of all three designs
are provided in Fig. 7.

With respect to the RMSE metric, a similar image quality
is achieved, for instance, by a planar half-circle using 36 pro-
jections and an optimized trajectory using only 16. Similarly,
the RMSE for 36 projections is 0.051 for the planar and
0.031 for the optimized design. Based on these numbers, a
reduction related to necessary projections by approx. 55%or,
alternatively, an image quality improvement by approx. 40%
has been achieved by the proposed trajectory optimization
algorithm compared to the conventionally applied method.
In the light that this work only aims to provide a first proof
of concept, these results appear very motivating for future
work.

Cross section views through the center of the screw nut
for the reconstructions with 12 projections and the refer-
ence reconstruction using all 1092 projections are provided
in Fig. 8. For the reconstruction, the binned projectionswith a
resolution of 620 × 744 pixels were considered, which were
identical to the ones used by the optimization stage. The
relative perceived image quality difference among the three
trajectory designs agrees well with the quantitative findings.
This also holds for further cross-sections using more projec-
tions and different cross sections at the indicated positions in

Fig. 6, which are shown in Fig. 9. It shall be stressed again
that the quantitative evaluation was restricted to the VOI, for
which approximate size and location are given in Fig. 8. In
particular the magnified images show that the optimized tra-
jectory clearly outperforms both benchmark designs, since
the edges of the screw nut are resolved well, while e.g., the
inner diameter can barely be identified in the planar design.
However, the overall noise level of the LDS seems to be
slightly lower in the remaining volume than the optimized
trajectory. This effect was investigated only qualitatively by
visual inspection with respect to the cross-sections in Fig. 9
and the difference decreases for higher projection numbers.
This finding comes not unexpectedly, since the optimized
trajectory aims to include edge-tangential rays in order to
improve the contrast around the surface of the screwnut, even
if the selected projections have a relatively low signal-noise
ratio. In contrast to this, the LDS is evenly spaced, which can
lead to more homogeneous image properties. Furthermore,
in a related investigation it was found that improvements in a
certain part of the object by a trajectory optimization method
can lead to a image quality degradation in other regions of the
part. The reason for this is that particular projections which
are beneficial for the optimized VOI can nevertheless con-
tain other parts of the object associated with a long X-ray
pathlength, so that other regions are affected by increased
noise levels. In return, views that show the feature of one
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Fig. 8 Exemplary volume cross sections performed through the screw
nut center for the reference reconstruction (1092 projections) and the
three trajectory designs using 12 projections. Further sections for this

projection number are provided in Fig. 9. For a discussion of the arrow
locations see full text. Adapted from [35]

VOI very well might be rated poorly by the algorithm, since
it results in a low SNR for other VOIs so that projections
that are only mediocre for all VOIs are selected in the end as
compromise. Because of this effect it was further concluded
that as few VOIs as possible (ideally only one as in this case)
should be used to increase the obtainable image quality gain
[35]. Nevertheless, it shall be noted that the use of several
VOIs can be reasonable in some scenarios as performed in
earlier work [63]. In such multi-location cases the optimiza-
tion criterion needs to be adapted to weight the detectability
of several features and combine them into a single metric;
several possibilities to design this cost function have been
suggested [56].

Compared to the quantitative results, the reconstructed
images provide further valuable information. Slight distor-
tions (e.g., at the radial surface of the screw nut) are visible
over the entire volume, which is even the case for the refer-
ence reconstruction. This is most likely caused by geometric
deviations between the actual andmeasured positions of both
robots during the scan. While typically such differences are
negligible for conventional industrial CT setups, this might
not necessarily be the case for robot-based systems, where
the actual position of the robots should be measured during

the acquisition and taken into account [85]. Unfortunately,
no actual positions of the setup were readily available due
to the practical limitations of the control software and we
were forced to assume the acquisition pattern described in
Sect. 4.3 as ground truth. Furthermore, for this investiga-
tion no software-based compensation algorithms that could
mitigate the effect of this discrepancy were applied. In addi-
tion, no other image-enhancing postprocessingmethodswere
used, for instance to compensate for the effect of beam hard-
ening or ring artifacts, and the implementation of such is left
for future work.

The inferior image quality for the planar half-circle trajec-
tory becomes once again apparent for the higher-absorbing
electronic components at the right part of the shown volumes
(arrow a).While these are not visible at all for this design, the
low-discrepancy and the optimized trajectory provide signif-
icantly better results. A similar effect can be observed at the
lower part (arrow b), where the location of the lowermost
component appears to be on the right instead of left rela-
tive to the higher one and at arrow c, where a round object
appears distorted. These findings can turn problematic, since
they are likely to lead to false conclusions in case of practi-
cal inspection scenarios. Interestingly, the round capacitor
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Fig. 9 Cross section images of the reconstructed volume for 12, 36, 24, 80 and 1092 projections. The intersection plane for the lower row images
is indicated in the very first image. The perceived image quality correlates well with the quantitative findings of Fig. 6. Adapted from [35]

parts (arrow d) can be identified in the cross sections in
case of the low-discrepancy and optimized trajectory design.
Since these are relatively X-ray transparent, resolving them
is considered to be a difficult imaging task for a trajectory
consisting of only 12 projections. It shall further be noted
that the image quality for all provided trajectories would
be insufficient if a reconstruction of the backprojection type
was used, as it is usually performed in industrial practice. In
this case the volume would provide basically zero informa-
tive value for each design if only 12 projections were used.
The missing edge (arrow e) is no artifact but related to the
restricted reconstruction volume that ends at this part of the
object. The cross-section for the optimized trajectory shows
that the algorithm achieved acquiring projections tangential
to the surface of the screw nut. This is illustrated well by
the diagonal streak (arrow f), which is caused by X-rays
passing almost unhindered through the object in proximity
to highly absorbing components. This artifact is aligned in
source detector direction for a particular projection, which
was acquired as tangentially to the screw nut edge as possi-
ble for the given 5◦ discretization. Again, we want to stress
that the optimization task was to improve the image quality
solely within the VOI and enhancements in other parts of the
volume—though being desirable as such—are only a side
effect and cannot be guaranteed by the proposed method.

6 Discussion

Calculating the optimization criterion for a single projection
takes around 7ms on a system with two Xeon E5-2640 pro-
cessors and an Nvidia GeForce Titan X GTX graphics card,
with much space for further improvements. In case of this
work with 1092 projections, the runtime of a single opti-
mization loop is on the order of 8 seconds so that the
optimization for 150 projections can currently be conducted
in approx. 20min if a suitable regularization parameter for
the targeted projection number is known and no evaluation
reconstructions for progress monitoring are performed. The
optimization towards fewer projections takes almost linearly
less time. The calculation of the Fisher information matrices
and further preprocessing steps is computed in a few min-
utes. In its current implementation, most calculations of the
actual optimization stage (including all Fourier transforms)
are performed on the CPU, while the reconstructions for the
evaluation are computed primarily on the GPU. If a continu-
ous evaluation is required, this part of the framework can be
performed in parallel to the actual trajectory optimization.
Furthermore, while many computations are already paral-
lelized, the optimization criterion is built for each projection
sequentially in every optimization run, which could also be
improved in future work. In addition, further performance
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gains, e.g., via distributed or cloud computing are feasible,
which would also fit well in an inspection environment that
implements concepts of NDT 4.0.

For the course of thiswork, the signal templatewas derived
from a reconstruction using all available projections, which
has to be performed before the optimization can take place.
However, it can theoretically be avoided by providing the
geometry directly, e.g., via a CAD file. While we optimized
directly on the previously acquired projections, which was
naturally very time-consuming due to the required imaging
process, this step can alternatively be substituted by a simu-
lation framework as in our former work [58,59]. As we were
able to achieve good results in these studies for relatively
simple simulation parameters and without taking scatter or
advanced noise models into account, it seems reasonable to
assume that such computationally efficient approaches can
be applied here as well. Simulation-driven methods hold
several further benefits in addition. For instance, it is possi-
ble to include further parameters, like X-ray tube settings,
beam filters, and so on into the framework and optimize
these properties as well. Also, while a coarse 5◦ sampling
was used for this work, it is possible to refine the optimized
positions using simulation-driven approaches. For example,
by iteratively computing new projections in the vicinity of
the optimized poses and including them in further optimiza-
tion steps. Alternatively, if already acquired images are used
for the optimization, these can be binned for the optimiza-
tion stage as done here to reduce the computation time.
Since optimization and reconstruction are decoupled, it is
possible to reconstruct the optimized trajectory, which was
computed using binned input projects, using the unbinned
data to achieve full resolution.

We believe that all these steps can easily be automa-
tized, so that an entire trajectory optimization can become
clearly feasible in a practically reasonable time (e.g., half
an hour). However, an appropriate choice of the regulariza-
tion parameter needs to be found first, which can be a quite
time-consuming task. Alternatively, the proposed brute force
method can be applied for the cost of a higher computational
burden and runtime due to multiple repetitions of the opti-
mization and the reconstructions and reference evaluations
required to identify a suitable parameter set.

One of the greatest problems at the moment is this search
for a suitable regularization parameter β for a particular
projection number. While a similar regularization strength
typically results in the same trajectory, optimization solu-
tions with similar projection number use the same or similar
regularization parameters and slight deviations from a suit-
able value have only limited impact onto the performance
of the optimized trajectory, some “incorrect” values can
lead to very poor results, which can occasionally be out-
performed by both reference trajectories. As result of this,
the parameter sweep is definitely required to assure stable

results, since appropriate regularization parameters depend
on the inspected scenario (e.g., the object, material, projec-
tion number). While, unfortunately, this search increases the
computational effort of the algorithm linearly, the authors are
not aware of any more sophisticated methods to determine
a suitable parameter at the moment. Due to these reasons,
we plan to remove the model observer based optimization
entirely in future work and replace it via a different figure of
merit. Such ametric should comprise a SNR-weighting (e.g.,
analogous to the reconstruction quality based methods of
Table 1 and an object-dependent weighting step as illustrated
in Fig. 2. We present such a method in subsequent work [35].

An iterative reconstruction approach is strongly recom-
mended for low projection numbers as used in this work.
While reconstructing non-uniform or three-dimensional tra-
jectories is efficiently feasible in practice—for instance via
the “special reconstruction method” pipeline provided by the
CERA library—a clearly better image quality is obtained by
iterative approaches. Even though such methods typically
come with a higher computational burden, modern worksta-
tions are able to provide results sufficiently fast, in particular
since fewer projections need to be processed for an opti-
mized trajectory than usually. The reconstruction of fewer
than 150 projections with respect to the selected parameters
of thisworkwas possible in few seconds orminutes. Since the
benefits of trajectory optimization are relativized for higher
(at least until a very high projection number is reached, see
discussion in Sect. 2) projection numbers [58,59] and the
unproductive dwell time to reach the optimized positions is
disproportionally increased due to the complicated mechan-
ical realization, it seems reasonable to apply such methods
only for few views, which aids to keep the effort for comput-
ing the trajectory and the reconstruction sufficiently low. Fur-
thermore, the scan time itself is still considered themajor bot-
tleneck, while the reconstruction can be parallelized and cal-
culation power is typically cheaper than measurement time.

Also, a suitable and fast registration is paramount to prop-
erly align the optimized trajectory result to the real world
coordinate system before the scan is performed. Assume for
example, an optimized trajectory that was calculated with
respect to its CAD file and is therefore defined in relation to
the CAD coordinate system. However, the real object in the
CT system ismost probably tilted or positioned differently, so
that the trajectory has to be re-defined with respect to the new
coordinate system. Otherwise, the individual robots could
crash with the scan object causing material damage on both
sides. Another scenario that can occur independent of possi-
ble crashes, when the registration of reference and object
is not sufficient, is the deterioration of the reconstructed
volume’s quality due to artifacts caused by incorrect sys-
tem geometry parameters or discrepancies with the proposed
optimized trajectory. However—considering the latter—we
believe that the method is tolerant to a certain degree, since
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the projections are already spread out in coarse 5◦ pattern in
this work, so that errors in a similar range should be accept-
able and not lead to relevant disadvantages. It appears likely
that for larger deviations the result of the optimized trajec-
tory will tend towards the performance of the LDS trajectory
but a detailed sensitivity analysis has not been carried out
yet and is planned to be addressed in future work. We want
to stress that the accurate position of source and detector is
primarily relevant for the reconstruction (which is in general
very sensitive to such errors as mentioned in Sect. 5) and to
avoid collisions. However, these cases are highly dependent
on the scan object and the resulting optimized trajectory. A
very nuanced trajectory causes the algorithm to break down
if the object is relatively shifted and/or rotated. A trajec-
tory of either robot that passes the object very closely can
potentially cause the previously mentioned crash if not prop-
erly registered and compensated. For a sufficient registration
between object and reference, first the object to be scanned
has to be identified by the system and transferred into the
real world coordinate system. To do so, an optical 3D scan-
ner poses a viable option to detect the object, which is then
fitted against the reference in order to adjust the optimized
trajectory. Similar methods based on spherical markers are
widely used in image-guided surgery [86]. With the 3D scan
method, an additional reference object with known geom-
etry, position, and orientation is captured together with the
inspected object. From the optical scan the relative position
between both objects can then be derived and the registra-
tion is adjusted accordingly. Another possible solution for
the registration is projection-based. Here, a few radiographic
“scout-projections” could be used to infer the object’s posi-
tion and orientation. Both approaches—optical 3D scans and
radiographic scout-projections [87]—have the potential to be
performed by a specifically trained neural network. Further-
more, optical scans can be used in the reconstruction stage
to improve the obtainable image quality and to augment the
digital twin by additional surface data. However, with pre-
cise CAD data and a repeatable fixture system (see Sect. 4.3),
the methods mentioned can be avoided. For future industrial
practice this could be the preferred option, since it is easier
to integrate in productive workflows and avoids the need for
additional hardware and scanning steps.

The proposed optimized trajectory for this work was not
restricted to follow a smooth path, but was allowed to con-
sist of distinct, unconnected positions in space. While we
believe that the side condition of a continuous curve most
likely decreases the potential of the suggested method, the
positioning time necessary to reach these positions will cer-
tainly be lower and allow therefore the acquisition of more
projections in the same time. Further advantages comprise
an easier mechanical implementation and a reduced parame-
ter space, so that most proposed optimization methods have
restricted themselves already to smooth paths and connected

splines. In theory, such trajectories might also enable the use
of continuous image acquisition with the option of remov-
ing their inherent motion blur (e.g., by artificial intelligence
methods) instead of distinct imaging poses.

As illustrated inFig. 2, not all inspectedparts bear the iden-
tical optimization potential as, e.g., round objects and smooth
shapes may be located more widely spread in the Fourier
domain and consequently more projections are required to
resolve these regions, which has also been demonstrated in
previous work [58]. Fortunately, unlike for medical imaging,
most industrial parts feature an irregular shape and few dis-
tinct planes, so that we believe that the trajectory for many
relevant objects can nevertheless be optimized well. Further-
more, amethodwas proposed that is able to predict howmuch
the trajectory for a particular part can be optimized to obtain
improvements [35], so that it can be determined if an opti-
mization approach is worthwhile before actually applying it.
While a drawback of this study is the investigation of only a
single item, it has been shown via simulations that trajectory
optimization is nevertheless feasible for many, greatly dif-
ferent objects and the proposed trajectory always performed
similarly well or better than conventional approaches for any
projection number [35,58].

Another restriction can be identified in very small or
almost two-dimensional defects, such as cracks, delamina-
tions or interface layers within the part. Such flaws are often
just visible from few acquisition directions and it is at least
questionable if such will appear in an optimized trajectory
if not properly taken into account. Since previous investiga-
tions have shown that such features are likely to disappear
[88] if the required projections are not included, profound
knowledge about the inspected object and occurring errors
is required for reliable use of such methods. However, if it
can be ensured that such kinds of flaws do not occur, fur-
ther post-processing algorithms, like advanced filtering or
sinogram interpolation methods [89–91], become an option
to further reduce view aliasing artifacts caused by very low
projection numbers.

A solid understanding of the inspected part is also nec-
essary to define the signal template WTask in the first place.
Often the location, type or shape of potential flaws cannot
easily be determined and expert knowledge and experience
will be required to define relevant parts of the object. This
is in particular important, since the optimization of one VOI
can lead to a decreased image quality in other regions of the
inspected part, so that a proper task definition appears critical.
However—analogous to the discussion of a suitable registra-
tion above—we believe that some deviations are acceptable
and plan to address the question of only partially correct
task definitions in future work. In addition, the selection of a
suitable termination criterion of the optimization framework
(i.e., “how many projections are enough?”) needs to be per-
formed with respect to the achieved probability of detection
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before the optimized trajectory is applied in a larger scale. It
shall be noted that the related question of the ideal number
of projections for metrological approaches has been investi-
gated by several studies [4,34,92]. If geometries are produced
via generative methods, like additive manufacturing, it is
imaginable to relate production parameters to defects appear-
ing in the CT scan and use this information to improve the
process. This communication among several systems within
the value creation chain represents an important core property
of future smart factories, which can be augmented by the use
of artificial intelligence and further concepts of Industry 4.0
[93]. Similarly, information about the part stemming from
its digital twin, a priori knowledge or other modalities can
be used to improve the reconstruction or generate a deeper
insight into the involved processes.

A relevant question for the efficient use of trajectory opti-
mization methods in practice is the definition of a suitable
termination criterion asmentioned above. The easiestmethod
is to evaluate the image quality at predefined iterations and
stop once a certain threshold that corresponds to a sufficient
fidelity (e.g., at a SSIM of 0.5) is reached. Alternatively, one
could stop the optimization process once the image quality
gain for each additional projection becomes small (in relative
or absolute numbers), which equals a plateau in the curves
shown in Fig. 6. Both approaches require a profound under-
standing of the part and the required image quality and rely on
frequent use of the evaluation stage,which increases the com-
putational burden. A practically highly relevant approach
would be to link the image qualitymeasures used in this work
(i.e., SSIM and RMSE) or similar quantities to the prob-
ability of detection (POD) for given defects. However, we
consider this connection to be currently a very challenging
task, in particular since very few work has been performed
in this domain and a multitude of influence factors being rel-
evant. Last, as mentioned above, a computationally efficient
prediction algorithm has been developed, which is able to
predict the optimization potential of a given geometry. This
method will be published as a separate work [35], where the
mentioned termination criteria are also discussed in more
detail. Given some experience with different geometries, one
could use this method (and maybe further input parameters)
to predict the projection number that is necessary to achieve
a certain image quality. This is practically interesting, since
the number of required images (which would then be used as
termination criterion) could be determined before the actual
optimization takes place.

As mentioned above, knowing of specific defects before
the scan, and linking their characteristics to image quality
measures should improve the performance and output qual-
ity of an optimization algorithm similar to the one proposed
in this work. Continuing this idea and introducing machine
learning to this concept could potentially pose an elegant way
of automatizing the linking of image quality measure and

defect characteristics. In use-cases, where certain defects are
already visible in a simple radiographic projection, amachine
learning approach could be trained in a fashion that allows
segmentation of very obvious defects in real time in 2D; see
for example the YOLO network with a processing speed of
45 frames per second [94]. Here, attention should also be
focused on determining beneficial views in 2D radiographic
projections, as was shown in [95]. The main limiting fac-
tor, as is the case with most machine learning endeavors, is
the amount and the quality of available data (see [96,97] for
the case of porosities). It directly impacts the quality of the
network’s output and, in the case of far too little data, can
even prevent the network from converging at all [98]. It shall
also be noted that, even without the proposed optimization
method, 2D projection-based sample testing appears to be
still a viable option, which is, however, highly dependent on
the exact cycle time and the object that has to be scanned. For
instance, every n-th object could be automatically removed
from the assembly line, scanned next to it and then returned
in the case that no indication of defects was found by the 2D
radiographic analysis. In the opposite case (a potential defect
was detected) the network could then link the characteristics
of the found defects to the image quality measures and there-
fore impact the number of projections as well as directions
that are essential to detect the previously found defects in a
3D scan that was produced with an optimized trajectory.

7 Conclusion

Typical cycle times formodern assembly lines in the automo-
tive industry can be as short as 60 s. In rare cases, like custom
manufacturing, they can span over about half an hour, which
is, however, the clear exception. This economically imposed
temporal requirement represents—at first—a disqualifying
limitation for efficient robot-based inline computed tomog-
raphy. With that in mind, as long as there is no technological
development regarding the object-dependent long imaging
times per projection, a 100% inline testing via this method
might remain unfeasible in the automotive industry. Themost
problematic factor at the moment is the accumulation of
exposure times that are needed for every projection in order
to reconstruct and evaluate the volumewith sufficient quality.

In this work we proposed, based on previous approaches
[36,58], a trajectory optimization framework which is capa-
ble of significantly reducing typical CT scan times by
acquiring fewer projections than required by conventional
methods. The functionality presented in this work can also
be well incorporated in systems and workflows that are asso-
ciated with the currently growing fields of industry 4.0 and
machine learning. In the former case, a practical imple-
mentation could consist of an inline-CT system that (1)
recognizes the object which is to be scanned, for example
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via a QR-code or an RFID device, (2) automatically pulls
the respective CAD file or reconstruction from a previously
scanned identical object from a server, (3) starts the presented
trajectory-optimization technique and, finally, (4) performs
theCT scan.An industry 4.0 environment ismade up of a net-
work of machines and devices which are digitally connected
and can share data with each other. Limiting factors for this
technology are therefore the network’s up- and download
speeds as well as the available machine-to-machine inter-
faces.

This example illustrates, that more than only scan speed
enhancement is necessary to enable a practical applicable
inline-CT method for the mass inspection of separate parts.
For one, the sheer quantity of generated data needs to be
evaluated in real-time, which should be automated (e.g., by
neural networks) to be able to provide practical value [99].
Furthermore, at least a fraction of this data needs to be stored
to allow long-term process control. Recently, some compres-
sion methods have been proposed to facilitate this endeavour
[100]. A higher degree of automation is required for many
more parts of the pipeline to finally allow reasonable use
of the digital twin concept, for instance practically feasi-
ble adjustments of the acquisition trajectory in a shop floor
environment, part tracking mechanism and—probably most
important—the use of the generated insights, e.g., in form of
a feedback loop connecting detected flaws to the related pro-
duction machines and procedures and thereby enabling the
automated adaption of the respective process parameters.

In addition to trajectory optimization, further development
will focus on a complete offline simulation solution and the
automatic calculation of collision-free robot paths, which has
been identified as a limiting factor for its practical applica-
tion. For instance, the simulation solution Tecnomatix Pro-
cess Simulate (Siemens Digital Industries Software, Plano,
USA) has been installed at the BMW AG. The interface
to a database, in which all CAD models of vehicles are
contained, simplifies the workflow. It saves a considerable
amount of time, if planned scans can be checked and pre-
pared in advance. As further measure, we plan to integrate
a path planning solution in order to check trajectories for
accessibility by the robot arms previous to the actual scan.
An interface to be implemented for acquisition trajectory
planning software, visual representation and path planning
should automate the entire process for the user. The path
planning software runs in the background and communi-
cates directly with the trajectory planning to evaluate the
best possible image acquisition coordinates. It shall be noted
that improvements for robotic X-ray inspection are particu-
larly valuable if a high number of similar or identical parts
need to be scanned, so that a high effort for the initial trajec-
tory optimization can be worthwhile, even if the trajectory
and related acquisition poses need to be manually defined
like in this work. Furthermore, existing and correct CAD

data of the test objects are a prerequisite for a function-
ing system. For cases in which there is no CAD model, for
example for partial sections or damaged objects, data acqui-
sition using optical 3D scanning is sought. The user must
currently have knowledge of robotics, systems engineering,
computed tomography and joining technology, which cannot
be considered practical by any means. With improved scan
times through trajectory optimization, automatically calcu-
lated collision-free path planning and an easy-to-use user
interface, the system can establish itself as an additional
measurement solution alongside previous systems. The goal
must be a setup that is easy to use—even in a shop floor
environment—and allows the user to focus on the actual anal-
ysis. Robotic skills and in-depth knowledge of the involved
technologies should no longer be critical requirements.

While the investigation conducted here aims towards pro-
viding afirst proof of concept and to demonstrate the practical
potential of the method, significantly more work will be
necessary to obtain a stable and universally applicable frame-
work that can be employed for industrial mass inspection.
However, we believe that this technique can be a remedy for
the current limitations concerning scan times and might rep-
resent a first step towards a wider and more economical use
of robot-based CT systems and a more sustainable method
of non-destructive testing.
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