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Abstract. The classical Kuramoto model consists of finitely many pair-
wisely coupled oscillators on the circle. In many applications a simple
pairwise coupling is not sufficient to describe real-world phenomena as
higher-order (or group) interactions take place. Hence, we replace the
classical coupling law with a very general coupling function involving
higher-order terms. Furthermore, we allow for multiple populations of os-
cillators interacting with each other through a very general law. In our
analysis, we focus on the characteristic system and the mean-field limit
of this generalized class of Kuramoto models. While there are several
works studying particular aspects of our program, we propose a general
framework to work with all three aspects (higher-order, multi-population,
and mean-field) simultaneously. In this article, we investigate dynamical
properties within the framework of the characteristic system. We iden-
tify invariant subspaces of synchrony patterns and study their stability.
It turns out that the so called all-synchronized state, which is one special
synchrony pattern, is never asymptotically stable. However, under some
conditions and with a suitable definition of stability, the all-synchronized
state can be proven to be at least locally stable. In summary, our work pro-
vides a rigorous mathematical framework upon which the further study
of multi-population higher-order coupled particle systems can be based.
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1. Introduction

Interacting oscillatory processes are abundant in science and technology,
whether it is pacemaker cells in the heart [48], neural networks in the brain [52],
the synchronization of chemical oscillators [28], Josephson junctions [54], syn-
chronous flashing fireflies [16], stock prices in financial markets [19], and even
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a group of people causing a bridge to swing by marching over it in step [46].
From a mathematical perspective, many such systems can be described as net-
works of coupled phase oscillators: While each node in the network is a simple
oscillatory process whose state is given by a single phase-like variable on the
circle, the network dynamics—the collective dynamics of all nodes—can be
quite intricate. Probably the most prominent example of collective network
dynamics is synchrony when all nodes evolve in unison [45]. Synchrony can
come in many forms, whether oscillators synchronize in phase or in frequency.
Synchrony may be global across the network or may be localized in part of
the network to give rise to synchrony patterns. Synchrony in its many forms
often is also relevant for the function of a network dynamical system: In neural
networks, synchrony is linked to cognitive function as well as disease [50].

A classical question in network dynamical systems is how the network
structure and functional interactions shape the collective network dynamics.
The Kuramoto model has been instrumental in understanding synchronization
of coupled oscillators [1,33,44].

For a network of N Kuramoto oscillators, each oscillator is described by
a phase θk ∈ S = R/2πZ, k ∈ {1, . . . , N}, that evolves according to

θ̇k = ωk +
K

N

N∑

j=1

sin(θj − θk), (1.1)

where K > 0 is the coupling strength and ωk ∈ R is the intrinsic frequency of
oscillator k. First, consider Kuramoto’s classical problem of the onset of syn-
chrony if the intrinsic frequencies are drawn from a probability distribution
with a unimodal density υ(ω). Uncoupled oscillators (K = 0) behave incoher-
ently but at a critical coupling strength Kc they start to become partially syn-
chronized. To analyze this as a bifurcation problem, Mirollo and Strogatz [47]
considered the mean-field limit of infinitely many oscillators, N → ∞. For (1.1)
the state of the oscillators in the mean-field limit is given by a density ρ(t, ω, θ)
that describes the probability of an oscillator with intrinsic frequency ω to be
at phase θ at time t. It evolves according to the continuity equation

∂

∂t
ρ(t, ω, θ) +

∂

∂θ

[(
ω + K

∫

S

∫

R

sin(γ − θ)ρ(t, ω̄, γ)υ(ω̄)dω̄dγ

)
ρ(t, ω, θ)

]
= 0.

(1.2)

The approach to tackle Kuramoto’s problem, is to understand the bifurca-
tions of the splay state ρ(t, ω, θ) = 1/(2π) =: D, a density that is invariant
under the evolution [44,47]. Second, consider the classical problem in net-
work dynamics of understanding when full synchrony, where all nodes take
the same state—in the context of phase oscillator networks this corresponds
to S = {θ1 = · · · = θN}—is stable, see for example [2,21,41].

However, note that the partial differential equation (PDE) as given in
(1.2) is not immediately appropriate to describe full synchrony S. On the one
hand, for non-atomic distributions of the intrinsic frequencies, the synchro-
nized state is not invariant. It is only invariant under the additional assump-
tion that the intrinsic frequencies of the oscillators are identical. That is why
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previous analyses of full synchrony are usually limited to networks of identical
oscillators [8,17]. On the other hand, the synchronized state cannot be repre-
sented by a density. Therefore, we would need to consider weak measure-valued
solutions of (1.2), which is already an involved construction. Yet, the first-order
PDE (1.2) is connected via the method of characteristics to a system of charac-
teristic equations. The characteristic equations turn out to be more convenient
to study the stability of synchronized states and thus form the foundation for
our analysis: It yields a framework that allows for the simultaneous analysis of
the splay state and full synchrony by taking the evolution of general measures
on the circle into account.

In addition, many oscillatory real-world network dynamical systems are
more complex and cannot be captured using the Kuramoto model. First, one
needs to consider interaction functions that contain more than a single har-
monic [18], for example if the interactions are state-dependent [4]. Considering
a general coupling function g : S → R breaks the degeneracy and chaotic dy-
namics are possible even for a small number of oscillators [15]. Second, many
networks that arise in real-world systems are not homogeneous or all-to-all
coupled but have some form of modularity or community structure [23,40]:
There are different communities or populations that are characterized by the
property that the coupling within a population is different from the coupling
between populations. Even if the populations are identical, multi-population
oscillator networks give rise to a variety of synchrony patterns; see [11] for a
recent review. Third, classical network dynamical systems, such as the Ku-
ramoto model (1.1), assume that interactions take place in terms of pairs:
The influence of two nodes on a third is simply the sum of two individual
contributions. However, nonpairwise higher-order interactions arise naturally
when considering phase reductions (cf. [5,35]) and recent work has highlighted
the dynamical importance of higher-order interactions [7,12]. For example,
Skardal and Arenas [43] considered a system with higher-order interactions
that induced nonstandard synchronization transitions [31]. In their system for
identical oscillators, the phase oscillator dynamics is given by

θ̇i = ω +
K1

N

N∑

j=1

sin(θj − θi) +
K2

N2

N∑

j=1

N∑

l=1

sin(2θj − θl − θi)

+
K3

N3

N∑

j=1

N∑

l=1

N∑

m=1

sin(θj − θl + θm − θi)

(1.3)

with nonadditive interactions that involve triplets and quadruplets of oscilla-
tors. We emphasize that in each of these three examples, generalized inter-
actions lead to new dynamics compared to sinusoidal Kuramoto interactions,
even in the case of identical oscillators. Further examples of new dynamics
are possible if these features are combined, e.g., modular networks of phase
oscillator networks with higher-order interactions allow for heteroclinic struc-
tures between different synchrony patterns [9,10,13]. Specifically, the system
considered in [10] consists of three populations of phase oscillators that are
coupled via higher-order interactions. In this system the synchronization of
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the oscillators in one population can cause oscillators in another population to
desynchronize. That in turn causes the third population to start synchroniz-
ing. This causal chain continues and finally results in a heteroclinic cycle in
which populations sequentially synchronize and desynchronize.

Attracting heteroclinic structures between synchrony patterns exist in
networks of up to nine phase oscillators [10], but numerical simulations indicate
that such structures also exist in larger (finite) networks. However, it is unclear
whether such cycles can also exist in the mean-field limit.

In this paper, we develop a general framework to describe the mean-field
dynamics of multi-population phase oscillator networks with generalized inter-
actions as a set of characteristic equations for the evolution of measures. This
framework is sufficiently general to provide a unified description for the exam-
ples mentioned above with general interactions, including nonsinusoidal and
higher-order interactions. Our main results concern stability of synchrony pat-
terns in this framework. Our results contribute to the understanding of coupled
oscillator networks in several ways. First, we generalize the results of [34] to
transport equations involving finitely many oscillator populations with higher-
order interactions. Second, our stability analysis complements and extends the
work in [17] and [20] by considering a general setting with multiple oscillator
populations and general coupling with nonsinusoidal pairwise and nonpair-
wise higher-order interactions. In our work the stability of synchrony patterns
is studied with a coupling function including higher-harmonics. Third, our ex-
plicit stability results on a measure-valued evolution shows in this setting one
cannot expect asymptotic stability of full phase synchrony but just a weaker
form of stability. Finally, our results provide a first step towards understand-
ing global dynamical phenomena in the general mean-field limit: Our stability
results outline necessary conditions to prove that the heteroclinic structures
for small networks exist in the mean-field limit of large networks.

This work is organized as follows. In the remainder of this section we fix
some notation that will be used throughout and introduce a general system
of equations that describe the network dynamics. In Sect. 2 we introduce the
system of characteristic equations state theorems about existence and unique-
ness of the equations in the space of probability measures and give examples
for their applications. We further clarify the relation between the system of
characteristic equations and the Vlasov–Fokker–Planck PDE. The main re-
sults regarding synchronization are given in Sect. 3. In particular in Sect. 3.1.1
we explain why one can not expect to have asymptotic stability under generic
perturbations in the mean-field limit. Sections 3.1.2 and 3.1.3 give our main
results about (asymptotic) stability. Finally, in Sect. 4 we give some concluding
remarks and an outlook on future research.

Notation

We first fix some notation that will be used throughout this paper. Let P(X)
denote the set of all Borel probability measures on the set X. If S = R/2πZ is
the unit circle then P(S) represents the set of all Borel probability measures



NoDEA Multi-population phase oscillator networks Page 5 of 41 64

on the circle. The symbol Pac(S) is used to denote the set of absolutely contin-
uous probability measures on the unit circle, i.e., those which have a density.
Whenever we write α1 − α2 for two points α1, α2 ∈ S on the circle, we refer to
the value of α1 − α2 ∈ [0, 2π). Further, let us define the open arc on the circle
as

(α1, α2) := {α1 + t(α2 − α1) : t ∈ (0, 1)}. (1.4)

Assuming α1 and α2 are represented by values α1, α2 ∈ (−π, π] we use the
notation

|α1 − α2|S := min(α1 − α2, 2π − (α1 − α2)).

To compare two measures μ, ν ∈ P(S), we use the Wasserstein-1 distance [51],
which is also referred to as the bounded-Lipschitz distance

W1(μ, ν) := inf
γ∈P(S×S)

M1γ=μ, M2γ=ν

∫

S×S

|α − β|S γ(dα,dβ) (1.5a)

= sup
f∈D

∣∣∣∣
∫

S

f(α) dμ(α) −
∫

S

f(α) dν(α)
∣∣∣∣ , (1.5b)

where M1γ and M2γ are the marginals of γ, i.e., the push-forward measures
under the map (α, β) �→ α and (α, β) �→ β and

D := {f ∈ C(S) : |f(α) − f(β)| ≤ |α − β|S for all α, β ∈ S}.

Further, for n ∈ N≥0 we write [n] := {1, . . . , n} and for R ∈ N≥0 we define the
multi-index s = (s1, . . . , sR) ∈ [M ]R. Then, given μ = (μ1, . . . , μM ) ∈ P(S)M ,
we define the measure

μ(s) = (μs1 , . . . , μsR
)

and write |s| = R, s̄ = maxj∈[M ] |{i : si = j}|.

2. Solution theory

In this section we first introduce the system of characteristic equations. Our
equations provide a very general variant of this principle allowing for multi-
population higher-order coupled systems. Yet, the formulation also naturally
reduces to classical cases. Next, we make connections to existing theory [39]
about well-posedness of special cases of our system, for which these results
have already been established. Since the proof in [39], that is based on a con-
traction mapping principle argument in suitable space, can mostly be adopted
to the multi-population model with higher-order interactions we only state
the main definitions and theorems here. However, when generalizing the proof
from [39] to multi-populations, an additional technical Lemma is needed that
estimates the Wasserstein-1 distances of multi-dimensional product measures
in terms of its constituents, see Lemma A.5. For completeness, the full analysis,
together with remarks where it differs from the existing analysis, can be found
in Appendix A.1. Our analysis also relates to recent results on the mean-field
limit on networks with general pairwise interactions [26]; indeed in this special
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case of pairwise interactions, one can show that the multi-population systems
considered here correspond to the dynamics in [26] on invariant subsets forced
by symmetry [14].

2.1. The system of characteristic equations

In this paper, we consider the dynamics of M ∈ N≥1 coupled phase oscillator
populations with identical intrinsic frequencies within each population. We
introduce a general set of equations that describes the network evolution, where
the state of population σ ∈ [M ] is given by a probability measure μσ.

The network interactions are determined by a multi-index sσ ∈ [M ]Rσ

for each population together with Lipschitz continuous coupling functions
Gσ : S|sσ| × S → R. The entries of the multi-index sσ specify the indices
of the populations which influence population σ and the coupling functions
quantify the coupling type and strength. Specifically, these coupling functions
are supposed to be L-Lipschitz when S

|sσ| × S is considered with the metric
d(α, β) =

∑|sσ|+1
i=1 |αi − βi|S.

Before we state the general characteristic equations, we illustrate the
notation on two examples.

Example 2.1. (Skardal–Arenas) Let us now consider a system which still con-
sists of only one population but involves higher-order interactions. Specifically,
we reconsider system (1.3):

θ̇k = ω +
K1

N

N∑

j=1

sin(θj − θk) +
K2

N2

N∑

j=1

N∑

l=1

sin(2θj − θl − θk)

+
K3

N3

N∑

j=1

N∑

l=1

N∑

m=1

sin(θj − θl + θm − θk)

(2.1)

Here, N denotes the amount of discrete oscillators, k ∈ [N ] and K1,K2,K3 ∈
R. In the mean-field limit one assumes that the limiting distribution of the
oscillators {θk}k∈[N ] is represented by a probability measure μ = μ1 ∈ P(S).
To find an equivalent of the right-hand side of (2.1) we first consider the triple
sum in (2.1). Its summand is influenced by three oscillators, θj , θl and θm if
the position θk is fixed. In the mean-field limit, this fixed position is denoted by
φ ∈ S that can be an arbitrary position on the circle and is not constrained to
positions {θk}k∈[N ]. Consequently, these sums should be replaced by integrals
in the mean-field limit, giving us

K3

∫

S

∫

S

∫

S

sin(α1 − α2 + α3 − φ) dμ(α1)dμ(α2)dμ(α3). (2.2)

Now we introduce the multi-index s = s1 = (1, 1, 1), that encodes the infor-
mation that there are three integrals in (2.2) over the first population (hence
the entry 1). Note that there is only one population in this example. Using
this notation, (2.2) can be written as

K3

∫

S|s|
sin(α1 − α2 + α3 − φ) dμ(s)(α).
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To take care of the parts of (2.1) that involve only single and double sums,
we include sums of the form 1

N

∑N
m=1 and 1

N

∑N
l=1 to these parts such that

they are also represented by triple sums. For these parts, the summand of the
these triple sum then does not depend on all indexing variables j, l,m. This
has the advantage that the equivalent of the right-hand side of (2.1) can then
be written as

∫

S|s|
G(α, φ) dμ(s)(α),

where the coupling function G := G1 : S3 × S → R is given by

G(α, φ) = K1 sin(α3 − φ) + K2 sin(2α1 − α2 − φ) + K3 sin(α1 − α2 + α3 − φ).
(2.3)

Example 2.2. (Heteroclinic Structures) We consider the network of M = 3
populations from the introduction in which the heteroclinic connections be-
tween synchronized and desynchronized states have been observed [10]. Here,
finite phase oscillator populations are coupled by higher-order interactions. In
particular, a slightly adopted version of the main equations from [10] is given
by

φ̇σ,k = ωσ +
1
N

N∑

j=1

(
h2(φσ,j − φσ,k) − K−H4(φσ−1;φσ,j − φσ,k)

+K+H4(φσ+1;φσ,j − φσ,k)
)
,

(2.4)

where the index σ ± 1 for the population has to be understood modulo M if
σ ± 1 �∈ {1, 2, 3}. Furthermore, φσ,k refers to the phase of the kth oscillator
in population σ for k = 1, . . . , N , h2 : S → R is a Lipschitz-continuous intra-
population coupling function and

H4(φτ ;φ) =
1

N2

N∑

n,m=1

h4(φτ,m − φτ,n + φ) (2.5)

with a Lipschitz-continuous inter-population coupling function h4 : S → R.
As in the last example, we seek for a representation of the right-hand

side of (2.4) in the mean-field limit. Unlike in the last example, however, there
are now multiple populations, which is why we need a multi-index sσ for each
population σ = 1, 2, 3. The entries of sσ then give the indices of populations
which influence population σ. In other words, if there is an entry σ̂ in sσ it
means that an integral over the measure representing population σ̂ appears in
the mean-field equivalent of (2.4). Specifically, we set s1 = (3, 3, 2, 2, 1), s2 =
(1, 1, 3, 3, 2), s3 = (2, 2, 1, 1, 3) and choose coupling functions that are defined
by G1(α, φ) = G2(α, φ) = G3(α, φ) := G(α, φ) with

G(α, φ) = h2(α5 − φ) − K−h4(α1 − α2, α5 − φ) + K+h4(α3 − α4, α5 − φ).

The mean-field equivalent of the right-hand side of (2.4) can then be
written as
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(Kσμ)(φ) = ωσ +
∫

S

[h2(γ − φ)

− K−
∫

S

∫

S

h4(α − β, γ − φ) μσ−1(dα)μσ−1(dβ)

+K+

∫

S

∫

S

h4(α − β, γ − φ) μσ+1(dα)μσ+1(dβ)
]

μσ(dγ).

Having introduced the notation, we now formulate the general system of
characteristic equations.

The characteristic equations describe the evolution of measures. If μin =
(μin

1 , . . . , μin
M ) ∈ P(S)M denotes the initial state of the network, # denotes the

push-forward operator and μ = (μ1, . . . , μM ), then the evolution of μ(t) =
(μ1(t), . . . , μM (t)) is determined by the characteristic equations

∂tΦσ(t, ξin
σ , μin) = (Kσμ(t))(Φσ(t, ξin

σ , μin)) (2.6a)

μσ(t) = Φσ(t, ·, μin)#μin
σ (2.6b)

Φσ(0, ξin
σ , μin) = ξin

σ . (2.6c)

for σ ∈ [M ], ξin
σ ∈ S, and the evolution operator

(Kσμ)(φ) = ωσ +
∫

S|sσ|
Gσ(α, φ) dμ(sσ)(α), (2.7)

where ωσ ∈ R is the instantaneous frequency of all oscillators in population σ.
The quantity Φσ(t, ξin

σ , μin) can be regarded as the position of a weightless
test particle at time t that initially started at ξin

σ . Note that α in (2.7) is
vector valued, whereas φ is not. In particular, α ∈ S

|sσ| and φ ∈ S. We remark
that the general idea of using a mean-field formulation involving probability
measures is quite classical [25].

Definition 2.3. Let μin = (μin
1 , . . . , μin

M ) ∈ P(S)M . If functions t �→ Φσ(t, ξin
σ ,

μin) solve the ordinary differential Eq. (2.6a) together with (2.6b), (2.6c) and
(2.7), they are referred to as the mean-field characteristic flow. In this case,
μ ∈ CM

P(S), given by (2.6b), is a solution of the system (2.6)–(2.7).

Remark 2.4. For a given mean-field characteristic flow Φσ, the solution μ of
the characteristic system is uniquely given by (2.6b). Conversely, for a given
solution μ ∈ CM

P(S), the mean-field characteristic flow Φσ is unique, as one can
see by integrating (2.6a) and (2.6c).

2.2. Existence and uniqueness for the characteristic system

We start with existence and uniqueness building upon ideas by Neunzert [39]
developed in the context of more classical single-population kinetic models,
which lead to similar mean-field limits in comparison to our system (2.6)–
(2.7). First, we have to define a suitable space for solutions.

Definition 2.5. Let T > 0. A function μ : [0, T ] → P(S) is weakly continuous if
for all f ∈ C(S) the map

t �→
∫

S

f(φ) μ(t,dφ)
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is continuous. Let CP(S) be the set of all weakly continuous functions μ : [0, T ] →
P(S).

For a given μ ∈ CM
P(S), let T σ

t,s[μ] denote the flow induced by the velocity
field (Kσμ(t))(φ), i.e.,

d
dt

T σ
t,s[μ]φ = (Kσμ(t))(T σ

t,s[μ]φ), T σ
s,s[μ]φ = φ. (2.8)

For given μin ∈ P(S)M we now consider the mapping
A : CM

P(S) → CM
P(S) with (Aμ)σ(t) := T σ

t,0[μ]#μin
σ . (2.9)

It can be shown that A as defined in (2.9) is a self mapping when choosing an
appropriate metric, see Lemma A.9. The following theorem then follows from
the contraction mapping principle:

Theorem 2.6. (cf. [39], Theorem 2) For given μin = (μin
1 , . . . , μin

M ) ∈ P(S)M

there exists a unique solution μ ∈ CM
P(S) for the system (2.6)–(2.7).

Remark 2.7. As T > 0 is arbitrary, we do not explicitly include T in the no-
tation CP(S) for functions mapping from [0, T ] to P(S). Since the following
existence and uniqueness result as well as results regarding continuous depen-
dence on initial conditions are valid for all T > 0, they can be extended to
hold on the half-open interval [0,∞).

Example 2.8. (Discrete initial measures) As a special case of the characteristic
system (2.6)–(2.7), one is often interested in choosing μin as a discrete measure.
In particular, initial measures of the form

μin
σ =

1
N

N∑

k=1

δφin
σ,k

, σ ∈ [M ], (2.10)

describe the discrete states of N oscillators in each of the M populations. It
can easily be seen, that if functions φσ,k : R≥0 → S solve the finite-dimensional
generalized Kuramoto system

φ̇σ,k = ωσ +
1

N |sσ|
∑

i∈[N ]|sσ|

Gσ(φsσ
1 ,i1 , . . . , φsσ

|sσ|,i|sσ| , φσ,k) (2.11)

with initial condition φσ,k(0) = φin
σ,k, then the measures

μσ(t) =
1
N

N∑

k=1

δφσ,k(t) (2.12)

solve the characteristic system (2.6)–(2.7).

2.3. Vlasov–Fokker–Planck mean-field equation

Consider the special case that the initial measures μin
1 , . . . , μin

M ∈ P(S) all have
a density, that we denote by ρin

σ (φ). It can be shown that the measures μσ(t)
for σ ∈ [M ] also have densities ρσ(t, φ) for times t ≥ 0 and they solve the
Vlasov–Fokker–Planck Mean-Field Equation

∂

∂t
ρσ(t, φ) +

∂

∂φ
(Vσ[ρ](t, φ)ρσ(t, φ)) = 0, (2.13)
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with

Vσ[ρ](t, φ) = (Kσμρ(t))(φ)

and σ ∈ [M ]. Here, μρ(t) ∈ P(S)M is the collection of measures whose densities
are given by (ρσ(t, ·))σ∈[M ]. The initial conditions

ρσ(0, φ) = ρin
σ (φ) (2.14)

are given such that
∫

S

ρin
σ (φ) dφ = 1.

Definition 2.9. (Strong Solution) A family of densities ρσ ∈ C1([0, T ] × S) is a
strong solution if it satisfies (2.13) and (2.14).

By this definition non-differentiable densities cannot be strong solutions.
To make them admissible anyway, we weaken the definition by multiplying
(2.13) by a test function wσ ∈ C1([0, T ] × S) that has compact support in
[0, T )×S and perform partial integration using the boundary condition (2.14).
By doing so we arrive at the following definition of a weak solution:

Definition 2.10. (Weak Solution) A collection of measurable functions (ρσ)σ∈[M ]

with ρσ : [0, T ] × S → R is a weak solution of the initial value problem (2.13)–
(2.14) if the following two conditions are fulfilled:

• For every f ∈ C(S) and for all σ ∈ [M ], the maps t �→ ∫
S
f(α)ρσ(t, α)dα

are continuous.
• For all σ ∈ [M ] and wσ ∈ C1([0, T ]×S) with compact support in [0, T )×S,

the following identity holds
∫ T

0

∫

S

ρσ(t, φ)
(

∂

∂t
wσ(t, φ) + Vσ[ρ](t, φ)

∂

∂φ
wσ(t, φ)

)
dφdt

+
∫

S

ρin
σ (φ)wσ(0, φ) dφ = 0.

However, not all measures need to have a density. To make all measures
admissible, we weaken the definition once again.

Definition 2.11. (Weak Measure-Valued Solution) A family of measures
(μσ)σ∈[M ] ∈ CM

P(S) is a weak measure valued solution of the initial value prob-
lem (2.13)–(2.14) if for all σ ∈ [M ] and wσ ∈ C1([0, T ] × S) with compact
support in [0, T ) × S, the following identity holds:

∫ T

0

∫

S

(
∂

∂t
wσ(t, φ) + Vσ[ρ](t, φ)

∂

∂φ
wσ(t, φ)

)
μσ(t,dφ)dt

+
∫

S

wσ(0, φ) μin
σ (dφ) = 0.

Finally, weak measure valued solutions of the initial value problem (2.13)–
(2.14) is the most general definition of solutions. In fact, it can be shown that
this definition is equivalent with the definition of solutions to the system of
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characteristic Eqs. (2.6) and (2.7). A family of measures (μσ)σ∈[M ] ∈ CM
P(S)

is a weak measure valued solution of the initial value problem (2.13)–(2.14) if
and only if it is a solution to the system of characteristic Eqs. (2.6) and (2.7).
This can be shown by following the calculations in [25, Theorem 2.3.6 and
Theorem 3.3.4] and [39].

Even though these two formulations of solutions are equivalent, we work
with the system of characteristic equations, since this is more convenient to
study the stability of solutions in Sect. 3.

3. Synchrony and synchrony patterns and their stability

The emergence of synchrony is an essential collective phenomenon of coupled
oscillator networks. Recall that for a single population of identical phase oscil-
lators, the splay state D describes the phase configurations where the phases
are equidistributed on the circle and S denotes full (phase) synchrony where
the phase of all oscillators take the same value. Networks that consist of multi-
ple populations of phase oscillators, can give rise to synchrony patterns, where
individual populations are either phase synchronized or in splay state. In this
section we analyze the stability properties of such synchrony patterns in the
mean-field system (2.6), (2.7). We find that patterns that contain fully syn-
chronized populations cannot be asymptotically stable for the characteristic
mean field equations, even relative to phase shift invariance.

Definition 3.1. We write D =
{

1
2π λS

}
, where λS is the Hausdorff measure on S,

and S = { δξ | ξ ∈ S}. Population σ ∈ [M ] is in splay phase D if μσ ∈ D and
phase synchronized if μσ ∈ S.

We adopt the notation in [10] and write D if a population is in splay
configuration and S if it is phase synchronized. That is, we write

μ1 · · · μσ−1Sμσ+1 · · · μM =
{

μ ∈ P(S)N
∣∣ μσ ∈ S

}
, (3.1a)

μ1 · · · μσ−1Dμσ+1 · · · μM =
{

μ ∈ P(S)N
∣∣ μσ ∈ D

}
(3.1b)

to indicate that population σ is fully phase synchronized or in splay phase.
We extend the notation to intersections of the sets (3.1). Consequently, S · · · S
(M times) is the set of cluster states where all populations are fully phase
synchronized and D · · · D the set where all populations are in splay phase.
While it is easy to see that the synchrony pattern S · · · S is invariant under
the dynamics of (2.6), (2.7), this is in general not true for D · · · D. For this
synchrony pattern to be invariant, we additionally assume that each population
is only influenced by phase differences of oscillators from the same population.
To make this precise, we assume the multi-indices sσ and the coupling functions
Gσ to be of a special form. Firstly, the length of the multi-index sσ is supposed
to be an odd number, i.e. |sσ| = 2Lσ + 1 for some Lσ ∈ N≥0. Secondly, each
second entry equals the previous entry, i.e. sσ

2j = sσ
2j−1 for all j ∈ [Lσ] and

thirdly, we assume the last entry to be given by σ itself, i.e. sσ
2Lσ+1 = σ.

Summarizing these conditions we can write the multi-indices sσ as

sσ = (rσ
1 , rσ

1 , rσ
2 , rσ

2 , . . . , rσ
Lσ

, rσ
Lσ

, σ) (3.2)
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for rσ
j := sσ

2j . These coefficients can be summarized into new multi-indices rσ =
(rσ

1 , . . . , rσ
Lσ ) with |rσ| = Lσ. Further, the coupling functions Gσ : S|sσ|×S → R

are supposed to be of the form

Gσ(α, φ) = gσ((α1 − α2, . . . , α2Lσ−1 − α2Lσ
), α2Lσ+1 − φ), (3.3)

for functions gσ : SLσ × S → R. These conditions can be summarized by re-
quiring the velocity field Kσμ to be given by

(Kσμ)(φ) = ωσ +
∫

S

∫

S|rσ|

∫

S|rσ|
gσ(α − β, γ − φ) dμ(rσ)(α)dμ(rσ)(β)dμσ(γ).

(3.4)

With this coupling, one population can only influence another population
through its phase differences, which can lead to additional symmetries [14].

In the remainder of this paper we study the system (2.6) with (3.4). Our
examples can be recast in the notation above:

Example 3.2. (Skardal–Arenas) Let us reconsider Example 2.1. While the mul-
tiindex s1 = (1, 1, 1) can be cast into the form (3.2), the coupling function (2.3)
is not of the form (3.3), since it does not only depend on α1 − α2 and α3 − φ.
This is only true when K2 = 0. In this case the new multi-index is given by
r1 = (1) and the coupling function g := g1 is given by

g(β, γ) = K1 sin(γ) + K3 sin(β + γ).

Example 3.3. (Heteroclinic Structures) Now, we reconsider Example 2.2. Note
that all of the multi-indices are of the special form (3.2). Furthermore, the
coupling functions are only dependent on α1 − α2, α3 − α4 and α5 − φ. Thus,
with r1 = (3, 1), r2 = (1, 3), r3 = (2, 1) this system can also be put into
the form (3.4). The coupling functions are given by g1(α, φ) = g2(α, φ) =
g3(α, φ) := g(α, φ), with

g(α, γ) = h2(γ) − K−h4(α1, γ) + K+h4(α2, γ).

Proposition 3.4. (Reducibility to lower dimensions) If we fix m populations,
each to be in splay or in synchronized state, the other M−m populations behave
accordingly to (2.6), (3.4) with M − m instead of M and different coupling
functions.

Since this Proposition can be proven by straightforward insertion of the
synchronized or splay state in (3.4); for completeness the full proof of this
proposition can be found in the Appendix A.2.

Now, we can deduce that synchrony patterns that consist of synchronized
and splay states are dynamically invariant:

Proposition 3.5. Subsets of the form (3.1) are invariant under the flow of (2.6),
(3.4).

The full proof can be found in Appendix A.2, but we include a short
sketch here: For the synchronized state this is clear, since it is represented
by a Dirac measure and push-forwards of those, as considered in (2.6), are



NoDEA Multi-population phase oscillator networks Page 13 of 41 64

still Dirac measures. If a population is in splay state, the evolution operator
(Kσμ(t))(φ) is independent of φ, as one can see by conducting a phase shift.
As D is invariant under rotations the splay state is dynamically invariant, too.

Remark 3.6. Because intersections of invariant sets are again invariant, any
combination of S,D and (μσ)σ∈[M ] is also invariant.

3.1. Stability of phase synchronized states

What is the (asymptotic) stability of phase synchrony? For networks for finitely
many oscillators, (linear) stability is determined by the derivative of the cou-
pling function at zero [3]. For mean-field limits, previous work has predomi-
nantly considered networks with sinusoidal coupling. Carillo et al. [17] consid-
ered the stability of the synchronized state with respect to the Wasserstein-1
distance: For a single population with coupling function g(φ) = sin(φ), the
authors proved that whenever the initial measure is contained in one half of
the circle S and K > 0, the measure valued solution converges to a synchro-
nized state in the Wasserstein-1 metric as t → ∞ [17, Theorem 4.1]. However,
requiring the initial measure to be contained in one half of the unit circle does
not capture all generic perturbations of the synchronized state with respect to
this metric. Moreover, this result depends on the specific coupling function sin.
Benedetto et al. [8] derived similar result for a continuity equation that de-
scribes the evolution of identical phase oscillators for g(φ) = sin(φ): Whenever
a initial density is not stationary, it converges weakly to a measure of the form
δ = c1δθ + c2δθ+π, where θ ∈ S, c1, c2 ≥ 0 and c1 + c2 = 1 [8, Theorem 3.1].
Moreover, the measure converges to full synchrony if the initial measure is
non-atomic. While in this case weak convergence of measures to a synchro-
nized state is equivalent to convergence of the measure to a synchronized state
with respect to the Wasserstein-1 metric, the result depends on the simple
sinusoidal coupling function. Note that the special case of sinusoidal coupling
possesses additional structure such that the theory developed by Watanabe
and Strogatz [53] can be applied to understand the dynamics in the global
phase space; higher-harmonics and generic nonpairwise interactions break this
structure.

We here elucidate the stability of phase synchrony (and, by extension
synchrony patterns, where some populations are fixed in synchronized or splay
state) for general coupling functions with nontrivial higher-harmonics and non-
pairwise interactions. Moreover, our main Theorems 3.16 and 3.22 yield state-
ments about stability with respect to generic perturbations of phase synchrony
with respect to the Wasserstein-1 metric.

Phase configurations in which populations is synchronized are dynami-
cally invariant. Note that phase-synchronized are sets rather than points. More
specifically, for a single population the synchronized state is the set

S := {δξ : ξ ∈ S}.

Similarly, if there are multiple populations, the all-synchronized state is

SM := S · · · S = {μ ∈ P(S)M : μ = (δξ1 , . . . , δξM
), ξ1, . . . , ξM ∈ S}.

Thus, we have to consider the stability of these sets.
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Notation 3.7. For an ease of notation, we will write
• W1(S, μ) = infδ∈S W1(δ, μ), for μ ∈ P(S),
• μ(t) → S as t → ∞ if limt→∞ W1(S, μ(t)) = 0, for μ ∈ CP(S),
• B(S, ε) =

⋃
δ∈S B(δ, ε),

where B(δ, ε) denotes the ball centered at a measure δ of radius ε in the
Wasserstein-1 metric.

The following definition is the natural variant of (Lyapunov) stability in
our setting:

Definition 3.8. The set SM is stable if for all σ ∈ [M ] and all neighborhoods
Uσ ⊂ P(S) of S there exist neighborhoods Vσ of S such that for any μin =
(μin

1 , . . . , μin
M ) ∈ V1 × · · · × VM , the solution μ(t) of (2.6), (3.4) satisfies μ(t) ∈

U1 × · · · × UM for all t ≥ 0.

Of course, one often does not only want to show stability of solutions
staying near an invariant set but also that the solutions tend towards the
invariant set:

Definition 3.9. The set SM is asymptotically stable if it is stable and, addition-
ally, there exists a neighborhood V = V1 × · · · × VM ⊂ P(S)M such that for
all μin ∈ V the solution of (2.6), (3.4) satisfies μσ(t) → S as t → ∞ for all
σ ∈ [M ].

Remark 3.10. The two Definitions 3.8 and 3.9 are formulated in terms of the
topology created by the distance maxσ∈[M ] W1(S, μσ). However, instead of tak-
ing the maximum, one can also sum over W1(S, μσ), to get a definition that
resembles the metric used to prove existence and uniqueness of (2.6) more
closely. However, as these topologies are equivalent, we use Definitions 3.8–3.9
in the topology generated by maxσ∈[M ] W1(S, μσ), as this setting seems easier
to work with.

Remark 3.11. The two Definitions 3.8 and 3.9 also make sense when considered
with the more general coupling (2.7). However, we only work with them in the
context of the velocity fields (3.4).

Since it turns out that results about stability and asymptotic stability
of the all-synchronized state are dependent on the derivative of gσ(α, γ) with
respect to γ, evaluated at (α, γ) = (0, 0), we introduce the following abbrevi-
ations:

g(0,1)
σ (α, γ) :=

∂

∂γ
gσ(α, γ),

aσ := g(0,1)
σ (0, 0).

Let us now assume that aσ > 0 for all σ ∈ [M ] and

aσ − κ < g(0,1)
σ (α, φ) (3.5)

for all σ ∈ [M ] and all α ∈ (−η, η)|rσ|, φ ∈ (−η, η). We will later impose
conditions on κ > 0 and then choose η > 0 accordingly to (3.5). First, however,
we illustrate that one cannot generically expect asymptotic stability.
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3.1.1. No generic asymptotic stability. This section illustrates that the all-
synchronized state cannot be asymptotically stable under a generic condition,
which is in this case aσ �= 0 for at least one σ ∈ [M ]. Assume that we do
not have generic asymptotic stability for M = 1. Generalizing this to M pop-
ulations can then be easily done by applying the results for one population
to an invariant subset of the form S · · · SμσS · · · S, with σ ∈ [M ] chosen such
that aσ �= 0. No asymptotic stability in this subset with one free population
then yields no asymptotic stability in the whole system with M free popula-
tions.

Thus, we only consider the case M = 1, so we assume a1 �= 0. The idea
is to construct invariant cluster states that are arbitrarily close to the syn-
chronized state with respect to the Wasserstein-1 metric. When the coupling
function is given by a pure sine, such cluster states have their total mass split
up onto two points at the opposite side of the circle, such that the phase
difference between these two points is π. Since sin(π) = 0 their invariance
is confirmed. Consequently, in this case, the existence of invariant clusters is
clear. We constructively show that invariant cluster states that get arbitrarily
close to the synchronized state also exist for general coupling functions. Along
this family of cluster states, no asymptotic convergence can take place. To ac-
complish this construction, consider a perturbation of the synchronized state
of the form

μin
1 =

(
1 − 1

n

)
δφin

1
+

1
n

δφin
2

, (3.6)

for φin
1 , φin

2 ,∈ S and n ∈ N≥1. Now, μ(t) := μ1(t) obeys the system of character-
istic Eqs. (2.6) and (3.4) with M = 1. As the push-forward of μin, specifically
the convex combination of two Dirac distributions, is again a convex combina-
tion of two Diracs, the solution μ(t) is given by μ(t) =

(
1 − 1

n

)
δφ1(t) + 1

nδφ2(t)

for φ1(t) = Φ(t, φin
1 , μin) and φ2(t) = Φ(t, φin

2 , μin). Using the notation χ =
∣∣r1

∣∣,
their difference Ψ(t) := φ2(t) − φ1(t) satisfies the differential equation

Ψ̇(t) = φ̇2(t) − φ̇1(t)

=

∫

S

∫

Sχ

∫

Sχ

g1(α − β, γ − φ2(t)) − g1(α − β, γ − φ1(t)) dμχ(α)dμχ(β)dμ(γ)

= g1(φ1(t) − φ1(t), φ1(t) − φ2(t)) − g1(φ1(t) − φ1(t), φ1(t) − φ1(t)) + O
(

1

n

)

= g1(0, −Ψ(t)) − g1(0, 0) + O
(

1

n

)
=: fn(Ψ).

Obviously, μin ∈ S if and only if φin
1 = φin

2 and further, μ(t) → S if and only if
|Ψ|S → 0. However, as we have assumed a1 �= 0, for each large enough n, there
exist Ψ0

n with |Ψ0
n|S > 0 such that fn(Ψ0

n) = 0. Consequently, if Ψ(0) = Ψ0
n,

Ψ(t) = Ψ0
n for all t ≥ 0.

Now suppose for contradiction that S was asymptotically stable. Then,
according to Definition 3.9, there must exist a neighborhood V of S such that
for all μin ∈ V , the solution of (2.6), (3.4) satisfies μ(t) → S as t → ∞. Then,
there also has to exist εV > 0 with B(S, εV ) ⊂ V . On the one hand, choosing n
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such that π
n < εV and the initial measure according to (3.6) with φin

2 −φin
1 = Ψ0

n

yields

W1(S, μin) ≤ W1

(
δφin

1
,

(
1 − 1

n

)
δφin

1
+

1
n

δφin
2

)
=

1
n

|Ψ0
n|S ≤ π

n
< εV ,

so μin ∈ V . On the other hand φ2(t) − φ1(t) = Ψ0
n for all t ≥ 0 and thus μ(t)

does not converge to S, which contradicts asymptotic stability.
We illustrate the fact of no generic asymptotic stability at an example:

Example 3.12. In the easiest case, there is only one population M = 1, no
higher-order interactions, i.e. r1 = (), and the coupling function is given by
g1(γ) = sin(γ). Then, the velocity field (3.4) is given by

(K1μ)(φ) = ω1 +
∫

S

sin(γ − φ) dμ1(γ).

In this case, the function fn(Ψ) is just given by fn(Ψ) = sin(Ψ), indepen-
dent of n. Therefore, Ψ(t) satisfies Ψ̇(t) = − sin(Ψ(t)). Apart from the trivial
equilibrium at Ψ = 0, there is another equilibrium at Ψ0

n = π. Consequently,
cluster states of the form (1 − 1

n )δφ1(t) + 1
nδφ2(t) remain invariant over time

if φin
2 − φin

1 = π. Since this analysis applies for any n, there is a family of
invariant cluster states, that converges to the synchronized state if n → ∞.
On the one hand, asymptotic stability of the synchronized state means that
every initial configuration in a small neighborhood of the synchronized state
converges to it, see Definition 3.9. On the other hand, in this case, every small
neighborhood around the synchronized state contains other invariant states.
Therefore, when taking these invariant states as initial configurations, one can
see that the synchronized state cannot be asymptotically stable.

3.1.2. Stability. Next, we are going to show that large classes of generic sys-
tems do admit at least stability of the synchronized state for large parameter
regions. We want to remark that results from this section rely on the general
notation defined in Sect. 1 and on the dynamics specific notation introduced
at the beginning of Sect. 3.

Lemma 3.13. Let ξ1, ξ2 ∈ S. For any σ ∈ [M ], μin ∈ P(S)M and φ1(t) :=
Φσ(t, ξ1, μ

in) and φ2(t) := Φσ(t, ξ2, μ
in), the mass of μσ(t) on the arc (φ1(t),

φ2(t)), as defined in (1.4), i.e.,
∫

(φ1(t),φ2(t))

μσ(t,dα)

remains constant over time.

Proof. By continuity of Φσ(t, ξ, μin) with respect to t and ξ, Φ−1
σ (t, (φ1(t),

φ2(t)), μin) = (φ1(0), φ2(0)) = (ξ1, ξ2), where the inverse is taken only with
respect to the ξ variable. By (2.6b),

∫

(φ1(t),φ2(t))

μσ(t,dα) =
∫

Φ−1
σ (t,(φ1(t),φ2(t)),μin)

μin
σ (dα) =

∫

(ξ1,ξ2)

μin
σ (dα),

for all t ≥ 0. Therefore, the integral on the left-hand side in indeed independent
of t. �
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Lemma 3.14. For all σ ∈ [M ] and any two particles φσ
1 (t) := Φσ(t, ξσ

1 , μin) and
φσ

2 (t) := Φσ(t, ξσ
2 , μin), we define the phase difference Ψσ(t) := φσ

2 (t)−φσ
1 (t) ∈

[0, 2π). Let minside
σ denote the μσ-mass inside the interval (φσ

1 (t), φσ
2 (t)), which

is by Lemma 3.13 independent of t. Then, there exists a constant C > 0 such
that whenever 0 < Ψσ(t) < η for all σ ∈ [M ], they satisfy

Ψ̇σ(t) < −Ψσ(t)(aσ − κ)
(

min
i∈[M ]

minside
i

)2|rσ|+1

+ C(1 − minside
σ ).

Proof. Let us consider a decomposition of the probability measures μσ(t) into
two measures μinside

σ (t) and μoutside
σ (t) with

μσ(t) = μinside
σ (t) + μoutside

σ (t) (3.7)

and supp(μinside
σ (t)) ⊂ ((φσ

1 (t), φσ
2 (t)), supp(μoutside

σ (t)) ⊂ S\((φσ
1 (t), φσ

2 (t)).
Then, a calculation shows

Ψ̇σ(t) = φ̇σ
2 (t) − φ̇σ

1 (t)

= (Kσμ(t))(φσ
2 (t)) − (Kσμ(t))(φσ

1 (t))

=
∫

S

∫

S|rσ|

∫

S|rσ|
gσ(α − β, γ − φσ

2 (t)) − gσ(α − β, γ − φσ
1 (t))

dμ(rσ)(α)dμ(rσ)(β)dμσ(γ)
(∗)
=

∫

S

∫

S|rσ|

∫

S|rσ|
gσ(α − β, γ − φσ

2 (t)) − gσ(α − β, γ − φσ
1 (t))

dμinside(rσ)
(α)dμinside(rσ)

(β)dμinside
σ (γ) + integrals over μoutside

(∗∗)
<

∫

S

∫

S|rσ|

∫

S|rσ|
[gσ(α − β, 0) + (γ − φσ

2 (t))(aσ − κ)

−(gσ(α − β, 0) + (γ − φσ
1 (t))(aσ − κ))]

dμinside(rσ)
(α)dμinside(rσ)

(β)dμinside
σ (γ)

+ integrals over μoutside

= (aσ − κ)
∫

S

∫

S|rσ|

∫

S|rσ|
−Ψσ(t) dμinside(rσ)

(α)dμinside(rσ)
(β)dμinside

σ (γ)

+ integrals over μoutside

= −Ψσ(t)(aσ − κ)

⎛

⎝
|rσ|∏

i=1

minside
rσ

i

⎞

⎠
2

minside
σ + integrals over μoutside

< −Ψσ(t)(aσ − κ)
(

min
i∈[M ]

minside
i

)2|rσ|+1

+ C(1 − minside
σ ).

Here, the equality (∗) was achieved by decomposing each measure μi into its
components according to (3.7) and rearranging terms such that every integrand
with an integral running over at least one measure of the type μoutside is
contained in the part “integrals over μoutside”. We can easily estimate these
integrals from above by first combining the integrals into a single one running
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over μoutside
σ (with the integrand still consisting of integrals) and then taking

the supremum norm C of the integrand. As the total mass of μσ(t) equals 1
and the μσ-mass inside the interval (φσ

1 (t), φσ
2 (t)) is minside

σ , the mass outside
this interval evaluates to 1 − minside

σ . Consequently, the terms summarized in
“integrals over μoutside” can be bounded from above by C(1 − minside

σ ). The
inequality (∗∗) is based on linear approximation and the fact that Ψσ(t) < η.

�

Lemma 3.15. Let μ ∈ P(S) be a probability measure on the circle, ξ1, ξ2 ∈ S

and

minside =
∫

(ξ1,ξ2)

dμ(α).

Then, W1(S, μ) < (ξ2 − ξ1)minside + π(1 − minside).

Proof. Using (1.5a), we calculate

W1(S, μ) = inf
δ∈S

W1(δ, μ)

≤ W1(δξ1 , μ)

≤
∫

S×S

|α − β|S γ(dα,dβ), with γ(dα,dβ) = δξ1(dα)μ(dβ)

=
∫

S

|ξ1 − β|S μ(dβ)

=
∫

(ξ1,ξ2)

|ξ1 − β|S μ(dβ) +
∫

S\(ξ1,ξ2)

|ξ1 − β|S μ(dβ)

< (ξ2 − ξ1)minside + π(1 − minside).

�

We can not put the previous lemmas together and formulate our main
theorem:

Theorem 3.16. If the coupling functions gσ are continuously differentiable, i.e.,
gσ ∈ C1(S|rσ| × S), and they satisfy aσ > 0 for all σ ∈ [M ] then, the set of
all-synchronized states SM is stable.

Proof. To verify Definition 3.8, let U1, . . . , UM be neighborhoods of S and
choose εU such that B(S, εU ) ⊂ Uσ for all σ ∈ [M ]. Further, let η > 0 be such
that (3.5) is fulfilled with κ = minσ∈[M ] aσ/2 =: a0/2. Now, first choose ζ > 0
with ζ < min(η

2 , εU

4 ) and then εV > 0 so small, that both

ζa0

(
1 − εV

ζ

)2 maxj∈[M]|rj|+1

> C
εV

ζ
, (3.8)

with C coming from Lemma 3.14, and εV < εU ζ
2π . To satisfy Definition 3.8 we

can then take Vσ = B(S, εV ) for all σ ∈ [M ].
To see that indeed μσ(t) ∈ B(S, εU ) ⊂ Uσ for all t ≥ 0 provided that

μin
σ ∈ Vσ, we take μin

σ ∈ Vσ and ξ1, . . . , ξM ∈ S with W1(δξσ
, μin

σ ) < εV . The
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representation of the Wasserstein-1 distance (1.5a) yields
∫

S\(ξσ−ζ,ξσ+ζ)

dμin
σ <

εV

ζ
. (3.9)

To see this, note that

W1(δξσ
, μin

σ ) =
∫

S

|ξσ − β|S μin
σ (dβ)

=
∫

S\(ξσ−ζ,ξσ+ζ)

|ξσ − β|S μin
σ (dβ) +

∫

(ξσ−ζ,ξσ+ζ)

|ξσ − β|S μin
σ (dβ)

≥ ζ

∫

S\(ξσ−ζ,ξσ+ζ)

μin
σ (dβ).

Dividing by ζ yields (3.9). As a result,

minside
σ :=

∫

(ξσ−ζ,ξσ+ζ)

dμin
σ > 1 − εV

ζ
.

If we now trace the 2M particles defined by φσ
1 (t) := Φσ(t, ξσ − ζ, μin) and

φσ
2 (t) := Φσ(t, ξσ + ζ, μin), Lemma 3.13 yields

∫

S\(φσ
1 (t),φσ

2 (t))

μσ(t,dγ) <
εV

ζ

and
∫

(φσ
1 (t),φσ

2 (t))

μσ(t,dγ) > 1 − εV

ζ
,

for all t ≥ 0. Next, we apply Lemma 3.14 to obtain that the phase differences
Ψσ(t) := φσ

2 (t) − φσ
1 (t) satisfy

Ψ̇σ(t) < −Ψσ(t)(aσ − κ)
(

min
i∈[M ]

minside
i

)2|rσ|+1

+ C(1 − min
σ ) (3.10)

≤ −Ψσ(t)
a0

2

(
min
i∈[M ]

minside
i

)2|rσ|+1

+ C
εV

ζ

≤ −Ψσ(t)
a0

2

(
min
i∈[M ]

minside
i

)2 maxj∈[M]|rj|+1

+ C
εV

ζ
, (3.11)

which stays valid if Ψσ(t) < η for all σ ∈ [M ]. First note, that the choice of
εV such that (3.8) holds true, yields that for Ψσ(t) = 2ζ, the right-hand side
of (3.11) is negative:

− 2ζ
a0

2

(
min
i∈[M ]

minside
i

)2 maxj∈[M]|rj|+1

+ C
εV

ζ

< −ζa0

(
1 − εV

ζ

)2 maxj∈[M]|rj|+1

+ C
εV

ζ

< 0.

(3.12)
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Therefore, for Ψσ(t) = 2ζ, the derivative satisfies Ψ̇σ(t) < 0 if all other com-
ponents satisfy Ψi(t) < η for all i �= σ. To be precise, the region

R := {Ψ ∈ R
n : Ψσ ∈ [0,Ψσ(0)]}

is invariant under the flow of (3.10). To see that, first note that Ψσ(0) = 2ζ
for all σ = 1, . . . , M , so R is effectively a hyper cube R = [0, 2ζ]M . For given
σ, the component Ψσ(t) can not leave the hyper cube through 0, because
that would mean that the two particles φσ

1 (t) and φσ
2 (t) collide. A trajectory

(Ψ1(t), . . . ,ΨM (t)) also can not leave R by one component exceeding the value
2ζ. Suppose, for a contradiction that there is a time t� > 0 such that Ψσ(t�) =
2ζ for one σ ∈ [M ] and let t� be the first time that happens. Then, however,
all components still satisfy Ψσ(t�) ≤ 2ζ < η and thus (3.11) is valid. By the
calculation (3.12) Ψ̇σ(t�) < 0, so R is indeed invariant.

Consequently, for all σ = 1, . . . , M and all t ≥ 0, we have Ψσ(t) < 2ζ and
thus, by Lemma 3.15,

W1(S, μσ(t)) < Ψ(t)minside
σ + π(1 − minside

σ )

< 2ζ + π
εV

ζ

<
εU

2
+

εU

2
= εU .

So indeed μσ(t) ∈ B(S, εU ) ⊂ Uσ for all t ≥ 0. This verifies Definition 3.8 and
therefore concludes the proof. �

3.1.3. Almost asymptotic stability. One might now hope that although we
do not have asymptotic stability, we can expect asymptotic stability of large
classes of initial conditions as the family of steady states constructed above is
a rather small part of phase space.

Before stating theorems regarding asymptotic stability, we need to in-
troduce the concept of phase differences, as this concept becomes important
in the subsequent proofs. Similarly to the original system (2.6), the system
of phase differences describes the temporal evolution of oscillators, which can
be grouped into populations, on the circle. Unlike the original system (2.6),
in the system of phase differences, the position of the oscillators is not given
in absolute coordinates but instead with respect to reference oscillators. The
system of phase differences is given by

∂tΨσ(t, ξin
σ , νin) = (Fσν(t))(Ψσ(t, ξin

σ , νin)), (3.13a)

νσ(t) = Ψσ(t, ·, νin)#νin
σ , (3.13b)

Ψσ(0, ξin
σ , νin) = ξin

σ , (3.13c)

with

(Fσν)(ψ) =
∫

S

∫

S|rσ|

∫

S|rσ|
gσ(α − β, γ − ψ) − gσ(α − β, γ)

dν(rσ)(α)dν(rσ)(β)dνσ(γ).
(3.14)

Recasting the system in terms of phase differences, reduces the continous
symmetry operation that shifts all phases (in a single population) by a constant
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amount; cf. [3] for finite-dimensional systems and [14] for mean-field limits.
The following example makes this reduction to phase differences explicit for a
system consisting of finitely many discrete oscillators.

Example 3.17. The finite-dimensional Kuramoto model for N identical oscil-
lators is given by the system of ordinary differential equations

φ̇k = ω +
1
N

N∑

j=1

g(φj − φk), k = 1, . . . , N.

To obtain the system of phase differences (with respect to the first oscillator),
we define ψk := φk − φ1. These new variables then fulfill the system of phase
differences

ψ̇k =
1
N

N∑

j=1

g(ψj − ψk) − g(ψj), k = 1, . . . , N.

The system (3.13), (3.14) generalizes this concept to the mean-field limit of
multiple population coupled via higher-order interactions.

Notation 3.18. Let ζ ∈ S. When using the notation mζ , we refer to the function
mζ : S → S with mζ(φ) = φ − ζ.

Lemma 3.19. Let ζ1, . . . , ζM ∈ S, μin ∈ P(S)M , suppose that μ(t) solves the
system (2.6), (3.4) and let Φσ(t, ξin

σ , μin) be its mean-field characteristic flow.
Now define

νσ(t) := mΦσ(t,ζσ,μin)#μσ(t), νin
σ := νσ(0) (3.15)

and

Ψσ(t, ξin
σ , νin) := Φσ(t, ζσ + ξin

σ , μin) − Φσ(t, ζσ, μin)

for σ ∈ [M ]. Then, ν(t) and Ψσ(t, ξin
σ , νin) solve the system (3.13), (3.14).

The proof of this Lemma can be found in the Appendix A.3. The Lemma
basically generalizes Example 3.17 to the infinite-dimensional system. Then,
Φσ(t, ζσ, μin) takes the role of φ1 in Example 3.17. It can be seen as the position
of reference oscillators we have talked about at the beginning of this section.

Remark 3.20. Lemma 3.19 is especially useful because the only operation
used to create the measures νσ(t) from the measures μσ(t) is a rotation by
Φσ(t, ζσ, μin) around the circle. Therefore, W1(S, νσ(t)) = W1(S, μσ(t)) and
μσ(t) → S if and only if νσ(t) → S.

Lemma 3.21. If the coupling functions gσ(α, γ) are continuously differentiable
and the derivative g

(0,1)
σ is Lipschitz continuous with constant L1 then, the

coupling operator Fσ satisfies

(FσδM
0 )(ψ) = gσ(0,−ψ) − gσ(0, 0),

∣∣(FσδM
0 )(ψ) − (Fσν)(ψ)

∣∣ ≤ 4L

⎛

⎝
|rσ|∑

i=1

W1(δ0, νrσ
i
)

⎞

⎠ + 2LW1(δ0, νσ),
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∣∣∣∣
∂

∂ψ
(FσδM

0 )(ψ) − ∂

∂ψ
(Fσν)(ψ)

∣∣∣∣ ≤ 4L1

⎛

⎝
|rσ|∑

i=1

W1(δ0, νrσ
i
)

⎞

⎠ + 2L1W1(δ0, νσ).

Proof. Follows from (3.14) and Lemma A.5. �

Theorem 3.22. Suppose that aσ > 0 for all σ ∈ [M ] and let the coupling func-
tions gσ be chosen such that g

(0,1)
σ are Lipschitz continuous with constant L1.

Further, assume that each of the functions

ψ �→ ĝσ(ψ) := gσ(0, ψ) − gσ(0, 0)

has exactly two zeros around the circle, the trivial one at 0 and another one at
ψ0

σ ∈ S\{0}. Moreover, suppose bσ := ĝ′(ψ0
σ) �= 0 for all σ ∈ [M ]. Then, initial

configurations in the space of densities μin ∈ Pac(S)M , which are close enough
to the all-synchronized state, converge to the all-synchronized state as t → ∞.

Remark 3.23. Note that the assumption on absolute continuity of the mea-
sures eliminates the counterexamples from Sect. 3.1.1 as only perturbations
into measures with densities are allowed. This clearly shows, why studying
the mean-field Vlasov–Fokker–Planck equation for densities is often easier in
comparison to our goal of deriving directly the maximum information from
the characteristic system.

Proof of Theorem 3.22. As the assumptions of this theorem include the as-
sumptions of Theorem 3.16, we can choose εV > 0 such that for any μin ∈
B(S, εV )M , μ(t) ∈ B(S, εU )M for all t ≥ 0. To prove asymptotic stability in
the space of absolutely continuous measures, let μin ∈ B(S, εV )M ∩ Pac(S)M ,
with εV specified later, and proceed analogously to the Proof of Theorem 3.16
until we get to the point when φσ

2 (t) − φσ
1 (t) ≤ 2ζ for all σ ∈ [M ] and t ≥ 0.

Next, we use Lemma 3.19 in order to switch to the system of phase differences
with ζσ = φσ,in

1 = φσ
1 (0). The reference oscillators in this system of phase

differences are consequently given by φσ
1 (t). Since

Φσ(t, φσ
1 (0), μin) = φσ

1 (t)

for all t ≥ 0,
∫

(0,2ζ)

νσ(t,dγ) ≥
∫

(0,φσ
2 (t)−φσ

1 (t))

νσ(t,dγ)

=
∫

(0,φσ
2 (t)−φσ

1 (t))

(mΦσ(t,φσ
1 (0),μin)#μσ(t))(dγ)

=
∫

(0,φσ
2 (t)−φσ

1 (t))

(mφσ
1 (t)#μσ(t))(dγ)

=
∫

(φσ
1 (t),φσ

2 (t))

μσ(t,dγ)

= minside
σ

> 1 − εV

ζ
.
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Therefore, a computation similar to the one in the Proof of Theorem 3.16
shows

W1(δ0, νσ(t)) ≤ 2ζ + π
εV

ζ
< εU , (3.16)

so the solution ν(t) always stays close to the all-synchronized state located at
the origin. In the system of phase differences, individual particles then follow
the flow

∂tΨσ(t, ξ, νin) = (Fσν(t))(Ψσ(t, ξ, νin)). (3.17)

However, by (3.16) and Lemma 3.21, (3.17) can be rewritten in the form

Ψ̇σ(t) = (FσδM
0 )(Ψσ(t)) + pσ(Ψσ(t), t), Ψσ(0) = Ψin

σ (3.18)

for a small perturbation pσ ∈ C1(S × R). Next, we fix εU and with that also
εV such that for all ν1, . . . , νM ∈ B(δ0, εU ), ‖pσ(·, t)‖C1 is small enough such
that the flow induced by the dynamical system (3.17) is equivalent to the one
induced by Ψ̇σ = (FσδM

0 )(Ψσ) for all σ ∈ [M ]. So we consider (3.18) as a
perturbed one-dimensional autonomous ODE. The existence of such an εU is
guaranteed by Lemma 3.21. Specifically, this lemma states that

‖pσ(·, t)‖C1 ≤ (4L |rσ| + 2L + 4L1 |rσ| + 2L1)εU =: εσ
f ,

uniformly in t. A particular choice of εU can be constructed as follows: As
ĝ′

σ(0) = aσ > 0 and there are only two roots with non-vanishing derivative on
the circle, bσ < 0. Further, let us write ησ

1 , ησ
2 > 0 for radii of intervals such

that infα∈(−ησ
1 ,ησ

1 ) ĝ′
σ(α) > aσ

2 and supα∈(ψ0
σ−ησ

2 ,φ0
σ+ησ

2 ) ĝ′
σ(α) < bσ

2 . Now, εU

can be chosen such that for all fσ ∈ C1(S) with ‖fσ‖C1 < εσ
f the following

criteria are satisfied:
(C1) maxα∈S\[(−ησ

1 ,ησ
1 )∪(−ψ0

σ−ησ
2 ,−ψ0

σ+ησ
2 )] |fσ(α)|

< 1
2 minα∈S\[(−ησ

1 ,ησ
1 )∪(−ψ0

σ−ησ
2 ,−ψ0

σ+ησ
2 )] |FσδM

0 (α)|,
(C2) maxα∈(−ησ

1 ,ησ
1 ) |f ′

σ(α)|
< 1

2aσ and maxα∈(−ψ0
σ−ησ

2 ,−ψ0
σ+ησ

2 ) |f ′
σ(α)| < −bσ

2 .

While (C1) ensures that Fσν(t) has no zeros away from the roots −ψσ
0 and 0

for all t ≥ 0, (C2) guarantees that Fσν(t) is strictly monotonic in the two
neighborhoods around the roots. This monotonicity also causes the existence
of at most one zero of Fσν(t) near the two roots. Even though the two zeros
of Fσν(t) may be varying over time, (C2) ensures that the flow of (3.17) is
still exponentially contracting in (−ησ

1 , ησ
1 ) and exponentially expanding in

(−ψ0
σ −ησ

2 ,−ψ0
σ +ησ

2 ). Thus, at least one of two distinct test particles starting
in (−ψ0

σ −ησ
2 ,−ψ0

σ +ησ
2 ) leaves this region and eventually ends up in (−ησ

1 , ησ
1 ).

Since Ψσ(t, 0, νin) = 0 for all t ≥ 0 and the contracting property of Ψσ(t, 0, νin)
around 0, the particle even converges to the origin at 0. So there exists only one
trajectory, which starts at an arbitrary point Ψin

σ ∈ S, that does not converge
to 0. By assumption, νin

σ ({Ψin
σ }) = 0 and hence all the mass concentrates

around 0. Therefore, W1(δ0, νσ(t)) → 0 as t → ∞. Because this holds true for
all σ ∈ [M ], the all-synchronized state is asymptotically stable for absolutely
continuous perturbations. �
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Remark 3.24. (Comparing finite-dimensional stability with infinite-
dimensional stability) To get a system of discrete oscillators from the gen-
eral system (2.6), (3.4) one starts with a discrete initial measure (2.10) and
considers the evolution of it under the system (2.6), (3.4). Then, there is a
finite-dimensional ODE system that describes the evolution of each discrete
oscillator in each population. This system resembles the system (2.11) but
has the additional assumption (3.2), (3.3). By simple linearization, the all-
synchronized state SM in this finite-dimensional system can be shown to be
stable if aσ > 0 for all σ ∈ [M ]. While this is the same assumption of The-
orem 3.16, the result is stronger. In particular, under this assumption, SM is
not only stable but also asymptotically stable in the finite-dimensional system
and there is no extra assumption about additional zeros of coupling functions
required as in Theorem 3.22. They key reason for this missing assumption is
that in the finite-dimensional system, that tracks the positions of discrete os-
cillators, we only consider perturbations of SM such that the system remains
finite dimensional. For all perturbations of these kind, the support of the per-
turbed discrete measure stays close to the support of an all-synchronized state.
In particular, for small perturbations, only the local behavior of the coupling
function around 0 influences the dynamics. To be precise, only the values of
gσ(α, φ) with α ∈ (−ε, ε)|rσ|, φ ∈ (−ε, ε) for small ε > 0 determine the evo-
lution of small perturbations. On the other hand, the support of a perturbed
measure when considering generic perturbations, is not related in any way
to the support of the original unperturbed measure. Therefore, even slight
generic perturbations of SM can be influenced by values of gσ(α, φ) for all
α ∈ S

|rσ|, φ ∈ S. This is why we need an extra assumption about zeros of ĝσ

in Theorem 3.22.

Example 3.25. In the easiest case, there is just one population, i.e., M = 1,
and no higher-order coupling. Then, the velocity field along which the first
population gets transported is given by

(Kμ)(φ) = ω +
∫

S

f(γ − φ) dμ(γ).

Theorem 3.16 yields the stability of the synchronized state in this system if
f ∈ C1(S) and f ′(0) > 0. Further, by Theorem 3.22, the synchronized state
is asymptotically stable in the space of densities if furthermore the function
φ �→ f(ψ) − f(0) has only one root with non-vanishing derivative around the
circle except 0 and f ′ is Lipschitz continuous.

Remark 3.26. Theorems 3.16 and 3.22 per se only apply to perturbations in
all populations. However, if we exemplarily want to analyze the stability of
DSSD in a network of M = 4 populations, Proposition 3.4 allows us to reduce
the system of four populations to equations describing only the evolution of
population #2 and #3 while we keep population #1 and #4 fixed in splay
state. Applying Theorems 3.16 and 3.22 consequently yields criteria for the
(asymptotic) stability of DSSD with respect to perturbations in the second
and third population.
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Example 3.27. (Heteroclinic Structures) Consider Example 3.3 again. Having
put the system into the form (3.4) allows us to apply results from Sect. 3. For
example Theorem 3.16 yields the stability of the all-synchronized state if the
function

f(γ) := g(0, γ) = h2(γ) + (K+ − K−)h4(0, γ)

satisfies f ′(0) > 0. Let us now try to investigate the stability of SDD with re-
spect to perturbations in the first population. Unfortunately, we cannot apply
Theorem 3.16 immediately but we have to do some preparatory steps first. So
we first choose μin

2 (A) = μin
3 (A) = 1

2π λS(A). Then, Proposition 3.5 causes the
second and third population to stay in splay state for all t ≥ 0. The velocity
field according to which μ1(t) is transported is given by

(K1μ(t))(φ) = ω1 +
∫

S

[
h2(γ − φ) +

K+ − K−

2π

∫

S

h4(α, γ − φ)dα

]
μ1(dγ).

Therefore, the dynamics in μ1DD can be described by a single coupling func-
tion

ĝ(γ) := h2(γ) +
K+ − K−

2π

∫

S

h4(α, γ)dα.

Only now, we can apply Theorem 3.16 to see that SDD is stable with respect
to perturbations in the first population if the function ĝ satisfies ĝ′(0) > 0.

3.2. Linear stability of splay phase configurations

We now consider the stability of splay phase configurations. Our analysis builds
upon ideas for traditional Kuramoto-type models. As a warm-up recall how
the stability conditions are derived in a one population model with pairwise
coupling, whose evolution operator (3.4) is given by

(Kμ)(φ) = ω +
∫

g(γ − φ) dμ(γ).

A well-known way [44,47] for analyzing stability of the splay state in this
system is to look at the mean-field (or continuity) equation

∂

∂t
ρ(t, φ) +

∂

∂φ

[(
ω +

∫

S

g(γ − φ)ρ(t, γ) dγ

)
ρ(t, φ)

]
= 0,

which describes the evolution of the density ρ(t, φ). Next, insert the ansatz
ρ(t, φ) = 1

2π + εη(t, φ) into the continuity equation and collects terms of order
ε. Assuming Fourier representations

η(φ, t) =
∞∑

k=1

ck(t)eikφ + c.c., g(γ) =
∞∑

l=1

ale
ilγ + c.c.,

where c.c. denotes the complex conjugate of the previous term, one can derive
differential equations for the evolution of the coefficients ck(t):

c′
k(t) = −(āk + ω)ikck(t), k = 1, 2, . . .

Fortunately, these equations are uncoupled and linear stability of the splay
state can thus simply be infered if Im(ak) > 0 for all k ≥ 1. In other words,
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when writing the coupling function g(γ) as linear combinations of sin(γ), cos(γ)
and trigonometric monomes of higher order, the prefactors of sin(γ), sin(2γ), . . .
have to be negative. A similar analysis yields the linear instability of the splay
state if Im(ak) < 0 for at least one k.

Now, we extend these methods to the general case of multi-population
systems (2.6), (3.4) in which higher-order interactions are present.

Vσ[ρ](φ, t) = ωσ +
∫

S

∫

S|rσ|

∫

S|rσ|
gσ(α − β, γ − φ)

ρ(rσ)(t, α) ρ(rσ)(t, β) ρσ(t, γ) dαdβdγ

and the densities ρσ(t, φ) solve the continuity Eq. (2.13), that we have intro-
duced in Sect. 2.3. Here, ρ(rσ) is the shorthand notation for

ρ(rσ)(t, α) :=
|rσ|∏

i=1

ρrσ
i
(t, αi).

As in the simple one-population case, we consider a small perturbation around
the all-splay state, i.e.,

ρσ(t, φ) =
1
2π

+ εησ(t, φ), (3.19)

with Fourier decompositions

ησ(t, φ) =
∞∑

k=1

cσ
k(t)eikφ + c.c. (3.20)

Further, the coupling functions gσ : S|rσ| × S → R are supposed to be given in
terms of its Fourier expansion as well:

gσ(α, β) =
∑

b∈Z|rσ|

∞∑

l=0

aσ
b,le

i〈α,b〉eiβl + c.c., aσ
0,0 = 0, 0 = 0|rσ|

〈α, b〉 =
|rσ|∑

i=1

αibi. (3.21)

The requirement aσ
0,0 = 0 is not a limitation as possible non-zero values of

aσ
0,0 = 0 can be absorbed into ωσ.

Given these representations, we formally insert (3.19) into the continu-
ity Eq. (2.13), then collect terms of order O(ε) and finally use the Fourier
representations (3.20), (3.21) to obtain

∂

∂t

( ∞∑

k=1

cσ
k(t)eiφk + c.c.

)

+
∂

∂φ

[( ∞∑

k=1

āσ
0,kcσ

k(t)eiφk + c.c.

)
+ ωσ

( ∞∑

k=1

cσ
k(t)eiφk + c.c.

)]
= 0.
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Thus, after having taken the derivative and having collected eikφ-terms, it is
easy to see that cσ

k(t) obeys the differential equation

cσ
k

′(t) = −(āσ
0,k + ωσ)ikcσ

k(t). (3.22)

Therefore, small perturbations of population σ in direction of eikφ + c.c. with
k ≥ 1 decay on a linear level if Re(−(āσ

0,k + ωσ)ik) = −k Im(aσ
0,k) < 0.

Similarly, they grow if −k Im(aσ
0,k) > 0. However, it is important to note that

the Eq. (3.22) are only based on a formal derivation. Assuming nonetheless that
our formal calculations can be made rigorous in this way, we can summarize
our results by claiming linear stability of the all-splay state if Im(aσ

0,k) > 0 for
all σ ∈ [M ], k = 1, 2, . . . and linear instability if Im(aσ

0,k) < 0 for one σ ∈ [M ]
and one k = 1, 2, . . . .

Example 3.28. (Heteroclinic Structures) We continue to consider Example 3.27.
In order to investigate the linear stability of DDD we need to assume Fourier
expansions

h2(γ) =
∞∑

k=1

ξkeiγk + c.c.,

h4(α, γ) =
∞∑

l=−∞

∞∑

k=0

ζl,keiαleiγk + c.c.

By inserting them into the representation of the coupling function g, we see
that

g(α1, α2, φ) =
∞∑

l1=−∞

∞∑

l2=−∞

∞∑

k=0

al,keiα1l1eiα2l2eiφk + c.c.

for Fourier coefficients al,k that satisfy a0,k = ξk − K−ζ0,k + K+ζ0,k. By the
results obtained in this Section, the all-splay state is linearly stable if

Im(ξk + (K+ − K−)ζ0,k) > 0

for all k = 1, 2, . . . and linearly unstable if one of these coefficients is less
than 0.

These results give necessary conditions for the emergence of heteroclinic
cycles involving the invariant sets SDD,SSD, . . . to exist not only in networks
of finitely many oscillators but also in the mean-field limit of these systems.
Note that a similar analysis is possible for the mean-field limit of networks
that consist of M = 4 coupled oscillator populations that support heteroclinic
networks with multiple cycles in [13].

Remark 3.29. There are several challenges when trying to obtain rigorous (lin-
ear) stability results. First, we have to rigorously linearize by constructing a
suitable function space in which the operator F defined by

Fσ[ρ](φ) = − ∂

∂φ
[ρσ(φ)Vσ[ρ](φ)]



64 Page 28 of 41 C. Bick, T. Böhle, and C. Kuehn NoDEA

is Fréchet differentiable. Then, we have to check that the formal calculation
above holds within this function space, and that we have described the spec-
trum completely. Finally, one has to invoke a suitable result that linear sta-
bility entails local nonlinear stability. Carrying out this full stability analysis
program is beyond the scope of the current work.

4. Discussion and outlook

In this paper, we have developed a new general framework for the evolution
of coupled phase oscillator populations with higher-order coupling. First, we
adopted the solution theory from [39] to our general framework. We clarified
existence and uniqueness of weakly continuous solutions to the characteristic
system and justified the mean-field limit. In the main part of this article, we
studied dynamical properties of the characteristic system. Next, we proved the
stability of the all-synchronized state under certain conditions on the coupling
functions. Importantly, our results do not require the coupling function to be
sinusoidal as assumed in previous works. We also developed linear stability
analysis for the splay state via the mean-field limit equation. Finally, we pro-
vided examples that illustrate how this result can be applied to determine
stability of synchrony patterns, in which some populations are in splay state
and the remaining ones are synchronized.

Although we have provided the general mathematical foundations for
studying large-scale multi-population oscillator networks with higher-order
coupling, there are still many open questions for future work. Here, we consid-
ered the case of populations with identical oscillators. This means that in the
mean-field limit there are atomic measures that are invariant under the flow.
There are two ways to break this degeneracy. First, one can assume that the
intrinsic frequencies of the oscillators follow a distribution with a density as in
the classical Kuramoto model; cf. [11]. Second, adding noise to the evolution
leads to a diffusive terms in the Fokker–Planck equation [49]. In either case, the
synchronized phase configuration is not invariant anymore and deforms to a
near-synchronous stationary solution. Insights into how the stability properties
derived here change through these perturbations would be desirable. Unlike
the synchronized state, the splay state would stay invariant for non-identical
oscillators but investigating its linear stability would be more complicated due
to the frequency dependence. One expects bifurcation structures to be affected
generically by higher-order coupling, e.g., being able to change super- to sub-
critical transitions [31,43].

If the network interactions contain just a single harmonic, the Watanabe–
Strogatz reduction applies. Its application in the mean-field limit has so far
been heuristic and one typically assumes the existence of densities [42] and it
would be interesting to understand Watanabe–Strogatz theory for the char-
acteristic Eq. (2.6) that describes the evolution of general measures. Together
with nonidentical frequencies within a populations, this would be the first step
towards a rigorous description of Ott–Antonsen theory in a measure theoretic
sense; see also [22].
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While we discussed network dynamical systems with higher-order inter-
actions, we did not assign an explicit algebraic structure to the dynamical
equations. Recently, dynamical systems on higher-order networks—whether
hypergraphs or simplicial complexes—have attracted attention. While the as-
signment of higher-order network structure may not be unique, this perspec-
tive has its advantages: It naturally leads to limiting systems involving hyper-
graph variants of graphons [32,36,37], or more generally hypergraph variants
of graphops [6,24,30]. In this context, one could also aim to link the stability
analysis via the Vlasov–Fokker–Planck equation for hypergraphs better with
direct methods on the level of the finite-dimensional ODEs for hypergraphs
such as master stability functions [7,38].
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A.1. Existence and uniqueness of the system of characteristic equations

We start by establishing existence and uniqueness to our system of Eqs. (2.6)
and (2.7). Most of the Lemmas can be adopted from [39] but some, in particular
Lemma A.5, give important tools used to generalize the theory from [39] to
multiple populations.

First, we show that the space of weakly continuous measure valued func-
tions as defined in 2.5 is compact:

Lemma A.1. The space CP(S) together with the metric

d(μ, ν) := sup
t∈[0,T ]

W1(μ(t), ν(t))

is a complete metric space.

Proof. Let (γn)n∈N≥1 be a Cauchy sequence in P(S). Then, we obtain from
[27, Satz 3] the convergence of (γn)n∈N≥1 to an arbitrary positive measure.
Testing with the constant 1-function, i.e., choosing f ≡ 1 in the representation
(1.5b), yields that the Cauchy sequence is even converging to a probability
measure. This shows the completeness of (P(S),W1).
Now, let (μn)n∈N≥1 be a Cauchy sequence in (CP(S), d). The completeness
of (P(S),W1) causes the existence of measure-valued functions μ∞ : [0, T ] →
P(S). To show weak continuity of μ∞, let f ∈ C(S) first be 1-Lipschitz con-
tinuous and calculate∣∣∣∣

∫

S

f(φ) μn(t,dφ) −
∫

f(φ) μ∞(t,dφ)
∣∣∣∣ ≤ W1(μn(t), μ∞(t)) → 0

uniformly in t as n → ∞. Continuity of
∫
S
f(φ) μn(t,dφ) in t for each n ∈

N≥1 therefore implies continuity of
∫

f(φ) μ∞(t,dφ) in t. Finally, Porteman-
teau’s Theorem (see eg. [29, Theorem 13.17]) allows us to lift continuity of∫

f(φ) μ∞(t,dφ) from all 1-Lipschitz continuous functions f to all f ∈ C(S).
�

Lemma A.2. For every α ∈ R, the space CM
P(S) together with the metric

dα(μ, ν) := sup
t∈[0,T ]

e−αt
M∑

σ=1

W1(μσ(t), νσ(t)) (A.1)

is a complete metric space.

Proof. Follows from Lemma A.1. �
Lemma A.3. (cf. [39], Assumption on page 236) For all σ ∈ [M ], φ, ψ ∈ S and
μ ∈ P(S)M we have

|(Kσμ)(φ) − (Kσμ)(ψ)| ≤ L|φ − ψ|S.
Proof. Using the assumption about Lipschitz continuity of Gσ, we can estimate

|(Kσμ)(φ) − (Kσμ)(ψ)| =
∣∣∣∣
∫

S|sσ|
Gσ(α, φ) − Gσ(α,ψ) dμ(sσ)(α)

∣∣∣∣

≤
∫

S|sσ|
L|φ − ψ|S dμ(sσ)(α)
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= L|φ − ψ|S.
This completes the proof. �

Corollary A.4. Given μ ∈ CM
P(S), the flow T σ

t,0[μ] is Lipschitz continuous for
all σ ∈ [M ]. In particular,

|T σ
t,0[μ]φ − T σ

t,0[μ]ψ|S ≤ eLt|φ − ψ|S.
Proof. This is a direct consequence of Lemma A.3 and Gronwall’s Lemma.

�

The following Lemma provides an important tool when dealing with mul-
tiple populations and higher-order coupling:

Lemma A.5. Let n ∈ N≥1, μ1, . . . , μn, ν1, . . . , νn ∈ P(S), μ := μ1 ⊗ · · · ⊗ μn ∈
P(Sn), ν := ν1⊗· · ·⊗νn ∈ P(Sn) and g : Sn → R be an L-Lipschitz continuous
function with respect to the metric d(α, β) =

∑n
k=1|αk − βk|S. Then,

∣∣∣∣
∫

Sn

g(α) dμ(α) −
∫

Sn

g(β) dν(β)
∣∣∣∣ ≤ L

n∑

i=1

W1(μi, νi).

Proof. In this proof we work with the Wasserstein-1 distance in P(Sn) and its
dual representation [51]. For two measures μ, ν ∈ P(Sn) they are given by

W1(μ, ν) = inf
π∈P(Sn×Sn)

M(1,...,n)π=μ,M(n+1,...,2n)π=ν

∫

Sn×Sn

d(α, β) dπ(α, β)

= sup
f∈C(Sn)

|f(α)−f(β)|<d(α,β)

∣∣∣∣
∫

Sn

f(α) dμ(α) −
∫

Sn

f(β) dν(β)
∣∣∣∣ , (A.2)

where M(1,...,n)π is the push-forward measure of π under the map (α1, . . . , αn,
β1, . . . , βn) �→ (α1, . . . , αn) and M(n+1,...,2n)π is the push-forward measure of
π under the map (α1, . . . , αn, β1, . . . , βn) �→ (β1, . . . , βn). Let us denote

D1 := {π ∈ P(Sn × S
n) : M(1,...,n)π = μ,M(n+1,...,2n)π = ν1 ⊗ μ2 ⊗ · · · ⊗ μn},

D2 := {γ ∈ P(S × S) : M1γ = μ1,M2γ = ν1},

D3 := {π ∈ P(Sn × S
n) : ∃γ ∈ D2 : dπ(α1, . . . , αn, β1, . . . , βn)

= dγ(α1, β1)dδ{α2=β2}(α2)dμ2(β2) · · · dδ{αn=βn}(αn)dμn(βn)}.

Note that D3 ⊂ D1, which is why

W1(μ1 ⊗ · · · ⊗ μn, ν1 ⊗ μ2 ⊗ · · · ⊗ μn)

= inf
π∈D1

∫

Sn×Sn

d(α, β) dπ(α, β)

≤ inf
π∈D3

∫

Sn×Sn

d(α, β) dπ(α, β)

= inf
γ∈D2

∫

Sn×Sn

d(α, β)

dγ(α1, β1)dδ{α2=β2}(α2)dμ2(β2) · · · dδ{αn=βn}(αn)dμn(βn)



64 Page 32 of 41 C. Bick, T. Böhle, and C. Kuehn NoDEA

= inf
γ∈D2

∫

S×S

|α1 − β1|S dγ(α1, β1)

= W1(μ1, ν1).

Using (A.2) and the above calculation we can finally calculate
∣∣∣∣
∫

Sn

g(α) dμ(α) −
∫

Sn

g(β) dν(β)
∣∣∣∣

≤ LW1(μ, ν)

= LW1(μ1 ⊗ · · · ⊗ μn, ν1 ⊗ · · · ⊗ νn)

≤ LW1(μ1 ⊗ · · · ⊗ μn, ν1 ⊗ μ2 ⊗ · · · ⊗ μn)

+ LW1(ν1 ⊗ μ2 ⊗ · · · ⊗ μn, ν1 ⊗ ν2 ⊗ μ3 ⊗ · · · ⊗ μn)
+ . . .

+ LW1(ν1 ⊗ · · · ⊗ νn−1 ⊗ μn, ν1 ⊗ · · · ⊗ νn)

≤ L
n∑

i=1

W1(μi, νi).

�

Lemma A.6. (cf. [39], Assumption on page 237) For all σ ∈ [M ], φ ∈ S and
μ, ν ∈ P(S)M we have

|(Kσμ)(φ) − (Kσν)(φ)| ≤ Ls̄σ

M∑

i=1

W1(μi, νi).

Proof. Using Lemma A.5, we can estimate

|(Kσμ)(φ) − (Kσν)(φ)| ≤
∣∣∣∣
∫

S|sσ |
Gσ(α, φ) dμ(sσ)(α) −

∫

S|sσ |
Gσ(β, φ) dν(sσ)(β)

∣∣∣∣

≤ L

|sσ|∑

i=1

W1(μsσ
i
, νsσ

i
) ≤ Ls̄σ

M∑

i=1

W1(μi, νi),

which completes the proof. �

Lemma A.7. For all μ, ν ∈ CM
P(S) and

w(t) :=
M∑

i=1

W1(μi(t), νi(t)) (A.3)

we have

|T σ
t,0[μ]φ − T σ

t,0[ν]φ|S ≤ Ls̄σeLt

∫ t

0

w(τ)e−τL dτ.

Proof. Integrating (2.8) and then using Lemmas A.3 and A.6, we can estimate

|T σ
t,0[μ]φ − T σ

t,0[ν]φ|S =
∣∣∣∣
∫ t

0

(Kσμ(τ))(T σ
τ,0[μ]φ) − (Kσν(τ))(T σ

τ,0[ν]φ) dτ

∣∣∣∣

≤
∣∣∣∣
∫ t

0

(Kσμ(τ))(T σ
τ,0[μ]φ) − (Kσμ(τ))(T σ

τ,0[ν]φ) dτ

∣∣∣∣
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+
∣∣∣∣
∫ t

0

(Kσμ(τ))(T σ
τ,0[ν]φ) − (Kσν(τ))(T σ

τ,0[ν]φ) dτ

∣∣∣∣

≤
∫ t

0

L|T σ
τ,0[μ]φ − T σ

τ,0[μ]φ|S dτ

+
∫ t

0

Ls̄σ

M∑

i=1

W1(μi(τ), νi(τ))

︸ ︷︷ ︸
=w(τ)

dτ.

Now introduce

vσ(t) := |T σ
t,0[μ]φ − T σ

t,0[ν]φ|S.
Then, we have

vσ(t) ≤ L

∫ t

0

vσ(τ) dτ + Ls̄σ

∫ t

0

w(τ) dτ.

Gronwall’s Lemma gives us

vσ(t) ≤ Ls̄σeLt

∫ t

0

w(τ)e−τL dτ,

which was the claim. �

Lemma A.8. ( [39, Lemma 1]) Let h1, h2 : S → S be bijective measurable map-
pings and let μ ∈ P(S). Then,

W1(h1#μ, h2#μ) ≤ sup
φ∈S

|h1(φ) − h2(φ)|S.

Lemma A.9. The mapping A, defined in (2.9), is indeed a self mapping.

Proof. It is clear, that (Aμ)σ(t) is again a probability measure, so it is left to
show that t �→ (Aμ)σ(t) is weakly continuous. Note that for each φ ∈ S, the
map t �→ T σ

t,0[μ]φ is continuous (even differentiable). Thus, for any f ∈ C(S),
the composition t �→ f(T σ

t,0[μ]φ) is continuous as well and uniformly bounded.
Consequently, by the change of variables rule for push forward measures and
the dominated convergence theorem, we have

lim
t→t�

∫

S

f(φ) (Aμ)σ(t,dφ) = lim
t→t�

∫

S

f(T σ
t,0[μ]φ) μin

σ (dφ)

=
∫

S

lim
t→t�

f(T σ
t,0[μ]φ) μin

σ (dφ)

=
∫

S

f(T σ
t�,0[μ]φ) μin

σ (dφ) =
∫

S

f(φ) (Aμ)σ(t�,dφ),

which proves weak continuity. �

Theorem A.10. (Theorem 2.6, cf. [39], Theorem 2) For given μin = (μin
1 , . . . ,

μin
M ) ∈ P(S)M there exists a unique solution μ ∈ CM

P(S) for the system (2.6)–
(2.7).
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Proof of Theorem 2.6. Let us prove, that for α large enough, A is a contraction
with respect to the metric dα, defined in (A.1). To estimate dα(Aμ,Aν), we
use Lemmas A.7 and A.8:

dα(Aμ,Aν) = sup
t∈[0,T ]

e−αt
M∑

σ=1

W1((Aμ)σ(t), (Aν)σ(t))

= sup
t∈[0,T ]

e−αt
M∑

σ=1

W1(T σ
t,0[μ]#μin

σ , T σ
t,0[ν]#μin

σ )

≤ sup
t∈[0,T ]

e−αt
M∑

σ=1

sup
φ∈S

|T σ
t,0[μ]φ − T σ

t,0[ν]φ|S

≤ sup
t∈[0,T ]

e−αt
M∑

σ=1

Ls̄σeLt

∫ t

0

w(τ)e−τL dτ

≤ L

(
M∑

σ=1

s̄σ

)
sup

t∈[0,T ]

e−αt+Lt

∫ t

0

e−τ(L−α)w(τ)e−τα dτ

≤ L

(
M∑

σ=1

s̄σ

)
sup

t∈[0,T ]

e−αt+Lt

∫ t

0

e−τ(L−α)

(
sup

τ∈[0,T ]

w(τ)e−τα

)
dτ

≤ L

(
M∑

σ=1

s̄σ

)
sup

t∈[0,T ]

e−αt+Lt

∫ t

0

e−τ(L−α)dα(μ, ν) dτ

≤ L

(
M∑

σ=1

s̄σ

)
dα(μ, ν) sup

t∈[0,T ]

e−αt+Lt e
−t(L−α) − 1

α − L

≤
(

M∑

σ=1

s̄σ

)
Ldα(μ, ν)

α − L
sup

t∈[0,T ]

(
1 − e−αt+Lt

)

︸ ︷︷ ︸
≤1 for α>L

.

Now, choose α > L such that
(∑M

σ=1 s̄σ
)

L

α − L
< 1.

This shows that A is a contraction for suitable values of α. Therefore, by the
contraction mapping principle, A has a unique fixed point μ. To conclude, if μ
is the fixed point of A, μ satisfies (2.6)–(2.7) with Φσ(t, ξin

σ , μin) = T σ
t,0[μ]ξin

σ .
Conversely, if μ satisfies (2.6)–(2.7), μ is also a fixed point of A, which com-
pletes the proof. �

A.2. Synchrony patterns

Here we give the detailed proofs from Propositions 3.4, 3.5.



NoDEA Multi-population phase oscillator networks Page 35 of 41 64

Proposition A.11. (Proposition 3.4) If we fix m populations, each to be in splay
or in synchronized state, the other M − m populations behave accordingly to
(2.6), (3.4) with M − m instead of M and different coupling functions.

Proof of Proposition 3.4. Without loss of generality we can assume that m =
1, since the case for general m then follows by repeatedly applying this propo-
sition. After reindexing populations, we can also assume the Mth popula-
tion to be fixed in synchronized or splay state. For a convenience of notation
we suppose the multi-indices rσ to be sorted in ascending order, which can
easily be achieved by changing the order of integration. Let us now denote
χσ = |{i : rσ

i = M}| ∈ N≥0 and write vσ ∈ [M ]p
σ

with pσ = |rσ| − χσ for the
multi-index having the same entries as rσ except that the last χσ entries, i.e.,
all entries valued M , are missing. In case we fix the Mth population to be
synchronized, the other M − 1 populations yield a system of the form (2.6),
(3.4) with coupling functions

ĝσ(α, φ) := gσ((α, 0χσ

), φ).

Similarly, if the Mth population is in splay state, the other M −1 populations
move according to the coupling functions

ĝσ(α, φ) =
1

(2π)χσ

∫

Sχσ
gσ((α, β), φ)dβ,

with α ∈ S
|vσ|. Here, gσ : S|rσ| × S → R are considered as functions mapping

from S
pσ × S

χσ × S to R. �
Proposition A.12. (Proposition 3.5) Subsets of the form (3.1) are invariant
under the flow of (2.6), (3.4).

Proof of Proposition 3.5. Without loss of generality, we only consider Sμ2 · · ·
μM and Dμ2 · · · μM . Suppose, that μin

1 = δξ for some ξ ∈ S. Then, by (2.6b),
μ1(t) = Φ1(t, ·, μin)#δξ = δΦ1(t,ξ,μin), so the first population always stays in a
synchronized state. That proves invariance of Sμ2 · · · μM . Proving invariance of
Dμ2 · · · μM is a bit more involved. We start with setting μ1(t) = 1

2π λS in (2.6)
by applying Proposition 3.4 and thus reducing the system by one population.
Theorem 2.6 gives the existence and uniqueness of measures μ2(t), . . . , μM (t),
which solve the reduced system. To see, that μ1(t), . . . , μM (t) is a solution of
the unreduced system, we calculate

(K1μ(t))(φ) = ω1 +
∫

S|rσ|

∫

S|rσ|

∫

S

gσ(α − β, γ − φ) dμ1(γ)dμ(rσ)(α)dμ(rσ)(β)

= ω1 +
∫

S|rσ|

∫

S|rσ|

1
2π

∫

S

gσ(α − β, γ − φ) dγdμ(rσ)(α)dμ(rσ)(β)

= ω1 +
∫

S|rσ|

∫

S|rσ|

1
2π

∫

S

gσ(α − β, γ) dγdμ(rσ)(α)dμ(rσ)(β),

where the last equality was based on a phase shift γ − φ �→ γ. Therefore,
the velocity field (K1μ(t))(φ) is actually independent of φ. As D is invariant
under rotations, i.e., those operations generated by constant velocity fields,
μ1(t), . . . , μM (t) is a solution of the full system, which shows invariance of
Dμ2 · · · μM . �
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A.3. Phase differences

The following Lemma characterizes the system of phase differences. It is used
to show asymptotic stability in the space of absolutely continuous measures,
see Theorem 3.22.

Lemma A.13. (Lemma 3.19) Let ζ1, . . . , ζM ∈ S, μin ∈ P(S)M , suppose that
μ(t) solves the system (2.6), (3.4) and let Φσ(t, ξin

σ , μin) be its mean-field char-
acteristic flow. Now define

νσ(t) := mΦσ(t,ζσ,μin)#μσ(t), νin
σ := νσ(0) (A.4)

and

Ψσ(t, ξin
σ , νin) := Φσ(t, ζσ + ξin

σ , μin) − Φσ(t, ζσ, μin)

for σ ∈ [M ]. Then, ν(t) and Ψσ(t, ξin
σ , νin) solve the system (3.13), (3.14).

Proof of Lemma 3.19. It is easy to verify (3.13c):

Ψσ(0, ξin
σ , νin) = Φσ(0, ζσ + ξin

σ , μin) − Φσ(0, ζσ, μin)

= ζσ + ξin
σ − ζσ = ξin

σ .

To check (3.13b), take a measurable set A ⊂ S and calculate

(Ψσ(t, ·, νin)#νin
σ )(A)

(A.4)
= (Ψσ(t, ·, νin)#(mζσ

#μin
σ ))(A)

= (mζσ
#μin

σ )(Ψ−1
σ (t, A, νin))

= μin
σ (m−1

ζσ
(Ψ−1

σ (t, A, νin)))

= μin
σ (ζσ + Ψ−1

σ (t, A, νin))

= μin
σ (ζσ + Φ−1

σ (t, A + Φσ(t, ζσ, μin), μin) − ζσ)

= μin
σ (Φ−1

σ (t, A + Φσ(t, ζσ, μin), μin)

= (Φσ(t, ·, μin)#μin)(A + Φσ(t, ζσ, μin))

= (mΦσ(t,ζσ,μin)#μ(t))(A)

= ν(t)(A).

To finally show (3.13a), we use the notation

ζ(rσ) = (ζrσ
1
, . . . , ζrσ

|rσ|),

Φ(rσ)(t, α, μin) = (Φrσ
1
(t, α1, μ

in), . . . ,Φrσ
|rσ|(t, α|rσ|, μin)),

Ψ(rσ)(t, α, νin) = (Ψrσ
1
(t, α1, ν

in), . . . ,Ψrσ
|rσ|(t, α|rσ|, νin)).

Then, a rather lengthy calculation confirms

∂tΨσ(t, ξinσ , νin)

= (Kσμ(t))(Φσ(t, ζσ + ξinσ , μin)) − (Kσμ(t))(Φσ(t, ζσ, μin))

= ωσ +

∫

S

∫

S|rσ |

∫

S|rσ |
gσ(α − β, γ − Φσ(t, ζσ + ξinσ , μin))

μ(rσ)(t, dα)μ(rσ)(t, dβ)μσ(t, dγ) − ωσ
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−
∫

S

∫

S|rσ |

∫

S|rσ |
gσ(α − β, γ − Φσ(t, ζσ, μin)) μ(rσ)(t, dα)μ(rσ)(t, dβ)μσ(t, dγ)

=

∫

S

∫

S|rσ |

∫

S|rσ |
gσ

(
Φ(rσ)(t, α, μin) − Φ(rσ)(t, β, μin),

Φσ(t, γ, μin) − Φσ(t, ζσ + ξinσ , μin)
)

dμin(rσ)

(α)dμin(rσ)

(β)dμin
σ (γ)

−
∫

S

∫

S|rσ |

∫

S|rσ |
gσ

(
Φ(rσ)(t, α, μin) − Φ(rσ)(t, β, μin),

Φσ(t, γ, μin) − Φσ(t, ζσ, μin)
)

dμin(rσ)

(α)dμin(rσ)

(β)dμin
σ (γ)

=

∫

S

∫

S|rσ |

∫

S|rσ |
gσ

(
Ψ(rσ)(t, α − ζ(rσ), νin) − Ψ(rσ)(t, β − ζ(rσ), νin),

Ψσ(t, γ − ζσ, νin) − Ψσ(t, ξinσ , νin)
)

dμin(rσ)

(α)dμin(rσ)

(β)dμin
σ (γ)

−
∫

S

∫

S|rσ |

∫

S|rσ |
gσ

(
Ψ(rσ)(t, α − ζ(rσ), νin) − Ψ(rσ)(t, β − ζ(rσ), νin),

Ψσ(t, γ − ζσ, νin)
)

dμin(rσ)

(α)dμin(rσ)

(β)dμin
σ (γ)

=

∫

S

∫

S|rσ |

∫

S|rσ |
gσ

(
Ψ(rσ)(t, α, νin) − Ψ(rσ)(t, β, νin),

Ψσ(t, γ, νin) − Ψσ(t, ξinσ , νin)
)

dνin(rσ)

(α)dνin(rσ)

(β)dνin
σ (γ)

−
∫

S

∫

S|rσ |

∫

S|rσ |
gσ

(
Ψ(rσ)(t, α, νin) − Ψ(rσ)(t, β, νin),

Ψσ(t, γ, νin)
)

dνin(rσ)

(α)dνin(rσ)

(β)dνin
σ (γ)

=

∫

S

∫

S|rσ |

∫

S|rσ |
gσ(α − β, γ − Ψσ(t, ξinσ , νin)) ν(rσ)(t, dα)ν(rσ)(t, dβ)νσ(t, dγ)

−
∫

S

∫

S|rσ |

∫

S|rσ |
gσ(α − β, γ) ν(rσ)(t, dα)ν(rσ)(t, dβ)νin

σ (t, dγ)

= (Fσν)(Ψσ(t, ξinσ , νin)).

This completes the proof. �
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[6] Backhausz, Á., Szegedy, B.: Action convergence of operators and graphs. Can.
J. Math. 74(1), 1–50 (2022)

[7] Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A.,
Young, J.-G., Petri, G.: Networks beyond pairwise interactions: structure and
dynamics. Phys. Rep. 874, 1–92 (2020)

[8] Benedetto, D., Caglioti, E., Montemagno, U.: On the complete phase synchro-
nization for the kuramoto model in the mean-field limit. Commun. Math. Sci.
13(7), 1775–1786 (2015)

[9] Bick, C.: Heteroclinic switching between chimeras. Phys. Rev. E 97(5),
050201(R) (2018)

[10] Bick, C.: Heteroclinic Dynamics of Localized Frequency Synchrony: Heteroclinic
Cycles for Small Populations. J. Nonlinear Sci. 29(6), 2547–2570 (2019)

[11] Bick, C., Goodfellow, M., Laing, C.R., Martens, E.A.: Understanding the dy-
namics of biological and neural oscillator networks through exact mean-field
reductions: a review. J. Math. Neurosci. 10(1), 9 (2020)

[12] Bick, C., Gross, E., Harrington, H., Schaub, M.T.: What are higher-order net-
works? arXiv:2104.11329 (2021)

[13] Bick, C., Lohse, A.: Heteroclinic Dynamics of Localized Frequency Synchrony:
Stability of Heteroclinic Cycles and Networks. J. Nonlinear Sci. 29(6), 2571–2600
(2019)

[14] Bick, C., Sclosa, D.: Mean-field limits of phase oscillator networks and their
symmetries. arXiv:2110.13686 (oct 2021)

[15] Bick, C., Timme, M., Paulikat, D., Rathlev, D., Ashwin, P.: Chaos in symmetric
phase oscillator networks. Phys. Rev. Lett. 107(24), 1–4 (2011)

[16] Buck, J., Buck, E.: Mechanism of rhythmic synchronous flashing of fireflies.
Science 159(3821), 1319–1327 (1968)

[17] Carrillo, J.A., Choi, Y.P., Ha, S.Y., Kang, M.-J., Kim, Y.: Contractivity of
Transport Distances for the Kinetic Kuramoto Equation. J. Stat. Phys. 156(2),
395–415 (2014)

[18] Daido, H.: Generic scaling at the onset of macroscopic mutual entrainment in
limit-cycle oscillators with uniform all-to-all coupling. Phys. Rev. Lett. 73(5),
760–763 (1994)

[19] Dal’Maso Peron, T.K., Rodrigues, F.A.: Collective behavior in financial markets.
EPL 96(4), 48004 (2011)

http://arxiv.org/abs/2104.11329
http://arxiv.org/abs/2110.13686


NoDEA Multi-population phase oscillator networks Page 39 of 41 64

[20] Dietert, H., Fernandez, B.: The mathematics of asymptotic stability in the Ku-
ramoto model. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 474(2220), 20180467 (2018)

[21] Dong, J.G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun.
Math. Sci. 11(2), 465–480 (2013)

[22] Engelbrecht, J.R., Mirollo, R.: Is the Ott-Antonsen manifold attracting? Phys.
Rev. Res. 2(2), 023057 (2020)

[23] Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

[24] Gkogkas, M.A., Kuehn, C.: Graphop mean-field limits for Kuramoto-type mod-
els. arXiv:2007.02868, 1–26 (2020)

[25] Golse, F.: Mean Field Kinetic Equations. Course of Polytechnique (2013)

[26] Kaliuzhnyi-Verbovetskyi, D., Medvedev, G.S.: The Mean Field Equation for the
Kuramoto Model on Graph Sequences with Non-Lipschitz Limit. SIAM J. Math.
Anal. 50(3), 2441–2465 (2018)

[27] Kellerer, H.G.: Markov-Komposition und eine Anwendung auf Martingale.
Math. Ann. 198(3), 99–122 (1972)

[28] Kiss, I.Z., Zhai, Y., Hudson, J.L.: Emerging coherence in a population of chem-
ical oscillators. Science 296(5573), 1676–1678 (2002)

[29] Klenke, A.: Probability Theory. Springer, London, London (2008)

[30] Kuehn, C.: Network dynamics on graphops. New J. Phys. 22(5), 053030 (2020)

[31] Kuehn, C., Bick, C.: A universal route to explosive phenomena. Sci. Adv. 7(16),
eabe3824 (2021)

[32] Kuehn, C., Throm, S.: Power network dynamics on graphons. SIAM J. Appl.
Math. 79(4), 1271–1292 (2019)

[33] Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. In: Springer Series
in Synergetics, vol. 19. Springer, Berlin (1984)

[34] Lancellotti, C.: On the Vlasov Limit for Systems of Nonlinearly Coupled Oscil-
lators without Noise. Transp. Theory Stat. Phys. 34(7), 523–535 (2005)
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