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Abstract
Generalized Λ-semiflows are an abstraction of semiflows with nonperiodic solutions, for 
which there may be more than one solution corresponding to given initial data. A select 
class of solutions to generalized Λ-semiflows is introduced. It is proved that such mini-
mal solutions are unique corresponding to given ranges and generate all other solutions by 
time reparametrization. Special qualities of minimal solutions are shown. The concept of 
minimal solutions is applied to gradient flows in metric spaces and generalized semiflows. 
Generalized semiflows have been introduced by Ball.

Keywords Generalized semiflows · Gradient flows · Nonuniqueness

Mathematics Subject Classification 35A02 · 35B99 · 35A35

1 Introduction

Minimal solutions form a particular class of solutions to evolution problems possibly hav-
ing more than one solution corresponding to given initial data. The idea is to select one 
particular solution corresponding to each given range of solutions.

The concept is introduced in ([13], Sect. 3) for gradient flows in Hilbert spaces, gener-
ated by continuously differentiable functions. In [13], the reverse approximation of gra-
dient flows as minimizing movements is studied; the notion of minimal solutions proves 
crucial in the considerations therein.

In the present paper, an abstract approach is taken with the aim of introducing the con-
cept of minimal solutions to a wide variety of evolution problems with nonunique solu-
tions, on a topological space S  , endowed with a Hausdorff topology.

Minimal solutions A partial order ≻ between solutions u ∶ [0,+∞) → S  sharing the 
same range R = R[u] ∶= u([0,+∞)) in S  is defined. We say that u ≻ v if there exists an 
increasing 1-Lipschitz map 𝗓 ∶ [0,+∞) → [0,+∞) with �(0) = 0 such that

A solution u is minimal if for every solution v, u ≻ v yields u = v . (see Definition 3.6)

(1.1)u(t) = v(�(t)) for all t ≥ 0.
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Within the abstract framework of generalized Λ-semiflow (introduced in Sect. 3.1), it is 
shown that, under natural hypotheses, 

1. there exists a unique minimal solution corresponding to each range R = R[u],
2. each minimal solution induces all other solutions with the same range by time repara-

metrization (1.1), and
3. reaches every point in the range in minimal time (see Theorem 3.9).

Abstraction of semiflow An established basic concept in the study of evolution problems 
with unique solutions (corresponding to given initial data) is that of a semiflow. A semi-
flow on a metric space S  is a family of continuous mappings S(t) ∶ S → S, t ≥ 0, for 
which the semigroup properties

hold; t ↦ S(t)x is identified with the unique solution u ∶ [0,+∞) → S  with initial value 
u(0) = x.1

Diverse methods are known to abstract dynamical systems, allowing for nonuniqueness 
of solutions.

One method is to define S(t) as a set-valued mapping and to interpret S(⋅)x as the col-
lection of all the solutions u ∶ [0,+∞) → S  with initial value u(0) = x (multivalued semi-
flow, e.g. [3, 4, 19]). Another method is to consider a semiflow S(⋅) defined on the space of 
maps u ∶ [0,+∞) → S  (not on the phase space S  ), by S(t)u = ut , where ut(⋅) ∶= u(⋅ + t) 
[24]. A third method [5] is to take the solutions themselves as objects of study and general-
ize the concept of semiflow on the basis that a semiflow S(⋅) can be equivalently defined as 
the family of maps u ∶ [0,+∞) → S, u(t) = S(t)u(0).

Definition 1.1 (Ball [5]) A generalized semiflow U  on S  is a family of maps 
u ∶ [0,+∞) → S  (called solutions) satisfying the hypotheses 

 (G1) Existence: For each u0 ∈ S  there exists at least one u ∈ U  with u(0) = u0.
 (G2) Translates of solutions are solutions: If u ∈ U  and � ≥ 0 , then the map 

u� (t) ∶= u(t + �), t ∈ [0,+∞), belongs to U .
 (G3) Concatenation: If u, v ∈ U, t̄ ≥ 0 , with v(0) = u(t̄) , then w ∈ U  , where w(t) ∶= u(t) 

for 0 ≤ t ≤ t̄ and w(t) ∶= v(t − t̄) for t > t̄.
 (G4) Upper-semicontinuity with respect to initial data: If uj ∈ U  with uj(0)

S

−→x , then there 

exist a subsequence ujk of uj and u ∈ U  with u(0) = x such that ujk (t)
S

−→u(t) for each 

t ≥ 0.

If in addition the hypothesis (S) is satisfied, then U  is a semiflow: 

S For each u0 ∈ S  there is exactly one u ∈ U  with u(0) = u0.

S(0)x = x, S(t + s)x = S(t)S(s)x (x ∈ S, s, t ≥ 0)

1 This definition of semiflow corresponds to the one given in [5] where the continuity of the solutions is not 
assumed in the definition but regarded as additional assumption.
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Generalized Λ-semiflow The concept of generalized Λ-semiflow introduced in this paper is 
an abstraction of semiflows with nonperiodic solutions, where nonuniqueness phenomena 
may occur (see Sect. 3.1).2

As in [5], a semiflow is defined as a family of maps u ∶ [0,+∞) → S  satisfying the 
hypotheses  (G1)–(G4) and (S). The solutions themselves are taken as objects of study. 
However, in the study of minimal solutions, the dynamics between solutions sharing the 
same range are of interest, rather than the limit behaviour (G4) of solutions possibly having 
different ranges. The definition of generalized Λ-semiflow mirrors this aspect.

A generalized Λ-semiflow on S  is defined to be a nonempty family of maps 
u ∶ [0,+∞) → S  (called solutions) satisfying hypotheses relating to 

(Λ1)  Time translation: time translates of solutions are solutions,
(Λ2)  Concatenation: the concatenation of two solutions yield a solution,
(Λ3)  Nonperiodicity: if u(s) = u(t) , then u constant in [s, t],
(Λ4)  Extension: there is a sufficient condition (to be given in Definition 3.1) for the situa-

tion that limt↑+∞ u(t) exists and R[u] ∪ {limt↑+∞ u(t)} is the range of a solution,
(Λ5)  ‘Local’ character: solutions are characterized by their behaviour in finite time 

intervals

(see Definition 3.1). We will focus on generalized Λ-semiflows with sequentially con-
tinuous solutions.

We note that

• There is a connection between the concept of generalized Λ-semiflow and Ball’s con-
cept of generalized semiflow (see below, minimal solutions to generalized semiflows);

• The hypotheses constituting a generalized Λ-semiflow are mild enough to allow of 
applications of the theory of minimal solutions to cases beyond the scope of general-
ized semiflows (see below, minimal solutions to gradient flows in metric spaces).

Minimal solutions to generalized semiflows Every generalized semiflow with nonperiodic 
continuous solutions is a generalized Λ-semiflow and all our results 1, 2, 3 relating to exist-
ence, uniqueness and characteristics of minimal solutions are applicable (see Theorems 4.2 
and 4.4).

Minimal solutions to gradient flows in metric spaces A p-gradient flow on a met-
ric space S  [2], ( for p ∈ (1,+∞) with conjugate exponent q ) generated by a functional 
� ∶ S → (−∞,+∞] and its strong upper gradient g ∶ S → [0,+∞] , is described by the 
energy dissipation inequality

for all 0 ≤ s ≤ t ; the solutions u ∶ [0,+∞) → S  are referred to as p-curves of maximal 
slope for � w.r.t. g (see definitions in Sect. 5.1).

�(u(s)) − �(u(t)) ≥ 1

q �
t

s

gq(u(r)) dr +
1

p �
t

s

|u�|p(r) dr

2 ‘nonperiodic’ means that there is no periodic nonconstant solution
 The Λ in ‘generalized Λ-semiflow’ is no parameter; it reminds of the presence of a Lyapunov or Lyapu-
nov-like function which is a typical example for a situation in which periodic nonconstant solutions are 
excluded.
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If � and g are lower semicontinuous and � has a lower bound of order p , then the cor-
responding p-gradient flow is a generalized Λ-semiflow and all our results 1, 2, 3 relating 
to existence, uniqueness and characteristics of minimal solutions are applicable (see Theo-
rems 5.8 and 5.9).

It is true that our assumptions do not suffice to guarantee a priori the existence of curves 
of maximal slope but if solutions exist, our concept of minimal solutions can be applied.

Further, a special quality of minimal solutions to a gradient flow can be proved: a curve 
of maximal slope is a minimal solution if and only if it crosses the 0 level set of the strong 
upper gradient g in an L1-negligible set of times (before it possibly becomes eventually 
constant) (see Proposition 5.11).

We note that, under our assumptions, the gradient flow is a generalized Λ-semiflow but 
does not fit into the concept of generalized semiflow; additional assumptions such as the 
relative compactness of the sublevels of � (which entails that � is bounded from below by 
a constant) and a conditional continuity assumption would be needed in order to prove the 
upper-semicontinuity hypothesis  (G4) in the Definition  1.1 of generalized semiflow (cf. 
[23] where the theory of generalized semiflow [5] is used to prove the existence of the 
global attractor for a gradient flow).

Further results If there exists a function Ψ ∶ S → ℝ which decreases along solution 
curves, a characterization of minimal solutions in terms of Ψ is also provided (see Proposi-
tion 4.6). Time translation and concatenation of minimal solutions yield minimal solutions 
(see Proposition 3.11).

Thematic classification It is noteworthy that the set of critical points of an energy func-
tional with respect to its upper gradient which is of particular interest in the context of a 
minimal gradient flow (see above) plays an important role in the analysis of the asymptotic 
behaviour of a gradient flow, too, as it contains, under suitable assumptions, the �-limit 
sets of all the solutions (cf. [7, 23]). Also Ball’s concept of a generalized semiflow was 
originally aimed at proving the existence of an associated global attractor and studying its 
features (cf. [5, 6]).

The concept of minimal solutions and the concept of �-limit sets and global attractors, 
however, stand alone as different structural features of the solution set. The idea behind 
the concept of minimal solutions is to structure the collection of all the solutions to an 
evolution problem according to their behaviour in all finite time intervals rather than their 
asymptotic behaviour.

The results of this paper relating to existence and uniqueness of minimal solutions, their 
features and the reparametrization technique in order to generate all other solutions, repre-
sent new information on the dynamics of solutions. They uncover a uniqueness phenom-
enon and an order of solutions to a wide variety of evolution problems having possibly 
infinitely many solutions corresponding to given initial data, thus suggesting a new angle 
for the dynamics of solutions; in fact, the ranges of solutions which are subsets of the phase 
space contain, together with the associated unique minimal solutions, all the relevant data 
for the evolution of the generalized Λ-semiflow in all finite time intervals. This insight into 
a generalized Λ-semiflow provides an abstraction of the principle that initial data deter-
mine, together with the associated unique solutions, the evolution of a semiflow in all finite 
time intervals.

This paper’s purpose is to introduce the abstract mathematical theory of minimal solu-
tions to generalized Λ-semiflows whereas a future challenge will be to set it in the biologi-
cal, physical... context of a concrete evolution problem.

Minimal solutions and minimizing movements [13] The well-known concept of minimiz-
ing movements was introduced by Ennio De Giorgi [8] as “natural meeting point” of many 
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evolution problems from different research fields in mathematics (see [2, 12] for a thorough 
investigation into minimizing movement schemes for gradient flows in metric spaces). The 
paper [13] relates minimal solutions and minimizing movements. Therein, it is proved that if ℍ 
is a finite-dimensional Hilbert space and � ∶ ℍ → ℝ is a continuously differentiable function, 
quadratically bounded from below (e.g. Lipschitz), then for every solution u to the gradient 
flow equation

there exist perturbations 𝜙𝜏 ∶ ℍ → ℝ (𝜏 > 0) converging to � in the Lipschitz norm so that 
the following holds good: all the discrete solutions U� ∶ [0,+∞) → ℍ,

to the minimizing movement scheme

will converge to u as � ↓ 0 . This finally proves a conjecture raised by Ennio De Giorgi [8] 
at the beginning of the 90’s, deepening our understanding of a gradient flow as a minimiz-
ing motion. If u is a minimal solution, such reverse approximation as minimizing move-
ment can be directly constructed by selecting suitable compact subsets U𝜏 ⊂ R[u] and 
coefficients �� ↓ 0 and setting �� (⋅) ∶= �(⋅) + �� miny∈U�

| ⋅ −y| (in this case, the assump-
tion that ℍ has finite dimension can be dropped, see [13, Sect. 4]). An approximation argu-
ment [13, Sects. 5 and 6] then leads to the general statement true for all solutions.

Plan of the paper In Sect. 3, we give the precise definitions of generalized Λ-semiflow, 
explaining our hypotheses and the link to the classical notion of semiflow, and of minimal 
solutions, and we prove results relating to existence, uniqueness and characteristics of mini-
mal solutions, within the abstract framework of generalized Λ-semiflow. In Sects. 4 and 5, 
we apply our concept of minimal solutions to generalized semiflows (Sect. 4) and to gradient 
flows in metric spaces (Sect. 5).

2  Notation

The phase space S  is endowed with a Hausdorff topology and xj
S

−→x denotes the correspond-
ing convergence of sequences.

The range of a curve u ∶ [0,+∞) → S  is denoted by

its union with what is usually referred to as �-limit set in the literature by

and we set

We say that the limit limt↑𝜈 u(t) =∶ w⋆ ∈ S  exists for � ∈ (0,+∞] iff u(tn)
S

−→w⋆ for every 
sequence of times tn ↑ �.

u�(t) = −∇�(u(t)), t ≥ 0,

U� (t) ∶= Un
�
if t ∈ ((n − 1)�, n�], n ∈ ℕ, U� (0) ∶= u(0),

Un
�
is a minimizer for �� (⋅) +

1

2�
| ⋅ −Un−1

�
|2, U0

�
∶= u(0),

R[u] ∶= u([0,+∞)),

R[u] ∶= R[u] ∪ {w⋆ ∈ U | ∃tn → +∞, u(tn)
S

−→w⋆},

T⋆(u) ∶= inf{s ≥ 0 | u(t) = u(s) for all t ≥ s} ∈ [0,+∞].
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3  Generalized 3‑semiflow, minimal solutions

We develop an abstract framework for our analysis of evolution problems for which 
there may be more than one solution sharing the same range. In this context, we define 
generalized Λ-semiflows, generalizing the notion of semiflows with Lyapunov function 
to a certain extent adapted for our considerations.

3.1  Definition of generalized 3‑semiflow

Definition 3.1 A generalized Λ-semiflow U  on S  is a nonempty family of maps 
u ∶ [0,+∞) → S  satisfying the hypotheses: 

 (H1) For every u ∈ U  and � ≥ 0 , the map u� (t) ∶= u(t + �), t ∈ [0,+∞) , belongs to U .
 (H2) Whenever u, v ∈ U  with v(0) = u(t̄) for some t̄ ≥ 0 , then the map w ∶ [0,+∞) → S  , 

defined by w(t) ∶= u(t) if t ≤ t̄ and w(t) ∶= v(t − t̄) if t > t̄ , belongs to U .
 (H3) Whenever u, v ∈ U  with v([s, t]) ⊂ R[u] for some t > s ≥ 0 , then for every l1, l2 ∈ [s, t] 

the following holds: if v(l1) = u(r1) and v(l2) = u(r2) with u(r1) ≠ u(r2) and r1 < r2 , 
then l1 < l2.

 (H4) If u ∈ U  and there exists a map w ∶ [0, �) → S  with 𝜃 < +∞ such that w|[0,T] can 
be extended to a map in U  for every T ∈ [0, �) , and w([0, �)) = R[u] , then the limit 
limt↑+∞ u(t) =∶ w⋆ ∈ S  exists and the map w̄ ∶ [0,+∞) → S  , defined by 

 belongs to U .
 (H5) If a map w ∶ [0,+∞) → S  has the property that w|[0,T] can be extended to a map in 

U  for every T > 0 , then w ∈ U .

The elements u ∈ U  are referred to as solutions.
The hypotheses (H1) and (H2) say that time translates of solutions are solutions and that 
the concatenation of two solutions yield a solution. It appears that both axioms arise 
quite naturally in generalizations of semiflow theory including nonuniqueness phenom-
ena (cf. [5] and Definition 1.1).

The meaning of hypothesis  (H3) is that there is only one proper direction to run 
through the range of a solution. Typical examples (as given in this paper) are situa-
tions involving an energy decreasing along solution curves and which is constant along 
a solution only if the solution is constant. As a consequence of (H3) (by choosing u = v ) 
we also obtain

for all u ∈ U  and 0 ≤ s < t < +∞.

Remark 3.2 Hypothesis (H3) may be replaced by (3.1) in Definition 3.1.
Indeed, if the translation and concatenation hypotheses (H1) and (H2) hold good and all 

u ∈ U  satisfy (3.1), then (H3) follows by a contradiction argument: suppose that there exist 

w̄(t) ∶=

{
w(t) if t < 𝜃

w⋆ if t ≥ 𝜃

(3.1)u(s) = u(t) if and only if u(r) = u(s) for all r ∈ [s, t]
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u, v ∈ U  and r1 < r2, l2 < l1 such that v(l1) = u(r1) ≠ u(r2) = v(l2) , and construct the map 
w ∶ [0,+∞) → S ,

which belongs to U  by (H1) and (H2). Then w(r1) = w(r2 + l1 − l2) , but w(r2) ≠ w(r1) and 
r1 < r2 < r2 + l1 − l2 , in contradiction to (3.1).

Conversely, (H3) implies (3.1), as already mentioned.

The extension property expressed in hypothesis (H4) excludes degenerate cases cor-
responding to the rate at which the range of a solution is described. We give an example 
of such degenerate case which should be excluded.

Example 3.3 Let S = ℝ and U  be the family of all continuous maps u ∶ [0,+∞) → ℝ sat-
isfying u(0) > 0 and

for some Si+1 ≥ Ti ≥ Si ≥ 0 with {Si, Ti | i ∈ ℕ} ∩ [0, T] finite set for every T > 0 . Then 
obviously U  is nonempty and the hypotheses (H1)–(H3) and (H5) hold good but choosing 
w ∶ [0, 1) → ℝ, w(t) ∶=

1

1−t
 , we see that U  does not satisfy (H4).

Hypothesis (H5) reflects the ‘local character’ of U  . The following example provides 
a classic case of a nonlocal characterization being tantamount to some arbitrariness 
which we intend to exclude by hypothesis (H5).

Example 3.4 Let S = ℝ
2 and U  be the family of all continuous maps 

u ∶ [0,+∞) → ℝ
2, u(t) = (u1(t), u2(t)) such that u1(0) > 0 , u2 is strictly increasing and

Then it is easy to check that U  is nonempty and satisfies (H1)–(H4) but U  does not satisfy 
(H5). In this case, any strictly increasing continuous map g ∶ [0,+∞) → ℝ which does not 
eventually become linear will yield a counterexample to (H5).

Let us explain to what extent our notion of generalized Λ-semiflow is an abstraction 
of the classical semiflow theory.

We observe that any semiflow U  whose members satisfy (3.1) is a generalized Λ
-semiflow. This follows from the time translation and uniqueness property (correspond-
ing to given initial data) of a semiflow ((G2) and (S)). It is straightforward to check 
(H1)–(H3) in this case. Choosing u ∈ U  and w ∶ [0, �) → S  as in (H4), we obtain 
u|[0,�) = w|[0,�) by (S) (since u(0) = w(0) by (H3)) so that w([0, �)) = R[u] and (3.1) yield 
u constant in [�,+∞) . This proves (H4). Finally, (H5) follows from (S).

On the other hand, if a member u ∶ [0,+∞) → S  of a semiflow does not satisfy 
(3.1), then there is necessarily a time T > 0 such that u is periodic and nonconstant on 
[T ,+∞) . Indeed, if there exist 0 ≤ s < r̄ < t < +∞ such that u(s) = u(t) but u(r̄) ≠ u(s) , 
then (G2) and (S) imply u(r + s) = u(r + t) for all r ≥ 0 which is equivalent to

w(t) ∶=

{
u(t) if t ≤ r2
v(t + l2 − r2) if t > r2

u�(t) = u(t)2 if t ∈ (Si, Ti), i ∈ ℕ, u�(t) = u(t) if t ∉
⋃
i∈ℕ

[Si, Ti]

u�
1
(t) = u1(t) for all t > 0, ∃T ≥ 0 ∶ u2(t) = u2(T) + t − T for all t > T .
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The hypotheses (H3) and (H4) do not hold good in this case. We illustrate this situation 
excluded in Definition 3.1 with an example.

Example 3.5 Let S = ℝ
2 and consider

Clearly, U  is a semiflow on ℝ2 , but the hypotheses (H3) and (H4) are not satisfied and U  is 
not a generalized Λ-semiflow.

A connection between generalized Λ-semiflows and the established theory of gener-
alized semiflows introduced by Ball [5] is made in Sect. 4. We will see that any general-
ized semiflow whose members satisfy (3.1) satisfies the hypotheses (H1)–(H3), (H5) 
and a slightly weaker variation on (H4). If, in addition, all the solutions are continuous, 
then it satisfies (H4), too.

We note that a generalized Λ-semiflow U  on S  is nonempty, but there may be initial 
data x ∈ S  for which there exists no u ∈ U  with u(0) = z . Also, nothing is said about 
the behaviour of a sequence (uj) in U  with converging initial data uj(0).

Gradient flows in metric spaces fit very well in the concept of generalized Λ-semi-
flows. This aspect is examined in Sect. 5.

3.2  A partial order between solutions

Let a generalized Λ-semiflow U  on S  be given. We introduce a particular class of solu-
tions (which we call minimal solutions), arising naturally from a partial order in U :

Definition 3.6 If u, v ∈ U  we say that u ≻ v if R[v] ⊂ R[u] and there exists an increasing 
1-Lipschitz map 𝗓 ∶ [0,+∞) → [0,+∞) with �(0) = 0 such that

An element u ∈ U  is minimal if for every v ∈ U  , u ≻ v yields u = v ; and Umin denotes the 
collection of all the minimal solutions.

Let us make a few comments on Definition 3.6. 

 (i) A map 𝗓 ∶ [0,+∞) → [0,+∞) is increasing and 1-Lipschitz if and only if 

 (ii) It is not difficult to see that ≻ forms indeed a partial order in U  ([13], Remark 3.3).
 (iii) Condition (3.2) implies the range inclusion R[u] ⊂ R[v].
 (iv) The condition on the range R[v] ⊂ R[u] gives control over the long-time behaviour 

of a possible minimal solution. Its effect as a selection criterion is illustrated in 
[13, Remark 3.2] with a one-dimensional example of a gradient flow.

u(r + t − s) = u(r) for all r ≥ s, u(r̄ + j(t − s)) ≠ u(s + j(t − s)) for all j ∈ ℕ.

U ∶= {u ∶ [0,+∞) → ℝ
2 | u(⋅) ≡ r(cos(⋅ + �), sin(⋅ + �)), � ∈ [0, 2�), r ≥ 0}.

(3.2)u(t) = v(�(t)) for every t ≥ 0.

(3.3)0 ≤ �(t) − �(s) ≤ t − s for every 0 ≤ s ≤ t.
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It is not clear a priori if minimal solutions exist at all. Some kind of compactness property 
of U  appears necessary in order to guarantee the existence of minimal solutions. Let us 
consider our main tools concerning compactness for the existence proof given in Sect. 3.3.

We introduce the class of truncated solutions

and we define the map � ∶ T[U] → [0,+∞] as

The following compactness hypothesis will turn out to be appropriate for our purposes: 

(C) If a sequence vn ∈ T[U], n ∈ ℕ, satisfies supn 𝜌(vn) < +∞ and R[vn] = R[v1] for all 
n ∈ ℕ , then there exists v ∈ T[U] and a subsequence nk ↑ +∞ such that 

We note that in the above situation it holds that

since � is lower semicontinuous with respect to pointwise convergence.
Now, we have all the ingredients to prove the existence of minimal solutions. Our con-

struction will be based on a step-by-step procedure of truncating a given trajectory and 
each time minimizing � with respect to the truncated range.

3.3  Existence and characteristics of minimal solutions

Existence and uniqueness of minimal solutions corresponding to given ranges is proved 
under the additional compactness hypothesis (C).

It is shown that among solutions sharing the same range, the minimal solution induces all the 
other ones by time reparametrization (3.2) and it reaches any point in the range in minimal time.

Definition of U [R]

For a generalized Λ-semiflow U  and the range R = R[y] ⊂ S  of a solu-
tion y ∈ U  , we define U [R] as the collection of all the solutions w ∈ U  with 

R ⊂ R[w] ⊂ R ∶= R ∪ {w⋆ ∈ S | ∃tn → +∞, y(tn)
S

−→w⋆} and

We note that the set R is indeed independent of the choice y ∈ U  with R[y] = R:

Lemma 3.7 Whenever y, ỹ ∈ U, R[y] = R[ỹ] and w⋆ ∈ S  , it holds that

i.e. it holds that R[y] = R = R[ỹ].

Proof If tn → +∞, y(tn)
S

−→w⋆ , then there is a sequence of times (sn) with ỹ(sn) = y(tn) , 
and by (H3), we may assume that (sn) is increasing. Let S ∶= supn sn . If S = +∞ or 

T[U] ∶= {v ∶ [0,+∞) → S | v(t) = u(t ∧ T) for some u ∈ U, T ∈ [0,+∞]}

(3.4)�(v) ∶= inf{s ≥ 0 | v(t) = v(s) for every t ≥ s}, v ∈ T[U].

vnk (t)
S

−→v(t) for all t ∈ [0,+∞), R[v] = R[v1].

(3.5)�(v) ≤ lim inf
k→+∞

�(vnk )

(3.6)w([0, 𝜃)) = R and w([𝜃,+∞)) ⊂ R ⧵R for some 𝜃 ∈ (0,+∞].

(3.7)∃tn → +∞, y(tn)
S

−→w⋆ if and only if ∃sn → +∞, ỹ(sn)
S

−→w⋆,
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T⋆(y) < +∞ , nothing remains to be shown. If S < +∞ and T⋆(y) = +∞ , then we obtain 
ỹ([0, S)) = R[y] = R[ỹ] by (H3), and thus by (3.1) there exists 𝛿 > 0 such that ỹ is constant 
in (S − �,+∞] , in contradiction to T⋆(y) = +∞ . This proves (3.7).   ◻

Let us take a close look at the case of finite � in (3.6). If there exists a solution 
w ∈ U [R] with w([0, �)) = R and 𝜃 < +∞ , we may apply (H4) and obtain that the limit 
limt↑+∞ y(t) =∶ w⋆ ∈ S  is well-defined and that w(t) = w⋆ for all t ≥ � . We notice that R 

then takes the form R = R ∪ {w⋆} . In this case, R = R[w] = R and U [R] ⊂ U [R].
The following observation which is a direct consequence of Definition 3.6 and (3.1) 

may be seen as motivation behind considering U [R].

Lemma 3.8 For y,w ∈ U  , the implication

holds good.

Proof If y ≻ w , then by definition, R[w] ⊂ R[y] and there exists an increasing 1-Lip-
schitz map 𝗓 ∶ [0,+∞) → [0,+∞) with �(0) = 0 such that y(t) = w(�(t)) for all t ≥ 0 . 
Choose � ∶= supt≥0 �(t) ∈ [0,+∞] . If s ∈ [0, �) , then there exists t ≥ 0 such that �(t) = s 
and thus w(s) ∈ R[y] . If � = +∞ , then R[w] = R[y] . The same holds if 𝜃 < +∞, �(t̄) = 𝜃 
for some t̄ ≥ 0 . Finally, we consider the case 𝜃 < +∞, �(t) < 𝜃 for all t ≥ 0 . It holds that 
w([0, �)) = R[y] and w([𝜃,+∞) ⊂ R[y] . If w(s) ∈ R[y] for some s ≥ � , then there exists 
s̃ ∈ [0, 𝜃) such that w(s) = w(s̃) , and by (3.1), w is constant in [s̃, s] , hence T⋆(y) < +∞ and 
R[w] = R[y] . The proof of (3.8) is complete.   ◻

Now, our theorem reads as follows.

Theorem 3.9 Let U  be a generalized Λ-semiflow on S  satisfying the compactness hypoth-
esis (C). Suppose that every solution u ∈ U  is sequentially continuous, i.e.

Then the following statements hold good: 

(1) For every R = R[y] ⊂ S  which is the range of a solution y ∈ U  there exists a unique 
minimal solution u ∈ U [R] ∩Umin.

  Moreover, if v ∈ U [R] , then v ≻ u.
(2) Every minimal solution u ∈ Umin is injective in [0,T⋆(u)).
(3) Whenever u ∈ Umin, v ∈ U  with u ∈ U [R[v]] and u(t0) = v(t1) for some 

t0, t1 ∈ [0,+∞) , then t0 ∧ T⋆(u) ≤ t1.
(4) Whenever u ∈ Umin, v ∈ U  with v([s1, t1]) = u([s0, t0]) for some ti ≥ si ≥ 0 (i = 0, 1) , 

then the inequality 

 necessarily holds.
(5) A solution u ∈ U  belongs to Umin if for every v ∈ U [R[u]] the following implication 

holds: whenever u(t0) = v(t1) for some t0, t1 ∈ [0,+∞) , then t0 ∧ T⋆(u) ≤ t1.

(3.8)y ≻ w ⇒ w ∈ U [R[y]]

(3.9)u(tj)
S

−→u(t) whenever tj → t, tj, t ∈ [0,+∞).

t0 ∧ T⋆(u) − s0 ≤ t1 − s1
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Proof 

 (1). Let R = R[y] ⊂ S  be the range of a solution y ∈ U  . We distinguish between two 
cases: T⋆(y) = +∞ and T⋆(y) < +∞ . In the first case, we select an increasing sequence 
of times Tn ↑ +∞ with y(Tn) ≠ y(Tn+1) for all n ∈ ℕ . Then we have 

 If T⋆(y) < +∞ , we may go through the following proof with just one step n = 1 and 
T1 ∶= T⋆(y) . For every n (n ∈ ℕ or n = 1) , we minimize � (defined in (3.4)) in 

 Since y(⋅ ∧ Tn) ∈ G[Rn] and thus infw∈G[Rn]
𝜌(w) ≤ Tn < +∞ , the compact-

ness hypothesis (C) and (3.5) yield the existence of a minimizer un ∈ G[Rn] 
of �|G[Rn]

 . By (3.9), un is constant in [�(un),+∞) . We show that un is the unique 
minimizer of � in G[Rn] . Suppose that there exist ũn ∈ G[Rn], t0 ≥ 0 with 
𝜌(ũn) = 𝜌(un), ũn(t0) ≠ un(t0) . Then it follows from (H3) that t0 ∈ (0, �(un)) and 
that there exists s0 ∈ [0, �(un)) , w.l.o.g. s0 < t0 , such that ũn(s0) = un(t0) and 
ũn([0, s0]) = un([0, t0]) . By (H1) and (H2), we may construct a truncated solution 
w ∈ G[Rn] , 

satisfying 𝜌(w) ≤ 𝜌(un) + s0 − t0 < 𝜌(un) , in contradiction to un minimiz-
ing � in G[Rn] . So � admits a unique minimizer un in G[Rn] . The same argument 
shows that un is injective in [0, �(un)] . We now set Sn ∶= �(un) ≤ Tn and define 
𝗓n ∶ [0, Tn] → [0, Sn] as 

 The map �n is increasing by (H3), and �n(0) = 0, �n(Tn) = Sn . It holds 
that un(�n(t)) = y(t) for all t ∈ [0, Tn] . A contradiction argument shows 
that �n is 1-Lipschitz. Suppose that there exist t1, t2 ∈ [0,Tn], t1 < t2 , such 
that 𝛿t ∶= t2 − t1 < �n(t2) − �n(t1) =∶ 𝛿� . Then, let us construct the map 
w ∶ [0,+∞) → S  , 

which belongs to G[Rn] by (H1)–(H3). Moreover, 𝜌(w) ≤ Sn − 𝛿� + 𝛿t < Sn , a con-
tradiction to the fact that un minimizes � in G[Rn] . A further contradiction argument 
(which we omit since it is very similar to the preceding two) shows that Sn < Sn+1 
and that un(⋅ ∧ s) minimizes � in

 if s ∈ [0, Sn] . In particular, we obtain 

y([0,Tn]) ⊊ y([0, Tn+1]),
⋃
n

y([0,Tn]) = R.

G[Rn] ∶= {w ∈ T[U] |R[w] = Rn}, Rn ∶= y([0,Tn]).

w(r) ∶=

{
ũn(r) if r ∈ [0, s0]

un(r + t0 − s0) if r > s0

�n(t) ∶= min
{
s ∈ [0, Sn] ∶ un(s) = y(t)

}
, t ∈ [0, Tn].

w(r) ∶=

⎧
⎪⎨⎪⎩

un(r) if 0 ≤ r ≤ �n(t1),

y(r + t1 − �n(t1)) if �n(t1) ≤ r ≤ �t + �n(t1)

un(r + �� − �t) if r ≥ �t + �n(t1).

{w ∈ T [U] |R[w] = u
n
([0, s])}
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 Let S⋆ ∶= supn Sn . Due to (3.10), we may define u ∶ [0, S⋆) → S  as 

 and 𝗓 ∶ [0, T⋆(y)) → [0, S⋆) as 

 If S⋆ = +∞ , then the map u ∶ [0,+∞) → S  belongs to U  by (H5). Since it holds 
that T⋆(y) = +∞ in this case, we obtain y(t) = u(�(t)) for all t ≥ 0 . In particular, 
y ≻ u . If S⋆ < +∞ and T⋆(y) = +∞ , we apply hypothesis (H4) which provides that 
the limit limt↑+∞ y(t) =∶ u⋆ ∈ S  is well-defined in this case and that extending u by 
the constant value u⋆ yields a map in U  , i.e. u ∶ [0,+∞) → S  defined as 

 belongs to U  . Again we obtain y(t) = u(�(t)) for all t ≥ 0 , and thus y ≻ u . The same 
goes for the case S⋆ = S1, T⋆(y) < +∞ : in this case we may extend u as in (3.13) 
due to (H1) and (H2), and extending � by the constant value S⋆ , we obtain y ≻ u . We 
note that u ∈ U [R] and U [R[u]] ⊂ U [R] . Suppose now that 

 Then, due to (3.8), it follows that for every ū ∈ U  , u ≻ ū yields u = ū . This shows 
that u ∈ Umin , and by (3.14) again, u is the unique minimal solution in U [R] . 
So it only remains to prove (3.14): Let v ∈ U [R] . Let Sn be as in the construc-
tion of u. For every Sn , choose 0 ≤ T̃n ≤ T⋆(v) such that v(T̃n) = u(Sn) . By (H3), 
v([0, T̃n]) = u([0, Sn]) and (T̃n) is increasing. We set T̃⋆ ∶= supn T̃n ≤ T⋆(v) . We 
show that T̃⋆ = T⋆(v) . Suppose that T̃⋆ < T⋆(v) (which implies S⋆ ≤ T̃⋆ < +∞ ). 
Then we obtain by (H3), since v([0, T̃⋆)) = u([0, S⋆)) , that there exists 𝛿 > 0 such 
that v is constant in (T̃⋆ − 𝛿, T̃⋆) , contradicting the fact that v(Tn) ≠ v(Tm) for n ≠ m . 
If there is only one step n = 1 in the construction of u and S⋆ = S1 , then we clearly 
have T⋆(v) < +∞ and T̃⋆ = T̃1 = T⋆(v) . We define �̃� ∶ [0, T⋆(v)) → [0, S⋆) as 

 It holds that v(t) = u(�̃(t)) for all t ∈ [0, T⋆(v)) . Following the same arguments as 
above for � , we obtain that �̃ is increasing and 1-Lipschitz. Extending �̃ by the con-
stant value S⋆ ≤ T⋆(v) if T⋆(v) < +∞ , we obtain v ≻ u . The proof of (1) is com-
plete. The statements (2)–(5) are direct consequences of our method of constructing 
the minimal solutions. However, we provide independent proofs.

 (2). Let u ∈ Umin and suppose that there exist 0 ≤ t0 < t1 < T⋆(u) such that u(t0) = u(t1) . By 
(3.1) it follows that u(r) = u(t0) for all r ∈ [t0, t1] . Now we define w ∶ [0,+∞) → S  as 

(3.10)un(s) = un+1(s), �n(t) = �n+1(t) for every s ∈ [0, Sn], t ∈ [0, Tn].

(3.11)u(s) ∶= un(s) if s ∈ [0, Sn],

(3.12)�(t) ∶= �n(t) if t ∈ [0, Tn].

(3.13)u(s) ∶=

{
un(s) if s ∈ [0, Sn]

u⋆ if s ≥ S⋆

(3.14)v ≻ u for all v ∈ U [R].

�̃(t) ∶= min
{
s ∈ [0, S⋆) ∶ u(s) = v(t)

}
, t ∈ [0, T⋆(v)).

w(t) ∶=

{
u(t) if 0 ≤ t ≤ t0
u(t + t1 − t0) if t > t0
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which belongs to U  by (H1) and (H2). Choosing �(t) ∶= t ∧ t0 + (t − t1)+ , we see 
that u ≻ w , which yields w = u since u is minimal. This implies u(r) = u(r + t1 − t0) 
for all r ≥ t0 . Due to (3.1), it follows that u is constant in [t0,+∞) , in contradiction to 
t0 < T⋆(u) . So u is injective in [0,T⋆(u)).

 (3) is a special case of (4).
 (4). Let u ∈ Umin, v ∈ U  and ti ≥ si ≥ 0 such that v([s1, t1]) = u([s0, t0]) . If T⋆(u) < +∞ , 

we may assume w.l.o.g. that s0 < t0 ≤ T⋆(u) . We note that v(s1) = u(s0) and 
v(t1) = u(t0) by (H3), and define w ∶ [0,+∞) → S  as 

which belongs to U  by (H1) and (H2), with R[w] = R[u] . Due to (1), it 
holds that w ≻ u , i.e. there exists an increasing 1-Lipschitz continuous map 
𝗓 ∶ [0,+∞) → [0,+∞) such that u(�(t)) = w(t) for all t ∈ [0,+∞) . Since u is injec-
tive in [0,T⋆(u)) (see statement (2)), it follows that �(s0) = s0 and �(t1 − s1 + s0) ≥ t0 . 
So we obtain 

 by the 1-Lipschitz continuity of � . This proves (4).
 (5). Suppose that u ∈ U  satisfies the assumption of claim (5) and that u ≻ v for some 

v ∈ U  . Then there exists an increasing 1-Lipschitz map 𝗓 ∶ [0,+∞) → [0,+∞) such 
that v(�(t)) = u(t) for all t ∈ [0,+∞) and �(0) = 0 , hence �(t) ≤ t for all t ∈ [0,+∞) . 
Moreover, v ∈ U [R[u]] due to (3.8). By assumption of (5), it follows that t ≤ �(t) for 
all t ∈ [0, T⋆(u)) . Taken together, this yields �(t) = t for all t ∈ [0, T⋆(u)) , and thus, 
u = v . So we obtain that u is minimal.

The proof of Theorem 3.9 is complete.   ◻

Remark 3.10 In view of Definition 3.6 and (C), the sequential continuity (3.9) of the solu-
tions appears a natural hypothesis in our concept (cf. the instances under consideration in 
Sects. 4 and 5).

We do not make use of the compactness hypothesis (C) and of (3.9) in the proof of the 
statements (2) and (5).

Time translates of minimal solutions are minimal solutions and the concatenation of two 
minimal solutions yield a minimal solution:

Proposition 3.11 Let U  be a generalized Λ-semiflow on S  . Then it holds:

For every u ∈ Umin and � ≥ 0 , the map u� (t) ∶= u(t + �), t ∈ [0,+∞) , belongs to Umin.

Whenever u, v ∈ Umin with v(0) = u(t̄) for some t̄ ≥ 0 and u is sequentially con-
tinuous (3.9), then the map w ∶ [0,+∞) → S  , defined by w(t) ∶= u(t) if t ≤ t̄⋆ and 
w(t) ∶= v(t − t̄⋆) if t > t̄⋆ , with t̄⋆ ∶= t̄ ∧ T⋆(u) , belongs to Umin.

w(r) ∶=

⎧
⎪⎨⎪⎩

u(r) if 0 ≤ r ≤ s0
v(r + s1 − s0) if s0 < r ≤ t1 − s1 + s0
u(r + t0 − s0 + s1 − t1) if r > t1 − s1 + s0

t0 − s0 ≤ �(t1 − s1 + s0) − �(s0) ≤ t1 − s1
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Proof We prove the first statement: Let u ∈ Umin and � ≥ 0 . Suppose that u𝜏 ≻ v for 
some v ∈ U  . Then v ∈ U [R[u� ]] and there exists an increasing 1-Lipschitz map 
𝗓 ∶ [0,+∞) → [0,+∞) such that u(t + �) = u� (t) = v(�(t)) for all t ≥ 0 . We define 
ṽ ∶ [0,+∞) → S  as

which belongs to U  by (H2). It holds that ṽ ∈ U [R[u]] and choosing �̃� ∶ [0,+∞) → [0,+∞),

we obtain u ≻ ṽ . Since u is minimal, it follows that u = ṽ , hence u� = v and the claim is 
proved.

Now, we prove the second statement: Let u, v ∈ Umin, t̄ ≥ 0 be given, set t̄⋆ ∶= t̄ ∧ T⋆(u) 
and define w ∶ [0,+∞) → S  as

which belongs to U  by (H2).
Suppose that w ≻ y for some y ∈ U  . Then y ∈ U [R[w]] and there exists an increas-

ing 1-Lipschitz map 𝗓 ∶ [0,+∞) → [0,+∞) such that w(t) = y(�(t)) for all t ≥ 0 . We define 
wi ∶ [0,+∞) → S (i = 1, 2) as

Choosing 𝗓i ∶ [0,+∞) → [0,+∞) (i = 1, 2),

we see that u ≻ w1 and v ≻ w2 . As u, v are minimal solutions, it follows that u = w1, v = w2 . 
Hence, y(t) = u(t) for all t ≤ �(t̄⋆) and y(t) = v(t − �(t̄⋆)) for all t > �(t̄⋆) . Due to statement 
(2) in Theorem  3.9, the minimal solution u is injective in [0,T⋆(u)) . So, u = w1 implies 
�(t̄⋆) = t̄⋆ and we obtain y = w . The proof is complete.   ◻

Remark 3.12 Clearly, Umin satisfies (H3), and with similar arguments as in the proof of 
Proposition 3.11, it is possible to show that Umin satisfies (H4) and (H5), too.

The second statement of Proposition 3.11 still holds for 0 ≤ t̄ ≤ T⋆(u) if we do not 
assume that u is sequentially continuous.

4  Minimal solutions to generalized semiflows

We study the theory developed in Sect. 3 with regard to the concept of generalized semi-
flows introduced by Ball [5].

ṽ(t) ∶=

{
u(t) if t ≤ 𝜏

v(t − 𝜏) if t > 𝜏

�̃(t) ∶=

{
t if t ≤ 𝜏

�(t − 𝜏) + 𝜏 if t > 𝜏

w(t) ∶=

{
u(t) if t ≤ t̄⋆
v(t − t̄⋆) if t > t̄⋆

w1(t) ∶=

{
y(t) if t ≤ �(t̄⋆)

u(t + t̄⋆ − �(t̄⋆)) if t > �(t̄⋆)
w2(t) ∶= y(t + �(t̄⋆)).

�1(t) ∶=

{
�(t) if t ≤ t̄⋆
t + �(t̄⋆) − t̄⋆ if t > t̄⋆

�2(t) ∶= �(t + t̄⋆) − �(t̄⋆),
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According to [5, 6], we suppose that S  is a metric space with metric d and we work 
with the topology induced by the metric, i.e.

for xj, x ∈ S .
We refer the reader to Definition 1.1 for the definition of generalized semiflow. For a 

given generalized semiflow U  , the following is defined in [5]:
A complete orbit is a map w ∶ ℝ → S  such that for any s ∈ ℝ , the map 

ws(t) ∶= w(t + s), t ∈ [0,+∞), belongs to U  . A complete orbit w is stationary if w(t) = x 
for all t ∈ ℝ , for some x ∈ S .

Definition 4.1 [5] A function � ∶ S → ℝ is called a Lyapunov function for U  if the fol-
lowing holds 

 (L1) � is continuous,
 (L2) �(u(t)) ≤ �(u(s)) for every u ∈ U  and 0 ≤ s ≤ t < +∞,
 (L3) whenever the map t ↦ �(w(t)) (t ∈ ℝ) is constant for some complete orbit w, then w 

is stationary.

Generalized semiflows with Lyapunov function and continuous solutions are dis-
cussed in [5, 6].

Minimal solutions to generalized semiflows We find that any generalized semiflow 
with Lyapunov function and continuous solutions is a generalized Λ-semiflow, i.e. satis-
fies the hypotheses (H1)–(H5) in Definition 3.1. Moreover, the compactness hypothesis 
(C) is satisfied.

We will see that the same holds good for any generalized semiflow with continuous 
solutions satisfying (3.1).

Also we will see that the presence of a function decreasing along solution curves 
allows of a further characterization of minimal solutions.

Theorem 4.2 Let U  be a generalized semiflow on S  . Suppose that there exists a function 
Ψ ∶ S → ℝ for U  satisfying (L2) and (L3) and that every solution u ∈ U  is sequentially 
continuous, i.e.

Then U  is a generalized Λ-semiflow, according to Definition 3.1, and satisfies the com-
pactness hypothesis (C). In particular, all the statements (1)–(5) of Theorem 3.9 hold good 
for U .

Comment on the function Ψ ∶ S → ℝ

We suppose that there exists a function Ψ ∶ S → ℝ for U  satisfying (L2) and (L3). 
If, in addition, Ψ is continuous, then it is called a Lyapunov function for U  (according 
to [5, 6], Definition 4.1 above).

Please note that we do not need to require continuity of Ψ in order to obtain the 
results of Theorem 4.2.

xj
S

−→x ∶⇔ d(xj, x) → 0

u(tj)
S

−→u(t) whenever tj → t, tj, t ∈ [0,+∞).
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Proof The existence hypothesis (G1) implies that U  is nonempty.
The hypotheses (H1) and (H2) correspond to (G2) and (G3). In order to prove (H3), it is 

now sufficient to show (3.1), due to Remark 3.2. Let u ∈ U  and 0 ≤ s < t < +∞ such that 
u(s) = u(t) . Then it follows that Ψ(u(r)) = Ψ(u(s)) for all r ∈ [s, t] since Ψ◦u is decreasing. 
Applying (G2), (G3) and (G4), we obtain that the map v ∶ ℝ → S  defined as

is a complete orbit for U  . It holds that Ψ(v(r)) = Ψ(u(s)) for all r ∈ ℝ and we may con-
clude that v is stationary, i.e. u(r) = u(s) for all r ∈ [s, t] . This proves (3.1).

Now, let us show that U  satisfies (H4). Let u ∈ U  . Suppose that there exists a map 
w ∶ [0, �) → S  with 𝜃 < +∞ and w([0, �)) = R[u] such that w|[0,T] can be extended to a map 
in U  for every T ∈ [0, �) . In particular, whenever T ∈ [0, �), S ∈ [0,+∞), w(T) = u(S) , 
the map w(⋅, T , S) ∶ [0,+∞) → S  defined as

belongs to U  . If T⋆(u) < +∞ , the claim easily follows from hypothesis (H3) already 
proved above. If T⋆(u) = +∞ , we select an increasing sequence of times Sn ↑ +∞ . Due 
to (H3), we find a corresponding increasing sequence (Tn) with w(Tn) = u(Sn) ; moreover 
Tn ↑ � : indeed, if supn Tn ≤ T < 𝜃 for some T ∈ (0, �) , then w would be constant in a small 
interval around supn Tn since

in contradiction to T⋆(u) = +∞.
Applying (G4) to wn(⋅) ∶= w(⋅, Tn, Sn) , we obtain that there exists a subsequence 

nk ↑ +∞ and w̄ ∈ U  such that wnk
(t)

S

−→w̄(t) for all t ≥ 0 . It holds that w̄(t) = w(t) for all 

t ∈ [0, �) . As a member of U  , the map w̄ is sequentially continuous in (0,+∞) . Hence, the 
limit limt↑� w(t) exists and coincides with w̄(𝜃) =∶ w⋆ ∈ S  . In particular,

Since the sequence Sn ↑ +∞ has been chosen arbitrarily, it follows that

which gives (H4).
The hypothesis (H5) directly follows from a simple application of (G4).
Finally, we prove (C). Let a sequence vn ∈ T[U], n ∈ ℕ, be given, satisfy-

ing supn 𝜌(vn) < +∞ and R[vn] = R[v1] for all n ∈ ℕ . We may assume w.l.o.g. that 
Tn ∶= �(vn) → T  for some T ∈ [0,+∞) . We select v̄n ∈ U  such that v̄n(t) = vn(t) for 
all t ∈ [0, Tn] . We note that vn(0) = v1(0) and vn(Tn) = v1(T1) by (H3). Due to (G4), 
there exists a subsequence nk ↑ +∞ and a solution v̄ ∈ U  such that v̄nk (t)

S

−→v̄(t) for all 
t ∈ [0,+∞) . Since all the solutions are continuous in (0,+∞) , this convergence is uniform 
in compact subsets of (0,+∞) by [5, Thm. 2.2]. Moreover, it holds that

We prove (4.1) (cf. proof of [5], Thm. 2.3]):

v(r) ∶= u(r + s − j(t − s)) if r ∈ [j(t − s), (j + 1)(t − s)], j ∈ ℤ,

w(t, T , S) ∶=

{
w(t) if 0 ≤ t ≤ T

u(t + S − T) if t > T

⋃
n

w([0,Tn]) =
⋃
n

u([0, Sn]) = R[u] = w([0, �)),

u(Sn) = w(Tn)
S

−→ w⋆ (n → +∞).

u(tn)
S

−→w⋆ whenever tn → +∞, w̄(t) = w⋆ for all t ≥ 𝜃,

(4.1)whenever v̄nk (sk) ∈ R[v1], sk → 0, then v̄nk (sk) → v̄(0).
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Suppose that (v̄nk (sk))k does not converge to v̄(0) . Since R[v1] is sequentially compact, 
we may extract a convergent subsequence (still denoted by v̄nk (sk) ) converging to some 
v̄0 ∈ S, v̄0 ≠ v̄(0) . For every t > 0 , we have v̄nk (t + sk)

S

−→v̄(t) by the uniform convergence 
in compact subsets of (0,+∞) . Due to (G2) and (G4), the map w ∶ [0,+∞) → S ,

belongs to U  . As v̄,w ∈ U  are sequentially continuous in [0,+∞) , we obtain w(0) = v̄(0) , 
in contradiction to v̄0 ≠ v̄(0) . This proves (4.1).

It follows that v̄(T) = v1(T1) and vnk (t)
S

−→v(t) for all t ∈ [0,+∞) , with v ∈ T[U] defined 
by v(t) ∶= v̄(t ∧ T) for all t ≥ 0 . Moreover, as v1 is continuous, we have R[v] ⊂ R[v1] , and 
by the uniform convergence, we obtain that R[v1] ⊂ R[v] . Hence, R[v] = R[v1] , and the 
proof is complete.   ◻

Remark 4.3 Following the proof of Theorem 4.2 without assuming continuity of the solu-
tions, it is not difficult to see that any generalized semiflow admitting a function Ψ as above 
(i.e. for which (L2) and (L3) hold) satisfies the hypotheses (H1)–(H3), (H5) and 

 (h4) If u ∈ U  and there exists a map w ∶ [0, �) → S  with 𝜃 < +∞ such that w|[0,T] can be 
extended to a map in U  for every T ∈ [0, �) , and w([0, �)) = R[u] , then the �-limit 
set 

 of u is nonempty and there exists a map w̄ ∶ [0,+∞) → S  in U  satisfying 

We notice that if Ψ is continuous, then Ψ is constant on �(u).
We note that the only point in the proof of Theorem 4.2 where the function � plays a 

role is when we prove (H3). Furthermore, the arguments in the proof of (H3) show that 
a generalized semiflow fails to satisfy (H3) if and only if it admits a nonconstant peri-
odic orbit. So we obtain

Theorem 4.4 Let U  be a generalized semiflow on S .

If every solution u ∈ U  is sequentially continuous and satisfies (3.1), then U  is a gener-
alized Λ-semiflow satisfying the compactness hypothesis (C) and all the statements (1)–(5) 
of Theorem 3.9 hold good for U .

If there exists a solution u ∈ U  which does not satisfy (3.1), then there exists a noncon-
stant solution v ∈ U  and 𝜇 > 0 such that v(r) = v(r + �) for all r ≥ 0.

Our next remark concerns the topological setting.

Remark 4.5 The theory of generalized semiflows has been developed by Ball [5, 6] for met-
ric spaces. The only (but critical) point where we make explicit use of the metrizability of 

w(r) ∶=

{
v̄0 if r = 0

v̄(r) if r > 0

𝜔(u) ∶= {w⋆ ∈ S | ∃tn → +∞, u(tn)
S

−→w⋆}

w̄(t) = w(t) if t < 𝜃, w̄(t) ∈ 𝜔(u) if t ≥ 𝜃.
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the topology is when we apply [5, Thm. 2.2] in the proof of the compactness hypothesis 
(C).

We conclude this section with a characterization of minimal solutions in terms of a 
function which decreases along solution curves.

Proposition 4.6 Let a topological space S  endowed with a Hausdorff topology be given. 
Let U  be a generalized Λ-semiflow on S  satisfying the compactness hypothesis (C). Sup-
pose that every solution u ∈ U  is sequentially continuous (3.9) and that there exists a func-
tion Ψ ∶ S → ℝ which decreases along solution curves, i.e.

Then the following holds:

Whenever u ∈ Umin, v ∈ U  with u ∈ U [R[v]] , then Ψ(u(t)) ≤ Ψ(v(t)) for all t ∈ [0,+∞).

Whenever u ∈ U  and Ψ is injective on R[u] , then u belongs to Umin if Ψ(u(t)) ≤ Ψ(v(t)) 
for every v ∈ U [R[u]] and t ∈ [0,+∞).

Proof The first statement directly follows from (3) in Theorem  3.9: indeed, if 
t ∈ [0, T⋆(u)) , then there exists t̄ ≥ 0 with u(t) = v(t̄) and applying (3) we obtain 
t̄ ≥ t and hence Ψ(u(t)) = Ψ(v(t̄)) ≤ Ψ(v(t)) ; if T⋆(u) < +∞ and t ≥ T⋆(u) , then 
Ψ(u(t)) = mins≥0 Ψ(u(s)) ≤ infs≥0 Ψ(v(s)) ≤ Ψ(v(t)).

Now, we prove the second statement. Let u ∈ U  be given and assume that Ψ is injective 
on R[u] and that Ψ(u(t)) ≤ Ψ(v(t)) for every v ∈ U [R[u]] and t ∈ [0,+∞) . We note that 
Ψ is injective on R[v] for every v ∈ U [R[u]] : just suppose that there exist v ∈ U [R[u]] 
with T⋆(v) < +∞ and t̄ < T⋆(v) with Ψ(v(t̄)) = Ψ(v(T⋆(v))) = mins≥0 Ψ(v(s)) , then Ψ◦v is 
constant in the interval [t̄, T⋆(v)] , in contradiction to t̄ < T⋆(v) and Ψ injective on R[u] . The 
claim follows. Suppose now that u ≻ v for some v ∈ U  . Then there exists an increasing 
1-Lipschitz map 𝗓 ∶ [0,+∞) → [0,+∞) such that u(t) = v(�(t)) for all t ∈ [0,+∞) . It holds 
that �(t) ≤ t for all t ≥ 0 and v ∈ U [R[u]] . Hence, Ψ(u(t)) = Ψ(v(�(t))) ≥ Ψ(v(t)) ≥ Ψ(u(t)) 
for all t ∈ [0,+∞) . This yields u(t) = v(t) for all t ∈ [0,+∞) and the proof is complete.  
 ◻

Remark 4.7 We do not make use of (C) and (3.9) in the proof of the second statement of 
Proposition 4.6 (cf. Remark 3.10).

5  Minimal solutions to gradient flows

It is known that gradient flows can be studied within the framework of generalized semi-
flows [23]. However, our approach to apply the theory of minimal solutions to gradient 
flows in metric spaces is independent of Sect. 4. The special structure of the energy dissi-
pation inequality allows of taking into consideration cases in which the gradient flow for a 
functional does not fit into the concept of generalized semiflow due to the lack of compact-
ness but still is a generalized Λ-semiflow.

We find a particular feature of the minimal solutions to a gradient flow: they cross the 
critical set

Ψ(u(t)) ≤ Ψ(u(s)) for every 0 ≤ s < t < +∞, u ∈ U.
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of the functional with respect to the corresponding upper gradient g only in a negligible set 
of times before they possibly become eventually constant.

5.1  Curves of maximal slope

We give some of the basic definitions concerning gradient flows in metric spaces, follow-
ing the fundamental book by Ambrosio, Gigli and Savaré [2]:

Let (S, d) be a complete metric space and let the notation S

−→ correspond to the conver-
gence in the metric d, i.e.

for xj, x ∈ S .
So-called curves of maximal slope are defined for an extended real functional 

� ∶ S → (−∞,+∞] with proper effective domain

The notion of curves of maximal slope goes back to [9], with further developments in [10, 
18].

Locally absolutely continuous curve

Definition 5.1 We say that a curve v ∶ [0,+∞) → S  is locally absolutely continuous and 
write v ∈ ACloc([0,+∞);S) if there exists m ∈ L1

loc
(0,+∞) such that

In this case, the limit

exists for L1-a.e. t ∈ (0,+∞) , the function t ↦ |v�|(t) belongs to L1
loc
(0,+∞) and is called 

the metric derivative of v. The metric derivative is L1-a.e. the smallest admissible function 
m in the definition above.

Strong upper gradient

Definition 5.2 A function g ∶ S → [0,+∞] is a strong upper gradient for the functional � 
if for every v ∈ ACloc([0,+∞);S) the function g◦v is Borel and

In particular, if g◦v|v�| ∈ L1
loc
(0,+∞) then �◦v is locally absolutely continuous and

{x ∈ S | g(x) = 0}

xj
S

−→x ∶⇔ d(xj, x) → 0

D(𝜙) ∶= {𝜙 < +∞} ≠ �.

d(v(s), v(t)) ≤ �
t

s

m(r) dr for all 0 ≤ s ≤ t < +∞.

|v�|(t) ∶= lim
s→t

d(v(s), v(t))

|s − t|

(5.1)|𝜙(v(t)) − 𝜙(v(s))| ≤ �
t

s

g(v(r))|v�|(r) dr for all 0 ≤ s ≤ t < +∞.
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This slightly modified version of [2, Def. 1.2.1] (which requires (5.1) only for s > 0 ) 
can be found in [23].

In [2], also the concept of weak upper gradient is defined. The notion of upper gradi-
ent is an abstraction of the modulus of the gradient to a general metric and nonsmooth 
setting.

Curve of maximal slope

Definition 5.3 Let g ∶ S → [0,+∞] be a strong or weak upper gradient for the functional 
� , and p ∈ (1,+∞) with conjugate exponent q.

A locally absolutely continuous curve u ∶ [0,+∞) → S  is called a p-curve of maximal 
slope for � with respect to its upper gradient g if �◦u is L1-a.e. equal to a decreasing map 
� ∶ [0,+∞) → ℝ , i.e.

and the energy dissipation inequality

is satisfied for all 0 ≤ s ≤ t < +∞.

Typical candidates for g are the local slope

the relaxed slope

and similar modifications of the lower semicontinuous envelope of the local slope [2, 10, 
18, 22, 23].

Remark 5.4 If S = ℝ
d and � ∶ ℝ

d → ℝ is a continuously differentiable Lipschitz function, 
then g ∶= |∇�| = |��| = |�−�| is a strong upper gradient for � , the energy dissipation ine-
quality for p = 2 is equivalent to the classical gradient flow equation

and admits at least one solution for every initial value.

Definition of Up(�, g) It is usually not clear a priori whether a candidate function 
g ∶ S → [0,+∞] is an upper gradient or not (except that the local slope is a weak upper 
gradient [2]).

Our analysis of gradient flows with regard to our concept of generalized Λ-semi-
flow and minimal solutions will not rely on the behaviour of g as a strong or weak 
upper gradient. Our considerations will concern locally absolutely continuous curves 

|(�◦v)�(t)| ≤ g(v(t))|v�|(t) for L1-a.e. t ∈ (0,+∞).

𝜙(u(r)) = 𝜑(r) for L1-a.e. r ≥ 0, 𝜑(t) ≤ 𝜑(s) for all 0 ≤ s < t < +∞,

�(s) − �(t) ≥ 1

q �
t

s

gq(u(r)) dr +
1

p �
t

s

|u�|p(r) dr

|��|(x) ∶= lim sup
d(y,x)→0

(�(x) − �(y))+

d(x, y)
(x ∈ D(�)),

|𝜕−𝜙|(x) ∶= inf

{
lim inf
j→∞

|𝜕𝜙|(xj) ∶ d(xj, x) → 0, sup
j

𝜙(xj) < +∞

}

u�(t) = −∇𝜙(u(t)), t > 0,
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satisfying the energy dissipation inequality for some given function g ∶ S → [0,+∞] 
without specifying the role g plays for the functional �.

In view of the concatenation hypothesis (H2), we assume that the energy dissipation 
inequality holds everywhere for � = �◦u.

Definition 5.5 Let � ∶ S → (−∞,+∞] and g ∶ S → [0,+∞] be given, 
and p ∈ (1,+∞) with conjugate exponent q . We define Up(�, g) as the family of all the 
locally absolutely continuous curves u ∈ ACloc([0,+∞);S) with u(0) ∈ D(�) , satisfying 
the energy dissipation inequality

for all 0 ≤ s ≤ t < +∞.

If g is a weak or strong upper gradient for � and u ∈ Up(�, g) , then u is a p-curve of 
maximal slope for � w.r.t. g.

Remark 5.6 In Definition 5.5, we tacitly assume that g◦u is Borel; otherwise the integral on 
the right-hand side would be set +∞.

Example of a nonempty family Up(�, g) The following existence result is provided in 
[2], the proof of which is based on the notion of minimizing movements [8]: Suppose 
that the functional � ∶ S → (−∞,+∞] is lower semicontinuous, i.e.

has a lower bound of order p , i.e. there exist A,B > 0, x⋆ ∈ S  such that

and suppose that d-bounded subsets of a sublevel of � are relatively compact, i.e.

Further, suppose that g ∶= |�−�| is a strong upper gradient for � . Then the following holds 
[2]: for every u0 ∈ D(�) , there exists at least one p-curve u of maximal slope for � w.r.t. 
|�−�| , with initial value u(0) = u0 , the energy dissipation inequality (5.2) holds (in fact, 
equality holds in (5.2)) and u ∈ Up(�, |�−�|).

Remark 5.7 Whenever g ∶ S → [0,+∞] is a strong upper gradient for a functional 
� ∶ S → (−∞,+∞] , and there exists a p-curve u of maximal slope for � w.r.t. g, it follows 
from Definition 5.2 of strong upper gradient that u ∈ Up(�, g) (with equality in (5.2)) and 
�◦u is locally absolutely continuous.

The family Up(�, g) then coincides with the collection of all the p-curves of maximal 
slope for � w.r.t. g.

(5.2)�(u(s)) − �(u(t)) ≥ 1

q �
t

s

gq(u(r)) dr +
1

p �
t

s

|u�|p(r) dr

(5.3)d(xj, x) → 0 ⇒ lim inf
j→∞

�(xj) ≥ �(x),

(5.4)𝜙(⋅) ≥ −A − Bdp(⋅, x⋆),

(5.5)sup
j,l

{d(xj, xl),𝜙(xj)} < +∞ ⇒ ∃ jk ↑ +∞, x ∈ S ∶ d(xjk , x) → 0.
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5.2  Gradient flow as generalized 3‑semiflow

We want to prove that Up(�, g) is a generalized Λ-semiflow:

Theorem  5.8 Let � ∶ S → (−∞,+∞] and g ∶ S → [0,+∞] be given, and p ∈ (1,+∞) . 
We assume that � and g are lower semicontinuous, i.e.

and � has a lower bound of order p , i.e. there exist A,B > 0, x⋆ ∈ S  such that

and we suppose that Up(�, g) ≠ � . Then Up(�, g) is a generalized Λ-semiflow, according to 
Definition 3.1.

Proof Let q denote the conjugate exponent of p.
We first note that if g is lower semicontinuous, then g◦u is Borel for every curve 

u ∈ ACloc([0,+∞);S).
The hypothesis (H1) follows by the classical change of variables formula: if 

u ∈ Up(�, g) and � ≥ 0 , then u� (⋅) ∶= u(⋅ + �) ∈ ACloc([0,+∞);S) with metric derivative 
|u�

�
|(⋅) = |u�|(⋅ + �) and

Similarly, we show (H2). Let u, v ∈ Up(�, g) with v(0) = u(t̄) for some t̄ ≥ 0 and define 
w ∶ [0,+∞) → S ,

Clearly, w ∈ ACloc([0,+∞);S) with

and the energy dissipation inequality (5.2) directly follows for 0 ≤ s ≤ t ≤ t̄ and by change 
of variable as above, for t̄ ≤ s ≤ t < +∞ . If 0 ≤ s < t̄ < t , we obtain (5.2) by splitting up

This shows (H2).
Now, let a map u ∶ [0,+∞) → S  be given with the property that u|[0,T] can be extended 

to a map in Up(�, g) for all T > 0 , i.e. for every T > 0 there exists wT ∈ Up(�, g) with 
wT (t) = u(t) if t ≤ T  . In particular, it holds that u ∈ ACloc([0,+∞);S) and |w�

T
|(⋅) = |u�|(⋅) 

in (0, T). Hence, u ∈ Up(�, g) . This shows that Up(�, g) satisfies (H5).
Obviously, Up(�, g) satisfies (H3).

(5.6)d(xj, x) → 0 ⇒ lim inf
j→+∞

�(xj) ≥ �(x), lim inf
j→+∞

g(xj) ≥ g(x),

(5.7)𝜙(⋅) ≥ −A − Bdp(⋅, x⋆),

�(u� (s)) − �(u� (t)) ≥1

q �
t+�

s+�

gq(u(r)) dr +
1

p �
t+�

s+�

|u�|p(r) dr

≥1

q �
t

s

gq(u� (r)) dr +
1

p �
t

s

|u�
�
|p(r) dr.

w(t) ∶=

{
u(t) if t ≤ t̄

v(t − t̄) if t > t̄

|w�|(r) =
{ |u�|(r) if r ≤ t̄

|v�|(r − t̄) if r > t̄

𝜙(w(s)) − 𝜙(w(t)) = 𝜙(w(s)) − 𝜙(w(t̄)) + 𝜙(w(t̄)) − 𝜙(w(t)).
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It remains to prove (H4). Let u ∈ Up(�, g) . Suppose that there exists a map 
w ∶ [0, �) → S  with 𝜃 < +∞ and w([0, �)) = R[u] such that w|[0,T] can be extended to a 
map in Up(�, g) for all T ∈ [0, �) . Then w ∈ AC([0, T];S) for every T ∈ (0, �) , i.e. the met-
ric derivative

exists for L1-a.e. t ∈ (0, �) and t ↦ |w�|(t) belongs to L1([0,T];S) for every T ∈ (0, �) , and

Moreover, w(0) ∈ D(�) and the energy dissipation inequality

holds for all 0 ≤ s ≤ t < 𝜃 . By assumption, there exist A,B > 0, x⋆ ∈ S  such that

We set

It holds that � is nonnegative and Borel (since � is lower semicontinuous) and for every 
t ∈ [0, �) , the map � is bounded from above in [0, t] and

We used the fact that [0, t] ∋ r ↦ dp(w(r), x⋆) is absolutely continuous due to the chain 
rule for BV functions [1, Thm. 3.99]: indeed, the map [0, t] ∋ r ↦ 𝜂(r) ∶= d(w(r), x⋆) is 
absolutely continuous with

and bounded in [0, t], so we may apply [1, Thm. 3.99] to �p and obtain

Applying the integral form of Gronwall’s inequality (see e.g. [11, Appendix B]) to � 
and setting C ∶= (2p)qBq−1∕q , we obtain

|w�|(t) ∶= lim
s→t

d(w(s),w(t))

|s − t|

d(w(s),w(t)) ≤ �
t

s

|w�|(r) dr for all 0 ≤ s ≤ t < 𝜃.

(5.8)�(w(s)) − �(w(t)) ≥ 1

q �
t

s

gq(w(r)) dr +
1

p �
t

s

|w�|p(r) dr

𝜙(⋅) ≥ −A − Bdp(⋅, x⋆).

𝜉(t) ∶= 𝜙(w(t)) + 2Bdp(w(t), x⋆) + A for t ∈ [0, 𝜃).

𝜉(t) ≤𝜉(0) − 1

p �
t

0

|w�|p(r) dr + 2Bp�
t

0

dp−1(w(r), x⋆)|w�|(r) dr

≤𝜉(0) + (2Bp)q

q �
t

0

dp(w(r), x⋆) dr

≤𝜉(0) + (2p)q

q
Bq−1 �

t

0

𝜉(r) dr.

|�(r2) − �(r1)| ≤ d(w(r1),w(r2)) ≤ �
r2

r1

|w�|(r) dr for 0 ≤ r1 ≤ r2 ≤ t

|dp(w(r2), x⋆) − dp(w(r1), x⋆)| ≤ �
r2

r1

pdp−1(w(r), x⋆)|w�|(r) dr (0 ≤ r1 ≤ r2 ≤ t).
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In particular,

for all t ∈ [0, �) . By Hölder inequality, it follows from (5.8) and (5.10) that

Since S  is complete, this shows that the limit limt↑𝜃 w(t) =∶ w⋆ ∈ S  exists.
If T⋆(u) < +∞ , then u(t) = w⋆ for all t ∈ [T⋆(u),+∞) and there exists T ∈ [0, �) such 

that w(t) = w⋆ for all T ≤ t < 𝜃 ; nothing remains to be shown in this case.
If T⋆(u) = +∞ and Sn ↑ +∞ , there exists a corresponding increasing sequence Tn ↑ � 

with w(Tn) = u(Sn) ; this follows from (H3) (cf. proof of Theorem 4.2). So we obtain

Moreover, since u ∈ Up(�, g) satisfies the energy dissipation inequality (5.2) and 
inft≥0 𝜙(u(t)) = inft∈[0,𝜃) 𝜙(w(t)) > −∞ by (5.10), it holds that

Hence, lim infr→+∞ g(u(r)) = 0 and we obtain

by the lower semicontinuity of g. Further, for s ∈ [0, �) , the energy dissipation inequality

follows from (5.8) and the lower semicontinuity of �.
We define w̄ ∶ [0,+∞) → S ,

Clearly, w̄ ∈ ACloc([0,+∞);S) , and by (5.8), (5.12) and (5.11), it holds that w̄ ∈ Up(𝜙, g).
The proof is complete.   ◻

The assumptions (5.6) and (5.7) on � and g in Theorem 5.8 are only used in the proof 
of (H4). The lower semicontinuity hypotheses on � and g allow the passage to the limit 
in the energy dissipation inequality and are natural assumptions whenever some kind of 
limit behaviour concerning the energy dissipation inequality is of interest (cf. the long-time 
analysis for gradient flows in metric spaces in [7, 23]). This will again be the case in the 
proof of (C) in Sect. 5.3.

We note that we do not need to require any compactness property of � such as (5.5); 
the lower bound (5.7) suffices for our purposes. Also, the existence of a minimal repar-
ametrization corresponding to a given solution will be proved without assuming any 

(5.9)
�(t) ≤ �(0)(1 + CteCt) ≤ �(0)(1 + C�eC�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶�0,�

for all t ∈ [0, �).

(5.10)Bdp(w(t), x⋆) ≤ 𝜉(t) ≤ 𝜉0,𝜃 , 𝜙(w(t)) ≥ −A − 𝜉0,𝜃 > −∞

d(w(s),w(t)) ≤ (t − s)
1

q (p𝜙(w(0)) + pA + p𝜉0,𝜃)
1

p for all 0 ≤ s ≤ t < 𝜃.

d(u(tn),w⋆) → 0 whenever tn → +∞.

∫
+∞

0

gq(u(r)) dr < +∞.

(5.11)g(w⋆) = 0

(5.12)𝜙(w(s)) − 𝜙(w⋆) ≥ 1

q �
𝜃

s

gq(w(r)) dr +
1

p �
𝜃

s

|w�|p(r) dr

w̄(t) ∶=

{
w(t) if t < 𝜃

w⋆ if t ≥ 𝜃
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compactness property of � . In fact, our assumption that Up(�, g) is nonempty is the only 
point at which some compactness property may play a role (cf. Sect. 5.1).

5.3  Minimal gradient flow

In this section, we study minimal solutions to gradient flows. Our aim is to apply Theo-
rem 3.9 and Proposition 4.6 to U = Up(�, g) , providing existence and features of mini-
mal solutions. Moreover, we will see that minimal solutions u ∈ Umin to gradient flows 
are characterized by the particular property that

Let � ∶ S → (−∞,+∞] and g ∶ S → [0,+∞] be given, and p ∈ (1,+∞) . Throughout this 
section, we assume that � and g are lower semicontinuous (5.6) and � has a lower bound 
(5.7) of order p , and we define Up(�, g) as in Definition 5.5. Due to Theorem 5.8, the fam-
ily Up(�, g) is a generalized Λ-semiflow on S  (provided it is nonempty).

We want to prove that Up(�, g) satisfies (C). The critical point is a passage to the 
limit in the energy dissipation inequality, as in the proof of (H4). The passage to the 
limit will now concern both terms on the left-hand side of the energy dissipation ine-
quality (5.2) so that the lower semicontinuity of � will not suffice. Such obstacles are 
usually overcome by assuming that g is a strong upper gradient for � or by allowing 
any decreasing function � ≥ �◦u in a modified energy dissipation inequality with pairs 
(u,�) as solutions (cf. [23]).

For our purposes, it is sufficient to assume that �◦u ∶ [0,+∞) → ℝ is continuous 
for every solution u ∈ Up(�, g) . This is satisfied, e.g. if g is a strong upper gradient (cf. 
Remark 5.7).

Theorem 5.9 Let the assumptions of Theorem 5.8 be satisfied and suppose that

Then the generalized Λ-semiflow Up(�, g) satisfies (C) and all the statements (1)–(5) of 
Theorem  3.9 hold good for Up(�, g) . Moreover, both statements of Proposition 4.6 are 
applicable to Up(�, g).

Proof We write U = Up(�, g) . Let a sequence vn ∈ T[U], n ∈ ℕ, be given with 
supn 𝜌(vn) < +∞ and R[vn] = R[v1] for all n ∈ ℕ . Since the truncated solution v1 is con-
tinuous with T1 ∶= 𝜌(v1) < +∞ , its range R[v1] is sequentially compact. Furthermore, it is 
straightforward to check that

Applying a refined version of Ascoli-Arzelà theorem [2, Prop. 3.3.1], we obtain that there 
exist a subsequence nk ↑ +∞ and a curve v ∶ [0,+∞) → S  such that

It is not difficult to see that v ∈ ACloc([0,+∞);S) and

L
1({t ∈ [0, T⋆(u)) | g(u(t)) = 0}) = 0.

(5.13)�◦u ∶ [0,+∞) → ℝ is continuous for every u ∈ Up(�, g).

sup
n∈ℕ �

+∞

0

|v�
n
|p(r) dr ≤ p(𝜙(v1(0)) − 𝜙(v1(T1))) < +∞.

(5.14)vnk (t)
S

−→v(t) for all t ∈ [0,+∞).
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We may assume w.l.o.g. that Tnk ∶= �(vnk ) → T  for some T ∈ [0,+∞) . For every 
t ∈ [0,+∞) , there exists a sequence of times tk ∈ [0, T1] such that v1(tk) = vnk (t) . It follows 
from this and from (5.14) and (5.13) that R[v] ⊂ R[v1] and

We obtain

for all 0 ≤ s ≤ t < T  , due to the fact that vnk satisfies (5.2) in [0,Tnk ] and due to (5.15), the 
lower semicontinuity (5.6) of g and Fatou’s lemma.

Since v is continuous, R[v] ⊂ R[v1] and (5.13) holds, the map �◦v is continuous. It fol-
lows that R[v] = R[v1] since v(0) = v1(0) , v(T) = v1(T1) , �(R[v1]) = [�(v1(T1)),�(v1(0))] 
and � injective on R[v1] (cf. Remark 5.10); further, the energy dissipation inequality

holds for all 0 ≤ s ≤ t ≤ T .
Now, let v̄1 ∈ U  such that v1(⋅) = v̄1(⋅ ∧ T1) . Similar arguments as in the proof of Theo-

rem 5.8, (H2), show that v̄ ∈ U  , where v̄ ∶ [0,+∞) → S  is defined as

Hence v ∈ T[U] . The proof of (C) is complete.   ◻

Remark 5.10 Proposition 4.6 is applicable with � ∶= � ; it is true that � may take 
the value +∞ but for the statements of Proposition 4.6 to hold good, it suffices that 
𝜙(u(t)) ≤ 𝜙(u(s)) < +∞ for all 0 ≤ s ≤ t < +∞ , u ∈ Up(�, g) . We note that � is injective 
on R[u] for every u ∈ Up(�, g) . To be more precise: The energy dissipation inequality 
(5.2) implies that for every u ∈ Up(�, g) and 0 ≤ s ≤ t < +∞ the following four points are 
equivalent: 

 (i) �(u(s)) = �(u(t)),
 (ii) |u�|(r) = 0 for L1-a.e. r ∈ (s, t),
 (iii) u(r) = u(s) for all r ∈ [s, t],
 (iv) u(s) = u(t).

Moreover, we note that for U = Up(�, g) and the range R = R[y] ⊂ S  of a solution 
y ∈ U  , it holds that

(5.15)�
t

s

|v�|p(r) dr ≤ lim inf
k→+∞ �

t

s

|v�
nk
|p(r) dr for all 0 ≤ s ≤ t < +∞.

�(vnk (t)) → �(v(t)) for all t ∈ [0,+∞), v(t) = v1(T1) for all t ≥ T .

�(v(s)) − �(v(t)) = lim
k→+∞

(�(vnk (s)) − �(vnk (t)))

≥ lim inf
k→+∞

1

q �
t

s

gq(vnk (r)) dr + lim inf
k→+∞

1

p �
t

s

|v�
nk
|p(r) dr

≥1

q �
t

s

gq(v(r)) dr +
1

p �
t

s

|v�|p(r) dr

�(v(s)) − �(v(t)) ≥ 1

q �
t

s

gq(v(r)) dr +
1

p �
t

s

|v�|p(r) dr

v̄(t) ∶=

{
v(t) if 0 ≤ t ≤ T

v̄1(t − T + T1) if t > T
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If g is a strong upper gradient for � , then Up(�, g) coincides with the collection of all 
the p-curves of maximal slope for � w.r.t. g (cf. Remark 5.7). The next proposition deals 
with a special quality of minimal solutions to a gradient flow in terms of the 0 level set 
of the corresponding strong upper gradient.

Proposition 5.11 (cf. [13], Thm. 3.4 (5)) Let the assumptions of Theorem 5.8 be satisfied 
and suppose that g is a strong upper gradient for � . Then the following two statements are 
equivalent for a solution u ∈ Up(�, g) : 

 (i) u is minimal,
 (ii) u crosses the set {x ∈ S | g(x) = 0} of critical points of � w.r.t. its upper gradient g 

in an L1-negligible set of times, i.e. 

Proof First we notice some properties of Up(�, g) if g is a strong upper gradient (cf. 
Remark 5.7): every solution u ∈ Up(�, g) satisfies

for all 0 ≤ s ≤ t < +∞ , it holds that

and �◦u is locally absolutely continuous with

Let us show that (ii) implies (i). Let u ∈ U  satisfy (5.16) and suppose that u ≻ v for 
some v ∈ Up(�, g) . Then R[v] ⊂ R[u] and there exists an increasing 1-Lipschitz map 
𝗓 ∶ [0,+∞) → [0,+∞) with �(0) = 0 such that u(t) = v(�(t)) for all t ≥ 0 . The map � is dif-
ferentiable L1-a.e. in [0,+∞) and the chain rule for absolutely continuous functions (see 
e.g. [17], Thm. 3.44) and (5.19) yield

for L1-a.e. r ∈ [0,+∞) . By (5.16), it follows that ��(r) = 1 for L1-a.e. r ∈ [0,T⋆(u)) , which 
implies �(t) = t for all t ∈ [0, T⋆(u)) . This shows that u = v and the claim is proved.

Now, we prove that (i) implies (ii). Let u be a minimal solution, with T⋆(u) ∈ (0,+∞] . 
Let

As g is lower semicontinuous (5.6), the set Ω is open.
We define 𝗑 ∶ [0, T⋆(u)) → [0,+∞) as

w ∈ U [R] ⇔ w ∈ U, R ⊂ R[w] ⊂ R.

(5.16)L
1({t ∈ [0, T⋆(u)) ∶ g(u(t)) = 0}) = 0.

(5.17)�(u(s)) − �(u(t)) =
1

q ∫
t

s

gq(u(r)) dr +
1

p ∫
t

s

|u�|p(r) dr

(5.18)gq(u(r)) = |u�|p(r) forL1-a.e. r ∈ [0,+∞),

(5.19)(�◦u)�(r) = −gq(u(r)) = −|u�|p(r) for L1-a.e. r ∈ [0,+∞).

gq(u(r)) = −(�◦u)�(r) = −(�◦v◦�)�(r) = gq(v(�(r)))��(r) = gq(u(r))��(r)

Ω ∶= {t ∈ (0, T⋆(u)) ∶ g(u(t)) > 0}.
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The map � is locally absolutely continuous; further, it is strictly increasing since u is injec-
tive in [0,T⋆(u)) by Theorem 3.9, (2). Let

There exists a strictly increasing, continuous inverse 𝗒 ∶ [0,X) → [0,T⋆(u)),

Since � is monotone, it is differentiable L1-a.e. in [0, X) and its derivative �′ belongs to 
L1(0,X�) for every X′ < X . We define � ∶ [0,X) → [0,+∞),

The chain rule for absolutely continuous functions (see e.g. [17], Thm. 3.44) applied to �◦� 
yields ��(r) > 0 for L1-a.e. r ∈ (0,X) . So it holds that

and the map 𝗓 ∶ [0, T⋆(u)) → [0,+∞) , defined as � ∶= �◦� , is strictly increasing and 
1-Lipschitz, i.e.

The chain rule for absolutely continuous functions cannot be directly applied to �◦� since 
we do not know whether � is absolutely continuous or not, but imitating the proof of [17, 
Thm. 3.44], we obtain

We used (5.18). By the chain rule, now applied to �◦� , it follows that

Let

The map � has a strictly increasing, continuous inverse 𝗍 ∶ [0, 𝜃) → [0,T⋆(u)).
We define w ∶ [0, �) → S, w ∶= u◦𝗍 . It holds that

for all 0 ≤ s ≤ t < 𝜃 . Obviously, �◦� is the inverse map of � . Since � is locally absolutely 
continuous with 𝜗�(r) = y�(r) > 0 a.e. in (0, X), its inverse �◦� is locally absolutely continu-
ous. By change of variables (see e.g. [17], Thm. 3.54), we obtain

�(t) ∶= ∫
t

0

|u�|(r) dr.

X ∶= lim
t↑T⋆(u)

𝗑(t) = ∫
T⋆(u)

0

|u�|(r) dr ∈ (0,+∞].

�(�(t)) = t for all t ∈ [0, T⋆(u)), �(�(x)) = x for all x ∈ [0,X).

�(x) ∶= ∫
x

0

��(r) dr.

0 < 𝜗(x2) − 𝜗(x1) ≤ �(x2) − �(x1) for all 0 ≤ x1 < x2 < X,

0 < �(t2) − �(t1) ≤ t2 − t1 for all 0 ≤ t1 < t2 < T⋆(u).

��(�(t))��(t) = 1 a.e. in Ω.

(5.20)��(t) = 1 a.e. in Ω, ��(t) = 0 a.e. in [0,T⋆(u)) ⧵Ω.

� ∶= lim
x↑X

�(x) = ∫
X

0

𝗒�(r) dr ∈ (0,+∞].

d(w(s),w(t)) ≤ �
�(t)

�(s)

|u�|(r) dr = �(�(t)) − �(�(s))
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It follows that w ∈ ACloc([0, �);S) , i.e. the metric derivative

exists for L1-a.e. t ∈ (0, �) , the function t ↦ |w�|(t) belongs to L1
loc
(0, �) and

moreover, it holds that

(cf. Definition 5.1, [2, Def. 1.1.1 and Thm. 1.1.2]). Applying the chain rule for absolutely 
continuous functions to �◦� , we obtain by (5.20) that

We note that the map

is strictly increasing and applying the chain rule for absolutely continuous functions, we 
obtain

Similarly,

The curve u satisfies the energy dissipation inequality (5.2). Hence, combining (5.21)–
(5.24), we obtain

for all 0 ≤ s ≤ t < 𝜃.
If 𝜃 < +∞ and T⋆(u) = +∞ , it holds that w([0, �)) = R[u] and for every T ∈ (0, �) , the 

map wT ∶ [0,+∞) → S ,

belongs to Up(�, g) (cf. the proof of Theorem 5.8, (H2)). Since Up(�, g) satisfies (H4), it 
follows that the limit limt↑+∞ u(t) =∶ u⋆ ∈ S  exists, and w̄ ∈ Up(𝜙, g) , where

�(�(t)) − �(�(s)) = �
t

s

|u�|(�(r))��(r) dr 0 ≤ s ≤ t < 𝜃.

|w�|(t) ∶= lim
s→t

d(w(s),w(t))

|s − t|

d(w(s),w(t)) ≤ �
t

s

|w�|(r) dr for all 0 ≤ s ≤ t < 𝜃;

(5.21)|w�|(r) ≤ |u�|(�(r))��(r) a.e. in (0, �)

(5.22)��(r) = 1 a.e. in �(Ω).

[0, �) ∋ s ↦ ∫
𝗍(s)

0

gq(u(r)) dr

(5.23)�
�(s2)

�(s1)

gq(u(r)) dr ≥ �
s2

s1

gq(u(�(r)))��(r) dr.

(5.24)�
�(s2)

�(s1)

|u�|p(r) dr ≥ �
s2

s1

|u�|p(�(r))��(r) dr.

�(w(s)) − �(w(t)) ≥ 1

q �
t

s

gq(w(r)) dr +
1

p �
t

s

|w�|p(r) dr

wT (s) ∶=

{
w(s) if 0 ≤ s ≤ T

u(s − T + �(T)) if s > T
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Moreover, it holds that w̄(�(t)) = u(t) for all t ∈ [0,+∞) . Hence, u ≻ w̄ which implies 
u = w̄ since u is minimal. We obtain

as u is injective in [0,T⋆(u)).
If T⋆(u) < +∞ , then 𝜃 < +∞ , and it is not difficult to see that w̄ defined as above 

belongs to Up(�, g) . Extending � by the constant value � , we again obtain u ≻ w̄ , and thus 
(5.25).

If � = +∞ and T⋆(u) = +∞ , then w ∈ Up(�, g) and u ≻ w , from which (5.25) follows.
So in any case, (5.25) holds. Taking into account (5.20), we may conclude that

This means that u satisfies (5.16). The proof is complete.   ◻

The strict monotonicity of � along minimal solutions and (5.16) Every minimal solution 
u is injective in [0,T⋆(u)) due to Theorem 3.9, (2). The functional � is injective on R[u] for 
every u ∈ Up(�, g) (Remark 5.10). It follows that � is strictly decreasing along minimal solu-
tions, i.e.

where Up,min(�, g) denotes the collection of all the minimal solutions in Up(�, g).
We note that (5.26) is not sufficient to conclude that a solution is minimal. In [13, Appen-

dix A], we give an example of a one-dimensional gradient flow to a function whose deriva-
tive has a Cantor-like 0 level set K ⊂ ℝ , and we construct a solution parametrized by a posi-
tive finite Cantor measure concentrated on K; this solution satisfies (5.26) but does not satisfy 
(5.16) and is not minimal. The example illustrates that condition (5.16) is stronger than (5.26) 
and that the strict monotonicity of the functional along a solution curve u ∈ Up(�, g) does not 
guarantee that u ∈ Up,min(�, g).

5.4  An example in the space of probability measures

Let p ∈ (2,+∞) . We illustrate Theorems 5.8 and 5.9 and Proposition 5.11 with an exam-
ple in the space Pp(ℝ

d) of Borel probability measures with finite moments of order p (i.e. 
∫
ℝd |x|pd𝜇 < +∞ ). The space Pp(ℝ

d) is endowed with the p-Wasserstein distance Wp,

with Γ(�1,�2) being the set of Borel probability measures on ℝd ×ℝ
d whose first and 

second marginal coincide with �1 and �2 respectively (see e.g. [25, 26] for a detailed 
account of the theory of Optimal Transport and Wasserstein distances). The functional 
� ∶ Pp(ℝ

d) → (−∞,+∞],

w̄(t) ∶=

{
w(t) if 0 ≤ t < 𝜃

u⋆ if t ≥ 𝜃

(5.25)�(t) = t for all t ∈ [0, T⋆(u))

L
1([0,T⋆(u)) ⧵Ω) = 0.

(5.26)𝜙(u(t)) < 𝜙(u(s)) for all 0 ≤ s < t < T⋆(u), u ∈ Up,min(𝜙, g),

Wp(�1,�2)
p ∶= min

�∈Γ(�1,�2)∫ℝd×ℝd

|x − y|pd� , �i ∈ Pp(ℝ
d),
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is defined on (Pp(ℝ
d),Wp) , with 

 (A1) F ∶ [0,+∞) → ℝ being convex, continuous with F(0) = 0 , differentiable in (0,+∞) , 
bounded from below by s ↦ −Cs� for some 𝛼 >

d

d+p
,C > 0, having superlinear growth 

and satisfying 

 and 

 (A2) V ∶ ℝ
d → ℝ being nonnegative and �-convex for some 𝜆 < 0,

 (A3) W ∶ ℝ
d → ℝ being convex, nonnegative, differentiable, even and satisfying 

Such setting forms a typical example considered in the study of gradient flows in the 
space of probability measures having possibly nonunique solutions (see e.g. Chap-
ters 10.4 and 11 in [2] and the references therein). It allows of the following points to be 
proved:

• � has a lower bound (5.7) of order p in (Pp(ℝ
d),Wp) (cf. the proof of Prop. 4.1 in 

[16]).
• � is lower semicontinuous (5.6) in (Pp(ℝ

d),Wp) (see e.g. the proof of Lem. 3.3 in [14], 
Dunford–Pettis theorem and Thm. 7.12 in [25]).

• � is �-convex along constant speed geodesics in (Pp(ℝ
d),Wp) (cf. [25, Thm. 5.15] and 

[2, Props. 9.3.2, 9.3.5, 9.3.9).
• The relaxed slope |�−�| is a strong upper gradient; it coincides with the local slope |��| 

and is lower semicontinuous (5.6) in (Pp(ℝ
d),Wp) (cf. [2], Cor. 2.4.10, Prop. 10.4.14).

• The family Up(�, |�−�|) which coincides with the collection of all the p-curves of max-
imal slope for � with respect to |�−�| (cf. Remark 5.7) is nonempty (cf. [2, Prop. 2.2.3, 
Thm. 2.3.3]). The proof is based on the notion of minimizing movements [8].

• An equivalent characterization of a solution (u(t, ⋅)Ld)t≥0 ∈ Up(�, |�−�|) is given by a 
weak formulation of the diffusion equation 

 with q the conjugate exponent of p, 

 and 

�(�) ∶=

{ ∫
ℝd×ℝd [F(u(x)) + V(x)u(x) +

1

2
W(x − y)u(x)]u(y)dxdy if � = uLd,

+∞ else

s ↦ sdF(s−d) is convex nonincreasing in (0,+∞)

∃CF > 0 ∶ F(r + s) ≤ CF(1 + F(r) + F(s)) for all r, s ≥ 0,

∃CW > 0 ∶ W(x + y) ≤ CW (1 +W(x) +W(y)) for all x, y ∈ ℝ
d.

𝜕tu − ∇ ⋅

(
ujq

(∇LF(u)
u

+ ∇V + (∇W) ⋆ u
))

= 0,

jq(v) ∶=

{ |v|q−2v if v ≠ 0,

0 if v = 0

LF(s) ∶=

{
sF�(s) − F(s) if s ∈ (0,+∞),

0 if s = 0
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 (cf. [2, Lem. 10.3.8, Thms. 10.4.13, 11.1.3]). The interpretation of dynamics governed 
by such diffusion equation as a p-gradient flow for the energy functional � in the space 
(Pp(ℝ

d),Wp) has its origin in the papers [15, 16, 20, 21].
• If the relaxed slope is finite at � = uLd ∈ Pp(ℝ

d) , then it can be computed as 

 with LF(u) ∈ W
1,1

loc
(ℝd) (cf. [2, Thms. 10.3.11, 10.4.13, Prop. 10.4.14]).

We may refer the reader to the corresponding literature mentioned above for a detailed 
analysis of the role that each single assumption made in (A1), (A2) and (A3) plays.

There may be more than one solution in Up(�, |�−�|) corresponding to given initial 
data. However, the above statements show that Theorems 5.8 and 5.9 and Proposition 5.11 
are applicable under (A1), (A2) and (A3), so that there exists a unique minimal solution 
corresponding to each given range generating all other solutions with the same range by 
time reparametrization (1.1) and the collection Up,min(�, |�−�|) of all the minimal solu-

tions coincides with the collection of all the solutions (u(t, ⋅)Ld)t≥0 ∈ Up(�, |�−�|) cross-
ing the set

only in an L1-negligible set of times before T⋆(u).
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