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Abstract
The selection and interaction of various manufacturing technologies are key difficulties in product development and produc-
tion processes. A component’s geometry is one of the most important factors to consider when choosing the best technology. 
This article presents a method for an automated geometry analysis of metallic components. The goal is to analyze manufac-
turing technology alternatives regarding their capability to create required geometries. It also aims at short computing times 
since the outcome of this geometric analysis supplements a part screening methodology for the selection of the most suitable 
manufacturing technology for each component. To achieve a successful classification, artificial intelligence (AI) approaches 
are trained with images of the components that are labeled with suitable manufacturing technologies. The AI models hence 
learn how components of different manufacturing technologies look like and which characteristics they embody. To support 
the classification model, object recognition models are tested to automatically extract component features such as holes, 
coinages, or profile compositions. After training and comparing different AI approaches, the best performers are selected 
and implemented to analyze unseen image data of upcoming projects. In summary, this article’s research unifies existing AI 
approaches for image analyses with the field of production technology and product development. It provides a general meth-
odology for applying image classification and object detection approaches in development processes of metallic components.

Keywords AI-based picture recognition and classification · Object detection · Part screening · Manufacturing system 
design · Early-stage flexibility

1 Introduction

Components’ manufacturing technologies must be deter-
mined early in product development since they significantly 
impact the subsequent design and production steps [1]. So 
far, this decision is often made based on previous product 
generations and the stakeholders’ experiences, potentially 
causing a human bias towards the status quo. An objective 
manufacturing technology comparison is thus essential to 
accelerate product development processes and to minimize 
potential change costs for correcting wrong decisions at a 
later point in time [2]. Furthermore, the technology assess-
ment must be applicable early in product development whilst 

ensuring a high degree of automatization to handle large 
quantities of components to analyze. This article and the 
method for geometric analyses support the trend of achiev-
ing shorter development times in increasingly competitive 
industries, e.g., the automotive sector [3]. In the frame of 
this article and its application example, five manufacturing 
technologies are relevant and compared: deep drawing, cast-
ing, pressing, rolling, and additive manufacturing. A holistic 
comparison of potential manufacturing technologies on a 
component level needs to consider the following aspects [4, 
5]:

• the requirements that the components must fulfill regard-
ing e.g., corrosion or temperature

• the impact of components’ manufacturing technologies 
on subsequent production steps of the final product e.g., 
joining complexity

• the costs over the components’ lifecycles depending on 
the chosen manufacturing technologies
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• the required geometric characteristics of each component

Each of these aspects is addressed by one of four so-called 
modules that provide an overarching part screening method-
ology for a manufacturing technology selection with relevant 
data for comparing the technology scenarios (see Fig. 1). 
The modules derive and predict data to fill information gaps 
in early product development stages and thus enable an eval-
uation of technology alternatives for each component. The 
screening methodology evaluates these alternatives based on 
fuzzy rule sets that represent the strengths and weaknesses 
of each manufacturing technology. Three modules have 
already been completed and published [4, 6]: The require-
ments module derives requirements based on the compo-
nents’ positions in the final product. The production module 
analyzes the logistics and production inherences for different 
manufacturing technologies. Based on that, the cost module 
predicts and calculates manufacturing and logistics costs as 
well as necessary investments in the production line of the 
final product for each manufacturing scenario.

As mentioned in the fourth bullet point above, assess-
ing the components’ geometries is an essential pillar when 
comparing manufacturing technologies. Building this pillar 
is thus the aim of the work presented in this paper. It elabo-
rates on the Geometry Module, the fourth source of infor-
mation for the part screening methodology. The geometry 
module aims at an automated geometry analysis of metallic 
components to support the manufacturing technology assess-
ment: first, an image database is built and subsequently 
labeled with information regarding the components’ suit-
able manufacturing technologies. Based on that, different AI 
approaches are trained and compared to classify component 

images by manufacturing technology. The resulting percent-
age values per technology class represent geometric similari-
ties with the characteristics of different manufacturing tech-
nologies. These similarity values thus indicate the suitability 
of technologies to manufacture the required geometry. This 
picture-based approach aims at short computing times within 
the overarching part screening methodology. Furthermore, 
an object recognition model identifies and counts component 
features such as holes or coinages within the pictures. These 
features support the classification approach by supplying 
additional information.

The article first deducts the research gap in Sect. 2 and 
then presents the general approach for automated geometric 
analyses of metallic components in Sect. 3. Section 4 com-
pares the performance of the different AI models within an 
application example.

2  Geometric analyses on a component level

This section first introduces fundamentals (Sect. 2.1) for the 
understanding of the article, then focuses on the analysis 
of existing approaches for picture recognition and geomet-
ric component evaluation in Sect. 2.2. Based on that, the 
research gap is deducted in 2.3 to motivate this article’s 
research.

2.1  Fundamentals

This section introduces the fundamental theory for under-
standing the different classification and object detection 
approaches of this paper.

Convolutional neural networks. Convolutional neural 
networks (CNN) are relevant for the understanding of the 
geometry module since they have established themselves as 
successful model architectures in picture classification [7, 8]. 
A layer of a CNN usually consists of three processing steps: 
The first step is the extraction of features out of pictures 
using filters or kernels [6]. After that, non-linear activation 
functions such as the ReLU function (rectified linear unit) 
are used to convert the linear output of the convolution to 
non-linear values. In a third step, the initial dimensions are 
adjusted by using so-called pooling functions. A pooling 
function replaces the output of the network with a summary 
of surrounding neurons. Max pooling determines only the 
maximum value from a selection of neurons. Another func-
tion is average pooling that calculates the mean value of 
the neurons and passes it on to subsequent layers [7]. This 
reduction in dimensionality and complexity minimizes the 
required computing power. The different pooling methods 
are illustrated in Fig. 2.

The structure of a simple CNN is depicted in Fig. 3. The 
network begins with a layer of 28 × 28 input neurons that are 

Fig. 1  The four modules of the screening methodology, according to 
Buechler et al. [4]
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used to encode the pixels of an image, e.g., as binary val-
ues for dark or bright areas. Three filters are overlappingly 
applied to the input layer and processed through a ReLu 
activation. This convolution results in three numeric fea-
ture maps with 3 × 24 × 24 neurons. Feature maps allow for 
insights, e.g., which features the CNN detects and indicates. 
Subsequently, max pooling with a dimension of 2 × 2 pixels 
across each of the three feature maps creates another hidden 
layer with 3 × 12 × 12 neurons. The last layer of the network 
is a fully connected layer, each neuron from the max-pooling 
layer is thus connected to each of the exemplary output neu-
rons that represent specific classes, e.g., manufacturing tech-
nologies. When training a CNN, the weights of each layer as 
well as the number and numeric structure of the filters are 
adapted to achieve the best classification results [9, 10]. So-
called full-stack AI-platforms offer pre-trained architectures 
to support the implementation of CNNs through the benefits 
of transfer learning [11].

Fuzzy logic. The outcome of the Geometry Module sup-
plements the fuzzy rules of the part screening methodol-
ogy. Fuzzy logic imitates the human behavior to perceive 
information in fuzzy ranges like low, medium, and high, 
e.g. temperature [12]. Input parameters are first fuzzified via 
membership functions, e.g., as a triangular or a trapezoidal 
set-up. The numeric output of a fuzzy set is generated by the 

defuzzification using so-called fuzzy rules [13]. More details 
and examples can be found in Sect. 4.3.

2.2  State of the art

The following paragraphs elaborate on existing classification 
and object detection methods to ensure an understanding 
of the geometry module’s approach. There are approaches 
that derive 3D descriptors from synthetic CAD-models for 
a classification of unseen objects [14]. However, this article 
focuses on testing an image-based classification to achieve 
short computing times.
Picture recognition and classification
General approaches. Picture recognition is widely used, 
for emotion detection, quality control in production systems 
or even weather forecasting [15, 16]. Two architectures are 
currently of high relevance for picture recognition and will 
therefore be briefly introduced: The VGG (visual geometry 
group) architecture was developed as part of the ImageNet 
competition in 2014 and achieved high classification accura-
cies [17]. The ResNet architecture was the first picture clas-
sification approach to beat humans in terms of classification 
accuracy [8]. In both approaches, CNNs are used to classify 
image data. Besides high accuracies, a current challenge is 
the distinction of objects from the background. Furthermore, 
the definition of the classes must ensure a sufficient demar-
cation from each other, e.g., regarding the shape and color 
of the objects [8]. In the first layers, simpler image features 
such as edges, lines, or corners are recognized in convo-
lutional layers. Within additional layers, the characteristics 
become more complex and often exceed human perception. 
The features that are recognized in the filters depend on the 
field of application and differ for each model [8].
Analyzing 3D objects with pictures. The analysis of three-
dimensional objects using two-dimensional images offers 
some advantages over direct 3D CAD file analysis, e.g., 
shorter computing times. However, the biggest challenge is 
to draw conclusions based on two-dimensional images for 
the three-dimensional world [18, 19]. To overcome this chal-
lenge, multiple views or perspectives can be used to grasp 
the complexity of the examined objects [20]. Using multiple 
views to analyze a single object imitates the natural human 
behavior of looking at objects from several perspectives 
[20]. Widespread architectures such as ResNet [21] or VGG 
can be used for 2D-image analyses whilst ensuring good 
performances [22].

Figure 4 illustrates another methodology developed by 
Su et al. [19]: the generated 2D views of a 3D model are 
first individually analyzed using one single CNN (CNN1). 
In the next step, the discovered features are bundled across 
all views within a so-called View Pooling layer to create 
a multi-view approach. Based on that, the classification is 
carried out by a second CNN (CNN2). This methodology 

Fig. 2  Exemplary feature maps and relevant pooling methods accord-
ing to Paass et al. [8]

Fig. 3  Exemplary architecture of a CNN with three processing steps 
and ten classes, according to Priftis et al. [10]
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allows more complex insights between the individual images 
and incorporates them into the classification. The neural 
net learns to ignore certain views of lower relevance while 
focusing on more informative perspectives [19]. SEELAND 
and MÄDER examined different strategies for bundling the 
information of the individual perspectives in the view pool-
ing layer [20]. The best performance was achieved by the so-
called late fusion approach in combination with maximum 
value fusion with accuracies between 94–96% for all tested 
data sets [20].
Object and feature detection
Metrics. The following paragraphs introduce metrics for 
evaluating and analyzing the performance of object recog-
nition models. True Positive (TP) refers to objects that are 
relevant (≙ meant to be identified) and correctly recognized. 
False Positive (FP) refers to objects that were recognized 
although they do not exist or that were detected in the wrong 
position. False Negative (FN) describes relevant objects that 
were not recognized. The metrics do not consider the True 
Negative (TN) predictions, because of the unlimited number 
of these non-markings within one image (see Fig. 5) [23].

These parameters are used to calculate the metrics Pre-
cision and Recall. Precision describes how many of the 
detected objects are relevant [23].

(1)Precision =
TP

TP + FP

Recall describes how many of the relevant objects were 
recognized [15].

Another metric, the Intersection over Union (IoU), indi-
cates the quality of the detections. It measures the area of 
overlap between the indicated bounding box A (in red) and 
the true bounding box B (in green) of an object, divided by 
the union of both (see Eq. 3 and Fig. 6) [23].

The area below the graphical plot of Precision P over 
Recall R also represents an important metric to assess object 
detection models and is called Average Precision (AP). A 
large area indicates high Precision P and high Recall R 

(2)Recall =
TP

TP + FN

(3)IoU =
A ∩ B

A ∪ B

Fig. 4  Model of the multi-view approach for 3D object analyses 
according to SU et al. [19]

Fig. 5  Illustration of the metrics Precision and Recall

= =

Fig. 6  Illustration of the metric intersection over union based on 
Padilla et al. (2020, p. 238) [23]
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[23]. An exemplary plot can be found within the applica-
tion example in Sect. 4.2 (see Fig. 30).

The mean Average Precision (mAP) results from the 
mean value of the AP over all classes N [23].

Furthermore, the values mAPval0.5 and mAPval0.5:0.95 
are relevant. The value mAPval0.5 describes the mean aver-
age precision where correctly recognized objects must have 
a minimum IoU value of 0.5. Additionally, mAPval0.5:0.95 
calculates the mAP starting at a required IoU of 0.5, then 
increasing the IoU step by step (one step ≙ 0.05) up to 
IoU = 0.95, hence getting stricter regarding a correct object 
detection since the overlap must meet the increasing IoU.
General approaches. In addition to the classification task, 
the exact position of objects within a picture or a 3D figure 
can also be determined. Object detection is used, e.g. in the 
fields of autonomous driving, computer vision, image resto-
ration, robotics and many more [15]. Usually, there are only 
a few different objects, but they occur more than once and 
in different shapes or sizes [8].

The so-called shape segmentation of 3D objects is one 
method to consider. In general, shape segmentation enables 
for the processing of a broader and more difficult input by 
splitting and classifying objects into segments. It can effi-
ciently learn and predict mixed shape datasets, resulting in 
good segmentation outcomes while simplifying and speed-
ing up learning and inference [24]. Convolutional networks 
have excelled in a variety of image or object processing 
tasks, including image classification and semantic segmen-
tation [25, 26]. Kalogerakis et al. proposed a deep archi-
tecture for segmenting three-dimensional objects into their 
semantically identified pieces. To produce coherent segmen-
tations of 3D forms, the method blends image-based fully 
convolutional networks (FCNs) with surface-based condi-
tional random fields (CRFs) [27]. This method significantly 
outperforms existing state-of-the-art methods regarding the 
segmentation benchmark ShapeNet. GUAN et al. applied 
a different technique, interpreting the shape segmentation 
issue as a point labeling task. An object's mesh structure is 
first converted into a series of data points with barycenter 
and normal vector. The data can be segregated and labeled to 
find characteristics with trained convolutional models [28].

Object recognition by the identification of so-called geo-
metrical primitives is another related topic to mention. Geo-
metric primitives are used to bridge the gap between low-
level digitized 3D data and high-level structural information 

(4)AP = ∫
1

0

P(R)dR

(5)mAP =
1

N

N
∑

i=1

APi

on the underlying 3D shapes by fitting them to 3D point 
cloud data. RANSAC-based approaches (random sample 
consensus) have been considered the standard for fitting 
problems, but they require careful parameter tuning and 
thus do not scale well for large datasets with diverse shapes 
[29]. LI et al. proposed a supervised primitive fitting net-
work (SPFN), an end-to-end neural network that can reliably 
recognize a variable number of primitives at various scales. 
Instead of directly predicting the primitives, this method pre-
dicts per-point attributes first, then computes the primitive 
type and parameters using a differential model [29]. Another 
method involves using a fully convolutional neural network 
to partition the input point cloud into numerous classes. 
As a result, segments can be used as primitive hypotheses. 
Finally, all hypotheses are subjected to geometric verifica-
tion to correct any misclassifications [30].

Regarding image-based methods, object detection indi-
cates objects and their position via a bounding box and a per-
centage value of the associated class [31]. The YOLO net-
work was first presented in 2015 and continuously improved 
with five subsequent versions vi [32]. The approach describes 
a unified model that represents the input by a single CNN. It 
focuses on image-based approaches but also works for object 
detection in videos [33]. The YOLO network calculates all 
features of the image and indicates all objects simultane-
ously, explaining the name of the approach: “You Only Look 
Once”. The procedure for object recognition of the first ver-
sion of the approach (YOLOv1) is depicted in Fig. 7. In 
step II, objects within the picture are marked with bounding 
boxes (II a) and assigned to defined classes (II b). Step III 
merges the gained insights and generates labeled bounding 
boxes within the picture.

The YOLOv4 approach compared different network 
architectures (e.g., VGG, ResNet) with each other. Shortly 
after the release of the fourth version, the YOLOv5 version 

Fig. 7  Illustration of the YOLOv1 approach for object recognition 
according to Redmon et al. [32]
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was presented with minor changes [34, 35]. The YOLOv5 
model allows for fast analysis of individual images. In the 
context of this article, it thus allows for an analysis of up to 
3000 images at a time. The YOLOv6 model is accessible as 
an open source framework [36].
Automatic detection of component features. Current 
research regarding the automatic detection of component 
features distinguishes between rule-based and learning-
based methods [37]. Rule-based approaches have some 
disadvantages since the search algorithms are computation-
ally intensive due to the high number of rules that must be 
implemented for recognizing features [37].

Zhang et al. presented a novel, learning-based method 
(FeatureNet), which uses 3D CNNs to recognize features 
from CAD models of mechanical components [38]. In 
contrast to rule-based approaches, there was no need for 
implementing specific rules per feature. To achieve shorter 
computing times, Shi et al. (2020) used a learning-based 
approach based on the multi-view model to analyze 2D 
pictures [37]. In a proceeding article, SHI et al. suggest an 
approach based on the Single Shot Multibox Detector (SSD) 
architecture that three-dimensionally localizes features after 
recognizing them in 2D images [37, 39].

2.3  Research gap

According to Sect. 2.2, many research activities have been 
carried out in the field of picture classification and object 
recognition. These methods generally enable a classification 
based on 2D image data. However, it is currently not possi-
ble to conduct automatic, geometric analyses of components 
while evaluating respective technology alternatives early in 
product development. Furthermore, current object recogni-
tion approaches often focus on identifying imperfect prod-
ucts after their production [40–42]. The article thus aims at 
answering the following research questions:

• Can picture classification and object recognition models 
be used for the automatic screening of metallic compo-
nents to identify suitable manufacturing technologies?

• Are these AI-based classification and object detection 
models able to analyze different manufacturing technolo-
gies within one multi-class approach?

• Can 2D image analyses accelerate geometric analyses of 
many 3D components at a time compared to CAD-based 
approaches?

3  The geometry module: general 
methodology for geometric analyses 
on a component level

This section introduces the general approach for analyzing 
components’ geometries based on component images. Sec-
tion 3.1 presents the approach for the classification of com-
ponents by manufacturing technologies. Section 3.2 focuses 
on the object detection within the components to generate 
additional data and support the classification.

It should be noted that the geometry module focuses on 
the analysis of existing modular car body structures and the 
respective components. Geometric analyses of potential 
new components such as casting knots (so-called integral 
components) that result from merging several smaller parts 
require a different approach since there are no pictures of 
these fictional new components.

3.1  Picture recognition and classification

The picture recognition and classification method aims at 
distinguishing component pictures by different manufactur-
ing technologies and follows the approach depicted in Fig. 8.

Step 1 and 2: Retrieving and labeling image data. 
Before the classification models are built, trained, and vali-
dated, an image database must be created. CAD compat-
ible methods such as VBA macros allow for the automatic 
derivation of e.g., seven pictures per component within the 
structure of interest in programs, such as CATIA V5 R29 
(Dassault Systèmes, France). The pictures can be created 
based on components that are either already initially gener-
ated in current development projects or based on preceding 
product generations. These seven perspectives represent the 
main views of a CAD program: A top, bottom, rear, and 
front view, a view from both sides, and an isometric view. 

Fig. 8  Approach for picture classification within the geometry mod-
ule
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To create the views, auxiliary information, coordinate sys-
tems, and the structure tree are hidden in the CAD interface. 
Furthermore, there is no zoom on the components to ensure 
consistent proportions between smaller and larger compo-
nents. Following the image export, the images should be 
tailored to reduce the file size and to ensure a consistent 
ratio of, e.g. 450 × 450 pixels. This step can be automized 
by a Python script.

After retrieving the images, each component and the 
respective images are labeled with their current manufac-
turing technology of previous product development projects 
and potential alternative technologies. These alternative 
technologies can be identified by interviewing manufac-
turing experts. The interviews thus must be conducted on 
single time before the training phase. Based on this, differ-
ent AI approaches can be trained and compared for a geo-
metric analysis that supports the manufacturing technology 
selection.

Step 3: Classification approaches. This section intro-
duces different approaches for analyzing and classifying 
pictures that are subsequently tested in Sect. 4.1 to identify 
the best performing model. The competing approaches are: 
Stitching, 7 Neural Networks, Single CNN with sum score 
fusion, and Multi-View.

Stitching. The stitching approach aligns all 2D images 
in a row and merges them into one large image (see Fig. 9). 
These images are then used to train the AI classification 
model.

Pre-trained networks cannot be used due to the non-
square ratio of the composite images since available pre-
trained architectures are tailored for squared images. A grid 
search led to the following architecture (see Fig. 10) that was 
used for the training phase:

• sequential model
• each level with one input and one output tensor

• four convolutional layers (ReLU activation function)
• each layer followed by a max-pooling layer to reduce the 

dimensional complexity
• fully connected layer at the end with 128 neurons and a 

ReLU activation function.

7 neural networks (7NN). The 7NN approach sets up 
a separate network for each of the seven perspectives. This 
way, certain characteristics of the different manufactur-
ing technologies might be easier to recognize in individ-
ual views. The classification outputs of each view are first 
summed up (sum score fusion), followed by a mean value 
calculation (see Fig. 11). Furthermore, it is possible to weigh 
individual results of the views, potentially leading to better 
predictive accuracy for the entire component. A grid search 
identified an architecture that is similar to the stitching 
model of Fig. 10 except of one difference: the 128-convolu-
tional layer has been removed.

Single CNN with sum score fusion. This section 
describes an approach that uses a pretrained single CNN 
(VGG16 architecture) to manage the seven perspectives. The 
classification values are then averaged by the Sum Score 
Fusion method, as illustrated in Fig. 12.

Grid testing led to two fully connected layers with 1024 
neurons, the first was combined with a 50% dropout layer. 
Another fully connected layer with three output neurons 
(Softmax activation function) represents the end to gener-
ate the percentage values for the three classes (see Fig. 13).

Fig. 9  Exemplary stitching image after merging all perspectives and 
the schematic stitching approach

Fig. 10  Schematic representation of the model architecture of the 
stitching approach

Fig. 11  Schematic representation of the merged classification results 
of the individual networks via a sum score fusion
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Multi-view. This approach links the characteristics of the 
previous variants. It connects the 2D image information of 
the individual views to get further insights into the 3D com-
ponent characteristics. To achieve this, the model follows the 
approach according to Su et al. [19]. A single CNN is used 
to analyze all component perspectives. Different versions 
and architectures are compared with each other: ResNet34, 
ResNet50 [21], and VGG16 [17]. In a subsequent step, 
insights across all views are bundled within a view pool-
ing layer using a late fusion with a max value function and 
analyzed by a second CNN, as illustrated in Fig. 14 [19, 20].

Step 4: Module output. Two measures were implemented 
to mitigate the bias towards the technological status quo of 
the components:

Measure 1. In training, the neural net first learns how 
components of different manufacturing technologies look 

like. However, the neural net must learn to identify charac-
teristics of more than one manufacturing technology in the 
components’ pictures instead of reinforcing the exclusive 
recognition of characteristics of the current technology. 
The pictures are thus not only labeled with the current 
manufacturing technology but also with potential alter-
nate technologies (so-called double or triple labeled pic-
tures). Figure 15 illustrates the seven perspectives of an 
exemplary component. Since deep drawing represents the 
current technology of this part, the classification model 
identified mostly characteristics of previously seen deep 
drawing components. However, it also indicates pressing 
potential. These two manufacturing technologies might be 
recognized by the AI model due to the elongated char-
acter of the component (pressing characteristic) and the 
U-profile in two of the perspectives (deep drawing indica-
tor). The goal of identifying characteristics of more than 
just the current technology was thus met.

Measure 2. The geometry module generates geomet-
ric similarity values (≙ classification results in percent) 
regarding the technology alternatives. This percentage-
based classification approach was chosen over a binary 
classification logic (clear indication of one class with the 
value 1, all other classes 0) to equip the geometry module 
with the ability to identify more than just one class per 
component. When applying the selected model on unla-
beled image data, the resulting classification results and 
similarity values represent the necessary effort to redesign 
the respective component towards a different manufactur-
ing technology. The higher the classification value, the 
more geometric characteristics of the respective technol-
ogy were found by the underlying AI model. Consist-
ently, low similarity values indicate that the component 
does not embody a lot of characteristics of the respective 
technology.

Fig. 12  Schematic representation of the single CNN approach, merg-
ing the classifications of the individual views

Fig. 13  Schematic representation of the model architecture of the sin-
gle CNN approach

Fig. 14  Schematic representation of the model architecture of the 
multi-view approach, based on SU et al. [19]
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3.2  Object detection

The object detection aims at the identification of compo-
nent features within the pictures and follows the approach 
depicted in Fig. 16. This approach was chosen over a sim-
ple data extraction out of STEP files, as well as over the 

application of 3D-based shape segmentation and geometri-
cal primitives because of these reasons:

1. Only some of the features of interest (holes, coinages, 
flanges, closed profiles) are documented in STEP files. 
However, the chosen approach must be able to identify 
all features of interest. Furthermore, the geometric data, 
e.g. regarding the number of holes, is often not consist-
ently generated by the responsible CAD designer (e.g. 
manual vs. automatic creation and naming of holes), 
causing strong challenges for automatization.

2. Due to the close connection of the classification and the 
object detection task within the geometry module, the 
already existing component pictures (out of the classifi-
cation approach) can be used to ensure a lean and clear 
data flow within the module. This strongly favors the 
usage of existing component images for a highly aut-
omized object detection.

3. The intended short computing times of the geometry 
module must be maintained even for the analyses of 
hundreds of components (= thousands of pictures) 
within one screening run. Based on existing 3D-based 
approaches, e.g. for similarity assessments in CATIA, 
these short computing times cannot be reached with 
RAM-intensive, 3D approaches that must open, segment 
and analyze every CAD file.

4. The accuracy of the image-based object detection 
approach does not have to meet perfection due to the 
mitigation of tolerable inaccuracies (compared to 
3D-based approaches) by the fuzzy systems and its 
binary rules in the overall methodology. More impor-
tantly, the achieved precision of this article’s object 
detection approach meets the required accuracy whilst 
ensuring short computing times (see Sect. 4.2).

The detected features are relevant for supporting the clas-
sification approach of Sect. 3.1.

Step 1: Building the image database. The 2D image 
data of the classification task consists of component images 
that were designed for different manufacturing technolo-
gies. The graphic software tool LabelImg [35] can be used 
to mark and label individual component features (e.g., holes 
or coinages) within the images. The features were translated 
into a unique numerical identifier. The X and Y coordinates 
of the markings’ center points within the picture as well as 
the width and the height of the rectangular marking were 
automatically documented.

Step 2 and 3: Object detection approach. Due to its 
modern architecture and outstanding performance, the 
approach focuses on the YOLOv5 model that follows a one-
stage approach of object detection [34]. The YOLOv5 archi-
tecture can be trained in four different model sizes (S, M, 
L, XL) that differ in the number of layers. The model sizes 

Fig. 15  The seven perspectives of an exemplary component (l.) and 
the respective geometric classification results (r.)

Fig. 16  Object detection approach within the geometry module
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embody a compromise between recognition accuracy and 
processing speed. In the scope of this article, it is important 
to choose a model that guarantees a short processing time for 
a large number of images and components. The models were 
pretrained based on the COCO database, an extensive image 
collection of all kinds of pictures [34]. The training results 
and achieved accuracies can be found within the application 
example in Sect. 4.2.

Step 4: Providing the geometric fuzzy rules with addi-
tional data. The features identified by the object detection 
model can be looped back into the data flow and used as 
additional input for the fuzzy rules. For instance, closed pro-
files can now be detected within components and indicate 
high pressing potential (see Sect. 4.3 for more details).

3.3  Part screening: analyzing the module’s outputs

The geometry module contributes to the overall screening 
approach by enabling the addition of further fuzzy rules for 
each manufacturing technology. These fuzzy rules are based 
on the geometry module’s outputs. The output is the classifi-
cation result (geometric similarity classes) for each compo-
nent and technology scenario, supplemented by recognized 
features within the pictures of the components. The extended 
rule sets hence consist of rules out of all four screening mod-
ules and ensure a holistic manufacturing technology com-
parison. Exemplary fuzzy rules can be found in Sect. 4.3.

4  The geometry module: exemplary 
application in car body development

The Geometry Module was applied and evaluated using the 
automobile sector as an example. The intricate construc-
tion and design of car body components are dependent on 
the selection of the appropriate manufacturing method for 
each part at an early stage. So far, this selection relied on 
human experience and non-automatic evaluations. It is thus 
skewed in favor of previous product development projects 
and chosen manufacturing technologies. The geometry mod-
ule addresses this problem by objectifying geometric char-
acteristics to reduce human bias and the preference of the 
status quo. It thus represents an important source of informa-
tion for the overarching screening methodology as part of the 
car body development and production process (see Fig. 17).

4.1  Picture recognition and classification

Section 4.1 applies the general approach of Sect. 3.1 and 
tests its different models to identify the best performer.
Retrieving image data. A total of 1487 components were 
labeled and added to the database: 76 casting, 180 pressing, 
and 1231 deep-drawn components across different vehicle 

models. Black and white illustrations were used to mitigate 
the influence of colored component surfaces. It must be 
noted that casting or pressing components are underrep-
resented in modern car body architectures. An imbalance 
between classes is a common problem in real-world appli-
cations. This problem affects the performance of classifi-
cation models since the minority class often is overlooked 
[43]. One countermeasure is to use a reduced amount of 
deep drawing components in training to compensate for the 
imbalance. Another is to apply cost-sensitive learning to 
solve this issue by enforcing the learning effects of under-
represented classes. Misclassification costs are introduced 
to punish wrong classifications differently depending on the 
class size [43].
Classification approaches.

This paragraph compares the different classification 
approaches regarding their performance in training, vali-
dation, and testing. To distribute the data volume for each 
class as evenly as possible, all approaches were trained and 
validated with a data base of 532 pictures of casting compo-
nents, 833 pictures of pressing components, and 833 pictures 
of deep drawing components. This data base was split into 
80% training and 20% validation data. After the validation, 
the trained models were applied on additional unseen test 
data (around 300 car body components) to create and quan-
tify truth matrices. This test data was retrieved out of another 
vehicle model that was not part of the training and validation 
data base. The optimal parameters (number of epochs, batch 
size, learning rate etc.) were identified with a grid search. 
Table 1 lists the different models and their parameters. The 
best performing approach (highlighted in green) was chosen 
for further development based on the initial comparison.
Stitching. Figure 26 (see Appendix) illustrates the perfor-
mance of the best stitching version. It indicates a strong 

Fig. 17  The geometry module supplements the main author’s screen-
ing methodology (orange) [4] as a part of the car body development 
and production process (color figure online)
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learning effect from epoch 2 to 5 and overfitting behavior 
from epoch 12 onwards with an increasing loss of validation. 
This behavior is triggered by the large image dimensions, 
as this approach cannot rely on pre-trained weights. It thus 
has to learn small features such as edges or curvatures as 
well as more detailed component characteristics. The poor 
validation accuracy might be caused by the lower number 
of training data points compared to other approaches, as 7 
pictures are merged to one.

The trained model was then applied to selected test data 
of another vehicle model, Fig. 18 illustrates the evaluation 
in form of a normalized truth matrix. The matrix shows that 

deep-drawn components cannot be clearly distinguished 
from the other classes. This approach can thus be rejected.

7 neural networks. The 7NN-models were trained for 
each of the seven perspectives. Furthermore, a 20% drop-
out level turned out to increase the performance and was 
inserted before the fully connected layer. Figure 27 shows 
the training results of the perspective “bottom”.

The plots show hardly any overfitting since the courses of 
training and validation proceed on a similar level in terms 
of accuracy and loss. This can possibly be attributed to the 
seven individual networks that mitigate overfitting regarding 
the overall classification. Further epochs would not improve 
the performance since the curves are almost constant from 
epoch 20 onwards. The model shows a maximum accuracy 
of 74% in training and 67% in validation. Table 2 shows the 
results of the seven networks when applied to unseen part 
data. The deep drawing performance strongly influences the 
overall performance for all classes due to the overrepresen-
tation of deep drawing parts in the unseen data.

Merging the classification results of the seven networks 
based on the maximum class values leads to the following 
confusion matrix, see Fig. 19. The truth matrix indicates dif-
ficulties with the classification of deep-drawing components 
due to a poor forecast accuracy for the top and side views. 
This issue was addressed by specific perspective weight-
ings that did not lead to significantly better results. For this 
reason, the approach was discarded.

Single CNN with sum score fusion. The courses of the 
training and validation accuracies show no signs of over-
fitting for the single CNN approach. Although the curves 
diverge after around 200 epochs, they also increase the vali-
dation accuracy in training (see Fig. 28).

The evaluation of the trained models based on selected, 
unseen test data led to a maximum accuracy of 80% across 
all classes. Out of 181 components, 25 were incorrectly clas-
sified. Figure 20 shows the results of the best version in form 
of a confusion matrix. Overall, the single CNN approach 
with pre-trained weights led to a better performance.

Multi-view. Different multi-view versions were trained 
and compared. The VGG16 architecture was used for all 
versions with and without pre-trained weights. They were 
trained for 40 epochs in phase 1 and a learning rate of 
lr = 0.0005. Due to the promising performance, the best 

Table 1  Overview of the classification approaches and their achieved 
validation accuracy (color figure online)

Fig. 18  Truth matrix for evaluating the performance of the stitching 
approach on around 300 unseen components (test data)

Table 2  Overview of the 
evaluation of the accuracy of 
the seven networks for unseen 
component data

Top (%) Front (%) Rear (%) Iso (%) Side 1 (%) Side 2 (%) Bottom (%)

Casting 100 100 100 100 50 100 100
Pressing 100 83.3 33.3 100 100 66.7 100
Deep drawing 43.7 58.1 62.6 71.4 50 57.5 64.4

All classes 46.2 59.3 62.1 72.5 51.7 58.2 65.9
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version was trained for further 20 epochs in phase 2 with 
a learning rate of lr = 0.00001. The best multi-view ver-
sion achieved the highest accuracies compared to all other 
approaches. Precisely, it reached a validation accuracy 
of 87% and was thus chosen for further development and 
improvement.

Evolution of the multi-view approach. 
After identifying the multi-view approach as the best per-

former amongst all compared models (see previous para-
graphs), two evolutions were tested:

First: Evolution of the multi-view approach through a 
data base extension.

Second: Evolution of the multi-view approach through an 
additional class extension.

Multi-view with data base extension. First, the data 
base was extended to 518 casting, 1246 pressing, and 7518 
deep-drawing pictures. The increase of deep-drawn compo-
nents needed to be compensated by cost-sensitive learning 
and its emphasis on learning effects of underrepresented 
classes. The additional training data for the deep drawing 
class was expected to improve the accuracy of the often 
incorrectly classified deep drawing parts that represented 
the dominating technology in modern car body architectures. 
The VGG16 architecture remained for all versions with and 
without pre-trained weights. It was trained for 40 epochs 
in phase 1 using the SGD optimizer and a learning rate of 
lr = 0.0005. In phase 2, it was reduced to lr = 0.00001 and 
trained for further 20 epochs.

Class-specific weights of the cost-sensitive approach led 
to higher accuracies. The best version achieved a validation 
accuracy of 98.9%. The influence of the lower learning rate 
can be seen in the progression of accuracy and decrease of 
loss after epoch 40 (see Fig. 29).

Multi-view with class extension. As the next step 
towards the Geometry Module’s use case, the classes were 
extended with two further labels (see next paragraph). This 
measure avoids an exclusive confirmation of the compo-
nents’ current manufacturing technologies (= the ones in 
the images) and alternative technology characteristics to be 
overseen. The casting/deep drawing class represents com-
ponents, which can be geometrically produced as casting 
as well as deep-drawing components. The pressing/deep 
drawing class contains components that can be manufac-
tured as pressing or deep drawing parts. After labeling the 
database, the training data contained 54 casting, 87 casting/
deep-drawing, 131 pressing, 145 pressing/ deep-drawing, 
and 902 deep-drawing components. Pre-trained weights 
were used for all versions in which a VGG16 architecture 
was compared with a ResNet50 architecture.

Class-specific weights were used in training of the best 
performing version. Phase 1 consisted of over 70 epochs, 
an SGD optimizer, and a learning rate of lr = 0.00003. 
Phase 2 added further 40 epochs and applied a learning 
rate of lr = 0.00001. Phase 1 focused on training the second 
CNN after the view pooling layer while freezing the first 
CNN with pre-trained weights to shorten training times 
(model architecture see Fig. 14). The fine tuning in phase 
2 of the first CNN showed more effect in the ResNet50 
architecture than in the VGG16 architecture depicted 
below. However, fine tuning prevented an increasing vali-
dation loss after 70 epochs. The accuracy of the validation 
curve with class-specific weights is well below the vali-
dation curve without weighting (see Fig. 30). However, 
the weighted version showed better generalization when 
applied to unseen data after the validation phase. Further-
more, it led to more correct double-label predictions (see 

Fig. 19  Truth matrix for evaluating the 7NN approach on around 300 
unseen components after averaging the seven individual outputs

Fig. 20  Truth matrix for evaluating the performance of the best ver-
sion of the single CNN approach on around 300 unseen components
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Fig. 21). These double-labels are wanted since they offer 
insights on potential changes of manufacturing technolo-
gies. Overall, these arguments overcompensate the lower 
validation accuracy of the weighted approach that is hence 
considered to be the best performer (VGG16). The rela-
tively high loss at the end of training can be explained 
by the small amount of training data for the individual 
classes due to the data distribution over five instead of 
three classes.

At first sight, the best performer showed lower accu-
racies for unseen deep-drawn components with 16% of 
false classifications (see Fig. 21). However, these wrong 
assignments occur exclusively in the double-labeled 
classes. These components were assessed with technol-
ogy experts and considered to be correctly classified since 
they showed characteristics of both indicated technolo-
gies. Hence, these components can be manufactured in 
more than one technology without the need for extensive 
redesign. In fact, these classifications indicate that the 
respective components can be manufactured in two dif-
ferent technologies. These suggestions were confirmed 
by interviews with construction experts of the different 
manufacturing technologies.

Table 3 lists the class-specific weights of the best-per-
forming version. Higher weights indicate a harder pun-
ishment for wrong classifications and a higher reward for 
correct classifications. Underrepresented classes such as 
casting were attributed with higher weights.

Best performer. Based on the presented parameters, 
the multi-view with class extension is the best performing 
version. Components with close classification results, e.g., 
when two manufacturing technologies compete, are of par-
ticular interest within the screening tool as they show poten-
tial for a change in manufacturing technology.

4.2  Object detection

The upcoming paragraphs apply and analyze the general 
approach of Sect. 3.2 regarding its performance.

Building the image and feature database. The follow-
ing component features are relevant in the use case and were 
first marked within the pictures to enable the subsequent 
training of the neural net (see Fig. 22).

Hole/bore. Different shapes of holes were considered and 
labeled within the pictures. In contrast to the feature closed 
profile, holes are mostly surrounded by a thick layer of com-
ponent material (> 5 mm).

Closed profile. Closed profiles are surrounded by only a 
thin layer of component material (max. 3 mm). Furthermore, 
a feature called closed profile not white was introduced to 
also mark closed profiles without a white background (e.g., 
due to visible underlying component material depending on 
the perspective).

Coinage. Coinages occur in the form of depressions or 
notches and were also marked within the pictures.

Curvature. Curvatures have been marked to grasp 
the complexity and the three-dimensional character of a 
component.

Flange. To anticipate possible additional expenses by 
folding or bending operations, flanges and bent component 
parts were marked.

The number of all marked features per class is shown in 
Table 4.

Fig. 21  Truth matrix of the best multi-view version with class exten-
sion applied on around 300 unseen components (C: casting, PR: 
pressing, DD: deep drawing)

Table 3  Overview of the class-specific weights of the multi-view 
approach with class extension

Casting Pressing Deep 
drawing

Casting/
deep draw-
ing

Press-
ing/deep 
drawing

Weight  wi 4.071 1.678 0.244 2.527 1.156
Fig. 22  Illustration of the different component features using exem-
plary components, with indicated markings and associated class 
names
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Object detection approach. The labeled data was 
divided into 80% training and 20% validation data. YOLO 
networks of the sizes S, M, and L were trained in two dif-
ferent variants. One variant used pre-trained weights, the 
other randomly initiated weights. The training parameters 
and results are shown in Table 5 using the mean average 
precision mAP.

A higher resolution of the images enables better recogni-
tion of smaller objects [42]. The images in the database have 
a resolution of almost 1000 × 1000 pixels and were used for 
the training of the S network. 864 × 864 pixels images were 
used for training the M and L networks to avoid overloading 
of the server that used three GeForce GTX TITAN X GPUs 
with twelve GB of RAM (Nvidia Corporation, Santa Clara, 
United States). For the versions with pre-trained weights 
(V1, V3, V5), training lasted from 400 to 500 epochs, 
whereas the versions without pre-trained weights (V2, V4, 
V6) were trained throughout 800 epochs. The lower number 
of epochs for versions V1, V3, and V5 was chosen to prevent 
overfitting.

Based on Table 6, the use of pre-trained weights shows 
a positive influence on the accuracy of smaller networks. 
However, there is hardly any difference in the mAP values 
for the versions V5 and V6 of the L net. The mAPval0.5: 
0.95 values of the different versions accumulate in a rela-
tively narrow range from 0.443 to 0.477, which is why 

no version can be excluded or preferred. The larger input 
dimensions of versions V1 and V2 enable better detection of 
the smaller bores, which is reflected in the best mAPval0.5: 
0.95 values of 0.511 (V2) within the holes/bores class.

Figure 23 illustrates the development of Precision over 
Recall of the best performing version V2 across all classes 
during training. It is apparent that the object recognition pro-
vides very good results for holes/bores and closed profiles 
with a precision of over 90%. These features are of particular 
interest as they strongly support the overall methodology 
and its fuzzy rules. The achieved precision of over 90% is 
sufficient since the fuzzy rules only require a binary input 
(e.g. closed profiles yes/no; see Sect. 4.4). Furthermore, the 
curves indicate increasing Recall at a constantly high Preci-
sion level. In contrast, the plot shows a poorer performance 
for curvatures, possibly because labeled curvatures often 
strongly differ from each other in terms of shape, orienta-
tion, and size. Overall, the dark blue curve for all classes is 
in an acceptable range.

The knowledge regarding components’ features can be 
used as additional input for the fuzzy rules (e.g. closed 

Table 4  Overview of the 
number of marked features per 
class within the training data

Hole/bore Closed profile Closed profile not white Coinage Curvature Flange

Number of features 11,160 260 2948 2948 976 548

Table 5  Overview of the different network architectures of the 
YOLOv5 model

S-Net M-Net L-Net XL-Net

Quantity parameter (in million) 7.2 21.2 46.5 86.7
CPU interference time (in ms) 98 224 430 766
mAPval 0.5 56.0 63.9 67.2 68.9
mAPval 0.5:0:95 37.2 45.2 48.8 50.7

Table 6  Validation results of 
the versions of the YOLOv5 
architecture

Version Grid Pretrained 
weights

Image size Precision Recall mAPval

0.5
mAPval

0.5:0:95

V1 S Yes 1024 × 1024 0.847 0.731 0.748 0.471
V2 S No 928 × 928 0.768 0.765 0.754 0.443
V3 M Yes 864 × 864 0.857 0.727 0.734 0.471
V4 M No 864 × 864 0.821 0.763 0.761 0.463
V5 L Yes 832 × 832 0.837 0.747 0.742 0.477
V6 L No 832 × 832 0.836 0.756 0.766 0.477

Fig. 23  Course of Precision over Recall for the different component 
features during the training of version V2
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profiles for pressing assessments, see Sect.  4.4) and 
to improve the Cost Modules’ cost predictions. These 
adjustments within the Cost Module are currently under 
development.

4.3  Application of the Geometry Module

This section elaborates on the application of the Geometry 
Module with the multi-view approach as the identified best 
classification model (Sect. 4.1) and YOLO V2 as the best 
object detection model (Table 6, Sect. 4.2). It was applied 
for an SUV with more than 400 car body components. The 
classification results are shown in Fig. 24 and illustrate the 
distribution by manufacturing technology.

Deep-drawing components make up the largest share 
with 81%. This result is plausible due to the dominant use 
of this manufacturing technology in modern car bodies. 
Table 7 shows the actual distribution of each manufacturing 
technology versus the predictions of the Geometry Module. 
Classifications by the casting/deep drawing or pressing/
deep drawing double class were counted with 0.5% points 
per individual class. Unknown components are parts with-
out clear information regarding the current manufacturing 
technology, possibly due to a lack of information in the data-
bases. They are considered anyway to ensure an application 
for the holistic car body architecture of the chosen vehicle 
model.

Overall, the geometry module’s output meets reality 
while suggesting potential changes in manufacturing tech-
nology for around 7–8% of the components. The goal of the 
geometry module was thus met.

4.4  Integrating the geometric parameters 
into the part screening methodology

An overview of all fuzzy input variables of all four modules 
is illustrated in Table 8. The Geometry Module provides 
two new input features: The classification results and the 
binary value closed profile (in red). The classification was 

implemented via a trapezoidal membership function in three 
increments. Closed profiles are indicated by a binary value 
and processed via a triangle membership function.

Rules of the geometry module.
This section provides an overview of the Geometry Mod-

ule’s fuzzy rules for each manufacturing technology. These 
rules can be adapted depending on the intended strictness 
within the use case: the higher the required geometric clas-
sification percentage is to reach a medium or high evaluation, 
the stricter the technology assessment is.

The following intervals have been chosen for the evalu-
ation of each technology and component (also see Fig. 30):

1. If the maximum classification value of a technology (≙ 
Output of the Geometry Module) is less than 40%, the 
respective technology is evaluated with a low potential 
for the component.

2. If the maximum classification value of a technology 
ranges between 40 and 60%, the respective technology 
is evaluated with a medium potential for the component.

3. If the maximum classification value of a technology is 
more than 60%, the respective technology is evaluated 
with a high potential for the component.

Deep drawing. Out of the picture classification task, the 
three classes deep drawing, casting/deep drawing as well 
as pressing/deep drawing are relevant. The fuzzy rules are 

Fig. 24  Evaluation of the results after applying the Geometry Mod-
ule, distribution by manufacturing technology

Table 7  Comparison of the actual technology distribution   and the 
results of the Geometry Module’s prediction

Manufacturing technology Actual proportion 
(%)

Predicted 
proportion 
(%)

Deep Drawing 89.5 89
Pressing 1.9 7.5
Casting 0 3.5
Unknown 8.6 –

Table 8  Overview of the fuzzy input variables of all four modules, 
type of membership function, and respective value ranges (color fig-
ure online)

Membership func�on

Input variable FT specific Type Value / Interval
Material no Singleton func�on 1; 2
Weigh�ng factor costs no Trapezoidal func�on 0-0.5; 0.5-0.8; 0.8-1
Part volume no Trapezoidal func�on 0-10; 10-50; 50-100000
Corrosion requirements no Singleton func�on 1; 2; 3; 4
Crash requirements no Singleton func�on 1; 2; 3; 4
Temperature requirements no Singleton func�on 1; 2; 3; 4
Lightweight ra�o no Trapezoidal func�on 0; 0-0.2; 0.2-1
Part func�onality no Singleton func�on 1; 2
Name push yes Singleton func�on 1; 2
Classifica�on no Trapezoidal func�on 0-40; 40-60; 60-100
Evalua�on closed profile yes Singleton func�on 1; 2
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applied based on the maximum classification value across 
these three classes (= output of the geometry module).

Figure 25 visualizes the deep drawing scenario of the 
fuzzy rules for an exemplary component with a classifica-
tion result (cr) of 61% or 0.61. The selected defuzzifica-
tion method centroid calculates the geometric center of the 
resulting red areas and thus led to a deep drawing potential 
(ddp) of 78 for this component.

Pressing. The classes pressing and pressing / deep draw-
ing are relevant to assess the geometric pressing potential 
of a component. The fuzzy rules are applied based on the 
maximum classification value across the two classes.

To realize a distinction between the two extrusion tech-
nologies pressing and rolling, the feature closed profile was 
used as follows:

1. If no closed profiles are recognized, the component is 
evaluated with a low pressing potential.

2. If closed profiles are recognized, the component is evalu-
ated with a high pressing potential.

These rules embody the characteristics of the pressing 
technology since pressing is ideal to manufacture extruded 
components that require closed profiles.

Rolling. Due to the low number of rolling parts in mod-
ern car body architectures and the respective low number 
of rolling images, this extrusion technology relies on the 
classification results of the extrusion classes pressing and 
pressing/deep drawing. Additionally, the feature closed 
profile was used:

1. If no closed profiles are recognized, the component is 
evaluated with a high rolling potential.

2. If closed profiles are recognized, the component is evalu-
ated with a low rolling potential.

Casting. The classes casting and casting/deep draw-
ing are relevant. The fuzzy rules are applied based on the 
maximum classification value across the two classes.

Threshold check. Additionally, it is checked whether 
a technology’s maximum classification value exceeds a 
threshold of 20%. If not, the respective technology poten-
tial is set to zero since it is not suitable to create the com-
ponent’s required geometry.

Additive manufacturing. There are only a few addi-
tively manufactured components in the series production 
of car bodies. Furthermore, the high design freedom of 
AM components allows to manufacture any geometry. 
Hence, the AM analysis requires a different approach and 
cannot rely on classification results. The component fea-
tures (recognized by the object recognition) can be used to 
derive geometric criteria for the evaluation of AM poten-
tials. The following rules have been implemented:

 i. If the maximum edge length of a component exceeds 
300 mm, the component is discarded for AM due to 
the 3D printers’ limits in building space and economic 
disadvantages of AM.

 ii. The ratio of the volume of the component’s surround-
ing bounding box in x, y, and z-direction over the 
component’s volume itself is relevant. The higher 
this ratio, the less space is occupied by the compo-
nent within its surrounding bounding box. A high ratio 
indicates a strongly curved component with a complex 
geometry. This complexity causes high conventional 
manufacturing costs and thus indicates AM potential 
(ratio > 20; empirically derived). A ratio close to 1 
indicates an almost cubic, geometrically simple com-
ponent.

 iii. The ratio of the number of component features and 
the component’s surface in  cm2 can be calculated. 

Fig. 25  Visualization of the geometry module’s three deep drawing 
fuzzy rules for an exemplary component with a deep drawing cr of 
61%
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This rule describes the complexity of the components 
through the accumulation of many features in a small 
area. Components with many features are of interest 
for AM due to their expensive manufacture with con-
ventional technologies. If this value falls below the 
empirically derived limit of 0.03 features per  cm2, the 
component is not suitable to be additively manufac-
tured.

Further rules of other screening modules.
In addition to the Geometry Module, further fuzzy rules 

of the three other modules must be applied to quantify the 
final technology potential of each component. Since the arti-
cle at hand focuses on the Geometry Module, the holistic 
evaluation of the overarching part screening methodology 
and all fuzzy rules will be part of the main author’s next 
publication.

5  Summary and outlook

This work elaborated on a method for an automated 
geometry analysis of metallic components within a part 
screening methodology to accelerate product development 
processes. The resulting Geometry Module represents 
the fourth source of information within the screening 
approach that compares different manufacturing technol-
ogies on a component level. It embodies the following 
achievements and thus affirms the research questions of 
Sect. 2.3:

• Picture recognition and classification: 2D image data 
can be used to classify components by manufacturing 
technology using a multi-view model. The 2D approach 
ensured low computing times even for a high number of 
components and images. The classification results led to 
insights regarding alternative manufacturing technolo-
gies that differ from the components’ status quo.

• Object recognition within pictures: Holes, bores, and 
closed profiles can be detected within component pic-
tures and used to support the classification task and 
the fuzzy rules. The achieved accuracies of over 90% 
on a picture level are sufficient for the fuzzy approach 
of the overall methodology. Using the existing images 
of the classification task ensured a lean data flow 
within the Geometry Module.

• Part screening: The Geometry Module was integrated 
into the data flow of already existing modules of the 
overarching part screening methodology. The classi-

fication values and component features can be used to 
expand fuzzy rule sets for the evaluation of manufac-
turing technology alternatives. The execution of the 
Geometry Module with over 400 components took 
1.5 h. The automized, image-based approach hence 
confirmed the intended acceleration of geometric anal-
yses compared to CAD-based methods. The loading 
and analysis of 3D-parts, e.g., with existing geomet-
ric similarity assessment tools in CATIA, took around 
1 min per part (on a 16 GB RAM machine), hence 
6.5 h for 400 components.

The geometry module’s general approach should 
be transferred and tested in other application fields to 
ensure its validity. Furthermore, an in depth-comparison 
of the image-based object detection approach with, e.g. 
shape segmentation of 3D objects might allow for further 
insights regarding the trade-off between short computing 
times and high accuracies. The holistic screening meth-
odology’s technology suggestions considering all four 
modules will be critically examined as part of the main 
author’s next publication.

Appendix: Training and validation 
of the classification approaches of Sect. 4.1

See Figs. 26, 27, 28, 29 and 30.

Fig. 26  Training and validation results of the stitching approach, vis-
ualization of accuracy and loss
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Fig. 27  Training and validation results of the 7NN approach, visuali-
zation of accuracy and loss, perspective “bottom”

Fig. 28  Training results of version V2 of the single CNN approach, 
visualization of accuracy and loss

Fig. 29  Training results of the best version of the multi-view 
approach with data base extension, visualization of accuracy and loss

Fig. 30  Training results of the multi-view approach with class exten-
sion, visualization of accuracy and loss



19Production Engineering (2023) 17:1–20 

1 3

Acknowledgements This work was carried by order of the BMW 
Group in cooperation with the Technical University of Munich.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Schmenner RW, Swink ML (1998) On theory in operations man-
agement. J Oper Manag 17(1):97–113

 2. Ehrlenspiel K, Kiewert A, Lindemann U, Mörtl M (2014) Kos-
tengünstig Entwickeln und Konstruieren. Springer, Berlin. https:// 
doi. org/ 10. 1007/ 978-3- 642- 41959-1

 3. Sabadka D, Molnár V, Fedorko G (2019) Shortening of life 
cycle and complexity impact on the automotive industry. TEM J 
8(4):1295–1301

 4. Buechler T, Schumacher F, Reimann P, Zaeh MF (2021) Method-
ology for an automatic and early manufacturing technology selec-
tion on a component level. Prod Eng Res Devel 16:23–41. https:// 
doi. org/ 10. 1007/ s11740- 021- 01070-2

 5. Nandhakumar S, Thirumalai R, Viswaaswaran J, Senthil TA, 
Vishnuvardhan VT (2021) Investigation of production costs in 
manufacturing environment using innovative tools. Mater Today 
Proc 37(Part 2):1235–1238

 6. Buechler T, Kolter M, Hallweger L, Zaeh MF (2022) Predictive 
cost comparison of manufacturing technologies through analyz-
ing generic features in part screening. CIRP J Manuf Sci Technol. 
https:// doi. org/ 10. 1016/j. cirpj. 2022. 04. 012

 7. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT 
Press, Cambridge (ISBN: 978-0262035613)

 8. Paass G, Hecker D (2020) Künstliche Intelligenz. Springer Fach-
medien, Wiesbaden. https:// doi. org/ 10. 1007/ 978-3- 658- 30211-5

 9. Rebala G, Ravi A, Churiwala S (2019) An introduction to 
machine learning. Springer, Cham. https:// doi. org/ 10. 1007/ 
978-3- 030- 15729-6

 10. Hadjileontiadis LJ, Moussavi ZMK (2018) Current techniques for 
breath sound analysis. In: Priftis K, Hadjileontiadis L, Everard M 
(eds) Breath sounds. Springer, Cham, pp 139–177. https:// doi. org/ 
10. 1007/ 978-3- 319- 71824-8_9

 11. Janiesch C, Zschech P, Heinrich K (2021) Machine learning and 
deep learning. Electron Mark. https:// doi. org/ 10. 1007/ s12525- 
021- 00475-2 (forthcoming)

 12. Valaskova K, Kliestik T, Misankova M (2014) The role of fuzzy 
logic in decision making process. In: 2nd international conference 
on management innovation and business innovation, Bangkok, 
Thailand. https:// doi. org/ 10. 5729/ lnms. vol44. 143

 13. Kruse R, Borgelt C, Braune C, Klawonn F, Moewes C, Stein-
brecher M (2015) Computational intelligence. Eine methodis-
che Einführung in Künstliche Neuronale Netze, Evolutionäre 

Algorithmen, Fuzzy-Systeme und Bayes-Netze. Pp 1–11. ISBN 
978-3-658-10904-2

 14. Wohlkinger W, Aldoma A, Busu RB, Vincze M (2012) 3DNet: 
large-scale object class recognition from CAD models. Inst Electr 
Electron Eng. https:// doi. org/ 10. 1109/ ICRA. 2012. 62251 16

 15. Chauhan R, Ghanshala KK, Joshi RC (2018) Convolutional neural 
network (CNN) for image detection and recognition. In: 2018 first 
international conference on secure cyber computing and commu-
nication (ICSCCC), pp 278–282. 978-1-5386-6373-8

 16. Fang W, Zhang F, Sheng VS, Ding Y (2018) A method for 
improving CNN-based image recognition using DCGAN. CMC 
57(1):167–178. https:// doi. org/ 10. 32604/ cmc. 2018. 02356

 17. Simonyan K, Zisserman A (2014) Very deep convolutional net-
works for large-scale image recognition. arXiv: 1409. 1556v5

 18. Hejrati M (2015) Analyzing 3D objects in 2D images. Disserta-
tion, University of California, Irvine

 19. Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view 
convolutional neural networks for 3D shape recognition. In: 2015 
IEEE international conference on computer vision (ICCV). IEEE, 
pp 945–953. https:// doi. org/ 10. 1109/ ICCV. 2015. 114

 20. Seeland M, Maeder P (2021) Multi-view classification with con-
volutional neural networks. PLoS ONE 16(1):e0245230. https:// 
doi. org/ 10. 1371/ journ al. pone. 02452 30

 21. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for 
image recognition. arXiv: 1512. 03385 v1

 22. Feng Y, Zhang Z, Zhao X, Ji R, Gao Y (2018) GVCNN: group-
view convolutional neural networks for 3d shape recognition. In: 
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, Salt Lake City, 18–23 June 2018, pp 264–272. 
https:// doi. org/ 10. 1109/ CVPR. 2018. 00035

 23. Padilla R, Netto SL, Da Silva EAB (2020) A survey on perfor-
mance metrics for object-detection algorithms. In: Proceedings of 
the 2020 international conference on systems, signals and image 
processing (IWSSIP). Published by Paiva AC, IEEE, Piscataway, 
NJ, pp 237–242. https:// doi. org/ 10. 1109/ IWSSI P48289. 2020. 
91451 30

 24. Long J, Shelhamer E, Darrell T (2015) Fully convolutional net-
works for semantic segmentation. CVPR 2015:3431–3440

 25. Wang P, Gan Y, Shui P, Yu F, Zhang Y, Chen S, Sun Z (2018) 
3D shape segmentation via shape fully convolutional networks. 
Comput Graph. https:// doi. org/ 10. 48550/ arXiv. 1702. 08675

 26. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. Adv Neural Inf 
Process Syst 25(2):2012

 27. Kalogerakis, E; Subhransu M, Melinos A; Chaudhuri, S (2017) 3D 
Shape segmentation with projective convolutional networks. In: 
Proceedings of the IEEE computer vision and pattern recognition 
(CVPR). https:// doi. org/ 10. 48550/ arXiv. 1612. 02808

 28. Guan B, Li H, Zhou F, Lin S, Wang R (2021) LGCPNet: local-
global combined point-based network for shape segmentation. 
Comput Graph 97:208–216. https:// doi. org/ 10. 1016/j. cag. 2021. 
04. 028

 29. Li L, Sung M, Dubrovina A, Yi L, Guibas L (2019) Supervised fit-
ting of geometric primitives to 3D point clouds. In: Conference on 
Computer Vision and Pattern Recognition (CVPR) 2019. https:// 
doi. org/ 10. 1109/ CVPR. 2019. 00276

 30. Duanshun L, Feng C (2019) Primitive fitting using deep geometric 
segmentation. In: 36th international symposium on automation 
and robotics in construction (ISARC 2019). https:// doi. org/ 10. 
48550/ arXiv. 1810. 01604

 31. Amit Y, Felzenszwalb P, Girshick R (2020) Object detection. In: 
Computer vision. Springer International Publishing, Cham, pp 
1–9. https:// doi. org/ 10. 1007/ 978-3- 030- 03243- 2660-1

 32. Redmon J, Divvala S, Girshick R, Farhadi A (2015) You only look 
once: unified, real-time object detection. arXiv: 1506. 02640 v5

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-41959-1
https://doi.org/10.1007/978-3-642-41959-1
https://doi.org/10.1007/s11740-021-01070-2
https://doi.org/10.1007/s11740-021-01070-2
https://doi.org/10.1016/j.cirpj.2022.04.012
https://doi.org/10.1007/978-3-658-30211-5
https://doi.org/10.1007/978-3-030-15729-6
https://doi.org/10.1007/978-3-030-15729-6
https://doi.org/10.1007/978-3-319-71824-8_9
https://doi.org/10.1007/978-3-319-71824-8_9
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.5729/lnms.vol44.143
https://doi.org/10.1109/ICRA.2012.6225116
https://doi.org/10.32604/cmc.2018.02356
http://arxiv.org/abs/1409.1556v5
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1371/journal.pone.0245230
https://doi.org/10.1371/journal.pone.0245230
http://arxiv.org/abs/1512.03385v1
https://doi.org/10.1109/CVPR.2018.00035
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.48550/arXiv.1702.08675
https://doi.org/10.48550/arXiv.1612.02808
https://doi.org/10.1016/j.cag.2021.04.028
https://doi.org/10.1016/j.cag.2021.04.028
https://doi.org/10.1109/CVPR.2019.00276
https://doi.org/10.1109/CVPR.2019.00276
https://doi.org/10.48550/arXiv.1810.01604
https://doi.org/10.48550/arXiv.1810.01604
https://doi.org/10.1007/978-3-030-03243-2660-1
http://arxiv.org/abs/1506.02640v5


20 Production Engineering (2023) 17:1–20

1 3

 33. Jana AP, Biswas A, Mohana (2018) YOLO based detection and 
classification of objects in video records. In: 2018 3rd IEEE inter-
national conference on recent trends in electronics, information 
and communication technology (RTEICT), pp 2448–2452. https:// 
doi. org/ 10. 1109/ RTEIC T42901. 2018. 90123 75.

 34. Zhu X, Lyu S, Wang X, Zhao Q (2021) TPH-YOLOv5: improved 
YOLOv5 based on transformer prediction head for object detec-
tion on drone-captured scenarios. arXiv: 2108.11539

 35. Jocher G, et al., (2021) ultralytics/ yolov5: v6.0—YOLOv5n 
‘Nano’ models, Roboflow integration, TensorFlow export, 
OpenCV DNN support. https:// doi. org/ 10. 5281/ ZENODO. 55637 
15

 36. Yi C, Kaiheng, Chengmeng, Hao Q, Yiming, Hongliang, Yuan L 
(2022) Yolov6: the fast and accurate target detection framework 
is open source

 37. Shi P, Qi Q, Qin Y, Scott PJ, Jiang X (2020) A novel learning-
based feature recognition method using multiple sectional view 
representation. J Intell Manuf 31(5):1291–1309. https:// doi. org/ 
10. 1007/ s10845- 020- 01533-w

 38. Zhang Z, Jaiswal P, Rai R (2018) FeatureNet: machining feature 
recognition based on 3D convolution neural network. Comput 
Aided Des 101:12–22. https:// doi. org/ 10. 1016/j. cad. 2018. 03. 006

 39. Liu W, et al.., (2016) SSD: single shot MultiBox detector. In: 
Leibe B, Matas J, Sebe N, Welling MBd. (eds) Computer 

vision—ECCV 2016. Published by 9905. Lecture notes in com-
puter science. Springer International Publishing, Cham, pp 21–37. 
https:// doi. org/ 10. 1007/ 978-3- 319- 46448- 02

 40. Ning F, Shi Y, Cai M, Xu W, Zhang X (2020) Manufacturing 
cost estimation based on the machining process and deep-learning 
method. J Manuf Syst 56:11–22. https:// doi. org/ 10. 1016/j. jmsy. 
2020. 04. 011

 41. Yoo S, Kang N (2021) Explainable artificial intelligence for man-
ufacturing cost estimation and machining feature visualization. 
Expert Syst Appl. https:// doi. org/ 10. 1016/j. eswa. 2021. 115430

 42. Sager C, Janiesch C, Zschech P (2021) A survey of image label-
ling for computer vision applications. J Bus Anal 4:91–110. 
https:// doi. org/ 10. 1080/ 25732 34X. 2021. 19088 61

 43. Fernández A, García S, Galar M, Prati RC, Krawczyk B, Her-
rera F (2018) Learning from imbalanced data sets. Springer 
International Publishing, New York. https:// doi. org/ 10. 1007/ 
978-3- 319- 98074-4

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/RTEICT42901.2018.9012375
https://doi.org/10.1109/RTEICT42901.2018.9012375
https://doi.org/10.5281/ZENODO.5563715
https://doi.org/10.5281/ZENODO.5563715
https://doi.org/10.1007/s10845-020-01533-w
https://doi.org/10.1007/s10845-020-01533-w
https://doi.org/10.1016/j.cad.2018.03.006
https://doi.org/10.1007/978-3-319-46448-02
https://doi.org/10.1016/j.jmsy.2020.04.011
https://doi.org/10.1016/j.jmsy.2020.04.011
https://doi.org/10.1016/j.eswa.2021.115430
https://doi.org/10.1080/2573234X.2021.1908861
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1007/978-3-319-98074-4

	Automated geometric analysis of metallic components through picture recognition models for manufacturing technology assessments
	Abstract
	1 Introduction
	2 Geometric analyses on a component level
	2.1 Fundamentals
	2.2 State of the art
	2.3 Research gap

	3 The geometry module: general methodology for geometric analyses on a component level
	3.1 Picture recognition and classification
	3.2 Object detection
	3.3 Part screening: analyzing the module’s outputs

	4 The geometry module: exemplary application in car body development
	4.1 Picture recognition and classification
	4.2 Object detection
	4.3 Application of the Geometry Module
	4.4 Integrating the geometric parameters into the part screening methodology

	5 Summary and outlook
	Acknowledgements 
	References




