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Abstract Topological flow properties are proxies for mixing processes in aquifers and
allow us to better understand the mechanisms controlling transport of solutes in the
subsurface. However, topological descriptors, such as the Okubo–Weiss metric, are
affected by the uncertainty in the solution of the flow problem. While the uncertainty
related to the heterogeneous properties of the aquifer has been widely investigated in
the past, less attention has been given to the one related to highly transient boundary
conditions. We study the effect of different transient boundary conditions associated
with hydropeaking events (i.e., artificial river stage fluctuations due to hydropower
production) on groundwater flow and the Okubo–Weiss metric. We define determin-
istic and stochastic modeling scenarios applying four typical settings to describe river
stage fluctuations during hydropeaking events: a triangular wave, a sine wave, a com-
plex wave that results of the superposition of two sine waves, and a trapezoidal wave.
We use polynomial chaos expansions to quantify the spatiotemporal uncertainty that
propagates into the hydraulic head in the aquifer and the Okubo–Weiss. The wave-
shaped highly transient boundary conditions influence not only the magnitude of the
deformation and rotational forces of the flow field but also the temporal dynamics of
dominance between local strain and rotation properties. Larger uncertainties are found
in the scenario where the trapezoidal wave was imposed due to sharp fluctuation in the
stage. The statistical moments that describe the propagation of the uncertainty highly
vary depending on the applied boundary condition.
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Highlights

• Deterministic and stochastic scenarios to describe the groundwater flow field under
river stage fluctuations during hydropeaking.

• Propagation of uncertainty of highly transient boundary conditions in the
Okubo–Weiss metric.

• Highly transient boundary conditions can significantly affect mixing potential.

Keywords Hydropeaking · Flow field topology · Okubo–Weiss · Uncertainty
quantification · Polynomial chaos expansion

Mathematics Subject Classification 76-10 · 76M35 · 86-10

1 Introduction

Mixing plays a critical role in describing solute transport in aquifers (de Anna et al.
2014b;Rolle andLeBorgne 2019).Understandingmixing-limited reactions in the sub-
surface is particularly relevant to recognize biogeochemical transformations (Boisson
et al. 2013;Kang et al. 2019; Pinay et al. 2015), operate and design engineering remedi-
ation techniques (Cho et al. 2019; Dentz and Carrera 2005; Mays and Neupauer 2012;
McCarty andCriddle 2012;Neupauer et al. 2014), and understand hyporheic processes
(Boano et al. 2014). A variety of methods have been developed to understand the trans-
port dynamics in the subsurface and the effect that heterogeneous hydraulic properties
have on spreading, dilution, and reactive mixing (Dentz and Carrera 2005; Valoc-
chi et al. 2019). However, transport simulations are often computationally expensive
and the quantification of uncertainties may result in a very time-consuming exercise
(Lykkegaard et al. 2021; Smith 2013). The relation between topological flow proper-
ties and mixing processes in aquifers (Bresciani et al. 2019; de Barros et al. 2012) and
porous media (Basilio Hazas et al. 2022; de Anna et al. 2014a; Engdahl et al. 2014;
Wright et al. 2017) provides an interesting alternative to the solution of the transport
problem. One advantage of investigating such relations is that the calculation of topo-
logical features of the flow field requires only the solution of the flow problem, which
is much cheaper from the computational point of view than the solution of the flow
and transport equations.

A topological quantity known as the Okubo–Weiss metric (Okubo 1970; Weiss
1991) was shown to be a good proxy for mixing potential (Basilio Hazas et al. 2022;
de Barros et al. 2012;Wright et al. 2017). This metric is commonly used in geophysics
to identify filament from vortex structures (Casella et al. 2011; Roullet and Klein
2010) and characterize them in terms of dominant forces of the flow field, such as
vorticity, shear strain, and normal strain (de Barros et al. 2012; Wallace et al. 2021).
Still, the quantification of such topological descriptors of the flow field is affected
by the uncertainty that is caused by the heterogeneous nature of the aquifer (Geng
et al. 2020; Valocchi et al. 2019). Significant efforts have been made to quantify
the uncertainty affecting the predictions of solute concentration values caused by the
generally unknown hydraulic conductivity field (Moslehi and de Barros 2017; Nowak
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et al. 2010). However, in this work, we assume the hydraulic conductivity field as
properly characterized and well known in order to focus on a different source of
uncertainty, which did not receive comparable attention in the literature, i.e., highly
transient boundary conditions.

In fact, transient boundary conditions can also be uncertain and affect the estimation
of the topological properties of the flow field and, consequently, the understanding of
mixing and transport processes in aquifers (Hester et al. 2021; Ziliotto et al. 2021).
This is particularly the case of the aquifer area close to surface water bodies (Dudley-
Southern and Binley 2015; Merchán-Rivera et al. 2021; Santizo et al. 2020; Singh
et al. 2020). In this work, we focus on a river reach that is affected by hydropeak-
ing, i.e., sudden changes in the hydraulic head of the river caused by the operation
of hydropower plants. Such fluctuations display some typical periodicity (Pérez Ciria
et al. 2020) and modify the natural hydrological behavior and hydraulic conditions of
the streams (Hauer et al. 2017; Meile et al. 2011), which can impact the hyporheic
zone (Sawyer et al. 2009; Singh et al. 2019) and propagate to the groundwater (Francis
et al. 2010; Song et al. 2020). Moreover, since hydropeaking may depend on hydro-
logical conditions (Li and Pasternack 2021) and the dynamic behavior of the energy
market (Chiogna et al. 2018; Pérez Ciria et al. 2019; Wagner et al. 2015), the stream
head fluctuations entail uncertainty related to the peak amplitude and the temporal
occurrence of the event.

The question that we aim at answering in this work is to what extent the shape
and the uncertainty of hydropeaking waves affect the topology of the groundwater
flow field quantified through the Okubo–Weiss parameter. To achieve our aim, we
define one single realization of a two-dimensional heterogeneous aquifer and build
modeling scenarios based on four typical settings for the stream fluctuations of the
boundary conditions: a triangular wave, a sine wave, a complex wave (realized as
the superposition of two sine waves), and a trapezoidal wave (Ferencz et al. 2019;
Li and Pasternack 2021; Sawyer et al. 2009). Moreover, we apply polynomial chaos
expansion (Xiu andKarniadakis 2002) to quantify the uncertainty due to the oscillatory
boundaries and quantify the mean and standard deviation of the temporal and spatial
values of the Okubo–Weiss metric.

The paper is structured as follows. Section 2 presents the synthetic case study,
the deterministic and stochastic modeling scenarios, the polynomial chaos expansion
method, and the topological metric that we use to describe the flow field. In Sect. 3,
we present and discuss the results and findings related to the groundwater flow and the
Okubo–Weiss metric and the quantification of the spatiotemporal uncertainty.We con-
clude this work in Sect. 4 by restatingmajor findings and discussing the environmental
implications of our results.

2 Methods

2.1 Groundwater flow equation

The governing equation of the two-dimensional transient groundwater flow in a het-
erogeneous, isotropic, and unconfined aquifer can be written as
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∂

∂x1

(
Kx1h

∂h

∂x1

)
+ ∂

∂x2

(
Kx2h

∂h

∂x2

)
= sy

∂h

∂t
± Q, (1)

where h is the hydraulic head [L], Kx1 and Kx2 are values of the hydraulic conductivity
along the x1 and x2 coordinate axis [LT−1], sy is the specific yield of the porousmedium
[–], and Q describes the volumetric flux from source and sink terms [LT−1] (Anderson
et al. 2015; Bear 1979). Dirichlet and Neumann boundary conditions can be denoted
as

h = g(x, t), x, t ∈ �D, (2)

∂h

∂n
= g(x, t), x, t ∈ �N , (3)

respectively, where g(x, t) is a continuous function, {x, t} are spatiotemporal depen-
dencies, and n is the outward normal of the boundary. While Dirichlet boundaries
�D are used to define hydraulic heads h from the elevation of the water level [L],
the normal derivative of the head in the Neumann boundary conditions �N is used
to define a known specific discharge [LT−1], including no-flow boundaries (Bear and
Cheng 2010; Cheng and Cheng 2005; Liu 2018).

2.2 Model description

In our system, we consider a two-dimensional unconfined aquifer with lognormal
heterogeneous isotropic hydraulic conductivity field �(x) = ln[K (x)] defined by the
geometric mean μ� = 1 × 10−3 m/s, the geometric standard deviation σ� = 1.5 m/s
and the correlation length λ = 10 m, equivalent to porous medium formed by sands
and gravels (Coduto 1999). The area of the squared domain is L1 ×L2 = 10λ × 10λ
with cell size 0.1λ × 0.1λ (see Fig. 1b). The distance between the ground surface and
the bottom of the aquifer is z = d(−z/2, z/2), the reference datum is the middle point
z0 = 0. The initial groundwater level conditions h0 are set to a uniform water level
in the domain, which matches the reference datum, so that h0 = z0 (see Fig. 1c) and
any simulation output h represents the relative movement of the groundwater head
with respect to z0. The dimensionless time is defined as τ/T , where T represents the
simulation time and τ is the size of a single time step that corresponds to 1/(80 f ),
where f is the wave frequency.

The discontinuous release of water from hydropeaking events tends to follow a
periodicity. Hence, the stage fluctuation in the stream can be described by a periodic
function y(t + F) = y(t), where F = 1/ f is a nonzero value defined as the period [T].
We introduce the periodic waves as specified-head boundary conditions, i.e., Dirichlet
boundary conditions (Bear and Cheng 2010), by fixing head values at the left border of
the domain. The wave-shaped time series of heads represent the stream stage and the
values at the boundary are time-dependent and updated as the simulation progresses.
This setup assumes that the stage changes for the entire river reach considered simul-
taneously (i.e., no hydraulic model is used to describe the wave propagation along the
reach) and strong connectivity between surfacewater and groundwater. These assump-
tions are consistent, for example, with the study of Sawyer et al. (2009) focusing on the
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Fig. 1 Model description: a wave-shaped time-variant specified head boundary conditions, b spatial domain
and hydraulic conductivity field, and c aquifer depth and initial groundwater head conditions

Colorado River in Texas. The top, bottom and right boundaries are defined as no-flow
boundaries. We define the following periodic functions (see Fig. 1a) to represent the
effect of the hydropeaking on the left boundary conditions:

• Triangular wave:

yV (t) = 4A f

∣∣∣∣
{(

t − 1

4 f

)
mod

(
1

f

)}
− 1

2 f

∣∣∣∣− A, (4)

• Sine wave

yS(t) = A sin(2π f (t − p)), (5)

• Complex wave:

yC (t) = yα
S (t) + yβ

S (t)

= Aαsin(2π fα(t − pα)) + Aβsin
(
2π fβ(t − pβ)

)
, (6)

• Trapezoidal wave

yZ (t) :=
⎧⎨
⎩

−A, if y∗
V (t) < A;

A, if y∗
V (t) > A;

y∗
V (t), otherwise,

(7)
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y∗
V (t) = 4bZ A f

∣∣∣∣
{(

t − 1

4 f

)
mod

(
1

f

)}
− 1

2 f

∣∣∣∣− bZ A. (8)

Then, yV (t), yS(t), yC (t) and yZ (t) represent the time-variant specified-head
boundaries for the triangular, sine, complex and trapezoidal wave scenario, respec-
tively, t is the evaluation time step, A is the amplitude of the wave, p is the phase shift
and f is the frequency. We shaped the trapezoidal wave using the stepwise function
yZ (t) to remove the values that exceed the minimum and maximum limits defined by
A, which depends on the outcomes of a triangular function y∗

V (t). A coefficient bZ is
introduced to this triangular function to extend the amplitude A, which will determine
the interval betweenminimum andmaximum stage to be equal to 4/bZ given the slope
of the trapezoid legs with base angles θ = arctan(4bZ A f ). The complex waveform
is the result of combining two different sine waves (yα

S (t) and yβ
S (t)) shaped by two

different amplitudes (Aα and Aβ), two phase shifts (pα and pβ) and two frequencies
( f α and fβ).

2.2.1 Deterministic problem

As starting point, we want to observe the responses of the aquifer and the flow field
topology assuming that all model inputs are known.Hence, there are four deterministic
scenarios of one single deterministic transient flow problem, each applying one of the
wave-shaped boundary conditions. The complex wave is defined by Aβ = 2Aα/5,
pβ = 3pα and fβ = 3 fα to satisfy symmetry relations between the periodic waves
to match maximum (i.e., wave crest), minimum (i.e., wave through), temporal axis
interceptions, and lag between two events. The trapezoidal wave is shaped considering
bZ = 6, so that the interval between minimum and maximum is equivalent to 1/12 f .

The spatial and temporal distribution of the groundwater heads and the
Okubo–Weiss are analyzed with two-dimensional arrays. We are also interested in
the variability of the groundwater head and the Okubo–Weiss metric at a certain dis-
tance x1/L1 from the transient boundary conditions. Hence, we compute the expected
value and variance in time at each discrete cell, and then the arithmetic mean of
the expected value and the arithmetic mean of the variance relative to the distance
x1/L1. For simplicity we call ci, jt the output of interest (i.e., groundwater heads or
Okubo–Weiss metric) at a discrete cell with row i , and column j , at the time t , and
follow

μ
i, j
c = 1

T

T∑
t=1

ci, jt , σ 2
i, j = 1

T

T∑
t=1

(
ci, jt − μ

i, j
c

)2
, (9)

where μ
i, j
c is the mean of the output of interest at a discrete cell {i, j} along all the

evaluation time T . Then, the arithmetic mean of the variances at the distance x1/L1
can be computed along column j ≈ x1/L1, such that,

μc = 1

ni

ni∑
i=1

μ
i, j
c , σ 2

c = 1

ni

ni∑
i=1

σ 2
i, j , (10)
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being ni the number of the discrete rows. Hence, from now on, the bar notation is
used to represent the transverse spatial average of the different quantities of interest
at a specific distance from the transient boundary conditions.

2.2.2 Stochastic problem

Weconsider the amplitude A and phase p as uncertain parameters andwe assume them
as mutually independent random variables. On one hand, A represents the maximum
water level in the stream, which fluctuates due to the variable discharges from the
power plant, which in turn depends onmarket and seasonal conditions. The uncertainty
is defined from a minimum and maximum stage fluctuation that follows a uniform
distribution A ∼ U(aA, bA), where aA = 0.9 and bA = 1.1. On the other hand,
p represents the shift in the stage signal. This random variable then introduces the
temporal uncertainty due to changes in the gate management, turbine control and
discharge duration. The random variable p is uniformly distributed, such that p ∼
U(ap, bp). The parameters ap and bp describe the phase difference and relates the
offset with f using a factor op, so that ap = −1/(op f ) and bp = 1/(op f ). This
arrangement simplifies the application at multiple hydropeaking scale events (e.g.,
sub-daily, daily, and weekly) because any shift in the phase is a ratio of the periodicity.
In our problem setup, we set op = 8, which is equivalent to a phase difference of
1/8 f .

In the case of the complex wave, the problem increases to 4 stochastic dimensions
given that it is formed by the superposition of two sine waves yα

S (t) and yβ
S (t). Like

in the deterministic problem, we keep the proportional relations between the two
waves yα

S (t) and yβ
S (t) that form the complex wave and the random variables that are

assumed mutually independent. Hence, two random variables Aα ∼ U(aα
A, bα

A) and

Aβ ∼ U(aβ
A, bβ

A) represent the amplitudes, where aα
A = aA, bα

A = bA, a
β
A = 2aα

A/5

and bβ
A = 2bα

A/5. Also, two random variables pα ∼ U(aα
p, b

α
p) and pβ ∼ U(aβ

p , b
β
p)

represent the phase differences, where aα
p = ap, bα

p = bp, a
β
p = aα

p/3 and b
β
p = bα

p/3.
In this work, we represent the dynamic system of the groundwater heads and flow

topology as stochastic processeswith uncertain boundary conditions using generalized
polynomial chaos expansions. The statistical moments of the output of interest are
estimated from the polynomial chaos coefficients using the pseudospectral collocation
approach. Analogous to Eq. (10), the arithmetic mean is also used to analyze these
statistical moments. A summary of the specific parameters used in the deterministic
and stochastic scenarios can be found in Table 1.

2.3 Polynomial chaos expansion

2.3.1 Stochastic formulation

Let (�,F , P) be a probability space,where� is a sample space,F is aσ -algebra on�,
and P is a probability measure on�. Consider a function u(t, x,�) on the probability
space (�,F , P), where � = [
1, . . . , 
d ] : � → R is a random vector with a finite
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set of d mutually independent random variables with marginal probability density
functions

{
ρ
i(ϕi ), i = 1, . . . , d

}
, and {t, x} represent the deterministic temporal and

spatial dependencies with a finite temporal horizon t ∈ [0, T ] within the spatial
domain D ⊂ R

2 formed by fixed grid points x = (x1, x2). Since each parameter

i (ω) : � → R is associated to a density ρ
i (ϕi ) and ω ∈ � is a realization in the
underlying probability space, we reformulate the problem in the image probability
space (�,B(�), ρ�(ϕ)dϕ), where � = ∏d

i=1
i (�) is the sample space for the range
of 
i , B(�) is the Borel σ -algebra on �, and ρ�(ϕ) is the joint density associated
with �, described by

ρ�(ϕ) =
d∏

i=1

ρ
i (ϕi ). (11)

The output function is then a random process u(t, x,�) : [0, T ] × D × � → R

with a finite variance. Following the generalized Cameron-Martin theorem (Cameron
and Martin 1947), we can represent it as an infinite series expansion of polynomials,
which can be truncated to order K , such that

u(t, x,�) =
∞∑

κ=0

ûκ(t, x)�κ(�)

≈
K∑

κ=0

ûκ(t, x)�κ(�), (12)

where ûκ(t, x) are deterministic expansion coefficients,�κ(�) represent themultivari-
ate orthogonal polynomial basis function, and κ = {κ1, . . . , κd} ∈ N

d
0 is a multi-index

of non-negative integers of size d to identify the degree of the polynomials for the
input variable 
i . To achieve n order of polynomials, K can be optimally defined by
[(n + d)!/n!d!]−1 (Smith 2013; Xiu 2010), or by using experimental designs, such as
the empirical rule K = (d − 1) × (n + 1) (Sudret 2008), to reduce the computational
demand of the experiment. In this research, we define K = 9 and n = 3 for the trian-
gular, sine and trapezoidal stochastic scenarios, leading to a total of 100 realizations
for each scenario. The expansions in the complex scenario are calculated considering
K = 4 and n = 2, which leads to 625 realizations.

The orthogonal basis �κ must be accordingly specified to ρ
i (ϕi ) (Xiu and Karni-
adakis 2002). In this work, the uncertain input parameters associated to the boundary
conditions � are considered random variables uniformly distributed in the interval
[a, b], denoted by 
i ∼ U(a, b). An appropriate basis is formed by the family of
Legendre polynomials, which are an orthogonal basis with respect to the weight func-
tion ρ
i(ϕi ) = 1/2 for all normalized ϕi ∈ [−1, 1]. Given the assumption that the
random variables are mutually independent, the multivariate Legendre polynomial
basis function �κ(�) can be defined as the tensor product of the associated univariate
orthogonal polynomials ψκi , such that

�κ(�) =
d∏

i=1

ψκi (ϕi ), (13)
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which satisfies orthonormality conditions given that

E
[
ψκi , ψτi

] =
∫

�

ψκi (ϕi )ψτi (ϕi )ρ
i (ϕi )dϕi

= 〈ψκi , ψτi 〉ρ
= δκi τi , (14)

where 〈·, ·〉 denotes the inner product of the sequence of two polynomials
{
ψκi , ψτi

}
of degree κi and τi in the i th variable, δκi τi represents the Kronecker delta. The deter-
ministic coefficients ûκ(t, x) can be approximated by exploiting the orthonormality of
the basis function and projecting u(t, x,�) onto each basis function �k(�) to obtain
the representation

ûκ(t, x) = 〈u(t, x,�),�κ(�)〉ρ =
∫

�

u(t, x,�)�κ(�)ρ�(ϕ)dϕ. (15)

2.3.2 Pseudospectral collocation approach

In this section, we explain the use of the pseudospectral approach as a solution
technique to estimate the multidimensional integral that describes ûκ(t, x) and the
derivation of the statistical moments of interest to describe the propagation of uncer-
tainty. The pseudo-spectral approach is employed due to the possibility of decoupling
the stochastic and deterministic dependencies of the problem, the relatively low
computational effort and the flexibility of the method to apply different basis func-
tions to represent different random variables, which can be particularly useful for
the application of the method in real case scenarios. It is a discrete collocation
method that relies on quadrature techniques to calculate ûκ(t, x) at selected quadra-
ture nodes gq = {

gq11 , . . . , gqdd
} ∈ R defined on � with the associated weights

wq = {
wq1, . . . , wqd

} ∈ R. Therefore, the deterministic solvers that describe the
groundwater flow and the topological responses of the aquifer are not modified (i.e.,
non-intrusive spectral projection) because it is only required to evaluate u(t, x, gq) at
the given gq. We employ Gaussian quadrature rules (Golub and Welsch 1968) over a
full tensor product grid to distribute gq according to the probability density functions
ρ
i(ϕi ). UsingQ to represent the quadrature integration, the extension of the univari-
ate Gaussian quadrature yields to the summation over all possible combinations over
mi nodes

Q[u(t, x, ·)] = (Qm1 ⊗ · · · ⊗ Qmd
)
[u(t, x, ·)]

=
m1∑

q1=1

· · ·
md∑

qd=1

u
(
t, x, gq11 , . . . , gqdd

)
wq1 . . . wqd , (16)
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that can be recast for the sake of simplicity to the multi-index approximation

ûκ(t, x) � Q[u(t, x, ·)�κ(·)] =
M∑
q=1

u
(
t, x, gq

)
�κ

(
gq
)
wq, (17)

where the total number of grid points is M = md given that we opt for m1 = · · · =
md = m.

The expected value of u(t, x,�) can be estimated from the polynomial chaos
coefficients û0(t, x), given that

μ = E[u(t, x,�)] ≈ E

[
K∑

κ=0

ûκ(t, x)�κ(�)

]

= û0(t, x)E[�0(�)] +
K∑

κ=1

ûκ(t, x)E[�κ(�)]

= û0(t, x). (18)

Similarly, the variance σ 2 = V[u(t, x,�)] and the standard deviation σ =
2
√
V[u(t, x,�)] are quantified following

σ 2 = V[u(t, x,�)] = E

[
(u(t, x,�) − E[u(t, x,�)])2

]

≈ E

⎡
⎣
(

K∑
κ=0

ûκ(t, x)�κ(�) − û0(t, x)

)2⎤
⎦

= E

⎡
⎣
(

K∑
κ=1

ûκ(t, x)�κ(�)

)2⎤
⎦

=
K∑

κ=1

û2κ(t, x)�κ. (19)

Finally, Sobol’ indices can be formally obtained by exploiting the polynomial
expansion representation to perform a global sensitivity analysis (Le Maitre and Knio
2010). The use of the expansion coefficients reduces significantly the computational
burden that is associated to typical methods to quantify the indices (e.g., Monte Carlo
schemes) because the variance decomposition can be obtained directly from the avail-
able expansion coefficients. We refer the reader to Formaggia et al. (2013) and Sudret
(2008) for further detail related to the computation of polynomial chaos-based Sobol’
indices.

123



11 Page 12 of 26 GEM - International Journal on Geomathematics (2022) 13 :11

2.4 Okubo–Weiss

We consider a flow deformation metric based on a two-dimensional velocity gradient
tensor, ε

ε(t) = ∇v(x1, x2, t), (20)

where v(x1, x2, t) is the velocity at the space coordinates x1 and x2 at time t and it is
estimated with the calculated head gradient by solving Eq. (1).

The Okubo–Weiss function (Okubo 1970; Weiss 1991) is defined by

ξ = −4 det(ε), (21)

which in the horizontal plane with coordinates x1 and x2 is written as

ξ = −4 det

[
∂vx1
∂x1

∂vx1
∂x2

∂vx2
∂x1

∂vx2
∂x2

]
. (22)

We take the definition used by Okubo (1970) for stretching deformation α̂, vorticity
ω̂, and shear deformation σ̂ , to be

α̂ = ∂vx1

∂x1
− ∂vx2

∂x2
, ω̂ = ∂vx2

∂x1
− ∂vx1

∂x2
, σ̂ = ∂vx2

∂x1
+ ∂vx1

∂x2
. (23)

By substituting Eq. (23) into Eq. (22), and following de Barros et al. (2012), in

which for a two-dimensional transport scenario
∂vx1
∂x1

= − ∂vx2
∂x2

, and therefore stretching

deformation α̂ = 2
∂vx1
∂x1

, the deformation tensor can be then rewritten as

ε = 1

2

(
α̂ σ̂ − ω̂

σ̂ + ω̂ −α̂

)
, (24)

and the Okubo–Weiss function ξ [1/T2] is calculated by

ξ =
(
α̂2 + σ̂ 2

)
− ω̂2. (25)

Positive Okubo–Weiss values, ξ > 0, correspond to regions where shear and
stretching forces dominate, and are associated to mixing hotspots (Engdahl et al.
2014; Wright et al. 2017). On the other hand, negative values, ξ < 0, correspond to
regions dominated by vorticity and local mixing potential is low.

2.5 Algorithm implementation

We use MODFLOW-2005 as groundwater flow equation solver, and the time-variant
specified-head boundary package (i.e., CHD package) was used to set the Dirichlet
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boundaries (Harbaugh 2005). The model was built using FloPy (Bakker et al. 2016)
and the polynomial chaos expansion approach was implemented using the Chaospy
library (Feinberg 2019). The Okubo–Weiss calculations, random field generator, wave
functions, postprocessing scripts, and the code for coupling the polynomial expansions
and the MODFLOW-2005 model were written in Python 3. The scripts and results
are available in the online repository of the research (Merchán-Rivera et al. 2022). To
validate the application of the gPCE, we include a comparison with results obtained
from 1000 realizations from quasiMonte Carlo (MC) samples using Halton sequences
(Halton 1964; Smith 2013) in the Supplementary Material of this document.

3 Results and discussion

3.1 Deterministic scenarios

Figure 2 shows the spatial effect of the waveform on the groundwater heads at specific
time steps τ/T ∈ {60, 80, 86, 100}. Steeper hydraulic gradients are observed in the
trapezoidal wave, which significantly impact the flowfieldmagnitude. These gradients
occur in the trapezoidal wave due to two reasons. First, this wave exposes longer
intervals of constant head at the wave crest and wave through. Second, the trapezoidal
wave presents a sharp fluctuation from minimum to maximum stage. Furthermore,
the behavior of the sine scenario is very similar to the triangular one. As expected,
the porous medium acts as a damper that gradually moderates the propagation of
groundwater head signals, converting all of them to sinusoidal patterns after travelling
a certain distance and later vanishing them (see Fig. 3). The dampening primary
depends on the value of the diffusivity of the aquifer which depends on the hydraulic
conductivity, specific yield, and saturated aquifer thickness, in accordance with the
analytical solution for the head response in a semi-infinite aquifer presented by Singh
(2004) and Sawyer et al. (2009) for the case of a homogeneous porous medium.

The outcomes from the deterministic scenarios show some remarkable differences
in the mean variance of the groundwater heads and the Okubo–Weiss. In Fig. 4a, we
observe a larger σ 2

h from the trapezoidal wave scenario, followed by the complex wave
scenario. These large values of the mean variance can be explained by the spread from
the mean that occurs when the groundwater heads rapidly fluctuate between minimum
and maximum values. For instance, the trapezoidal boundary conditions introduce a
quasi-bimodal forcing characterized by short periods with heads in between or close
to the mean. A similar behavior with abrupt changes is also observed in the complex
wave. In the sine and triangular wave, the spread is lower because the head values
are closer to a uniform distribution in time. We also observe that the behavior of the
four scenarios is very similar after x1/L1 = 40 and that σ 2

h → 0 after x1/L1 = 60.
Figure 4b shows the mean variance in the results of the Okubo–Weiss metric. We
see that ξ may vary by several orders of magnitude depending on the wave used as
boundary condition. Similar to σ 2

h , we see larger variations in σ 2
ξ in the trapezoidal

and complex scenarios.
We show the spatial and temporal pattern of the Okubo–Weiss metric in Fig. 5. We

observe regions where the Okubo–Weiss metric is very high ξ > 0.1e−6, when the
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Fig. 2 Groundwater head responses at different time steps: a τ/T = 60, b τ/T = 80, c τ/T = 86, and d τ/T
= 100. The colored maps show the distribution of the groundwater heads, and the graph plot shows the
imposed boundary conditions. The red dots show the time steps at which the snapshots were taken (color
figure online)
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Fig. 3 Dampening of the head signals from the different scenarios. The groundwater head values are extracted
at various distances from thewave-shapedboundaries, x1/L1 ∈ {5, 10, 15, 30, 45, 60, 75, 90}, at themiddle
of the domain x2/L2 = 50

Fig. 4 Spread of deterministic results at different distances x1/L1 from the boundary conditions over the
whole simulation period: a mean variance of the groundwater heads σ 2

h , and b logarithm of the mean

variance of the Okubo–Weiss σ 2
ξ

flow is dominated by stretching and strain and very low ξ < −0.1e−6, when vorticity
dominates. These regions correspond to areas of high hydraulic conductivity and high
conductivity contrasts (see Fig. 1b), where also flow focusing may occur. Hence, the
location of these spots is fully controlled by the configuration of heterogeneous field
in all the scenarios. In temporal terms, the most remarkable discrepancies in ξ among
the four scenarios occur during the sharp ramp upwards and the sharp drop of the
trapezoidal wave. In a lower magnitude, this is also visible in the complex wave.
Highest positive and lower negative values of ξ are found in these two scenarios.
Furthermore, it is possible to observe cells changing from positive ξ to negative ξ ,
and vice versa, in all the scenarios. This can be observed before and after the apexes
of the trapezoidal wave (Fig. 5b, c), the peak of the triangular wave (Fig. 5c, d), the
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Fig. 5 Okubo–Weiss values at different time steps: a τ/T = 60,b τ/T = 80, c τ/T = 86, and d τ/T = 100.
The colored maps show the distribution of the groundwater heads, and the graph plot shows the imposed
boundary conditions. The red dots show the time steps at which the snapshots were taken (color figure
online)
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Fig. 6 Total Sobol indices of the amplitude (A, Aα and Aβ ) and phase (p, pα and pβ ) in determining the
groundwater heads computed at the specific location x1/L1 = 5 and x2/L2 = 50

local maximum and local minimum of the complex wave (Fig. 5b, c). This swap of
dominance is transitory and can be repeatedly observed in all the scenarios at critical
points of the wave-shaped boundaries, such as stationarity points (i.e., constant value),
inflection points, localmaxima, and localminima. This could occur due to flow reversal
caused by the deacceleration of the transient boundary signal into the aquifer. Overall,
this behavior gives evidence of the waveform’s role in the temporal dynamics of the
topology of the flow field.

3.2 Stochastic scenarios

Wesummarize the results from the global sensitivity analysis in Fig. 6,which shows the
total Sobol indices computed using the relations reported in Table 1b. The variations
of the sensitivity along the simulation period indicate that the influence of amplitude
and phase follow a periodic dynamic. The phase p has a primary influence in the
triangular and sine wave. In the complex wave, pα has a primary influence, pβ and Aα

have secondary influence, and Aβ has negligible influence. On the trapezoidal wave
the influence of the A and p on the groundwater head outputs depends on the time step
of evaluation. The latter occurs in the trapezoidal boundaries due to the low influence
of p when the heads are constant, and the low influence of A during the periods of
transition between the minimum and maximum values.

The uncertainty in the amplitude and phase of the waves propagates in the ground-
water head following different patterns (see Fig. 7). The results of μh are similar to
the results of h in the deterministic scenarios. Regarding the standard deviation, in
Fig. 7a, we see at τ/T = 60 that all scenarios present similar snapshots, with slightly
higher σh close to the left boundary for the triangular wave. In contrast, in Fig. 7b, a
significant difference in σh can be observed at τ/T = 80 in the complex and trape-
zoidal wave as compared to the triangular and sine waves. This time step corresponds
to the change between low and high river stage.

We also computed the probability density functions from the output expansions of
the groundwater heads. The results are shown in Fig. 8.We observe small uncertainties
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Fig. 7 Propagation of the uncertainty into the groundwater head responses represented by the expected value
μh and the standard deviation σh into the groundwater head responses at a τ/T = 60, and b τ/T = 80
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Fig. 8 Predictive probability density functions of the groundwater heads at τ/T ∈ {60, 80, 100} at the
specific location x1/L1 = 5 and x2/L2 = 50

at high and low values of the groundwater heads, which are depicted by the high
occurrence values in the probability density functions,when τ/T = 60 and τ/T = 100
(see Fig. 8a, c). Larger uncertainties are observed when μh ≈ 0, when τ/T = 80
(see Fig. 8b). These behaviors occur in all the scenarios. However, two peaks of
high probability are observed in Fig. 8b in the trapezoidal scenario due to the rapid
fluctuation of the heads in the transient boundary conditions. The trapezoidal scenario
also shows the smallest uncertainty at τ/T = 60 and τ/T = 100, because of the low
influence of the phase uncertainty in the points where the heads in the boundaries are
constant (i.e., minimum and maximum).

The influence of the uncertain transient boundary conditions is also reflected in the
Okubo–Weiss values shown in Fig. 9. As expected, the spots with large uncertainty
appear in the regions with high hydraulic conductivity contrast and large hydraulic
conductivity. Specifically, we allocate large uncertainties in the complex and trape-
zoidal scenarios at τ/T = 80 (Fig. 9b). This is a consequence of the large uncertainty
in the groundwater heads observed previously (Fig. 7b), which occur due to the effect
of the phase shift over the sharp movements in the boundary conditions. The steepness
of the slopes in these waves creates a wide range of variability when we introduced
the offset uncertainty. Moreover, the magnitude of the μξ values vary depending on
the scenario, finding larger values in the trapezoidal and complex scenarios. Similar
to the outcomes of the deterministic scenarios, the results of μξ also reveal spots with
variable dominances of the deformation and rotational forces of the flow field.

The responses of both h and ξ , as well as the statistics that define their uncertainty,
follow periodic patterns. To evaluate the average behavior of the statistics of h and ξ

at a certain distance from the boundaries and their differences, we chose a relatively
close distance to the stream, at distance λ/2 (i.e., x1/L1 = 5), where the propagation
of the signal is clear. We computed the arithmetic means of the uncertainty statistics
at a distance x1/L1 = 5, which are shown in Fig. 10. We see that μh is highly
fluctuating in the trapezoidal and the complex scenario. Moreover, according to the
interval [μξ − σ ξ , μξ + σ ξ ], the trapezoidal scenario exhibits the highest uncertainty
in ξ , followed by the complex wave. The results also indicate that it is more likely
to find rotation properties dominating in the flow field under the trapezoidal scenario
conditions than to find them under the conditions of the other scenarios. On the other
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Fig. 9 Propagation of the uncertainty into the Okubo–Weiss metric represented by the expected value μh
and the standard deviation σh into the groundwater head responses at different times
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Fig. 10 Uncertainty propagation into the groundwater heads and the Okubo–Weiss metric at a distance λ/2
from the boundary conditions (x1/L1 = 5): a mean expected value of the groundwater heads and interval
[μh−σ h , μh+σ h ], and bmean expected value of theOkubo–Weissmetric and interval [μξ −σξ , μξ +σξ ]

hand, we see smaller variability of σ h and σ ξ in the sine wave scenario, showing a
similar spread in the outputs along the whole simulation period. While the behavior
of the triangular wave is similar to the sine wave, the complex wave is comparable
with the trapezoidal wave.

Overall, our results from the deterministic and stochastic scenarios show that wave-
shaped boundary conditions can influence not only the magnitude of the deformation
and rotational forces of the flow field (i.e., shear, stretching, and vorticity) but also
the temporal dynamics of dominance between local strain and rotation properties.
Although our results show that their location is determined by the areas with high
hydraulic conductivity contrast, as can be seen in Fig. 1b, we provide evidence that
the mixing potential in these areas is significantly affected by highly transient bound-
ary conditions. This occurs due to the variety of hydraulic gradient responses as a
consequence of the highly fluctuating head boundary conditions. To observe in detail
the temporal variation and the two-dimensional distribution of the groundwater heads,
the Okubo–Weiss values, and the statistical moments that describe the uncertainty,
we refer to a series of videos included as part of the Supplementary Material of this
research.

4 Conclusions

We studied the effect of the periodic stage conditions due to hydropeaking events
on the groundwater flow topology in terms of the Okubo–Weiss metric. We imposed
Dirichlet boundary conditions in the form of wave-shaped specified-heads with four
types of waveforms: triangular, sine, complex, and trapezoidal. The formulation of the
system considers a deterministic solution of the heterogeneous hydraulic conductivity
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field for all the scenarios. The first part of our analysis was done assuming no input
uncertainty over the four waves that define the transient boundary conditions. The
second part of the study approached the problem as a stochastic system with uncer-
tainty in the parameterization of the transient boundary conditions. Here, the wave
amplitude and phase were considered uncertain and treated as mutually independent
random variables. These variables introduced the uncertainty related to unknown fluc-
tuations in the discharge volume and discharge duration and temporal uncertainty due
to energy market demands and powerplant management. The application of polyno-
mial expansions and pseudo-spectral collocation method allowed us to estimate the
statistical moments (i.e., mean, and standard deviation) of the outputs of interest (i.e.,
groundwater heads and Okubo–Weiss metric). The method was convenient to extract
the required spatial and temporal detail with low computational effort.

One of the main messages that the Okubo–Weiss metric can provide us is the iden-
tification of reaction hotspots. The spatial distribution of the Okubo–Weiss responses
is fundamentally controlled by the hydraulic conductivity. In accordance, our results
show that their location is determined by the areas with high hydraulic conductivity
contrast. However, we also provide evidence that the mixing potential in these areas is
significantly affected by the highly transient boundary conditions. The magnitude and
temporal behavior of this topological indicator of mixing significantly vary according
to the imposed boundary conditions. Different highly transient boundary conditions
influenced in different degree the temporal dynamics of dominance between local
strain and rotation properties and the magnitude of the deformation and rotational
forces of the flow field. Therefore, given the dynamic responses of the flow field to
the time-variant head boundary conditions, the detailed temporal characterization of
this metric is important to reliably predict, for instance, mixing-driven reactions.

The evaluation of hydropeaking impacts on subsurface flow requires to characterize
themanagement of the surfacewater systemand the intensity of the impact (e.g., shape,
amplitude, and periodicity of the wave). Hence, we think it is essential to estimate
hydropeaking effects on flow and transport processes in aquifers using a stochastic
approach, not only due to the essential uncertainty in the aquifer heterogeneity but
also due to the uncertain stream stages. The statistical moments that describe the
propagation of the uncertainty show a periodic behavior and a varying degree of
uncertainty depending on the applied wave-shaped boundary. Further work should
focus on the characterization of real hydropeaking events to explicitly acknowledge
the inherit uncertainty of these systems and its effect in the estimation of topological
descriptors.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s13137-022-00202-9.

Acknowledgements The first author acknowledges the financial support provided to the first author by the
Secretaría de Educación Superior, Ciencia, Tecnología e Innovación of Ecuador (SENESCYT) (Grant No.
CZO2-11621). Mónica Basilio Hazas acknowledges the Mexican National Council for Science and Tech-
nology (CONACYT) and the Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico
(COVEICYDET). Additional financial support for Giorgia Marcolini was provided by DFG in the Project
Hydromix (CH 981/4-1 and DFG WO 671/16-1). The authors thank Dr. Barbara Wohlmuth and Mounia
Lahmouri for their valuable comments and support for the development of this research. This work is part of
the UNMIX Project (Uncertainties due to boundary conditions in predicting mixing in groundwater), which

123

https://doi.org/10.1007/s13137-022-00202-9


GEM - International Journal on Geomathematics (2022) 13 :11 Page 23 of 26 11

is supported by the Deutsche Forschungsgemeinschaft through the TUM International Graduate School for
Science and Engineering (IGSSE).

Funding Open Access funding enabled and organized by Projekt DEAL.

Code availability The relevant code for the reproduction of the experiments and results has been stored at
https://doi.org/10.17632/sk3my3mtd8.1.

Declarations

Conflict of interest The authors declare that there are no financial or non-financial competing interests to
report.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

Anderson, M.P., Woessner, W.W., Hunt, R.J.: Applied Groundwater Modeling: Simulation of Flow and
Advective Transport, 2nd edn. Academic Press, London, San Diego (2015)

Bakker, M., Post, V., Langevin, C.D., Hughes, J.D., White, J.T., Starn, J.J., Fienen, M.N.: Scripting MOD-
FLOW model development using Python and FloPy. Groundwater 54, 733–739 (2016). https://doi.
org/10.1111/gwat.12413

BasilioHazas,M., Ziliotto, F., Rolle,M., Chiogna,G.: Linkingmixing andflow topology in porousmedia: an
experimental proof. Phys. Rev. E 105, 035105 (2022). https://doi.org/10.1103/PhysRevE.105.035105

Bear, J.: Hydraulics of Groundwater, McGraw-Hill Series in Water Resources and Environmental Engi-
neering. McGraw-Hill International Book Co, London, New York (1979)

Bear, J.J., Cheng,H.-D.A.:Modeling under uncertainty. In:Bear, J., Cheng,A.H.D. (eds.)ModelingGround-
water Flow and Contaminant Transport, pp. 637–693. Springer Netherlands, Dordrecht (2010). https://
doi.org/10.1007/978-1-4020-6682-5_10

Boano, F., Harvey, J.W., Marion, A., Packman, A.I., Revelli, R., Ridolfi, L., Wörman, A.: Hyporheic flow
and transport processes: mechanisms, models, and biogeochemical implications. Rev. Geophys. 52,
603–679 (2014). https://doi.org/10.1002/2012RG000417

Boisson, A., de Anna, P., Bour, O., Le Borgne, T., Labasque, T., Aquilina, L.: Reaction chain modeling of
denitrification reactions during a push–pull test. J. Contam. Hydrol. 148, 1–11 (2013). https://doi.org/
10.1016/j.jconhyd.2013.02.006

Bresciani, E., Kang, P.K., Lee, S.: Theoretical analysis of groundwater flow patterns near stagnation points.
Water Resour. Res. 55, 1624–1650 (2019). https://doi.org/10.1029/2018WR023508

Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fouri-
er–Hermite functionals. Ann. Math. 48, 385 (1947). https://doi.org/10.2307/1969178

Casella, E., Molcard, A., Provenzale, A.: Mesoscale vortices in the Ligurian Sea and their effect on coastal
upwelling processes. J. Mar. Syst. 88, 12–19 (2011). https://doi.org/10.1016/j.jmarsys.2011.02.019

Cheng, A.H.-D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal.
Bound. Elem. 29, 268–302 (2005). https://doi.org/10.1016/j.enganabound.2004.12.001

Chiogna, G., Marcolini, G., Liu, W., Pérez Ciria, T., Tuo, Y.: Coupling hydrological modeling and support
vector regression to model hydropeaking in alpine catchments. Sci. Total Environ. 633, 220–229
(2018). https://doi.org/10.1016/j.scitotenv.2018.03.162

123

https://doi.org/10.17632/sk3my3mtd8.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/gwat.12413
https://doi.org/10.1103/PhysRevE.105.035105
https://doi.org/10.1007/978-1-4020-6682-5_10
https://doi.org/10.1002/2012RG000417
https://doi.org/10.1016/j.jconhyd.2013.02.006
https://doi.org/10.1029/2018WR023508
https://doi.org/10.2307/1969178
https://doi.org/10.1016/j.jmarsys.2011.02.019
https://doi.org/10.1016/j.enganabound.2004.12.001
https://doi.org/10.1016/j.scitotenv.2018.03.162


11 Page 24 of 26 GEM - International Journal on Geomathematics (2022) 13 :11

Cho, M.S., Solano, F., Thomson, N.R., Trefry, M.G., Lester, D.R., Metcalfe, G.: Field trials of chaotic
advection to enhance reagent delivery. Groundw. Monit. Remediat. 39, 23–39 (2019). https://doi.org/
10.1111/gwmr.12339

Coduto, D.P.: Geotechnical Engineering: Principles and Practices. Prentice Hall, Upper Saddle River, NJ
(1999)

de Anna, P., Dentz, M., Tartakovsky, A., Le Borgne, T.: The filamentary structure of mixing fronts and
its control on reaction kinetics in porous media flows. Geophys. Res. Lett. 41, 4586–4593 (2014a).
https://doi.org/10.1002/2014GL060068

de Anna, P., Jimenez-Martinez, J., Tabuteau, H., Turuban, R., Le Borgne, T., Derrien, M., Méheust, Y.:
Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ. Sci.
Technol. 48, 508–516 (2014b). https://doi.org/10.1021/es403105b

deBarros, F.P.J.,Dentz,M.,Koch, J.,Nowak,W.: Flow topology and scalarmixing in spatially heterogeneous
flow fields. Geophys. Res. Lett. (2012). https://doi.org/10.1029/2012GL051302

Dentz, M., Carrera, J.: Effective solute transport in temporally fluctuating flow through heterogeneous
media. Water Resour. Res. 41, 1–20 (2005). https://doi.org/10.1029/2004WR003571

Dudley-Southern, M., Binley, A.: Temporal responses of groundwater-surface water exchange to successive
storm events. Water Resour. Res. 51, 1112–1126 (2015). https://doi.org/10.1002/2014WR016623

Engdahl, N.B., Benson, D.A., Bolster, D.: Predicting the enhancement ofmixing-driven reactions in nonuni-
form flows using measures of flow topology. Phys. Rev. E 90, 051001 (2014). https://doi.org/10.1103/
PhysRevE.90.051001

Feinberg, J.: ChaosPy—Uncertainty Quantification Library [WWW Document]. ChaosPy—Uncertainty
Quantification Library. https://chaospy.readthedocs.io/en/master/ (2019)

Ferencz, S.B., Cardenas, M.B., Neilson, B.T.: Analysis of the effects of dam release properties and ambient
groundwater flow on surface water–groundwater exchange over a 100-km-long reach. Water Resour.
Res. 55, 8526–8546 (2019). https://doi.org/10.1029/2019WR025210

Formaggia, L., Guadagnini, A., Imperiali, I., Lever, V., Porta, G., Riva, M., Scotti, A., Tamellini, L.: Global
sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction
model. Comput. Geosci. 17, 25–42 (2013). https://doi.org/10.1007/s10596-012-9311-5

Francis, B.A., Francis, L.K., Cardenas, M.B.: Water table dynamics and groundwater–surface water inter-
action during filling and draining of a large fluvial island due to dam-induced river stage fluctuations.
Water Resour. Res. 46, 7513 (2010). https://doi.org/10.1029/2009WR008694

Geng, X., Michael, H.A., Boufadel, M.C., Molz, F.J., Gerges, F., Lee, K.: Heterogeneity affects intertidal
flow topology in coastal beach aquifers. Geophys. Res. Lett. 47, 7513 (2020). https://doi.org/10.1029/
2020GL089612

Golub, G.H.,Welsch, J.H.: Calculation of Gauss quadrature rules.Math. Comp. 23, 221–221 (1968). https://
doi.org/10.1090/S0025-5718-69-99647-1

Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7, 701–702
(1964). https://doi.org/10.1145/355588.365104

Harbaugh, A.: MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—The
Ground-Water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16. U.S. Geo-
logical Survey, Reston (2005)

Hauer, C., Siviglia,A., Zolezzi, G.:Hydropeaking in regulated rivers—fromprocess understanding to design
of mitigation measures. Sci. Total Environ. 579, 22–26 (2017). https://doi.org/10.1016/j.scitotenv.
2016.11.028

Hester, E.T., Santizo, K.Y., Nida, A.A., Widdowson, M.A.: Hyporheic transverse mixing zones and disper-
sivity: laboratory and numerical experiments of hydraulic controls. J. Contam. Hydrol. 243, 103885
(2021). https://doi.org/10.1016/j.jconhyd.2021.103885

Kang, P.K., Bresciani, E., An, S., Lee, S.: Potential impact of pore-scale incomplete mixing on biodegrada-
tion in aquifers: from batch experiment to field-scale modeling. Adv. Water Resour. 123, 1–11 (2019).
https://doi.org/10.1016/j.advwatres.2018.10.026

Le Maitre, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification: With Applications to Com-
putational Fluid Dynamics, Scientific Computation. Springer, Dordrecht (2010)

Li, T., Pasternack, G.B.: Revealing the diversity of hydropeaking flow regimes. J. Hydrol. 598, 126392
(2021). https://doi.org/10.1016/j.jhydrol.2021.126392

Liu, Z.: Multiphysics in Porous Materials. Springer International Publishing, Cham (2018). https://doi.org/
10.1007/978-3-319-93028-2

123

https://doi.org/10.1111/gwmr.12339
https://doi.org/10.1002/2014GL060068
https://doi.org/10.1021/es403105b
https://doi.org/10.1029/2012GL051302
https://doi.org/10.1029/2004WR003571
https://doi.org/10.1002/2014WR016623
https://doi.org/10.1103/PhysRevE.90.051001
https://chaospy.readthedocs.io/en/master/
https://doi.org/10.1029/2019WR025210
https://doi.org/10.1007/s10596-012-9311-5
https://doi.org/10.1029/2009WR008694
https://doi.org/10.1029/2020GL089612
https://doi.org/10.1090/S0025-5718-69-99647-1
https://doi.org/10.1145/355588.365104
https://doi.org/10.1016/j.scitotenv.2016.11.028
https://doi.org/10.1016/j.jconhyd.2021.103885
https://doi.org/10.1016/j.advwatres.2018.10.026
https://doi.org/10.1016/j.jhydrol.2021.126392
https://doi.org/10.1007/978-3-319-93028-2


GEM - International Journal on Geomathematics (2022) 13 :11 Page 25 of 26 11

Lykkegaard, M.B., Dodwell, T.J., Moxey, D.: Accelerating uncertainty quantification of groundwater flow
modelling using a deep neural network proxy. Comput. Methods Appl. Mech. Eng. 383, 113895
(2021). https://doi.org/10.1016/j.cma.2021.113895

Mays, D.C., Neupauer, R.M.: Plume spreading in groundwater by stretching and folding. Water Resour.
Res. 48, 7501 (2012). https://doi.org/10.1029/2011WR011567

McCarty, P.L., Criddle, C.S.: Chemical and biological processes: the need for mixing. In: Kitanidis, P.K.,
McCarty, P.L. (eds.) Delivery andMixing in the Subsurface, SERDP/ESTCPEnvironmental Remedia-
tion Technology, pp. 7–52. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-2239-6_2

Meile, T., Boillat, J.-L., Schleiss, A.J.: Hydropeaking indicators for characterization of the Upper-Rhone
River in Switzerland. Aquat. Sci. 73, 171–182 (2011). https://doi.org/10.1007/s00027-010-0154-7

Merchán-Rivera, P., Wohlmuth, B., Chiogna, G.: Identifying stagnation zones and reverse flow caused by
river–aquifer interaction: an approach based on polynomial chaos expansions. Water Res. (2021).
https://doi.org/10.1029/2021WR029824

Merchán-Rivera, P., Basilio Hazas, M., Marcolini, G., Chiogna, G.: Dataset for the research “Propagation
of hydropeaking waves in heterogeneous aquifers: effects on flow topology and uncertainty quantifi-
cation.” Mendeley Data, V1 (2022). https://doi.org/10.17632/sk3my3mtd8.1

Moslehi, M., de Barros, F.P.J.: Uncertainty quantification of environmental performance metrics in hetero-
geneous aquifers with long-range correlations. J. Contam. Hydrol. 196, 21–29 (2017). https://doi.org/
10.1016/j.jconhyd.2016.12.002

Neupauer, R.M., Meiss, J.D., Mays, D.C.: Chaotic advection and reaction during engineered injection and
extraction in heterogeneous porous media. Water Resour. Res. 50, 1433–1447 (2014). https://doi.org/
10.1002/2013WR014057

Nowak,W., deBarros, F.P.J., Rubin, Y.: Bayesian geostatistical design: task-driven optimal site investigation
when the geostatistical model is uncertain. Water Resour. Res. 46, W03535 (2010). https://doi.org/10.
1029/2009WR008312

Okubo, A.: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as
convergences. Deep Sea Res. Oceanogr. Abstr. 17, 445–454 (1970). https://doi.org/10.1016/0011-
7471(70)90059-8

Pérez Ciria, T., Labat, D., Chiogna, G.: Detection and interpretation of recent and historical streamflow
alterations caused by river damming and hydropower production in the Adige and Inn river basins
using continuous, discrete andmultiresolutionwavelet analysis. J. Hydrol. 578, 124021 (2019). https://
doi.org/10.1016/j.jhydrol.2019.124021

Pérez Ciria, T., Puspitarini, H.D., Chiogna, G., François, B., Borga, M.: Multi-temporal scale analysis of
complementarity between hydro and solar power along an alpine transect. Sci. Total Environ. 741,
140179 (2020). https://doi.org/10.1016/j.scitotenv.2020.140179

Pinay, G., Peiffer, S., De Dreuzy, J.-R., Krause, S., Hannah, D.M., Fleckenstein, J.H., Sebilo, M., Bishop,
K., Hubert-Moy, L.: Upscaling nitrogen removal capacity from local hotspots to low stream orders’
drainage basins. Ecosystems 18, 1101–1120 (2015). https://doi.org/10.1007/s10021-015-9878-5

Rolle,M., Le Borgne, T.:Mixing and reactive fronts in the subsurface. Rev.Mineral. Geochem. 85, 111–142
(2019). https://doi.org/10.2138/rmg.2018.85.5

Roullet, G., Klein, P.: Cyclone–anticyclone asymmetry in geophysical turbulence. Phys. Rev. Lett. 104,
218501 (2010). https://doi.org/10.1103/PhysRevLett.104.218501

Santizo, K.Y., Widdowson, M.A., Hester, E.T.: Abiotic mixing-dependent reaction in a laboratory sim-
ulated hyporheic zone. Water Resour. Res. 56, e2020WR027090 (2020). https://doi.org/10.1029/
2020WR027090

Sawyer, A., Bayani Cardenas,M., Bomar, A.,Mackey,M.: Impact of dam operations on hyporheic exchange
in the riparian zone of a regulated river. Hydrol. Process. 23, 2129–2137 (2009). https://doi.org/10.
1002/hyp.7324

Singh, S.K.: Aquifer response to sinusoidal or arbitrary stage of semipervious stream. J. Hydraul. Eng. 130,
1108–1118 (2004). https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1108)

Singh, T., Wu, L., Gomez-Velez, J.D., Lewandowski, J., Hannah, D.M., Krause, S.: Dynamic hyporheic
zones: exploring the role of peak flow events on bedform-induced hyporheic exchange. Water Resour.
Res. 55, 218–235 (2019). https://doi.org/10.1029/2018WR022993

Singh, T., Gomez-Velez, J.D., Wu, L., Wörman, A., Hannah, D.M., Krause, S.: Effects of successive peak
flow events on hyporheic exchange and residence times. Water Resour. Res. 56, e2020WR027113
(2020). https://doi.org/10.1029/2020WR027113

123

https://doi.org/10.1016/j.cma.2021.113895
https://doi.org/10.1029/2011WR011567
https://doi.org/10.1007/978-1-4614-2239-6_2
https://doi.org/10.1007/s00027-010-0154-7
https://doi.org/10.1029/2021WR029824
https://doi.org/10.17632/sk3my3mtd8.1
https://doi.org/10.1016/j.jconhyd.2016.12.002
https://doi.org/10.1002/2013WR014057
https://doi.org/10.1029/2009WR008312
https://doi.org/10.1016/0011-7471(70)90059-8
https://doi.org/10.1016/j.jhydrol.2019.124021
https://doi.org/10.1016/j.scitotenv.2020.140179
https://doi.org/10.1007/s10021-015-9878-5
https://doi.org/10.2138/rmg.2018.85.5
https://doi.org/10.1103/PhysRevLett.104.218501
https://doi.org/10.1029/2020WR027090
https://doi.org/10.1002/hyp.7324
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1108)
https://doi.org/10.1029/2018WR022993
https://doi.org/10.1029/2020WR027113


11 Page 26 of 26 GEM - International Journal on Geomathematics (2022) 13 :11

Smith,R.C.:UncertaintyQuantification: Theory, Implementation, andApplications, Computational Science
and Engineering. SIAM, Philadelphia (2013)

Song, X., Chen, X., Zachara, J.M., Gomez-Velez, J.D., Shuai, P., Ren, H., Hammond, G.E.: River dynamics
control transit time distributions and biogeochemical reactions in a dam-regulated river corridor.Water
Resour. Res. 56, e2019WR026470 (2020). https://doi.org/10.1029/2019WR026470

Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93,
964–979 (2008). https://doi.org/10.1016/j.ress.2007.04.002

Valocchi, A.J., Bolster, D., Werth, C.J.: Mixing-limited reactions in porous media. Transp. Porous Med.
130, 157–182 (2019). https://doi.org/10.1007/s11242-018-1204-1

Wagner, B., Hauer, C., Schoder, A., Habersack, H.: A review of hydropower in Austria: past, present and
future development. Renew. Sustain. Energy Rev. 50, 304–314 (2015). https://doi.org/10.1016/j.rser.
2015.04.169

Wallace, C.D., Tonina, D.,McGarr, J.T., Barros, F.P.J., Soltanian,M.R.: Spatiotemporal dynamics of nitrous
oxide emission hotspots in heterogeneous riparian sediments.Water Resour. Res. 57, e2021WR030496
(2021). https://doi.org/10.1029/2021WR030496

Weiss, J.: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48, 273–294
(1991). https://doi.org/10.1016/0167-2789(91)90088-Q

Wright, E.E., Richter, D.H., Bolster, D.: Effects of incomplete mixing on reactive transport in flows
through heterogeneous porous media. Phys. Rev. Fluids 2, 114501 (2017). https://doi.org/10.1103/
PhysRevFluids.2.114501

Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton Uni-
versity Press, Princeton (2010)

Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations.
SIAM J. Sci. Comput. 24, 619–644 (2002). https://doi.org/10.1137/S1064827501387826

Ziliotto, F., Basilio Hazas, M., Rolle, M., Chiogna, G.: Mixing enhancement mechanisms in aquifers
affected by hydropeaking: insights from flow-through laboratory experiments. Geophys. Res. Lett.
48, e2021GL095336 (2021). https://doi.org/10.1029/2021GL095336

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1029/2019WR026470
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1007/s11242-018-1204-1
https://doi.org/10.1016/j.rser.2015.04.169
https://doi.org/10.1029/2021WR030496
https://doi.org/10.1016/0167-2789(91)90088-Q
https://doi.org/10.1103/PhysRevFluids.2.114501
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1029/2021GL095336

	Propagation of hydropeaking waves in heterogeneous aquifers: effects on flow topology and uncertainty quantification
	
	1 Introduction
	2 Methods
	2.1 Groundwater flow equation
	2.2 Model description
	2.2.1 Deterministic problem
	2.2.2 Stochastic problem

	2.3 Polynomial chaos expansion
	2.3.1 Stochastic formulation
	2.3.2 Pseudospectral collocation approach

	2.4 Okubo–Weiss
	2.5 Algorithm implementation

	3 Results and discussion
	3.1 Deterministic scenarios
	3.2 Stochastic scenarios

	4 Conclusions
	Acknowledgements
	References




