
ORIGINAL ARTICLE

Reviving autoencoder pretraining

You Xie1 • Nils Thuerey1

Received: 12 December 2021 / Accepted: 23 September 2022 / Published online: 26 October 2022
� The Author(s) 2022

Abstract
The pressing need for pretraining algorithms has been diminished by numerous advances in terms of regularization,

architectures, and optimizers. Despite this trend, we re-visit the classic idea of unsupervised autoencoder pretraining and

propose a modified variant that relies on a full reverse pass trained in conjunction with a given training task. This yields

networks that are as-invertible-as-possible and share mutual information across all constrained layers. We additionally

establish links between singular value decomposition and pretraining and show how it can be leveraged for gaining insights

about the learned structures. Most importantly, we demonstrate that our approach yields an improved performance for a

wide variety of relevant learning and transfer tasks ranging from fully connected networks over residual neural networks to

generative adversarial networks. Our results demonstrate that unsupervised pretraining has not lost its practical relevance in

today’s deep learning environment.

Keywords Unsupervised pretraining � Greedy layer-wise pretraining � Transfer learning � Orthogonality

1 Introduction

While approaches such as greedy layer-wise autoencoder

pretraining [4, 18, 72, 78] paved the way for many fun-

damental concepts of today’s methodologies in deep

learning, the pressing need for pretraining neural networks

has been diminished in recent years. An inherent problem

is the lack of a global view: layer-wise pretraining is lim-

ited to adjusting individual layers one at a time. Thus,

bottom layers that are optimized first cannot be adjusted to

correct errors in higher layers [11, 87]. In addition,

numerous advancements in regularization [28, 43, 66, 76],

network architectures [30, 63, 71], and improved opti-

mization algorithms [44, 52, 62] have decreased the

demand for layer-wise pretraining. Despite these advances,

training deep neural networks that generalize well to a wide

range of previously unseen tasks remains a fundamental

challenge [20, 40, 55, 56] (Fig. 1).

In this paper, we develop an algorithm that reformulates

autoencoder pretraining in a global way to arrive at a

method that efficiently extracts general, dominant features

from datasets. These features in turn improve performance

for new tasks. Our approach is also inspired by techniques

for orthogonalization [3, 38, 50, 57]. Hence, we propose a

modified variant that relies on a full reverse pass trained in

conjunction with a given training task. A key insight is that

there is no need for ‘‘greediness,’’ i.e., layer-wise decom-

positions of the network structure, and it is additionally

beneficial to take into account a specific problem domain at

the time of pretraining. We establish links between singular

value decomposition (SVD) and pretraining, and show how

our approach yields an embedding of problem-aware

dominant features in the weight matrices. An SVD can then

be leveraged to conveniently gain insights about learned

structures. Unlike orthogonalization techniques, we focus

on embedding the dominant features of a dataset into the

weights of a network. This is achieved via a reverse pass

network. This reverse pass is generic, simple to construct,

and directly relates to model performance, instead of, e.g.,

constraining the orthogonality of weights. Most impor-

tantly, we demonstrate that the proposed pretraining yields

an improved performance for a variety of learning and

transfer tasks, while incurring only a minor extra compu-

tational cost from the reverse pass.

& Nils Thuerey

nils.thuerey@tum.de

You Xie

you.xie@tum.de

1 Department of Informatics, Technical University of Munich,

Boltzmannstr. 3, 85748 Garching, Germany

123

Neural Computing and Applications (2023) 35:4587–4619
https://doi.org/10.1007/s00521-022-07892-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07892-0&domain=pdf
https://doi.org/10.1007/s00521-022-07892-0

The structure of our networks is influenced by invertible

network architectures that have received significant atten-

tion in recent years [24, 34, 36, 85]. However, these

approaches rely heavily on specific network architectures.

Instead of aiming for a bijective mapping that reproduces

inputs, we strive for learning a general representation by

constraining the network to represent an as-reversible-as-

possible process for all intermediate layer activations.

Thus, even for cases where a classifier can, e.g., rely on

color for inference of an object type, the model is

encouraged to learn a representation that can recover the

input. Hence, not only the color of the input should be

retrieved, but also, e.g., its shape, so that more dominant

features of the input dataset are embedded into the net-

works. In contrast to most structures for invertible net-

works, our approach does not impose architectural

restrictions. We demonstrate the benefits of our pretraining

for a variety of architectures, from fully connected layers to

convolutional neural networks (CNNs) [46], over networks

with batch normalization or dropout regularization, to

generative adversarial networks (GAN) architectures [25].

Below, we will first give an overview of our formulation

and its connection to singular values, before evaluating our

model in the context of transfer learning. For a regular, i.e.,

a non-transfer task, the goal usually is to train a network

that gives optimal performance for one specific goal.

During a regular training run, the network naturally

exploits any observed correlations between input and out-

put distribution. An inherent difficulty in this setting is that

typically no knowledge about the specifics of the new data

and task domains is available when training the source

model. Hence, it is common practice to target broad and

difficult tasks hoping that this will result in features that are

applicable in new domains [14, 26, 82]. Motivated by

autoencoder pretraining, we instead leverage a pretraining

approach that takes into account the data distribution of the

inputs and drives the network to extract dominant features

from the datasets, which differs from regular training for

optimal performance of one specific goal. We demonstrate

that our approach boosts the model accuracy for original

and new tasks for a wide range of applications, from image

classification to data-driven weather forecasting.

2 Related work

Greedy layer-wise pretraining was first proposed by Bengio

et al. [4], and influenced a large number of follow-up

works, providing a crucial method for feature extraction

and enabling stable training runs of deeper networks. A

detailed evaluation was performed by Erhan et al. [18], also

highlighting cases where it can be detrimental. These

problems were later on detailed in other works [1]. Prin-

cipal component analysis (PCA) [29, 77] is a popular

approach for dimensionality reduction and feature extrac-

tion, and was proposed to, e.g., handle nonlinear relation-

ships between variables [33, 51], separate

interpretable components [5], and improve robustness in

(a)

(b)

(c) (d)

Fig. 1 Our pretraining (denoted as RR) yields improvements for

numerous applications: a For difficult shape classification tasks, it

outperforms existing approaches (StdTS, OrtTS, PreTS): the RRTS

model classifies the airplane shape with significantly higher confi-

dence. b Our approach establishes mutual information between input

and output distributions. c For CIFAR 10 classification with a ResNet

110, RRC10 yields substantial practical improvements over the state-

of-the-art. d Learned weather forecasting likewise benefits from our

pretraining, with RR yielding 13:7% improvements in terms of

latitude-weighted RMSE for the ERA dataset [31]. Pressure is shown

for 2019-08-09, 22:00 UTC, together with Mean Absolute Error

(MAE) for Std and RR models

4588 Neural Computing and Applications (2023) 35:4587–4619

123

the presence of outliers [80]. However, PCA is computa-

tionally intensive in both memory and run time for larger

dataset. Clustering is another popular alternative

[6, 22, 65, 84, 89]. As these methods rely on data simi-

larities, they yield a high complexity when the dataset size

increases [7]. Sharing similarities with our approach,

Rasmus et al. [58] combined supervised and unsupervised

learning objectives, but focused on denoising autoencoders

and a layer-wise approach without weight sharing.

Unsupervised approaches for representation learning

[23, 37, 42, 48, 81], especially contrastive learning, such as

SimCLR [8], MoCo-v2 [10], ProtoNCE [49], and PaCo

[13], similarly aim for learning generic features from a

given dataset, but typically necessitate sophisticated train-

ing algorithms. We demonstrate the importance of lever-

aging state-of-the-art methods for training deep networks,

i.e., without decomposing or modifying the network

structure. This not only improves performance, but also

very significantly simplifies the adoption of the pretraining

pass in new application settings.

Extending the classic viewpoint of unsupervised

autoencoder pretraining, regularization techniques have

also been commonly developed to improve the properties

of neural networks [45, 47]. Several prior methods

employed ‘‘hard orthogonal constraints’’ to improve weight

orthogonality via SVD at training time [35, 38, 57]. Bansal

et al. [3] additionally investigated efficient formulations of

the orthogonality constraints. Orthogonal convolutional

neural networks (OCNN) [75] reformulate the orthogo-

nality constraints to be computed efficiently for networks

convolutional layers. In practice, these constraints are dif-

ficult to satisfy, and correspondingly only weakly imposed.

In addition, all of these methods focus on improving per-

formance for a known, given task. This means the training

process only extracts features that the network considers

useful for improving the performance of the current task,

not necessarily improving generalization or transfer per-

formance [70]. While our approach shares similarities with

SVD-based constraints, it can be realized with a very

efficient L2-based formulation, and takes the full input

distribution into account.

Recovering all input information from hidden repre-

sentations of a network is generally very difficult

[15, 53, 54], due to the loss of information throughout the

layer transformations. In this context, [69] proposed the

information bottleneck principle, which states that for an

optimal representation, information unrelated to the current

task is omitted. This highlights the common specialization

of conventional training approaches.

Reversed network architectures were proposed in pre-

vious work [2, 24, 36, 39], but mainly focus on how to

make a network fully invertible via augmenting the

network with special structures. As a consequence, the path

from input to output is different from the reverse path that

translates output to input. Besides, the augmented struc-

tures of these approaches can be challenging to apply to

general network architectures. In contrast, our approach

fully preserves an existing architecture for the backward

path, and does not require any operations that were not part

of the source network. As such, it can easily be applied in

new settings, e.g., adversarial training [25]. While methods

using reverse connections were previously proposed

[67, 85], these modules primarily focus on transferring

information between layers for a given task, and on

autoencoder structures for domain adaptation, respectively.

3 Method

With state-of-the-art deep learning methods [27, 88], there

is no need for breaking down the training process into

single layers. Hence, we consider approaches that target

whole networks, and employ orthogonalization regularizers

as a starting point [35]. Orthogonality constraints were

shown to yield improved training performance in various

settings [3], and for an n-layer network, they can be for-

mulated as:

Lort ¼
Xn

m¼1

MT
mMm � I

�� ��2
F
; ð1Þ

i.e., enforcing the transpose of the weight matrix Mm 2
Rsoutm �sinm for all layers m to yield its inverse when being

multiplied with the original matrix. I denotes the identity

matrix with I ¼ ðe1m; :::e
sinm
m Þ, e j

m denoting the jth column unit

vector. Theoretically, Lort ¼ 0 cannot be perfectly fulfilled

because of the information imbalance between inputs and

outputs in most deep learning cases [69]. We will first

analyze the influence of the loss function Lort assuming that

it can be fulfilled, before applying the analysis to our full

pretraining method.

Minimizing Eq. (1), i.e., MT
mMm � I ¼ 0 is mathemati-

cally equivalent to:

MT
mMme

j
m � e j

m ¼ 0; j ¼ 1; 2; . . .; sinm ;m ¼ 1; 2; . . .; n; ð2Þ

with rankðMT
mMmÞ ¼ sinm , and e j

m as eigenvectors of MT
mMm

with eigenvalues of 1. This formulation highlights that

Eq. (2) does not depend on the training data, and instead

only targets the content of Mm. Instead, we will design a

constraint that jointly considers data and the trainable

weights, allowing us to learn the dominant features of the

training dataset directly. We naturally would like to

recover all the features of the dataset with a learning task,

but finite network capacity makes this infeasible in prac-

tice. Instead, we aim for extracting the features that

Neural Computing and Applications (2023) 35:4587–4619 4589

123

contribute the most in order to achieve a minimum loss

value for our designed constraint. As a result, the features

that appear the most, i.e., dominant features, will be

extracted. In this section, we will introduce our constraint

and analysis how it guides the weights to learn dominant

features from the dataset. Then, we will illustrate how we

insert our constraint into training with a reversed pass

network.

Inspired by the classical unsupervised pretraining, we

reformulate the orthogonality constraint in a data-driven

manner to take into account the set of inputs Dm for the

current layer (either activation from a previous layer or the

training data D1), and instead minimize

LRR ¼
Xn

m¼1

MT
mMmd

i
m � dim

�� ��2
2

¼
Xn

m¼1

ðMT
mMm � IÞdim

�� ��2
2
;

ð3Þ

where dim 2 Dm � Rsinm . Due to its reversible nature, we will

denote our approach with an RR subscript in the following.

In contrast to classical autoencoder pretraining, we are

minimizing this loss jointly for all layers of a network, and

while orthogonality only focuses on Mm, our formulation

allows for minimizing the loss by extracting the dominant

features of the input data.

Let q denotes the number of linearly independent entries

in Dm, i.e., its dimension, and t the size of the training data,

i.e., Dm ¼ t , usually with q\t. For every single datum

dim; i ¼ 1; 2; . . .; t, Eq. (3) results in

MT
mMmd

i
m � dim ¼ 0;m ¼ 1; 2; . . .; n; ð4Þ

and hence dim are eigenvectors of MT
mMm with corre-

sponding eigenvalues being 1. Thus, instead of the generic

constraint MT
mMm ¼ I that is completely agnostic to the

data at hand, the proposed formulation of Eq. (4) is aware

of the training data, which improves the generality of the

learned representation, as we will demonstrate in detail

below.

The result of applying layer m of a network represents

the features extracted this layer via its weight matrix Mm.

The singular vectors of the SVD of Mm, can be regarded as

input filters, and we can thus analyze the result of Mm by

focusing on its singular vectors. We employ SVD to

identify what features are extracted by the parameters in

Mm. As by construction, rankðMmÞ ¼ r 6 minðsinm ; soutm Þ, the
SVD of Mm yields:

Mm ¼ UmRmV
T
m;m ¼ 1; 2; . . .; n;

with
Um ¼ ðu1m; u2m; . . .; urm; urþ1

m ; . . .; u
soutm
m Þ 2 Rsoutm �soutm ;

Vm ¼ ðv1m; v2m; . . .; vrm; vrþ1
m ; . . .; v

sinm
m Þ 2 Rsinm�sinm ;

8
<

:

ð5Þ

with left and right singular vectors in Um and Vm, respec-

tively, and Rm having square roots of the r eigenvalues of

MT
mMm on its diagonal. ukm and vkmðk ¼ 1; . . .; rÞ are the

eigenvectors ofMmM
T
m and MT

mMm, respectively [73]. Here,

especially the right singular vectors in VT
m are important, as

they determine which structures of the input are processed

by the transformation Mm. The original orthogonality

constraint with Eq. (2) yields r unit vectors e j
m as the

eigenvectors of MT
mMm. Hence, the influence of Eq. (2) on

Vm is completely independent of training data and learning

objectives.

Next, we show that LRR facilitates learning dominant

features from a given dataset. For this, we consider an

arbitrary basis for spanning the space of inputs Dm for layer

m. Let Bm : w1
m; . . .;w

q
m

� �
denote a set of q orthonormal

basis vectors obtained via a Gram–Schmidt process, with

t>q>r, and Dm denoting the matrix of the vectors in Bm.

As we show in more detail in Appendix, our constraint

from Eq. (4) requires eigenvectors ofMT
mMm to be wi

m, with

Vm containing r orthogonal vectors ðv1m; v2m; . . .; vrmÞ from

Dm and ðsinm � rÞ vectors from the null space of M.

We are especially interested in how Mm changes w.r.t.

input in terms of Dm, i.e., we express LRR in terms of Dm.

By construction, each input dim can be represented as a

linear combination via a vector of coefficients cim that

multiplies Dm so that dim¼Dmc
i
m. Since

Mmdm ¼ UmRmV
T
mdm, the loss LRR of layer m can be

rewritten as

LRRm
¼ MT

mMmdm � dm
�� ��2

2

¼ VmR
T
mRmV

T
mdm � dm

�� ��2
2

¼ VmR
T
mRmV

T
mDmcm � Dmcm

�� ��2
2
;m ¼ 1; 2; . . .; n;

ð6Þ

where we can assume that the coefficient vector cm is

accumulated over the training dataset size t via

cm ¼
Pt

i¼1 c
i
m, since eventually every single datum in Dm

will contribute to LRRm
. The central component of Eq. (6)

is VT
mDm. For a successful minimization, Vm needs to retain

4590 Neural Computing and Applications (2023) 35:4587–4619

123

those wi
m with the largest cm coefficients. As Vm is typically

severely limited in terms of its representational capabilities

by the number of adjustable weights in a network, it needs

to focus on the most important eigenvectors in terms of cm
in order to establish a small distance to Dmcm. Thus, fea-

tures that appear most in the input data with a corre-

sponding factor in cm will more strongly contribute to

minimizing LRRm
. Above, Dm is only used implicitly to

analyze different approaches, and we do not specify any

explicit requirements for Dm. Since a fixed dataset deter-

mines the corresponding Dm, different orthogonal decom-

positions via Gram–Schmidt lead to different orthonormal

bases. However, these different orthonormal bases can be

aligned via rotation, and all span the same vector space.

Thus, regardless of the particular orthonormal basis that is

used, our method always focuses on extracting dominant

features that appear most frequently in the dataset. This

means the components of Dm which contribute most to

minimizing the loss will be embedded in the neural net-

work. More in-depths discussions are provided in Appen-

dix A.3.

Comparing our constraint from Eq. (3) with the

orthogonal constraint in Eq. (1), we can see that our for-

mulation is actually stricter. As a consequence, our method

can retain the advantages of orthogonal constraints while

simultaneously embedding dominant features into the

weight matrices.

To summarize, Vm is driven toward containing r

orthogonal vectors wi
m that represent the most frequent

features of the input data, i.e., the dominant features.

Additionally, due to the column vectors of Vm being

mutually orthogonal, Mm is encouraged to extract different

features from the input. For the sake of being distinct and

representative of the dataset, these features have the

potential to be useful for new inference tasks. The feature

vectors embedded inMm can be extracted from the network

weights in practical settings, as we will demonstrate below.

3.1 Realization in neural networks

Calculating MT
mMmd

i
m in Eq. (3) directly is usually very

expensive due to the dimensionality of Mm. Instead, we

reuse Mmd
i
m in the forward pass network and build an extra

reverse pass network to calculate MT
mMmd

i
m by reusing

parameters from the forward pass network. In the follow-

ing, we will explain how to constrain the intermediate

results of the network to efficiently realize Eq. (3) when

training.

Regular training typically starts with a chosen network

structure and trains the model weights for a given task via a

suitable loss function. Our approach fully retains this setup

and adds a second pass that reverses the initial structure

while reusing all weights and biases. For instance, for a

typical fully connected layer in the forward pass with

dmþ1 ¼ Mmdm þ bm, the reverse pass operation is given by

d
0

m ¼ MT
mðdmþ1 � bmÞ, where d

0

m denotes the reconstructed

input.

Our goal with the reverse pass is to transpose all oper-

ations of the forward pass to obtain identical intermediate

activations between the layers with matching dimension-

ality. We can then constrain the intermediate results of

each layer of the forward pass to match the results of the

backward pass, as illustrated in Fig. 2. While the con-

struction of the reverse pass is straightforward for all

standard operations, i.e., fully connected layers, convolu-

tions, pooling, etc., slight adjustments are necessary for

nonlinear activation functions (AFs) and batch normaliza-

tion (BN). It is crucial for our formulation that dm and d
0

m

contain the same latent space content in terms of range and

dimensionality, such that they can be compared in the loss.

Hence, we use the BN parameters and the activation of

layer m� 1 from the forward pass, i.e., fm�1 and BNm�1,

for layer m in the reverse pass.

Unlike greedy layer-wise autoencoder pretraining,

which trains each layer separately and only constrains d1

and d
0

1, we jointly train all layers and constrain all inter-

mediate results. Due to the symmetric structure of the two

passes, we can use a simple L2 difference to drive the

network toward aligning the results:

LRR ¼
Xn

m¼1

km dm � d
0

m

�� ��2
2
: ð7Þ

Here, dm denotes the input of layer m in the forward pass

and d
0

m the output of layer m for the reverse pass. km
denotes a scaling factor for the loss of layer m, which,

however, is typically constant in our tests across all layers.

Note that with our notation, d1 and d
0

1 refer to the input

data, and the reconstructed input, respectively.

Next, we show how this setup realizes the regularization

from Eq. (3). For clarity, we use a fully connected layer

with bias. In a neural network with n hidden layers, the

forward process for a layer m is given by

dmþ1 ¼ Mmdm þ bm, with d1 and dnþ1 denoting input and

output, respectively. All neural networks can be classified

according to whether the full reverse pass can be built from

the output to input, and we also classify our pretraining as

full network pretraining and localized pretraining in

implementation.

3.1.1 Full network pretraining

For networks where a unique path from output to input

exists, we build a reverse pass network with transposed

Neural Computing and Applications (2023) 35:4587–4619 4591

123

operations starting with the final output where

dnþ1 ¼ d
0

nþ1, and the intermediate results d
0

mþ1:

d
0

m ¼ MT
mðd

0

mþ1 � bmÞ;m ¼ 1; 2; . . .; n; ð8Þ

where the reverse pass activation d
0

m depends on dmþ1
0, this

formulation yields a full reverse pass from output to input,

which we use for most training runs below. Here, we

analyze the influence of Eq. (7) during training by

assuming LRR ¼ 0 during the minimization. We then

obtain activated intermediate content during the reverse

pass that reconstructs the values computed in the forward

pass, i.e., d
0

mþ1 ¼ dmþ1 holds. In this case

d
0

m ¼ MT
mðd

0

mþ1 � bmÞ

¼ MT
mðdmþ1 � bmÞ ¼ MT

mMmdm;m ¼ 1; 2; . . .; n;
ð9Þ

which means that Eq. (7) is consistent with Eq. (3).

3.1.2 Localized pretraining

For architectures that have a reverse path that is not unique,

e.g., in the presence of additive residual connections, we

cannot uniquely determine the b, c in a ¼ bþ c given only

a. In such cases, we use a local formulation, and dmþ1 is

used as input of the reverse path of layer m directly. In this

case Eq. (8) can be written as:

d
0

m ¼ MT
mðdmþ1 � bmÞ;m ¼ 1; 2; . . .; n; ð10Þ

which effectively employs dmþ1 for jointly constraining all

intermediate activations in the reverse pass. Moreover, it is

consistent with Eq. (3).

In summary, Eq. (7) will drive the network toward a

state that is as-invertible-as-possible for the given input

dataset. Comparing the full network pretraining and

localized pretraining, the full network pretraining estab-

lishes a stronger relationship among the loss terms of dif-

ferent layers, and allows earlier layers to decrease the

accumulated loss of later layers. Localized pretraining, on

the other hand, is even valid for cases where the reverse

path from output to input is not unique.

Up to now, the discussion focused on simplified neural

networks with convolutional operations, which are crucial

for feature extraction, but without AFs or extensions such

as BN, which are applied to increase model nonlinearity.

While we leave a more detailed theoretical analysis of

these extensions for future work, we apply these nonlinear

extensions for all of our tests in Sects. 4 and 5. Thus, our

experiments demonstrate that our method works in con-

junction with BN and AFs. They show consistently show

that the inherent properties of our pretraining remain valid:

even in the nonlinear setting our approach successfully

extracts dominant structures and yields improved

generalization.

In Appendix, we give details on how to ensure that the

latent space content for forward and reverse pass is aligned

such that differences can be minimized, and we give

practical examples of full and localized pretraining

architectures.

To summarize, we realize the loss formulation of Eq. (7)

to minimize
Pn

m¼1 ðMT
mMm � IÞdm

�� ��2
2
without explicitly

having to construct MT
mMm. Following the notation above,

we will refer to networks trained with the added reverse

structure and the additional loss terms as RR variants. We

consider two variants for the reverse pass: a local pre-

training Eq. (10) using the datum dmþ1 of a given layer, and

a full version via Eq. (8) which uses d
0

mþ1 incoming from

the next layer during the reverse pass. It is worth pointing

out that our constraint is only used during the pretraining

Fig. 2 Left: An overview of the regular forward pass (blue) and the

corresponding reverse pass (yellow). The input of layer m is denoted

by dm. The right side illustrates how parameters are reused for a

convolutional layer in the reverse pass. The activation function and

batch normalization of layer m are denoted by fm and BNm,

respectively. The shared kernel and bias are represented by Mm and

bm, respectively

4592 Neural Computing and Applications (2023) 35:4587–4619

123

stage, and pretrained models are used as a starting point for

the fine-tuning stage, where the search space for parameters

is the same as in standard training, i.e., training is not

constrained by our approach.

3.2 Embedding singular values

In the following, we evaluate networks trained with dif-

ferent methodologies. We distinguish our pretraining

approach RR(in green), regular autoencoder pretraining

Pre (in gray), and orthogonality constraints Ort (in blue). In

addition, Std denotes a regular training run (in in graphs

below), i.e., models trained without autoencoder pretrain-

ing, orthogonality regularization or our proposed method.

Besides, a subscript will denote the task variant the model

was trained for, such as StdT for task T. While we typically

use all layers of a network in the constraints, a reduced

variant that we compare to below only applies the con-

straint for the input data, i.e., m=1. A network trained with

this variant, denoted by RR1

A, is effectively trained to only

reconstruct the input. It contains no constraints for the

inner activations and layers of the network. For the Ort

models, we use the Spectral Restricted Isometry Property

algorithm [3].

We verify that the column vectors of Vm of models from

RR training contain the dominant features of the input with

the help of a classification test, employing a single fully

connected layer, i.e., d2 ¼ M1d1, with BN and activation.

To quantify this similarity, we compute a Learned Per-

ceptual Image Patch Similarity (LPIPS) [86] between vim
and the training data (lower values being better).

We employ a training dataset constructed from two

dominant classes (a peak in the top-left and bottom-right

quadrant, respectively), augmented with noise in the form

of random scribbles, as shown in Fig. 3. Based on the

analysis above, we expect the RR training to extract the

two dominant peaks during training. The LPIPS measure-

ments confirm our SVD argumentation above, with average

scores of 0:217� 0:022 for RR, 0:319� 0:114 for Pre,

0:495� 0:006 for Ort, and 0:500� 0:002 for Std, i.e., the

RR model fares significantly better than the others. At the

same time, the peaks are clearly visible for RR models,

while the other models fail to extract structures that

resemble the input. Thus, by training with the full network

and the original training objective, our pretraining yields

structures that are interpretable and be inspected by

humans.

The results above experimentally confirm our formula-

tion of the RR loss and its ability to extract dominant and

generalizing structures from the training data. In addition,

they give the first indication that this still holds when

nonlinear components such as AFs are present. Next, we

will focus on quantified metrics and turn to measurements

in terms of mutual information to illustrate the behavior of

our pretraining for deeper networks.

4 Evaluation in terms of mutual information

Mutual information (MI) measures the dependence of two

random variables, i.e., higher MI means that there is more

shared information between two parameters. As our

approach hinges on the introduction of the reverse pass, we

will show that it succeeds in terms of establishing MI

between the input and the constrained intermediates inside

a network. More formally, MI I(X; Y) of random variables

X and Y measures how different the joint distribution of X

and Y is w.r.t. the product of their marginal distributions,

i.e., the Kullback–Leibler divergence IðX; YÞ ¼ DKL

½PðX;YÞjjPXPY �. [69] proposed MI plane to analyze trained

models, which show the MI between the input X and

activations of a layer Dm, i.e., IðX;DmÞ and IðDm; YÞ, i.e.,
MI of layerDm with output Y. These two quantities indicate

how much information about the input and output distri-

butions are retained at each layer, and we use them to show

to which extent our pretraining succeeds at incorporating

information about the inputs throughout training.

The following tests employ networks with six fully

connected layers and nonlinear AFs, with the objective to

learn the mapping from 12 binary inputs to 2 binary output

digits [64], with results accumulated over five runs.

Experimental details are illustrated in Appendix. We

compare the versions StdA, PreA, OrtA, and RRA. We

visualize model comparisons with the MI planes, the

content of which is visually summarized in Fig. 4a. Hori-

zontal/vertical axis of the MI plane denotes

IðX;DmÞ=IðY ;DmÞ, which measures the amount of shared

information between the mth layer Dm and X/Y after

training. This depicts how much information about input

and output distribution is retained at each layer, as well as
Fig. 3 Column vectors of Vm for different trained models Std, Ort,

Pre and RR for peaks. Input features clearly are successfully

embedded in the weights of RR, as confirmed by the LPIPS scores

Neural Computing and Applications (2023) 35:4587–4619 4593

123

how these relationships change throughout the network.

For regular training, the information bottleneck principle

[69] states that early layers contain more information about

the input, i.e., show high values for IðX;DmÞ and IðDm;YÞ.
As a result, these layers are frequently visible in the top-

right corner of MI plane visualizations. After training, later

layers typically share a large amount of information with

the output, i.e., show high IðDm; YÞ values, and correlate

less with the input (low IðX;DmÞ). As a result, they typi-

cally appear in the top-left corner of MI plane graphs.

The graph in Fig. 4b highlights that training with the RR

loss RRA correlates input and output distributions across all

layers: the cluster of green points in the center of the graph

indicates that all layers contain balanced MI between input

as well as output and the activations of each layer. StdA and

OrtA almost exclusively focus on the output with IðDm; YÞ
being close to one and information dropped out layer by

layer leads to a low IðX;D7Þ value. PreA instead only

focuses on reconstructing inputs. Thus, the early layers

cluster in the upper-right corner, while the last layer

IðD7; YÞ fails to align with the outputs. Once we continue

to fine-tune these models without regularization, the MI

naturally shifts toward the output, as illustrated in Fig. 4c.

Here, RRAA outperforms the other models in terms of the

final performance. Furthermore, we design a transfer task B

with switched output digits, which means that in task B, the

original two binary output digits, e.g., (1, 0), will be

switched into (0, 1). This change of the dataset results in

significantly different mapping relationships between

inputs and outputs compared with original task A. Like-

wise, RRAB performs best for a transfer task B with swit-

ched output digits, as shown in graph d, the final

performance for both tasks across all runs is summarized in

Table 1. The graph demonstrates that the proposed pre-

training succeeds in robustly establishing mutual informa-

tion between inputs and targets across a full network while

extracting reusable features. The nonlinearity of the

underlying network architectures does not impede the

performance of the RR models. It is worth pointing out that

Std and Ort exhibit high performance variance in transfer

task B, but not in base task A, because StdA and OrtA were

trained solely to improve task A performance. The

extracted features are not guaranteed to be useful for task B

in this process. As a result, performance in task B is not

consistent across training. On the other hand, RRA focuses

on extracting dominant features from the dataset, rather

than specific tasks, which significantly improves the sta-

bility of training across different runs for tasks A and B.

Comparing Fig. 4b and d, we can see that after pre-

training via our approach, balanced MI is obtained between

input as well as output and the activations of each layer,

indicating that our model extracted balanced features from

both the input and output. After transfer learning for task B,

we can see that all layers are located at the top part of the

graph with high IðDm;YÞ values, indicating that the model

aims to improve the performance for a specific task.

We also compare the mutual information of three variants

of our pretraining: the local variant lRRA, the full version

(a) (b) (c) (d)

Fig. 4 MI planes for different models: a Visual overview of the

contents. b Plane for task A. Points on each line correspond to layers

of one type of model. All points of RRA, are located in the center of

the graph, while StdA and OrtA, exhibit large IðDm;YÞ, i.e., specialize

on the output. PreA strongly focuses on reconstructing the input with

high IðX;DmÞ for early layers. c, d After fine-tuning for A/B. The last

layer D7 of RRAA and RRAB successfully builds the strongest

relationship with Y, yielding the highest accuracy

Table 1 Performance of MI

source and transfer tasks in

Figs. 4 and 5

Std Pre Ort RR1 lRR RR

Source task A Avg. 0.973 0.474 0.965 0.931 0.979 0.992

Std. dev. 0.015 0.107 0.024 0.040 0.011 0.002

Transfer task B Avg. 0.471 0.561 0.809 0.955 0.985 0.997

Std. dev. 0.459 0.083 0.376 0.022 0.012 0.002

4594 Neural Computing and Applications (2023) 35:4587–4619

123

RRA, and a variant of the latter: RR1

A, i.e., a version where

only the input d1 is constrained to be reconstructed. Figure 5

shows theMI planes for these threemodels. Only one layer is

constrainedwith our formulation inRR1

A, butwe can see that

the last two layers of the model are already located in the

middle part of the MI plane (Fig. 5a), and the influence is in

line with our full version RRA. Despite the local nature of

lRRA, it manages to establish MI for the majority of the

layers, as indicated by the cluster of layers in the center of the

MI plane. Only the first layer moves toward the upper-right

corner, and the second layer is affected slightly. In other

words, these layers exhibit a stronger relationship with the

distribution of the outputs. Despite this, the overall perfor-

mance when fine-tuning or for the task transfer remains

largely unaffected, e.g., the lRRAA/AB still clearly out-

performs RR1
AA=AB. This confirms our choice to use the full

pretraining when network connectivity permits, and employ

the local version in all other cases. Accuracy comparisons

among different models are displayed in Table 1. RRAA=AB

yields the highest performance, while lRRAA/AB performs

similarly with RRAA=AB.

In summary, from the MI tests we can conclude that

training with our formulation (RRA and lRRA) is useful for

correlating input and output distributions across all layers.

Furthermore, this correlation would be strengthened if

more layers were constrained with our formulations, e.g.,

comparing RRA with RR1
A. On the other hand, models

pretrained with our formulation, e.g., RRA and lRRA, can

achieve highest value of IðD7; YÞ and performance for

source task A and transfer task B after fine-tuning.

MI has received attention recently as a learning objec-

tive, e.g., in the form of the InfoGAN approach [9] for

learning disentangled and interpretable latent representa-

tions. While MI is typically challenging to assess and

estimate [74], the results above show that our approach

provides a straightforward and robust way for including it

as a learning objective. In this way, we can easily, e.g.,

reproduce the disentangling results from [9] without

explicitly calculating mutual information, which are shown

in Fig. 1c. A generative model with our pretraining extracts

intuitive latent dimensions for the different digits, line

thickness, and orientation without any additional modifi-

cations to the loss function. The joint training of the full

network with the proposed reverse structure, including

nonlinearities and normalization, yields a natural and

intuitive decomposition.

5 Experimental results

We now turn to a broad range of network structures, i.e.,

CNNs, Autoencoders, and GANs, with a variety of datasets

and tasks to show our approach succeeds in improving

inference accuracy and generality for modern-day appli-

cations and architectures. All tests use nonlinear activations

and several of them include BN. Experimental details are

provided in Appendix.

5.1 CIFAR-100 classification

We first focus on orthogonalization for a CIFAR-100

classification task with a ResNet 18 network, and compare

the performance of RR with the variants Std, Ort, in

addition to an OCNN (in light blue) network [75]. The

CNN architecture has ca. 11 million trainable parameters in

(a) (b) (c)

Fig. 5 MI plane comparisons among RR1

A, local variant lRRA and

the full version RRA. Points on each line correspond to layers of one

type of model. a MI Plane for task A. All points of RRA and the

majority of points for lRRA (five out seven) are located in the center

of the graph, i.e., successfully connect input and output distributions.

b, c After fine-tuning for A/B. The last layer D7 of RRAA=AB builds

the strongest relationship with Y. IðD7;YÞ of lRRAA/AB is only

slightly lower than RRAA=AB

Neural Computing and Applications (2023) 35:4587–4619 4595

123

each case. Pre is not included in this comparison due to its

incompatibility with ResNet architectures. The resulting

performance for the different variants (evaluated for 3 runs

each) is shown in Fig. 6. For CIFAR-100, the orthogonal

regularizations (Ort and OCNN) result in noticeable per-

formance gains of 0:33% and 0:337%, but RR clearly

outperforms both with an improvements of 1:2%. Despite

being different formulations, both Ort and OCNN represent

orthogonal regularizers that aim for the same goal of

weight orthogonality. Hence, their performance is on-par,

and we will focus on the more generic Ort variant for the

following evaluations.

5.2 Transfer learning benchmarks

We evaluate our approach with two state-of-the-art

benchmarks for transfer learning (Fig. 7). The first one uses

the texture-shape dataset from [21], which contains chal-

lenging images of various shapes combined with patterns

and textures to be classified. The results below are given

for 10 runs each. For the stylized data shown in Fig. 8a, the

accuracy of PreTS is low with 20.8%. This result is in line

with observations in previous work and confirms the

detrimental effect of classical pretraining. StdTS yields a

performance of 44.2%, and OrtTS improves the perfor-

mance to 47.0%, while RRTS yields a performance of

54.7% (see Fig. 8b). Thus, the accuracy of RRTS is

162:98% higher than PreTS, 23:76% higher than StdTS, and

16:38% higher than OrtTS. To assess generality, we also

apply the models to new data without re-training, i.e., an

edge and a filled dataset, also shown in Fig. 8a. For the

edge dataset, RRTS outperforms PreTS, StdTS and OrtTS by

178:82%, 50% and 16:75%, respectively.

Exemplary curves for test accuracy at training time for

StdTS, OrtTS, and RRTS are shown in Fig. 7. PreTS is not

included since its layer-wise curriculum precludes a direct

comparison. The graph shows that RRTS converges faster

than StdTS and OrtTS from the very beginning. It achieves

the performance of StdTS and OrtTS with ca. 1
3
and 1

2
of

number of training epochs, respectively. Achieving com-

parable performance with less training effort, and a higher

final performance support the reasoning given in Sect. 3:

RRTS with its reverse pass is more efficient at extracting

relevant features from the training data. Over the course of

our tests, we observed a similar convergence behavior for a

wide range of other runs.

It is worth pointing out that the additional constraints of

our training approach lead to moderately increased

requirements for memory and computations, e.g., 41.86%

more time per epoch than regular training for the texture-

shape test. As this test employs a small network with only

ca. 1:2� 104 trainable weights, the computations for our

approach still make a noticeable difference in training time.

However, as we show below, the difference becomes

negligible for larger networks. On the other hand, it allows

us to train smaller models: we can reduce the weight count

by 32% for the texture-shape case while still being on-par

with OrtTS in terms of classification performance. By

comparison, regular layer-wise pretraining requires sig-

nificant overhead and fundamental changes to the training

process. Our pretraining fully integrates with existing

training methodologies and can easily be deactivated via

km ¼ 0. More details of runtime performance and training

behavior are given in Appendix.

As a second test case, we use a CIFAR-based task

transfer [61] that measures how well models trained on the

original CIFAR 10, generalize to a new dataset (CIFAR

10.1) collected according to the same principles as the

original one. Here, we use a ResNet 110 with 110 layers

and 1.7 million parameters, Due to the consistently low

performance of the Pre models [1], we focus on Std, Ort

and RR for this test case. In terms of accuracy across 5

runs, OrtC10 outperforms StdC10 by 0.39%, while RRC10

Fig. 6 CIFAR-100 classification performance for RR, Std, Ort and

OCNN. RR yields the highest accuracy, and outperforms state-of-the-

art methods for orthogonalization (Ort and OCNN)

Fig. 7 Test accuracy over training epochs for StdTS, OrtTS, and RRTS.

The RRTS model consistently exhibits faster convergence than the

other two versions

4596 Neural Computing and Applications (2023) 35:4587–4619

123

outperforms OrtC10 by another 0.28% in terms of absolute

test accuracy (Fig. 9). This increase for RR training mat-

ches the gains reported for orthogonality in previous work

[3], thus showing that our approach yields substantial

practical improvements over the latter. It is especially

interesting how well performance for CIFAR 10 translates

into transfer performance for CIFAR 10.1. Here, RRC10

still outperforms OrtC10 and StdC10 by 0.22% and 0.95%,

respectively. Hence, the models from our pretraining very

successfully translate gains in performance from the orig-

inal task to the new one, indicating that the models have

successfully learned a set of more general features. To

summarize, both benchmark cases confirm that the pro-

posed pretraining benefits generalization.

5.3 Smoke generation

In this section, we employ our pretraining in the context of

generative models for transferring from synthetic to real-

world data from the ScalarFlow dataset [17]. As super-

resolution task A, we first use a fully convolutional gen-

erator network, adversarially trained with a discriminator

network on the synthetic flow data. While regular

pretraining is more amenable to generative tasks than

orthogonal regularization, it cannot be directly combined

with adversarial training. Hence, we pretrain a model Pre

for a reconstruction task at high-resolution without dis-

criminator instead. Figure 10a demonstrates that our

method works well in conjunction with the GAN training:

As shown in the bottom row, the trained generator succeeds

in recovering the input via the reverse pass without mod-

ifications. A regular model StdA, only yields a black image

in this case. For PreA, the layer-wise nature of the pre-

training severely limits its capabilities to learn the correct

data distribution [88], leading to low performance.

We now mirror the generator model from the previous

task to evaluate an autoencoder structure that we apply to

two different datasets: the synthetic smoke data used for

the GAN training (task B1), and a real-world RGB dataset

of smoke clouds (task B2). Thus, both variants represent

transfer tasks, the second one being more difficult due to

the changed data distribution. The resulting losses, sum-

marized in Fig. 10b, show that RR training performs best

for both autoencoder tasks: the L2 loss of RRAB1
is 68:88%

lower than StdAB1
, while it is 13:3% lower for task B2. The

proposed pretraining also clearly outperforms the Pre

Fig. 8 a Examples from texture-

shape dataset. b, c, d Texture-

shape test accuracy comparisons

of PreTS, OrtTS, StdTS and RRTS

for different datasets

Fig. 9 Left: Examples from

CIFAR 10.1 dataset. Right:

Accuracy comparisons when

applying models trained on

CIFAR 10 to CIFAR 10.1 data

Neural Computing and Applications (2023) 35:4587–4619 4597

123

(a) (b)

Fig. 10 a Example output and reconstructed inputs, with the reference

shown right. Only RRA successfully recovers the input, StdA produces

a black image, while PreA fares poorly. b Mean squared error L2 loss

comparisons for two different generative transfer learning tasks

(averaged across 5 runs each). The RR models show the best

performance for both tasks

Fig. 11 Example outputs for PreAB1
, StdAB1

, RRAB1
. The reference is shown for comparison. RRAB1

produces higher quality results than StdAB1

and PreAB1

Fig. 12 MAE comparisons for transfer task B2 models trained with captured smoke dataset reveal that RRAB2
provides the best visual quality

while also having the smallest error

4598 Neural Computing and Applications (2023) 35:4587–4619

123

variants. Example outputs of PreAB1
, StdAB1

and RRAB1
for

transfer task B1 are shown in Fig. 11. It is apparent that

RRAB1
provides the best performance among these models.

Figure 12 provides visual comparisons for transfer task B2,

where RRAB2
generates results that are closer to the refer-

ence. Within this series of tests, the RR performance for

task B2 is especially encouraging, as this task represents a

synthetic to real transfer.

5.4 Weather forecasting

Pretraining is particularly attractive in situations where the

amount of data for training is severely limited. Weather

forecasting is such a case, as accurate, real-world data for

many relevant quantities are only available for approxi-

mately 50 years. We use the ERA dataset [31] consisting of

assimilated measurements, and additionally evaluate our

models with simulated data from the CMIP database [19].

We replicate the architecture and training procedure of the

WeatherBench benchmark [59]. Hence, we use prognostic

variables at seven vertical levels, together with some sur-

face and constant fields at the current time t as well as

t � 6h and t � 12h as input, and target three-day forecasts

of 500 hPa geopotential (Z500), 2-meter temperature

(T2M), and 850 hPa temperature (T850). For training, we

employ a convolutional ResNet architecture with 19

residual blocks and 6.36M trainable parameters, as well as

a latitude-weighted root mean squared error (RMSE) as

loss functions. For worldwide observations dataset ERA

(six-hour intervals with a 5.625� resolution.), we train the

models with data from 1979 to 2015 and evaluate perfor-

mance with RMSE measurements across all data points

from the years 2017 and 2018. For the historical simulation

dataset CMIP, years 1850 to 2005 are used as training data,

while performance is measured with years 2006 to 2014.

We show comparisons between the regular model Std

and RR for both ERA and CMIP datasets. As Rasp et al.

[59] relied on dropout regularization, we additionally train

and evaluate models for both datasets with and without

dropout. Following their methodology, L2 regularization is

Fig. 13 Latitude-weighted RMSE comparisons between Std and RR

for ERA and CMIP datasets. Models trained with RR pretraining

significantly outperform state-of-the-art Std for all cases. The

minimum performance improvements of RR is 5:7% for the case

with ERA dataset and dropout regularization

(a) (b)

Fig. 14 a Comparisons of predictions for T2M and T850 on 9 Aug.

2019, 22:00 for the ERA dataset without dropout regularization. b
Prediction comparisons of three physical quantities on 26 June 2014,

0:00 for the CMIP dataset without dropout regularization. As

confirmed by the quantified results, RR predicts results closer to the

reference

Neural Computing and Applications (2023) 35:4587–4619 4599

123

applied for all tests. As regular pretraining does not support

residual connections, we omit it for the weather forecasting

tests.

Performance comparisons are shown in Fig. 13. Across

all cases, irrespective of whether observation data or sim-

ulation data is used, the RR models clearly outperform the

regular models and yield consistent improvements. This

also indicates that our approach is compatible with other

forms of regularization, such as dropout and L2 regular-

ization. The RR models yield performance improvements

of 6% *8% for the CMIP cases, and the ERA case with

dropout. Here, the re-trained Std version is on-par with the

data reported in [59], while our RR model exhibits a per-

formance improvement of 6:3% on average. For the ERA

dataset without dropout regularization, the RR model

decreases the loss even more strongly by 13:7%.

Visualizations of an inference result for 9 Aug. 2019

22:00 for the ERA dataset without dropout regularization

are shown in Figs. 1d and 14a. Predictions of RR yield

lower errors, and are closer to the reference. The same

conclusions can be drawn from the example at 26 June

2014 0:00 from the CMIP dataset without dropout regu-

larization in Fig. 14b.

6 Conclusions

We have proposed a novel pretraining approach inspired by

classic methods for unsupervised autoencoder pretraining

and orthogonality constraints. In contrast to the classical

methods, we employ a constrained reverse pass for the full

nonlinear network structure and include the original

learning objective. Weight matrix SVD is applied to

visually analyze and interpret that our proposed method is

more capable of extracting dominant features from the

training dataset. We have shown for a wide range of sce-

narios, from mutual information, over transfer learning

benchmarks to weather forecasting, that the proposed

pretraining yields networks with improved performance

and better generalizing capabilities. Our training approach

is general, easy to integrate, and imposes no requirements

regarding network structure or training methods. As a

whole, our results show that unsupervised pretraining has

not lost its relevance in today’s deep learning environment.

As future work, we believe it will be exciting to evaluate

our approach in additional contexts, e.g., for temporal

predictions [12, 32], and for training explainable and

interpretable models [9, 16, 83].

Appendix A Details of the method

A.1 Pretraining and singular value
decomposition

In this section, we give a more detailed derivation of our

loss formulation, extending Sect. 3 of the main paper. As

explained there, our loss formulation aims for minimizing

LRR ¼
Xn

m¼1

MT
mMmd

i
m � dim

�� ��2
2
; ðA1Þ

where Mm 2 Rsoutm �sinm denotes the weight matrix of layer m,

and data from the input dataset Dm is denoted by

dim � Rsinm ; i ¼ 1; 2; . . .; t. Here, t denotes the number of

samples in the input dataset. Minimizing Eq. (A1) is

mathematically equivalent to

MT
mMmd

i
m � dim ¼ 0 ðA2Þ

for all dim. Hence, perfectly fulfilling Eq. (A1) would

require all dim to be eigenvectors of MT
mMm with corre-

sponding eigenvalues being 1. As in Sect. 3 of the main

paper, we make use of an auxiliary orthonormal basis

Bm : w1
m; . . .;w

q
m

� �
, for which q (with q	 t) denotes the

number of linearly independent entries in Dm. While Bm

never has to be explicitly constructed for our method, it

can, e.g., be obtained via Gram–Schmidt. The matrix

consisting of the vectors in Bm is denoted by Dm.

Since the wh
mðh ¼ 1; 2; :::qÞ necessarily can be expressed

as linear combinations of dim, Eq. (A1) similarly requires

wh
m to be eigenvectors of MT

mMm with corresponding

eigenvalues being 1, i.e.,

MT
mMmw

h
m � wh

m ¼ 0 ðA3Þ

We denote the vector of coefficients to express dim via Dm

with cim, i.e., d
i
m¼Dmc

i
m. Then, Eq. (A2) can be rewritten

as:

MT
mMmDmc

i
m � Dmc

i
m ¼ 0 ðA4Þ

Via an SVD of the matrix Mm in Eq. (A4) we obtain

MT
mMmDmcm � Dmcm

¼
Xq

h¼1

MT
mMmw

h
mcmh

� wh
mcmh

¼
Xq

h¼1

VmR
T
mRmV

T
mw

h
mcmh

� wh
mcmh

ðA5Þ

4600 Neural Computing and Applications (2023) 35:4587–4619

123

where the coefficient vector cm is accumulated over the

training dataset size t via cm ¼
Pt

i¼1 c
i
m. Here, we assume

that over the course of a typical training run eventually

every single datum in Dm will contribute to LRRm
. This

form of the loss highlights that minimizing LRR requires an

alignment of VmR
T
mRmV

T
mw

h
mcmh

and wh
mcmh

.

By construction, Rm contains the square roots of the

eigenvalues of MT
mMm as its diagonal entries. The matrix

has rank r ¼ rankðMT
mMmÞ, and since all eigenvalues are

required to be 1 by Eq. (A3), the multiplication with Rm in

Eq. (A5) effectively performs a selection of r column

vectors from Vm. Hence, we can focus on the interaction

between the basis vectors wm and the r active column

vectors of Vm:

VmR
T
mRmV

T
mw

h
mcmh

� wh
mcmh

¼ cmh
VmR

T
mRmV

T
mw

h
m � wh

m

� �

¼ cmh

Xr

f¼1

ðvfmÞ
Twh

mv
f
m � wh

m

 !
:

ðA6Þ

As Vm is obtained via an SVD it contains r orthogonal

eigenvectors of MT
mMm. Eq. (A3) requires w

1
m; . . .;w

q
m to be

eigenvectors of MT
mMm, but since typically the dimension

of the input dataset is much larger than the dimension of

the weight matrix, i.e., r	 q, in practice only r vectors

from Bm can fulfill Eq. (A3). This means the vectors

v1m; . . .; v
r
m in Vm are a subset of the orthonormal basis

vectors Bm : w1
m; . . .;w

q
m

� �
with wh

m

�� ��2
2
¼ 1. Then, for any

wh
m we have

ðvfmÞ
Twh

m ¼ 1; if vfm ¼ wh
m

ðvfmÞ
Twh

m ¼ 0; otherwise:

(
ðA7Þ

Thus, if Vm contains wh
m, we have

Xr

f¼1

ðvfmÞ
Twh

mv
f
m ¼ wh

m; ðA8Þ

and we trivially fulfill the constraint

cmh

Xr

f¼1

ðvfmÞ
Twh

mv
f
m � wh

m

 !
¼ 0: ðA9Þ

However, due to r being smaller than q in practice, Vm

typically cannot include all vectors from Bm. Thus, if Vm

does not contain wh
m, we have ðvfmÞ

Twh
m ¼ 0 for every

vector vfm in Vm, which means

Xr

f¼1

ðvfmÞ
Twh

mv
f
m ¼ 0: ðA10Þ

As a consequence, the constraint Eq. (A2) is only partially

fulfilled:

cmh

Xr

f¼1

ðvfmÞ
Twh

mv
f
m � wh

m

 !
¼ �cmh

wh
m : ðA11Þ

As the wh
m have unit length, the factors cm determine the

contribution of a datum to the overall loss. A feature wh
m

that appears multiple times in the input data will have a

correspondingly larger factor in cm and hence will more

strongly contribute to LRR. The L
2 formulation of Eq. (A1)

leads to the largest contributors being minimized most

strongly, and hence the repeating features of the data, i.e.,

dominant features, need to be represented in Vm to mini-

mize the loss. Interestingly, this argumentation holds when

additional loss terms are present, e.g., a loss term for

classification. In such a case, the factors cm will be skewed

toward those components that fulfill the additional loss

terms, i.e., favor basis vectors wh
m that contain information

for about the loss terms. This, e.g., leads to clear digit

structures being embedded in the weight matrices for the

MNIST example below.

In summary, to minimize LRR, Vm is driven toward

containing r orthogonal vectors wh
m which represent the

most frequent features of the input data, i.e., the dominant

features. It is worth emphasizing that above Bm is only an

auxiliary basis, i.e., the derivation does not depend on any

particular choice of Bm.

A.2 Examples of network architectures
with pretraining

While the proposed pretraining is significantly easier to

integrate into training pipelines than classic autoencoder

pretraining, there are subtleties w.r.t. the order of the

operations in the reverse pass that we clarify with examples

in the following sections. To specify NN architectures, we

use the following notation: C(k, l, q), and D(k, l, q) denote

convolutional and deconvolutional operations, respec-

tively, while fully connected layers are denoted with F(l),

where k, l, q denote kernel size, output channels, and stride

size, respectively. The bias of a CNN layer is denoted with

b. I/O(z) denote input/output, their dimensionality is given

by z. Ir denotes the input of the reverse pass network. tanh,

relu, lrelu denote hyperbolic tangent, ReLU, and leaky

ReLU activation functions (AFs), where we typically use a

leaky tangent of 0.2 for the negative half-space. UP, MP

and BN denote 2� nearest-neighbor up-sampling, max

Neural Computing and Applications (2023) 35:4587–4619 4601

123

pooling with 2� 2 filters and stride 2, and batch normal-

ization, respectively.

Below we provide additional examples of how to realize

the pretraining loss LRR in a neural network architecture.

As explained in the main document, the constraint Eq. (A1)

is formulated via

LRR ¼
Xn

m¼1

km dm � d
0

m

�� ��2
2
; ðA12Þ

with dm, and km denoting the vector of activated interme-

diate data in layer m from the forward pass, and a scaling

factor, respectively. d
0

m denotes the activations of layer m

from the reverse pass. For instance, let LmðÞ denote the

operations of a layer m in the forward pass, and L0mðÞ the

corresponding operations for the reverse pass. Then,

dmþ1 ¼ LmðdmÞ, and d
0

m ¼ L0mðd
0

mþ1Þ.
When Eq. (A12) is minimized, we obtain activated

intermediate content during the reverse pass that reconstructs

the values computed in the forward pass, i.e., d
0

mþ1 ¼ dmþ1

holds. Then, d
0

m can be reconstructed from the incoming

activations from the reverse pass, i.e., d
0

mþ1, or from the

output of layer m, i.e., dmþ1. Using d
0

mþ1 results in a global

coupling of input and output throughout all layers, i.e., the

full loss variant. On the other hand, dmþ1 yields a variant that

ensures local reversibility of each layer, and yields a very

similar performance, as we will demonstrate below. We

employ this local loss for networks without a unique, i.e.,

bijective, connection between two layers. Intuitively, when

inputs cannot be reliably reconstructed from outputs.

Full network pretraining An illustration of a CNN

structure with AFs and BN and a full loss is shown in

Fig. 2 in the main paper. To illustrate this setup, we

consider an example network employing convolutions

with mixed AFs, BN, and MP. Let the network receives

a field of 322 scalar values as input. From this input, 20,

40, and 60 feature maps are extracted in the first three

layers. Besides, the kernel sizes are decreased from 5� 5

to 3� 3. To clarify the structure, we use ReLU activa-

tion for the first convolution, while the second one uses

a hyperbolic tangent, and the third one a sigmoid func-

tion. With the notation outlined above, the first three

layers of the network are

Ið32; 32; 1Þ ¼ d1 ! C1ð5; 20; 1Þ þ b1 ! BN1 ! relu

! d2 ! MP ! C2ð4; 40; 1Þ þ b2 ! BN2 ! tanh

! d3 ! MP ! C3ð3; 60; 1Þ þ b3 ! BN3 ! sigm

! d4 ! :::

ðA13Þ

The reverse pass for evaluating the loss reuses all weights

of the forward pass and ensures that all intermediate

vectors of activations, dm and d
0

m, have the same size and

content in terms of normalization and nonlinearity. We

always consider states after activation for LRR. Thus, dm
denotes activations before pooling in the forward pass and

d
0

m contains data after up-sampling in the reverse pass, in

order to ensure matching dimensionality. Thus, the last

three layers of the reverse network for computing LRR take

the form:

::: ! d
0

4 ! �b3 ! D3ð3; 40; 1Þ ! BN2 ! tanh ! UP

! d
0

3 ! �b2 ! D2ð4; 20; 1Þ ! BN1 ! relu ! UP

! d
0

2 ! �b1 ! D1ð5; 3; 1Þ

! d
0

1 ¼ Oð32; 32; 1Þ:
ðA14Þ

Here, the de-convolutions Dx in the reverse network share

weights with Cx in the forward network, i.e., the 4� 4�
20� 40 weight matrix of C2 is reused in its transposed

form as a 4� 4� 40� 20 matrix in D2. Additionally, it

becomes apparent that AFs and BN of layer 3 from the

forward pass do not appear in the listing of the three last

layers of the reverse pass. This is caused by the fact that

both are required to establish the latent space of the fourth

layer. Instead, d3 in our example represents the activations

after the second layer (with BN2 and tanh), and hence the

reverse pass for d
0

3 reuses both functions. This ensures that

dm and d
0

m contain the same latent space content in terms of

range and dimensionality, and can be compared in

Eq. (A12).

For the reverse pass, we additionally found it beneficial

to employ an AF for the very last layer if the output space

has suitable content. For instance, for inputs in the form of

RGB data we employ an additional activation with a ReLU

function for the output to ensure the network generates

only positive values.

Localized pretraining In the example above, we use a full

pretraining with d
0

mþ1 to reconstruct the activations d
0

m.

However, if the architecture of the original network makes

use of operations between layers that are not bijective, e.g.,

residual connections, we instead use the local loss. Note

that our loss formulation has no problems with irreversible

operations within a layer, e.g., most convolutional or fully

connected layers typically are not fully invertible. In all

these cases the loss will drive the network toward a state

that is as-invertible-as-possible for the given input dataset.

However, this requires a reliable vector of target activa-

tions in order to apply the constraints. If the connection

between layers is not bijective, we cannot reconstruct this

target for the constraints, as in the examples given above.

In such cases, we regard every layer as an individual unit to

4602 Neural Computing and Applications (2023) 35:4587–4619

123

which we apply the constraints by building a localized

reverse pass. For example, given a simple convolutional

architecture with

d1 ! C1ð5; 20; 1Þ þ b1 ¼ d2 ðA15Þ

in the forward pass, we calculate d
0

1 with

ðd2 � b1Þ ! D1ð5; 3; 1Þ ¼ d
0

1: ðA16Þ

We, e.g., use this local loss in the ResNet 110 network

below. It is important to note that despite being closer to

regular autoencoder pretraining, this formulation still

incorporates all nonlinearities of the original network

structure, and jointly trains full networks while taking into

account the original learning objective.

A.3 MNIST and peak tests

Below we give details for the peak tests from Sect. 3 of

the main paper and show additional tests with the MNIST

dataset.

Peak Test For the Peak test we generated a dataset of 110

images shown in Fig. 15. 55 images contain a peak located

in the upper left corner of the image. The other 55 contain a

peak located in the bottom-right corner. We added random

scribbles in the images to complicate the task. All 110

images were labeled with a one-hot encoding of the two

possible positions of the peak. We use 100 images as the

training dataset, and the remaining 10 for testing. All peak

models are trained for 5000 epochs with a learning rate of

0.0001, with k ¼ 1e� 6 for RRA. To draw reliable con-

clusions, we show results for five repeated runs here. The

neural network in this case contains one fully connected

layer, with BN and ReLU activation. The results are shown

in Fig. 16, with both peak modes being consistently

embedded into the weight matrix of RRA, while regular,

autoencoder pretraining and orthogonal training show pri-

marily random singular vectors. For this test, the dataset is

constructed such that the two Gaussian peaks are the

dominant features of the dataset. No matter what

orthonormal basis the network converges to, the two

dominant peaks are included in Dm with our approach.

Specifically, after training, we can see via SVD that the

network consistently learns to encode these two peaks in its

parameters, since they contribute most to a reconstruction

loss.

We also use different network architectures in Fig. 17 to

verify that the dominant features are successfully extracted

when using more complex network structures. Even for

two layers with BN and ReLU activations, our pretraining

clearly extracts the two modes of the training data. The

visual resemblance is slightly reduced in this case, as the

network has the freedom to embed the features in both

layers. Across all three cases, our pretraining clearly out-

performs regular training and the orthogonality constraint

in terms of extracting and embedding the dominant struc-

tures of the training dataset in the weight matrix It also

yields lower LPIPS evaluations than autoencoder pre-

training, which indicates features embedded in RR models

represent the training data better.

MNIST Test We additionally verify that the column vectors

of Vm of models from RR training contain the dominant

features of the input with MNIST tests, which employ a

single fully connected layer, i.e., d2 ¼ M1d1. In the first

MNIST test, the training data consists only of 2 different

images. All MNIST models are trained for 1000 epochs

with a learning rate of 0.0001, and k ¼ 1e� 5 for RRA.

After training, we compute the SVD for M1. SVDs of the

weight matrices of trained models can be seen in Fig. 18.

The LPIPS scores show that features embedded in the

weights of RR are consistently closer to the training dataset

than all other methods, i.e., regular training Std, classic

autoencoder pretraining Pre, and regularization via

orthogonalization Ort. While the vectors of Std and Ort

contain no recognizable structures.

Overall, our experiments confirm the motivation of our

pretraining formulation. They additionally show that

employing an SVD of the network weights after our

Fig. 15 Dataset used for the peak tests

Neural Computing and Applications (2023) 35:4587–4619 4603

123

pretraining yields a simple and convenient method to give

humans intuition about the features learned by a network.

Appendix B Mutual information

This section gives details of the mutual information and

disentangled representation tests from Sect. 4 of the main

paper.

B.1 Mutual information test

Mutual information (MI) measures the dependence of two

random variables, i.e., higher MI means that there is more

shared information between two parameters. More for-

mally, the mutual information I(X; Y) of random variables

X and Y measures how different the joint distribution of X

and Y is w.r.t. the product of their marginal distributions,

i.e., the Kullback–Leibler divergence IðX; YÞ ¼ KL½PðX;YÞ
jjPXPY �, where KL denotes the Kullback–Leibler diver-

gence. Let IðX;DmÞ denote the mutual information

between the activations of a layer Dm and input X. Simi-

larly IðDm; YÞ denotes the MI between layer m and the

output Y. We use MI planes in the main paper, which show

IðX;DmÞ and IðDm; YÞ in a 2D graph for the activations of

each layer Dm of a network after training.

Fig. 16 Five repeated tests with the peak data shown in Sect. 3 of the main paper. RRA robustly extracts dominant features from the dataset. The

two singular vectors strongly resemble the two peak modes of the training data. This is confirmed by the LPIPS measurements

(a)

(b)

(c)

Fig. 17 Right singular vectors of M1 for Across the three architec-

tures, RRA successfully extracts dominant and salient features

4604 Neural Computing and Applications (2023) 35:4587–4619

123

Training details We use the same numerical studies as in

[64] as task A, i.e., a regular feed-forward neural network

with 6 fully connected layers. The input variable X contains

12 binary digits that represent 12 uniformly distributed

points on a 2D sphere. The learning objective is to discover

binary decision rules which are invariant under O(3) rota-

tions of the sphere. X has 4096 different patterns, which are

divided into 64 disjoint orbits of the rotation group,

forming a minimal sufficient partition for spherically

symmetric rules [41]. To generate the input–output distri-

bution P(X, Y), we apply the stochastic rule

pðy ¼ 1 j xÞ ¼ Wðf ðxÞ � hÞ; ðx 2 X; y 2 YÞ, where W is a

standard sigmoidal function WðuÞ ¼ 1=ð1þ expð�cuÞÞ,

following [64]. We then use a spherically symmetric real-

valued function of the pattern f(x), evaluated through its

spherical harmonics power spectrum [41], and compare

with a threshold h, which was selected to make

pðy ¼ 1Þ ¼
P

x pðy ¼ 1 j xÞpðxÞ
 0:5, with uniform p(x).

c is high enough to keep the mutual information IðX; YÞ

0:99 bits.

For the transfer learning task B, we reverse output labels

to check whether the model learned specific or generalizing

features, e.g., if the output is [0,1] in the original dataset,

we swap the entries to [1,0]. 80% of the data (3277 data

pairs) are used for training and rests (819 data pairs) are

used for testing.

Fig. 18 SVD of the M1 matrix for five tests with random two digit images as training data. LPIPS distances [86] of RR are consistently lower

than Std and Ort

Neural Computing and Applications (2023) 35:4587–4619 4605

123

(a) (b) (c) (d)

Fig. 19 Additional results for the disentangled representations with

the MNIST data: For every row in the figures, we vary the

corresponding latent code (left to right), while keeping all other

inputs constant. Different rows indicate a different random noise

input. For example, in (b) every column contains five results which

are generated with different noise samples, but the same latent codes

c1� 3. In every row, 10 results are generated with 10 different values

of c1, which correspond to one digit each for b. a For a regular

training (Std), no clear correspondence between c1 and the outputs are
apparent (similarly for c2;3). c Different c2 values result in a tweaked

style, while c3 controls the orientation of the digit, as shown in d.
Thus, in contrast to Std, the pretrained model learns a meaningful,

disentangled representation

Fig. 20 Separate per-class test accuracies for the four model variants. The RRTS model exhibits a consistently high accuracy across all 16 classes

(a) (b)

Fig. 21 MAE value comparisons between RR and Std(ERR for RR and EStd for Std). RR consistently yields lower errors than Std. The

predictions inferred by the RR model are closer to the observed references

4606 Neural Computing and Applications (2023) 35:4587–4619

123

For the MI comparison in Fig. 4, we discuss models

before and after fine-tuning separately, in order to illustrate

the effects of regularization. We include a model with

greedy layer-wise pretraining Pre, a regular model StdA,

one with orthogonality constraints OrtA, and our regular

model RRA, all before fine-tuning. For the model RRA all

layers are constrained to be recovered in the backward

pass. We additionally include the version RR1

A, i.e., a

model trained with only one loss term k1 d1 � d
0

1

�� ��2
2
, which

means that only the input is constrained to be recovered.

Thus, RR1

A represents a simplified version of our approach

which receives no constraints that intermediate results of

the forward and backward pass should match. For OrtA, we

Table 2 Model Accuracy of MI Source Task

Training runs StdA OrtA RR1
A

PreA lRRA RRA StdAA OrtAA RR1
AA

PreAA lRRAA RRAA

1 0.976 0.969 0.836 0.59 0.8350 0.772 0.978 0.968 0.885 0.638 0.9770 0.992

2 0.975 0.921 0.68 0.548 0.8360 0.784 0.983 0.926 0.918 0.402 0.9770 0.994

3 0.964 0.957 0.8 0.566 0.8140 0.725 0.963 0.958 0.993 0.397 0.9740 0.993

4 0.987 0.991 0.657 0.676 0.8420 0.771 0.989 0.993 0.917 0.404 0.9980 0.989

5 0.957 0.979 0.825 0.533 0.8400 0.774 0.954 0.979 0.944 0.527 0.9710 0.993

Avg. 0.972 0.963 0.760 0.5826 0.8334 0.765 0.973 0.965 0.931 0.4736 0.9794 0.992

Std. dev. 0.012 0.027 0.085 0.056 0.0112 0.023 0.015 0.025 0.040 0.1069 0.0107 0.002

Table 3 Model Accuracy of MI

Transfer Task
Training runs StdAB OrtAB StdB RR1

AB
PreAB lRRAB RRAB

1 0.136 0.984 0.852 0.919 0.656 0.998 0.998

2 0.136 0.136 0.991 0.954 0.594 0.991 0.997

3 0.989 0.957 0.953 0.977 0.443 0.978 0.995

4 0.136 0.991 0.909 0.963 0.597 0.989 0.997

5 0.96 0.977 0.965 0.963 0.517 0.969 1.000

Avg. 0.471 0.809 0.934 0.955 0.5614 0.9850 0.997

Std. dev. 0.459 0.376 0.055 0.022 0.0826 0.0115 0.002

Table 4 Model Accuracy of

CIFAR-100 Tests (ResNet 18

network)

Training runs Std Ort OCNN RR

1 0.7402 0.7421 0.7416 0.7546

2 0.7405 0.7448 0.7455 0.7505

3 0.7394 0.7430 0.7430 0.7509

Avg. 0.7400 0.74330 0.74337 0.7520

Std. dev. 3.23 � 10�7 1.89 � 10�6 3.90 � 10�6 5.11 � 10�6

Table 5 Model Accuracy of

CIFAR-10 Tests (ResNet 110

network)

Training runs Stdc1 Ortc1 RRc1 Stdc10 Ortc10 RRc10 Stdc10 Ortc10 RRc10

CIFAR 10 CIFAR 10.1

1 0.9082 0.9042 0.9076 0.9194 0.9255 0.9277 0.8275 0.8375 0.8435

2 0.909 0.9081 0.9026 0.9228 0.9231 0.9267 0.8315 0.8315 0.846

3 0.908 0.9085 0.9028 0.92 0.9239 0.927 0.8305 0.8415 0.834

4 0.9031 0.9098 0.9052 0.9176 0.9257 0.928 0.8325 0.8395 0.8335

5 0.9104 0.9106 0.9108 0.9249 0.9259 0.9286 0.835 0.8435 0.8475

Avg. 0.9077 0.9082 0.9058 0.9209 0.9248 0.9276 0.8314 0.8387 0.8409

Std. dev. 0.0028 0.0025 0.0035 0.0029 0.0012 0.0008 0.0027 0.0046 0.0067

Neural Computing and Applications (2023) 35:4587–4619 4607

123

Table 8 Forward and Reverse

Pass Neural Network for MI

Tests

Forward pass:

Ið12Þ ! tanh FCð10Þ þ b1ð Þ ¼ d1 ! tanh FCð7Þ þ b2ð Þ ¼ d2 ! tanh FCð5Þ þ b3ð Þ ¼ d3

! tanh FCð4Þ þ b4ð Þ ¼ d4 ! tanh FCð3Þ þ b5ð Þ ¼ d5 ! tanh FCð2Þ þ b6ð Þ ¼ d6 ! Oð2Þ:
Reverse pass RRAð Þ :
Ið2Þ � b6 ! tanhðFCð3ÞÞ � b5 ! tanhðFCð4ÞÞ � b4 ! tanhðFCð5ÞÞ � b3 ! tanhðFCð7ÞÞ � b2

! tanhðFCð10ÞÞ � b1 ! tanhðFCð12ÞÞ ! Oð12Þ .
Reverse pass lRRAð Þ :
d6 � b6 ! tanhðFCð3ÞÞ ¼ d05; d5 � b5 ! tanhðFCð4ÞÞ ¼ d04; d4 � b4 ! tanhðFCð5ÞÞ ¼ d03;

d3 � b3 ! tanhðFCð7ÞÞ ¼ d02; d2 � b2 ! tanhðFCð10ÞÞ ¼ d01; d1 � b1 ! tanhðFCð12ÞÞ ¼ d00

Table 9 Hyperparameters of MI

Tests
Batch size 512 Learning rate 0.0004

k RRA : k1� 6 ¼ 10�2

lRR : k1 ¼ 8� 10�2; k2 ¼ 6� 10�2; k3 ¼ 4� 10�2; k4 ¼ 2� 10�2; k1;2 ¼ 10�2

Training epochs 20000 for PreA=AA=AB; RRA=AA=AB; lRRA=AA=AB; Std A=AA=AB, and StdB

Table 6 Model L2 Loss of Smoke Tests. Results for B2: 10
7

Training runs PreAB1
StdAB1

RRAB1
PreAB2

StdAB2
RRAB2

1 1013 338.4 197.7 5.19 1.93 1.62

2 411.4 380.2 203.6 3.63 1.63 1.55

3 621.5 2096.2 206 4.58 2.40 1.56

4 526.5 214.3 203.1 4.74 1.52 1.54

5 358.5 219.9 200.8 3.89 1.49 1.51

Avg. 586.18 649.8 202.24 4.41 1.80 1.56

Std. dev. 259.50 811.82 3.14 0.64 0.382 0.0381

Table 7 Forward and Reverse Pass Neural Networks for MNIST and peak Tests

Forward pass:

MNIST (Fig. 1): I(784) ! FC ð10Þ þ b1 ! Oð10Þ: peak (Figs. 2 and 4a): Ið784Þ ! FCð2Þ þ b1 ! Oð2Þ
peak (Fig. 4b): I(784) ! relu BN FCð2Þ þ b1ð Þ ! Oð2Þð
peak (Fig. 4c): Ið784Þ ! relu BN FCð128Þ þ b1ð Þ ! relu BN FCð2Þ þ b2ð Þ ! Oð2Þðð
Reverse pass:

MNIST (Fig. 1): I(10) �b1 ! FC (784) ! O(784) peak (Figs. 2 and 4a): Ið10Þ � b1 ! FC ð784Þ ! Oð784Þ
peakð Fig. 4b): Ið2Þ � b1 ! FCð784Þ ! Oð784Þ
peak (Fig. 4c): Ið2Þ � b2 ! relu BNðFCð128ÞÞ � b1 ! FCð784Þ ! Oð784Þð

4608 Neural Computing and Applications (2023) 35:4587–4619

123

used the Spectral Restricted Isometry Property (SRIP)

regularization [3],

LSRIP ¼ brðWTW � IÞ; ðB17Þ

where W is the kernel, I denotes an identity matrix, and b

represents the regularization coefficient. rðWÞ ¼
supz2Rn;z 6¼0

Wzk k
zk k denotes the spectral norm of W.

As explained in the main text, all layers of the first stage,

i.e., from RRA, RR
1

A, OrtA , PreA and StdA are reused for

training the fine-tuned models without regularization, i.e.,

RRAA, RR1

AA, OrtAA , PreAA and StdAA. Likewise, all

layers of the transfer task models RRAB, RR
1

AB, OrtAB ,

PreAB and StdAB are initialized from the models of the first

training stage.

Analysis of results We first compare the version only

constraining input and output reconstruction (RR1

A) and the

full loss version RRA. Fig. 4b of the main paper shows that

all points of RRA are located in a central region of the MI

place, which means that all layers successfully encode

information about the inputs as well as the outputs. This

also indicates that every layer contains a similar amount of

information about X and Y, and that the path from input to

output is similar to the path from output to input. The

points of RR1

A, on the other hand, form a diagonal line, i.e.,

this network has different amounts of mutual information

across its layers, and potentially a very different path for

each direction. This difference in behavior is caused by the

difference of the constraints in these two versions: RR1

A is

only constrained to be able to regenerate its input, while the

Table 12 Forward and Reverse Pass Neural Network for CIFAR-100 Tests (ResNet 18 network)

Table 13 Hyperparameters of CIFAR-100 Tests (ResNet 18 network)

Batch size 128 Training epochs 400 epochs

Learning rate 0–60 epochs: 0.1; 60–120 epochs: 0.02

120–180 epochs: 0.004; 180–40 epochs: 0.0008

k 0–60 epochs: 10-4; 60–120 epochs: 10�6

120–180 epochs:10-3; 180–40 epochs: 10�3

Table 10 Forward and Reverse Pass Neural Network for Digit Generation Tests

Forward pass: Ið74Þ ! reluðBNðFCð1024ÞÞÞ ! relu BNðFCð6272ÞÞ ! reluðBNðCð4; 64; 2ÞÞÞ ! reluðBNðCð4; 1; 2ÞÞÞ ¼ Irð
Reverse pass RRA=AA=AB

� �
:

Ir ! reluðBNðDð4; 64; 2ÞÞÞ ! reluðBNðDð4; 128; 2ÞÞÞ ! reluðBNðFCð1024ÞÞÞ ! reluðFCð74ÞÞ ! Oð74Þ:

Table 11 Hyperparameters of

Digit Generation Tests
Batch size 256 k kc1 ¼ 2� 10�3; kc2;3 ¼ 1:5� 10�3

Learning rate 0.001 for RR1 and Std Training steps 150000 steps for RR1 and Std

Neural Computing and Applications (2023) 35:4587–4619 4609

123

full loss for RRA ensures that the network learns features

which are beneficial for both directions. This test highlights

the importance of the constraints throughout the depth of a

network in our formulation. In contrast, the IðX;DÞ values
of later layers for StdA and OrtA exhibit small values

(points near the left side), while IðD; YÞ is high throughout.

This indicates that the outputs were successfully encoded

and that increasing amounts of information about the inputs

are discarded. Hence, more specific features about the

given output dataset are learned by StdA and OrtA. This

shows that both models are highly specialized for the given

task, and potentially perform worse when applied to new

tasks. PreA only focuses on decreasing the reconstruction

loss, which results in high IðX;DÞ values for early layers,

and low IðD; YÞ values for later layers.
During the fine-tuning phase for task A (i.e., regularizers

being disabled), all models focus on the output and maxi-

mize IðD; YÞ. There are differences in the distributions of

the points along the y-axis, i.e., how much MI with the

output is retained, as shown in Fig. 4c of the main paper.

For model RRAA, the IðD; YÞ value is higher than for

StdAA, OrtAA, PreAA and RR1

AA, which means outputs of

RRAA are more closely related to the outputs, i.e., the

ground truth labels for task A. Thus, RRAA outperforms the

other variants for the original task.

In the fine-tuning phase for task B, StdAB stands out with

very low accuracy in Table 1 of the main paper. This model

from a regular training run has large difficulties to adapt to

the new task. PreA aims at extracting features from inputs

and reconstructing them. PreAB outperforms StdAB, which

means features helpful for task B are extracted by PreA,

however, it’s hard to guide the feature extracting process.

Model OrtAB also performs worse than StdB. RRAB shows

the best performance in this setting, demonstrating that our

loss formulation yielded more generic features, improving

the performance for related tasks such as the inverted

outputs for B.

Table 16 Forward and Reverse Pass Neural Network for CIFAR-10 Tests (ResNet 110 network)

Table 17 Hyperparameters of

CIFAR-10 Tests (ResNet 110

network)

Batch size 256 k 10�8 Training epochs 200 epochs

Learning rate RRc1, Ortc1 and Stdc1 : 0:01

RRc10;Ortc10 and Stdc10 : 0:01 (0-80 epochs), 0.001 (80-120 epochs)

0.0001 (120-160 epochs), 0.00001 (160-200 epochs)

Table 14 Forward and Reverse Pass Network for Texture-shape Tests

Forward pass: Ið224; 224; 3Þ ! relu Cð4; 8; 2Þ þ b1ð Þ ! relu Cð4; 8; 2Þ þ b2ð Þ ! relu Cð4; 8; 2Þ þ b3ð Þ ! relu Cð4; 8; 2Þ þ b4ð Þ
! relu Cð4; 8; 2Þ þ b5ð Þ ! relu Cð4; 8; 1Þ þ b6ð Þ ¼ Ir ! FCð16Þ ! Oð16Þ
Reverse pass: Ir � b6 ! reluðDð4; 8; 1ÞÞ � b5 ! reluðDð4; 8; 2ÞÞ � b4 ! reluðDð4; 8; 2ÞÞ � b3 ! reluðDð4; 8; 2ÞÞ � b2

! reluðDð4; 8; 2ÞÞ � b1 ! reluðDð4; 3; 2ÞÞ ! Oð224; 224; 3Þ

Table 15 Hyperparameters of Texture-shape Tests

Batch size 64 k1� 6 5� 10�6

Learning rate 0.0001 Training epochs 200

4610 Neural Computing and Applications (2023) 35:4587–4619

123

Unlike regular training, where MI consistently decreases

from the first to the last layer, the MI of layers produced by

our formulation can be higher than the MI of preceding

layers. During our pretraining stage, information can be

transported from the first layer to the last layer as in a

regular training process. However, it can also be trans-

ported from the last layer to the previous layers via the

reverse pass network. This allows previous layers to be

adjusted via later layers, resulting in an increased MI.

Compared to regular training, our pretraining achieves a

stronger correlation between the input and output distri-

bution across all layers. The fine-tuning stage afterward

aims to increase IðD7; YÞ for a higher accuracy. As a result
of the strong correlation between all layers, increasing

IðD7; YÞ leads to inner layers exhibiting an increase in MI.

Table 19 Autoencoder Architecture for Smoke Tests

StdAB1
:

Ið64; 64; 1Þ ! relu Cð5; 32; 1Þ þ b1ð Þ ! relu Cð5; 64; 1Þ þ b2ð Þ ! relu Cð5; 128; 1Þ þ b3ð Þ
! relu Cð5; 128; 1Þ þ b4ð Þ ! MP ! relu Cð5; 64; 1Þ þ b5ð Þ ! MP ! relu Cð5; 1; 1Þ þ b6ð Þ
! relu Cð5; 64; 1Þ þ b7ð Þ ! UP ! relu Cð5; 128; 1Þ þ b8ð Þ ! UP ! relu Cð5; 128; 1Þ þ b9ð Þ
! relu Cð5; 64; 1Þ þ b10ð Þ ! relu Cð5; 32; 1Þ þ b11ð Þ ! relu Cð5; 1; 1Þ þ b12ð Þ ! Oð64; 64; 1Þ
PreAB1

:

Ið64; 64; 1Þ ! relu Cð5; 64; 1Þ þ b1ð Þ ! MP ! relu Cð5; 128; 1Þ þ b2ð Þ ! MP ! relu Cð5; 128; 1Þ þ b3ð Þ
! relu Cð5; 64; 1Þ þ b4ð Þ ! relu Cð5; 32; 1Þ þ b5ð Þ ! relu Cð5; 1; 1Þ þ b6ð Þ
! relu Dð5; 32; 1Þ þ b7ð Þ ! relu Cð5; 64; 1Þ þ b8ð Þ ! relu Cð5; 128; 1Þ þ b9ð Þ ! relu Cð5; 128; 1Þ þ b10ð Þ
! UP ! relu Cð5; 64; 1Þ þ b11ð Þ ! UP ! relu Cð5; 1; 1Þ þ b12ð Þ ! Oð64; 64; 1Þ
RRAB1

:

Ið64; 64; 1Þ � b1 ! reluðDð5; 32; 1ÞÞ � b2 ! reluðDð5; 64; 1ÞÞ � b3 ! reluðDð5; 128; 1ÞÞ � b4

! reluðDð5; 128; 1ÞÞ ! MP� b5 ! reluðDð5; 64; 1ÞÞ ! MP� b6 ! reluðDð5; 1; 1ÞÞ
! relu Cð5; 64; 1Þ þ b7ð Þ ! UP ! relu Cð5; 128; 1Þ þ b8ð Þ ! UP ! relu Cð5; 128; 1Þ þ b9ð Þ
! relu Cð5; 64; 1Þ þ b10ð Þ ! relu Cð5; 32; 1Þ þ b11ð Þ ! relu Cð5; 1; 1Þ þ b12ð Þ ! Oð64; 64; 1Þ
PreAB2

; StdAB2
andRRAB2

Ið64; 64; 3Þ ! relu Cð5; 32; 1Þ þ b1ð Þ ! relu Cð5; 64; 1Þ þ b2ð Þ ! relu Cð5; 128; 1Þ þ b3ð Þ
! relu Cð5; 128; 1Þ þ b4ð Þ ! MP ! relu Cð5; 64; 1Þ þ b5ð Þ ! MP ! relu Cð5; 1; 1Þ þ b6ð Þ
! relu Cð5; 64; 1Þ þ b7ð Þ ! UP ! relu Cð5; 128; 1Þ þ b8ð Þ ! UP ! relu Cð5; 128; 1Þ þ b9ð Þ
! relu Cð5; 64; 1Þ þ b10ð Þ ! relu Cð5; 32; 1Þ þ b11ð Þ ! relu Cð5; 3; 1Þ þ b12ð Þ ! Oð64; 64; 3Þ

Table 18 Forward and Reverse Pass Neural Network for Smoke Tests

Generator forward pass: Ið16; 16; 1Þ ! relu Cð5; 64; 1Þ þ b1ð Þ ! UP ! relu Cð5; 128; 1Þ þ b2ð Þ ! UP ! relu Cð5; 128; 1Þ þ b3ð Þ
! relu Cð5; 64; 1Þ þ b4ð Þ ! relu Cð5; 32; 1Þ þ b5ð Þ ! relu Cð5; 1; 1Þ þ b6ð Þ ! Oð64; 64; 1Þ ¼ Ir :

Generator reverse pass: Ir � b6 ! reluðDð5; 32; 1ÞÞ � b5 ! reluðDð5; 64; 1ÞÞ � b4 ! reluðDð5; 128; 1ÞÞ � b3 ! reluðDð5; 128; 1ÞÞ
! MP� b2 ! reluðDð5; 64; 1ÞÞ ! MP� b1 ! reluðDð5; 1; 1ÞÞ ! Oð16; 16; 1Þ .
Discriminator: Ið64; 64; 2Þ ! lrelu BN Cð5; 32; 1Þ þ b1ð Þð Þ ! lrelu BN Cð5; 64; 1Þ þ b2ð Þð Þ ! lrelu BN Cð5; 128; 1Þ þ b3ð Þð Þ
! lrelu BN Cð5; 256; 1Þ þ b4ð Þð Þ ! FCð1Þ þ b5 ! Oð1Þ .

Table 20 Hyperparameters of Smoke Tests

Batch size 64 Learning rate 0.0002 k k1 ¼ 10; k2� 6 ¼ 0:1

Training epochs 40000 for PreA;RRA and StdA; 1000 for PreAB1
, PreAB2

;RRAB1
;RRAB2

, Std AAB1
and StdAB2

Neural Computing and Applications (2023) 35:4587–4619 4611

123

B.2 Disentangled representations

The InfoGAN approach [9] demonstrated the possibility to

control the output of generative models via maximizing

mutual information between outputs and structured latent

variables. However, mutual information is very hard to

estimate in practice [74]. The previous section and Fig. 4b

of the main paper demonstrated that models from our

pretraining (both RR1

A and RRA) can increase the mutual

information between network inputs and outputs. Intu-

itively, the pretraining explicitly constrains the model to

recover an input given an output, which directly translates

into an increase in mutual information between input and

output distributions compared to regular training runs. For

highlighting how our pretraining can yield disentangled

representations (as discussed in the later paragraphs of

Sect. 4 of the main text), we follow the experimental setup

of InfoGAN [9]: the input dimension of our network is 74,

containing 1 ten-dimensional category code c1, 2 continu-

ous latent codes c2; c3 �Uð�1; 1Þ and 62 noise variables.

Here, U denotes a uniform distribution.

Training details As InfoGAN focuses on structuring latent

variables and thus only increases the mutual information

between latent variables and the output, we also focus the

pretraining on the corresponding latent variables, i.e., the

goal is to maximize their mutual information with the

output of the generative model. Hence, we train a model

RR1 for which only latent dimensions c1; c2; c3 of the input

layer are involved in the loss. We still employ a full reverse

pass structure in the neural network architecture. c1 is a

ten-dimensional category code, which is used for control-

ling the output digit category, while c2 and c3 are contin-

uous latent codes, to represent (previously unknown) key

properties of the digits, such as orientation or thickness.

Building relationship between c1 and outputs is more dif-

ficult than for c2 or c3, since the 10 different digit outputs

need to be encoded in a single continuous variable c1.

Thus, for the corresponding loss term for c1 we use a

slightly larger k factor (by 33%) than for c2 and c3. Details

of our results are shown in Fig. 19. Models are trained

using a GAN loss [25] as the loss function for the outputs.

Analysis of results In Fig. 19, we show additional results

for the disentangling test case. It is visible that our pre-

training of the RR1 model yields distinct and meaningful

latent space dimensions for c1;2;3. While c1 controls the

digit, c2;3 control the style and orientation of the digits. For

comparison, a regular training run with model Std does

result in meaningful or visible changes when adjusting the

latent space dimensions. This illustrates how strongly the

pretraining can shape the latent space, and in addition to an

intuitive embedding of dominant features, yield a disen-

tangled representation.

Appendix C Details of experimental results

To ensure reproducibility, source code and data for all tests

will be published. Runtimes were measured on a machine

with Nvidia GeForce GTX 1080 Ti GPUs and an Intel Core

i7-6850K CPU.

C.1 Texture-shape benchmark

Training details

All training data of the texture-shape tests were obtained

from [21]. The stylized dataset contains 1280 images, 1120

images are used as training data, and 160 as test data. Both

edge and filled datasets contain 160 images each, all of

which are used for testing only. All three sets (stylized,

edge, and filled) contain data for 16 different classes.

Analysis of results For a detailed comparison, we list per-

class accuracy of stylized data training runs for OrtTS,

StdTS, PreTS and RRTS in Fig. 20. RRTS outperforms the

other three models for most of the classes. RRTS requires

an additional 41:86% for training compared to StdTS, but

yields a 23:76% higher performance. (Training times for

these models are given in the supplementary document.)

Table 21 Hyperparameters of

Weather Forecasting Tests
Batch size 32

k 10�12 for ERA dataset test and CMIP dataset with dropout

10�10 for CMIP dataset without dropout

Learning rate Std: begin with 5�5 for all tests

RR : begin with 1�4 for ERA dataset with dropout;

begin with 5�4 for CMIP dataset with dropout;

begin with 5�4 for ERA dataset without dropout;

begin with 5�5 for CMIP dataset without dropout.

4612 Neural Computing and Applications (2023) 35:4587–4619

123

All models saturated, i.e., training StdTS or OrtTS longer

does not increase classification accuracy any further. We

also investigated how much we can reduce model size

when using our pretraining in comparison to the baselines.

A reduced model only uses 67:94% of the parameters,

while still outperforming OrtTS.

C.2 Smoke generation

Training details The dataset of the smoke simulation was

generated with a Navier–Stokes solver from an open-

source library [68]. We generated 20 randomized simula-

tions with 120 frames each, with 10% of the data being

Table 22 IðX;DmÞ and IðDm;YÞ Values of All MI Models

Results of

5 runs

IðX;D2Þ IðX;D3Þ IðX;D4Þ IðX;D5Þ IðX;D6Þ IðX;D7Þ IðD2;YÞ IðD3;YÞ IðD4;YÞ IðD5;YÞ IðD6;YÞ IðD7;YÞ

StdA Avg. 11.9992 11.9879 11.7279 7.9088 2.9612 1.2367 0.9992 0.9992 0.9973 0.9947 0.9786 0.9554

Std. dev. 0.0011 0.0138 0.2007 1.5376 0.8695 0.0973 0.0000 0.0000 0.0012 0.0031 0.0112 0.0233

PreA Avg. 11.6338 11.5846 11.5518 11.4495 10.8126 4.4459 0.9468 0.9371 0.9289 0.9037 0.6987 0.0188

Std. dev. 0.2079 0.1342 0.1192 0.0732 0.2083 0.4858 0.0295 0.0149 0.0108 0.0140 0.0732 0.0122

RR1
A

Avg. 11.5487 10.3822 8.8948 7.8285 6.1742 3.9528 0.9564 0.8418 0.7463 0.6921 0.5969 0.4937

Std. dev. 0.9988 1.1225 0.5715 0.7409 0.7583 0.2322 0.0940 0.0785 0.0440 0.0131 0.0652 0.0736

lRRA Avg. 11.5521 6.7737 4.0047 4.0087 3.8456 3.7120 0.9388 0.6372 0.6013 0.6002 0.6008 0.5997

Std. dev. 0.0558 2.3736 0.1872 0.2787 0.2033 0.0909 0.0070 0.0334 0.0244 0.0233 0.0231 0.0236

RRA Avg. 5.2845 4.8838 4.2668 3.9356 4.7603 4.6238 0.5654 0.5369 0.5358 0.5182 0.5261 0.5336

Std. dev. 0.4545 0.1569 0.3115 0.1279 0.0783 0.0173 0.0337 0.0039 0.0111 0.0060 0.0115 0.0031

OrtA Avg. 11.9976 11.9702 11.4784 7.7023 2.6314 1.0755 0.9992 0.9992 0.9955 0.9849 0.9681 0.9493

Std. dev. 0.0051 0.0505 0.5529 0.8500 0.4071 0.0629 0.0000 0.0000 0.0054 0.0128 0.0254 0.0325

StdAA Avg. 11.9984 11.9770 11.7029 7.3237 2.6905 1.2204 0.9992 0.9990 0.9973 0.9932 0.9752 0.9583

Std. dev. 0.0021 0.0292 0.2305 1.2948 0.3707 0.1700 0.0000 0.0004 0.0009 0.0080 0.0169 0.0242

PreAA Avg. 8.5178 6.7796 5.8199 4.9982 4.6117 3.8572 0.6125 0.4349 0.3312 0.2596 0.2187 0.1649

Std. dev. 1.2999 0.8952 0.4626 0.3502 0.2979 0.3172 0.1350 0.1015 0.0423 0.0346 0.0272 0.0310

RR1
AA

Avg. 11.9989 11.8699 11.0450 9.0914 3.9232 1.3239 0.9992 0.9934 0.9813 0.9778 0.9404 0.9054

Std. dev. 0.0016 0.2075 0.9404 1.8047 1.3972 0.4193 0.0000 0.0118 0.0217 0.0374 0.0420 0.0528

lRRAA Avg. 11.9527 10.2473 8.1597 6.7212 2.4402 1.1113 0.9992 0.9743 0.9662 0.9917 0.9859 0.9706

Std. dev. 0.0472 1.6567 2.3965 1.8774 0.4665 0.0512 0.0000 0.0227 0.0124 0.0047 0.0110 0.0197

RRAA Avg. 11.9200 11.5621 10.6095 7.7398 2.2372 1.0416 0.9992 0.9988 0.9985 0.9975 0.9906 0.9875

Std. dev. 0.0540 0.1463 0.5465 0.8093 1.0104 0.0505 0.0000 0.0005 0.0007 0.0024 0.0073 0.0046

OrtAA Avg. 11.9970 11.9727 11.3343 6.1690 1.9642 1.0985 0.9992 0.9991 0.9971 0.9832 0.9625 0.9477

Std. dev. 0.0061 0.0504 0.6796 1.2529 0.5865 0.0891 0.0000 0.0002 0.0032 0.0166 0.0269 0.0320

StdAB Avg. 11.9989 11.9794 10.2985 3.0652 1.2677 0.5283 0.9992 0.9988 0.9029 0.4041 0.3923 0.3860

Std. dev. 0.0019 0.0116 1.5095 4.0345 1.8717 0.7445 0.0000 0.0006 0.0918 0.5359 0.5329 0.5288

PreAB Avg. 8.1364 6.0174 5.6115 4.9866 4.5760 3.7471 0.5445 0.2819 0.2525 0.2119 0.1885 0.1429

Std. dev. 1.2778 0.5196 0.3912 0.2972 0.2805 0.2942 0.1498 0.0481 0.0276 0.0165 0.0158 0.0133

RR1
AB

Avg. 11.9895 11.7982 9.7800 7.4955 3.2139 1.3122 0.9992 0.9901 0.9644 0.9661 0.9472 0.9308

Std. dev. 0.0075 0.1710 1.0207 1.4405 1.2750 0.1537 0.0000 0.0131 0.0310 0.0357 0.0349 0.0344

lRRAB Avg. 11.9047 10.8970 8.3860 5.4257 1.7110 1.0694 0.9989 0.9915 0.9813 0.9929 0.9812 0.9735

Std. dev. 0.0890 0.8474 1.9089 1.1511 0.4913 0.0529 0.0006 0.0089 0.0145 0.0085 0.0209 0.0235

RRAB Avg. 11.9093 11.5761 9.4227 5.6190 2.2286 1.0100 0.9992 0.9992 0.9984 0.9989 0.9962 0.9935

Std. dev. 0.0957 0.1450 1.7109 1.4609 0.4611 0.0091 0.0000 0.0000 0.0014 0.0004 0.0032 0.0035

OrtAB Avg. 11.9946 11.9546 8.9865 3.2802 1.4296 0.8571 0.9992 0.9985 0.8048 0.7851 0.7756 0.7675

Std. dev. 0.0104 0.0561 3.3571 2.7102 0.9848 0.4858 0.0000 0.0007 0.4279 0.4391 0.4342 0.4296

StdB Avg. 12.0000 11.9913 11.7602 8.6184 3.2490 1.3171 0.9992 0.9990 0.9975 0.9880 0.9458 0.9160

Std. dev. 0.0000 0.0113 0.3400 2.0542 1.2740 0.2025 0.0000 0.0003 0.0007 0.0114 0.0476 0.0565

Neural Computing and Applications (2023) 35:4587–4619 4613

123

Ta
bl
e
23

P
er

C
at
eg
o
ry

A
cc
u
ra
cy

o
f
R
R
T
S
fo
r
T
ex
tu
re
-s
h
ap
e
T
es
ts

D
at
as
et
s

S
ty
li
ze
d
d
at
a

E
d
g
e

d
at
a

F
il
le
d

d
at
a

M
o
d
el

R
u
n
s

A
ir
p
la
n
e

B
ea
r

B
ic
y
cl
e

B
ir
d

B
o
at

B
o
tt
le

C
ar

C
at

C
h
ai
r

C
lo
ck

D
o
g

E
le
p
h
an
t

K
ey
b
o
ar
d

K
n
if
e

O
v
en

T
ru
ck

A
cc
.

A
cc
.

A
cc
.

R
R
T
S

0
0
.9

0
0
.7

0
.6

0
0
.9

0
.6

0
.8

0
.2

0
.7

0
1

0
.6

0
.5

0
0
.8

0
.5
2
1
4

0
.3
0
6
3

0
.4
5
0
0

1
0
.9

0
.6

0
0
.4

0
.7

1
0

0
.9

0
.5

0
0
.4

0
0
.7

0
.5

0
.9

1
0
.5
1
4
5

0
.2
8
1
3

0
.4
3
7
5

2
1

0
.9

1
0
.6

0
.8

0
0
.7

0
0
.7

0
.9

0
.5

0
.8

0
0

1
0
.9

0
.6
0
4
3

0
.1
9
3
8

0
.4
5
0
0

3
0

0
.8

1
0
.9

0
.5

0
1

0
0

0
0
.3

0
0
.9

0
.7

0
.9

0
0
.4
4
0
2

0
.2
1
2
5

0
.3
3
1
3

4
0
.8

0
.9

0
0
.7

0
.5

1
0

0
.5

0
0
.9

0
1

0
.4

0
.7

0
.8

1
0
.5
7
4
6

0
.2
1
2
5

0
.3
6
2
5

5
0
.9

0
.7

0
.8

0
0

1
1

0
1

0
.8

0
.6

0
1

0
.9

0
.8

1
0
.6
4
7
1

0
.2
5
0
0

0
.4
5
6
3

6
0
.9

0
.9

0
.9

0
.9

0
.4

0
.9

0
.8

0
.4

0
.6

0
.8

0
.3

0
0

0
0

1
0
.5
4
6
5

0
.2
5
6
3

0
.4
3
7
5

7
1

0
.9

0
.8

0
.7

0
.6

0
0
.3

0
.7

0
0
.9

0
.6

0
.4

0
0
.8

0
.8

1
0
.5
8
9
7

0
.2
8
1
3

0
.4
3
1
3

8
0
.8

0
.6

0
0
.5

0
.5

0
0
.6

0
.8

0
0
.8

0
.3

0
0
.6

0
.8

0
.7

0
.8

0
.4
8
5
0

0
.1
8
1
3

0
.3
5
6
3

9
0
.7

0
.8

0
0
.8

0
1

0
0
.9

0
0
.9

0
.5

1
0
.9

0
.7

0
.7

0
0
.5
4
4
0

0
.1
9
3
8

0
.3
6
2
5

A
v
g
.

0
.7
9

0
.7
1

0
.5
2

0
.6
1

0
.4

0
.5
8

0
.5

0
.5

0
.3

0
.6
7

0
.3
5

0
.4
2

0
.5
1

0
.5
6

0
.6
6

0
.7
5

0
.5
4
6
7

0
.2
3
6
9

0
.4
0
7
5

S
td
.

d
ev
.

0
.2
9
2
3

0
.2
7
6
7

0
.4
5
6
6

0
.2
6
8
5

0
.2
9
8
1

0
.5
0
0
7

0
.4
0
0
0

0
.3
8
0
1

0
.3
7
1
2

0
.3
5
9
2

0
.2
1
7
3

0
.4
7
5
6

0
.3
9
2
9

0
.3
2
0
4

0
.3
5
9
6

0
.4
0
3
5

0
.0
6
0
4

0
.0
4
3
8

0
.0
4
8
1

Ta
bl
e
24

P
er

C
at
eg
o
ry

A
cc
u
ra
cy

o
f
O
rt
T
S
fo
r
T
ex
tu
re
-s
h
ap
e
T
es
ts

D
at
as
et
s

S
ty
li
ze
d
d
at
a

E
d
g
e

d
at
a

F
il
le
d

d
at
a

M
o
d
el

R
u
n
s

A
ir
p
la
n
e

B
ea
r

B
ic
y
cl
e

B
ir
d

B
o
at

B
o
tt
le

C
ar

C
at

C
h
ai
r

C
lo
ck

D
o
g

E
le
p
h
an
t

K
ey
b
o
ar
d

K
n
if
e

O
v
en

T
ru
ck

A
cc
.

A
cc
.

A
cc
.

O
rt
T
S

0
0
.7

0
0
.8

0
.3

0
1

0
.7

0
.8

0
.5

0
0
.4

0
.5

0
.7

0
.5

0
.9

0
0
.4
9
8
7

0
.1
6
8
8

0
.4
1
8
8

1
0
.6

0
.3

0
.6

0
.1

0
.4

1
0
.4

0
.5

0
.5

1
0
.4

0
.1

0
.6

0
0
.6

0
.8

0
.4
8
7
7

0
.2
6
8
8

0
.3
3
1
3

2
0
.7

0
.4

0
.7

0
.1

0
.8

0
0
.8

0
0

0
.6

0
0
.6

0
0
.5

0
.6

1
0
.4
2

0
.0
8
7
5

0
.3
3
1
3

3
1

0
.9

0
.4

0
.2

0
.7

1
0

0
.3

0
.8

0
.7

0
.2

0
.4

0
.7

0
0
.6

1
0
.5
4
3

0
.2
1
8
8

0
.4

4
0

0
.2

0
0
.7

0
.9

1
0
.9

0
.6

1
0

0
0
.3

0
.8

0
.4

0
.7

1
0
.5
2
1

0
.1
8
1
3

0
.3
6
8
8

5
0
.5

0
.2

0
.7

0
.4

0
.1

0
.9

0
.3

0
.4

0
0
.4

0
.1

0
.2

0
.3

0
.5

0
.6

0
.6

0
.3
8
6
4

0
.3
4
3
8

0
.3
3
7
5

6
0
.9

0
0
.9

0
.5

0
1

0
.9

0
.3

0
0
.7

0
.4

0
0

0
.9

0
1

0
.4
6
8
3

0
.1
3
7
5

0
.3
9
3
8

7
0

0
0
.9

0
0
.6

0
0
.4

0
.7

0
.9

0
0
.3

0
0
.8

0
0
.8

1
0
.3
9
5
2

0
.2
3
7
5

0
.3
3
1
3

8
0

0
.7

0
.9

0
.7

0
.7

1
0

0
.6

0
0
.9

0
.7

0
0
.8

0
.6

0
.8

0
0
.5
2
5

0
.2
4
3
8

0
.3
8
1
3

9
0
.6

0
.8

0
.9

0
.4

0
.2

1
0
.6

0
0
.7

0
0
.6

0
0
.7

0
.7

0
0

0
.4
5
5
4

0
.1
4
3
8

0
.4
2
5
0

A
v
g
.

0
.5

0
.3
5

0
.6
8

0
.3
4

0
.4
4

0
.7
9

0
.5

0
.4
2

0
.4
4

0
.4
3

0
.3
1

0
.2
1

0
.5
4

0
.4
1

0
.5
6

0
.6
4

0
.4
7
0
0
7

0
.2
0
3
1

0
.3
7
1
9

S
td
.

d
ev
.

0
.3
7
4
2

0
.3
4
0
8

0
.2
8
9
8

0
.2
4
5
9

0
.3
4
3
8

0
.4
1
7
5

0
.3
3
6
7

0
.2
7
4
1

0
.4
0
8
8

0
.4
0
2
9

0
.2
3
7
8

0
.2
2
8
3

0
.3
2
0
4

0
.3
1
4
3

0
.3
1
3
4

0
.4
6
0
0

0
.0
5
5
2

0
.0
7
4
6

0
.0
3
7
3

4614 Neural Computing and Applications (2023) 35:4587–4619

123

used for training. The low-resolution data were down-

sampled from the high-resolution data by a factor of 4.

Data augmentation, such as flipping and rotation was used

in addition. As outlined in the main text, we consider

building an autoencoder model for the synthetic data as

task B1, and generating samples from a real-world smoke

dataset as task B2. The smoke capture dataset for B2 con-

tains 2500 smoke images from the ScalarFlow dataset [17],

and we again used 10% of these images as training dataset.

Task A We use a fully convolutional CNN-based archi-

tecture for generator and discriminator networks. Note that

the inputs of the discriminator contain high-resolution data

(64, 64, 1), as well as low resolution (16, 16, 1), which is

up-sampled to (64, 64, 1) and concatenated with the high-

resolution data. In line with previous work [79], RRA and

StdA are trained with a non-saturating GAN loss, feature

space loss and L2 loss as base loss function. All generator

layers are involved in the pretraining loss. As greedy layer-

wise autoencoder pretraining is not compatible with

adversarial training, we pretrain PreA for reconstructing the

high-resolution data instead.

Task B1 All encoder layers are initialized from RRA and

StdA when training RRAB1
and StdAB1

. It is worth noting

that the reverse pass of the generator is also constrained

when training PreA and RRA. Therefore, both encoder and

decoder are initialized with parameters from PreA and RRA

when training PreAB1
and RRAB1

, respectively. This is not

possible for a regular network like StdAB1
, as the weights

obtained with a normal training run are not suitable to be

transposed. Hence, the de-convolutions of StdAB1
are ini-

tialized randomly.

Task B2 As the dataset for the task B2 is substantially

different and contains RBG images (instead of single

channel gray-scale images), we choose the following set-

ups for the RRA, PreA and StdA models: parameters from

all six layers of StdA and RRA are reused for initializing

decoder part of StdAB2
and RRAB2

, parameters from all six

layers of PreA are reused for initializing the encoder part of

PreAB2
. Specially, when initializing the last layer of PreAB2

,

StdAB2
and RRAB2

, we copy and stack the parameters from

the last layer of PreA, StdA and RRA, respectively, into

three channels to match the dimensions of the outputs for

task B2. Here, the encoder part of RRAB2
and the decoder of

PreAB2
are not initialized with RRA and PreA, due to the

significant gap between training datasets of task B1 and

task B2. Our experiments show that only initializing the

decoder part of RRAB2
(avg. loss:1.56e7, std. dev.:3.81e5)

outperforms initializing both encoder and decoder (avg.

loss:1:82e7� 2:07e6), and only initializing the encoder

part of PreAB2
(avg. loss:4:41e7� 6:36e6) outperforms

initializing both encoder and decoder (avg.Ta
bl
e
25

P
er

C
at
eg
o
ry

A
cc
u
ra
cy

o
f
S
td

T
S
fo
r
T
ex
tu
re
-s
h
ap
e
T
es
ts

D
at
as
et
s

S
ty
li
ze
d
d
at
a

E
d
g
e

d
at
a

F
il
le
d

d
at
a

M
o
d
el

R
u
n
s

A
ir
p
la
n
e

B
ea
r

B
ic
y
cl
e

B
ir
d

B
o
at

B
o
tt
le

C
ar

C
at

C
h
ai
r

C
lo
ck

D
o
g

E
le
p
h
an
t

K
ey
b
o
ar
d

K
n
if
e

O
v
en

T
ru
ck

A
cc
.

A
cc
.

A
cc
.

S
td

T
S

0
0
.8

0
.4

0
0
.8

0
.6

1
0
.9

0
.3

0
.3

0
0
.8

0
0

0
0

0
0
.3
7
0
0

0
.1
2
5
0

0
.3
2
5

1
0
.9

0
.1

0
.7

0
.5

0
.7

0
.9

0
.3

0
.1

0
.5

0
.9

0
.6

0
.7

0
0

0
.8

0
.8

0
.5
2
2
8

0
.1
6
8
8

0
.3
8
7
5

2
1

0
0

0
.8

0
.8

0
0
.6

0
0
.4

0
.9

0
0
.7

0
.8

0
0

0
0
.3
6
7
9

0
.1
6
2
5

0
.2
6
2
5

3
0

0
.2

1
0
.2

0
.1

0
0

0
.8

0
0
.9

0
.4

0
0
.9

0
.4

0
.9

1
0
.4
2
1
6

0
.1
4
3
8

0
.2
6
8
8

4
0
.8

0
0

0
0
.1

1
0
.7

0
0

0
0
.1

0
.9

0
.7

0
.7

0
.4

0
0
.3
4
6
0

0
.1
4
3
8

0
.2
8
1
3

5
0
.6

0
.6

0
0
.7

0
0

0
0
.8

0
.8

0
.9

0
.2

0
0
.8

0
.7

0
.8

1
0
.4
9
3
7

0
.1
8
1
3

0
.3
4
3
8

6
0
.8

0
.4

0
.6

0
.5

0
.7

0
0
.8

0
.8

0
.6

1
0
.8

0
0
.6

0
0
.3

0
.8

0
.5
4
0
9

0
.1
2
5
0

0
.3
7
5
0

7
0

0
0
.8

0
.6

0
1

0
0

0
.7

0
.9

0
.5

0
0
.9

0
0
.7

0
0
.3
8
1
2

0
.1
7
5
0

0
.3
3
7
5

8
0
.5

0
.8

0
.6

0
.4

0
.6

0
.6

1
0
.4

0
.3

0
.7

0
.3

0
.7

0
.5

0
.3

0
.9

0
0
.5
3
1
3

0
.2
3
1
3

0
.4
4
3
8

9
0
.7

0
0

0
.7

0
.4

0
0
.7

0
.6

0
.5

0
.9

0
.3

0
.9

0
0

0
.6

0
.8

0
.4
4
4
2

0
.1
1
8
8

0
.2
8
1
3

A
v
g
.

0
.6
1

0
.2
5

0
.3
7

0
.5
2

0
.4

0
.4
5

0
.5

0
.3
8

0
.4
1

0
.7
1

0
.4

0
.3
9

0
.5
2

0
.2
1

0
.5
4

0
.4
4

0
.4
4
2
0

0
.1
5
7
5

0
.3
3
0
6

S
td
.

d
ev
.

0
.3
5
1
0

0
.2
8
7
7

0
.4
0
5
7

0
.2
6
1
6

0
.3
1
9
7

0
.4
8
8
2

0
.3
9
1
6

0
.3
4
9
0

0
.2
6
8
5

0
.3
8
1
4

0
.2
7
4
9

0
.4
1
7
5

0
.3
7
9
5

0
.2
9
6
1

0
.3
4
7
1

0
.4
6
9
5

0
.0
7
5
3

0
.0
3
4
1

0
.0
5
9
3

Neural Computing and Applications (2023) 35:4587–4619 4615

123

loss:9:42e7� 6:11e7). We believe the reason is that ini-

tializing both the encoder and decoder parts makes it more

difficult to adjust the parameters for the new dataset that is

very different from the dataset of the source task.

Analysis of results Example outputs of PreAB1
, StdAB1

and

RRAB1
are displayed in Fig. 11. We can observe that the

results of PreAB1
are blurry, indicating that features learned

from task A with greedy layer-wise pretraining are not

successfully transferred to task B1. Likewise, StdAB1
cannot

provide the smoke frame with correct details, while RRAB1

produces the closest results to the reference. We similarly

illustrate the behavior of the transfer learning task B2 for

images of real-world fluids. This example likewise uses an

autoencoder structure. Visual comparisons are provided in

Fig. 12 in the main paper. Similar to task B1, PreAB2
and

StdAB2
cannot recover the smoke details properly, e.g.,

there are noisy colors in the results of StdAB2
. On the other

hand, the results of RRAB2
are closer to the reference.

Overall, these findings demonstrate the benefits of our

pretraining for GANs, as well as its potential to obtain

more generic features from synthetic datasets that can be

used for tasks involving real-world data.

C.3 Weather forecasting

Training details The weather forecasting scenario dis-

cussed in the main text follows the methodology of the

WeatherBench benchmark [60]. This benchmark contains

40 years of data from the ERA reanalysis project [31]

which was re-sampled to a 5.625� resolution, yielding 32�
64 grid points in ca. two-hour intervals. Data from the year

of 1979 to 2015 (i.e., 324192 samples) are used for train-

ing. The benchmark also contains 165 years of historical

simulation data from [19], and data from the year 1850 to

2005 (i.e., 224672 samples) are used for training. All

RMSE measurements are latitude-weighted to account for

area distortions from the spherical projection.

The neural networks for the forecasting tasks employ a

ResNet architecture with 19 layers, all of which contain

128 features with 3� 3 kernels (apart from 7� 7 in the

first layer). All layers use batch normalization, leaky ReLU

activation (tangent 0.3), and dropout with strength 0.1. As

inputs, the model receives feature-wise concatenated data

from the WeatherBench data for 3 consecutive time steps,

i.e., t, t � 6h, and t � 12h, yielding 117 channels in total.

The last convolution jointly generates all three output

fields, i.e., pressure at 500 hPa (Z500), temperature at 850

hPa (T850), and the 2-meter temperature (T2M). Following

[59], the learning rate was decreased by a factor of 5 when

the loss did not decrease for two epochs, and the training is

Ta
bl
e
26

P
er

C
at
eg
o
ry

A
cc
u
ra
cy

o
f
P
re

T
S
fo
r
T
ex
tu
re
-s
h
ap
e
T
es
ts

D
at
as
et
s

S
ty
li
ze
d
d
at
a

E
d
g
e

d
at
a

F
il
le
d

d
at
a

M
o
d
el

R
u
n
s

A
ir
p
la
n
e

B
ea
r

B
ic
y
cl
e

B
ir
d

B
o
at

B
o
tt
le

C
ar

C
at

C
h
ai
r

C
lo
ck

D
o
g

E
le
p
h
an
t

K
ey
b
o
ar
d

K
n
if
e

O
v
en

T
ru
ck

A
cc
.

A
cc
.

A
cc
.

P
re

T
S

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0
.0
6
2
5

0
.0
6
2
5

0
.0
8
7
5

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0
.0
6
2
5

0
.0
6
2
5

0
.0
7
5

2
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0
.0
6
2
5

0
.0
6
2
5

0
.0
6
8
7
5

3
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0
.0
6
2
5

0
.0
6
2
5

0
.0
3
1
2
5

4
0

0
.8

0
0

0
0

0
0

0
0

0
0

0
0

0
.6

0
0
.0
8
7
5

0
.0
6
2
5

0
.0
6
8
7
5

5
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0
.0
6
2
5

0
.0
6
2
5

0
.0
6
2
5

6
1

0
0

0
0

0
0
.1

0
.2

0
0

0
0

0
0

0
0

0
.0
8
1
2
5

0
.0
6
2
5

0
.1
1
2
5

7
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.0
6
2
5

0
.0
6
2
5

0
.0
8
7
5

8
0

0
0

1
0

0
0
.1

0
0

0
0

0
0

0
0

0
0
.0
6
8
7
5

0
.0
6
2
5

0
.0
8
1
2
5

9
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0
.0
6
2
5

0
.0
6
2
5

0
.0
6
2
5

A
v
g
.

0
.2

0
.0
8

0
0
.2

0
.1

0
.1

0
.1
2

0
.2
2

0
0

0
0

0
0

0
.0
6

0
0
.0
6
7
5

0
.0
6
2
5

0
.0
7
3
7
5

S
td
.

d
ev
.

0
.4
2
1
6

0
.2
5
3
0

0
.0
0
0
0

0
.4
2
1
6

0
.3
1
6
2

0
.3
1
6
2

0
.3
1
2
0

0
.4
1
5
8

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

0
.1
8
9
7

0
.0
0
0
0

0
.0
0
9
2

0
.0
0
0
0

0
.0
2
1
2

4616 Neural Computing and Applications (2023) 35:4587–4619

123

terminated after 5 epochs without improvements. It is

worth pointing out that for networks with large sizes, such

as this weather forecasting test with 6.36M trainable

parameters, the training time difference between RR and

Std is negligible, with about 68.01 and 68.44 min/epoch

correspondingly.

Analysis of results In addition to the quantitative results

given in the main text, Fig. 21 contains additional example

visualizations from the test dataset. A visualization of the

spatial error distribution w.r.t. ground truth results is also

shown. It becomes apparent that our pretraining achieves

reduced errors across the whole range of samples. Both

temperature targets contain a larger number of smaller-

scale features than the pressure fields. The improvements

of MAE from our pretraining approach are significant (c.a.

3% *10% across all cases), which represents a substantial

improvement. The learning objective is highly non-trivial,

and the improvements were achieved with the same limited

set of training data. Being very easy to integrate into

existing training pipelines, these results indicate that the

proposed pretraining methodology has the potential to

yield improved learning results for a wide range of problem

settings.

The following document contains supplementary

tables for detailing network architectures, training hyper-

parameters, and numeric results of experiments discussed

in the main document, i.e., Tables 2, 3, 8, 9, and 22 for MI

tests, Tables 4, 5, 12, 13, 16, and 17 for CIFAR tests,

Tables 6, 18, 19, and 20 for smoke tests, Table 7 for

MNIST and peak tests, Tables 10 and 11 for digit gener-

ation, Tables 14, 15, 23, 24, 25, 26, and 27 for texture-

shape tests, Table 21 for weather forecasting test.

Funding Open Access funding enabled and organized by Projekt

DEAL. This work was funded by the ERC-2019-COG-863850 SpaTe

project.

Data availability All data generated or analyzed during this study are

included in this published article and its supplementary material.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Alberti M, Seuret M, Ingold R, et al (2017) A pitfall of unsu-

pervised pre-training. arXiv preprint arXiv:1703.04332

2. Ardizzone L, Kruse J, Wirkert S, et al (2018) Analyzing inverse

problems with invertible neural networks. arXiv preprint arXiv:

1808.04730

3. Bansal N, Chen X, Wang Z (2018) Can we gain more from

orthogonality regularizations in training deep cnns? In: Advances

in Neural Information Processing Systems, Curran Associates

Inc., pp 4266–4276

4. Bengio Y, Lamblin P, Popovici D, et al (2007) Greedy layer-wise

training of deep networks. In: Advances in Neural Information

Processing Systems, pp 153–160

5. Cai TT, Ma Z, Wu Y (2013) Sparse pca: optimal rates and

adaptive estimation. Ann Stat 41(6):3074–3110

6. Caron M, Bojanowski P, Joulin A, et al (2018) Deep clustering

for unsupervised learning of visual features. In: Proceedings of

the European Conference on Computer Vision (ECCV),

pp 132–149

7. Caron M, Bojanowski P, Mairal J, et al (2019) Unsupervised pre-

training of image features on non-curated data. In: Proceedings of

the IEEE/CVF International Conference on Computer Vision,

pp 2959–2968

8. Chen T, Kornblith S, Norouzi M, et al (2020a) A simple

framework for contrastive learning of visual representations. In:

International Conference on Machine Learning, PMLR,

pp 1597–1607

9. Chen X, Duan Y, Houthooft R, et al (2016) Infogan: Inter-

pretable representation learning by information maximizing

generative adversarial nets. In: Advances in Neural Information

Processing Systems, pp 2172–2180

10. Chen X, Fan H, Girshick R, et al (2020b) Improved baselines

with momentum contrastive learning. arXiv preprint arXiv:2003.

04297

11. Chen Y, Li J, Jiang H, et al (2022) Metalr: Layer-wise learning

rate based on meta-learning for adaptively fine-tuning medical

pre-trained models. arXiv preprint arXiv:2206.01408

12. Cho K, Van Merriënboer B, Gulcehre C, et al (2014) Learning

phrase representations using rnn encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078

13. Cui J, Zhong Z, Liu S, et al (2021) Parametric contrastive

learning. In: Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pp 715–724

14. Ding H, Zhou SK, Chellappa R (2017) Facenet2expnet: Regu-

larizing a deep face recognition net for expression recognition. In:

2017 12th IEEE International Conference on Automatic Face &

Gesture Recognition (FG 2017), IEEE, pp 118–126

15. Dinh L, Sohl-Dickstein J, Bengio S (2016) Density estimation

using real nvp. arXiv preprint arXiv:1605.08803

Table 27 Performance Comparison of Texture-shape Models

Models Parameters Cost (min/epoch) Acc.

StdTS 11840 0.387 0.442

OrtTS 11840 0.407 0.470

RRTS 11840 0.627 0.547

RRTS � reduced 8044 0.552 0.483

Neural Computing and Applications (2023) 35:4587–4619 4617

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1703.04332
http://arxiv.org/abs/1808.04730
http://arxiv.org/abs/1808.04730
http://arxiv.org/abs/2003.04297
http://arxiv.org/abs/2003.04297
http://arxiv.org/abs/2206.01408
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1605.08803

16. Du M, Liu N, Hu X (2018) Techniques for interpretable machine

learning. arXiv preprint arXiv:1808.00033

17. Eckert ML, Um K, Thuerey N (2019) Scalarflow: a large-scale

volumetric data set of real-world scalar transport flows for

computer animation and machine learning. ACM Trans Graph

TOG 38(6):239

18. Erhan D, Courville A, Bengio Y, et al (2010) Why does unsu-

pervised pre-training help deep learning? In: Proceedings of the

Thirteenth International Conference on Artificial Intelligence and

Statistics, pp 201–208

19. Eyring V, Bony S, Meehl GA et al (2016) Overview of the

coupled model intercomparison project phase 6 (cmip6) experi-

mental design and organization. Geosci Model Dev

9(5):1937–1958

20. Frankle J, Carbin M (2018) The lottery ticket hypothesis: finding

sparse, trainable neural networks. arXiv preprint arXiv:1803.

03635

21. Geirhos R, Rubisch P, Michaelis C, et al (2018) Imagenet-trained

cnns are biased towards texture; increasing shape bias improves

accuracy and robustness. arXiv preprint arXiv:1811.12231

22. Ghazal TM, Hussain MZ, Said RA, et al (2021) Performances of

k-means clustering algorithm with different distance metrics.

Intell Autom Soft Comput

23. Gidaris S, Singh P, Komodakis N (2018) Unsupervised repre-

sentation learning by predicting image rotations. arXiv preprint

arXiv:1803.07728

24. Gomez AN, Ren M, Urtasun R, et al (2017) The reversible

residual network: Backpropagation without storing activations.

In: Advances in Neural Information Processing Systems,

pp 2214–2224

25. Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative

adversarial nets. In: Advances in Neural Information Processing

Systems, pp 2672–2680

26. Gopalakrishnan K, Khaitan SK, Choudhary A et al (2017) Deep

convolutional neural networks with transfer learning for com-

puter vision-based data-driven pavement distress detection.

Constr Build Mater 157:322–330

27. Hanafy YA, Mashaly M, Abd El Ghany MA (2021) An efficient

hardware design for a low-latency traffic flow prediction system

using an online neural network. Electronics 10(16):1875

28. Hanson SJ, Pratt LY (1989) Comparing biases for minimal net-

work construction with back-propagation. In: Advances in Neural

Information Processing Systems, pp 177–185

29. Hasan BMS, Abdulazeez AM (2021) A review of principal

component analysis algorithm for dimensionality reduction.

J Soft Comput Data Min 2(1):20–30

30. He K, Zhang X, Ren S, et al (2016) Deep residual learning for

image recognition. In: IEEE Conference on Computer Vision and

Pattern Recognition, pp 770–778

31. Hersbach H, Bell B, Berrisford P et al (2020) The era5 global

reanalysis. Q J R Meteorol Soc 146(730):1999–2049

32. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

33. Hoffmann H (2007) Kernel pca for novelty detection. Pattern

Recognit 40(3):863–874

34. Huang JJ, Dragotti PL (2022) Winnet: wavelet-inspired invertible

network for image denoising. IEEE Trans Image Process

35. Huang L, Liu X, Lang B, et al (2018) Orthogonal weight nor-

malization: Solution to optimization over multiple dependent

stiefel manifolds in deep neural networks. In: Thirty-Second

AAAI Conference on Artificial Intelligence

36. Jacobsen JH, Smeulders A, Oyallon E (2018) i-revnet: deep

invertible networks. arXiv preprint arXiv:1802.07088

37. Jean N, Wang S, Samar A, et al (2019) Tile2vec: Unsupervised

representation learning for spatially distributed data. In:

Proceedings of the AAAI Conference on Artificial Intelligence,

pp 3967–3974

38. Jia K, Tao D, Gao S, et al (2017) Improving training of deep

neural networks via singular value bounding. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp 4344–4352

39. Jing J, Deng X, Xu M, et al (2021) Hinet: deep image hiding by

invertible network. In: Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pp 4733–4742

40. Kawaguchi K, Kaelbling LP, Bengio Y (2017) Generalization in

deep learning. arXiv preprint arXiv:1710.05468

41. Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation

invariant spherical harmonic representation of 3 d shape

descriptors. In: Symposium on Geometry Processing, pp 156–164

42. Kim D, Choi J (2022) Unsupervised representation learning for

binary networks by joint classifier learning. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pp 9747–9756

43. Kim T, Yun SY (2022) Revisiting orthogonality regularization: a

study for convolutional neural networks in image classification.

IEEE Access

44. Kingma DP, Ba J (2014) Adam: a method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980

45. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of

features from tiny images. Tech. rep, Citeseer

46. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. In: Advances in

Neural Information Processing Systems, pp 1097–1105

47. Kulkarni P, Zepeda J, Jurie F, et al (2015) Learning the structure

of deep architectures using l1 regularization. In: British Machine

Vision Conference, 2015

48. Lee HY, Huang JB, Singh M, et al (2017) Unsupervised repre-

sentation learning by sorting sequences. In: Proceedings of the

IEEE International Conference on Computer Vision, pp 667–676

49. Li J, Zhou P, Xiong C, et al (2020) Prototypical contrastive

learning of unsupervised representations. arXiv preprint arXiv:

2005.04966

50. Li M, Wang Y, Lin Z (2022) Cerdeq: Certifiable deep equilib-

rium model. In: Int Conf Mach Learn PMLR, pp 12,998–13,013

51. Linting M, Meulman JJ, Groenen PJ et al (2007) Nonlinear

principal components analysis: introduction and application.

Psychol Methods 12(3):336

52. Loshchilov I, Hutter F (2017) Decoupled weight decay regular-
ization. arXiv preprint arXiv:1711.05101

53. Madono K, Tanaka M, Onishi M et al (2021) Sia-gan: scrambling

inversion attack using generative adversarial network. IEEE

Access 9:129385–129393

54. Mahendran A, Vedaldi A (2016) Visualizing deep convolutional

neural networks using natural pre-images. Int J Comput Vis

120(3):233–255

55. Momeny M, Neshat AA, Hussain MA et al (2021) Learning-to-

augment strategy using noisy and denoised data: improving

generalizability of deep cnn for the detection of covid-19 in x-ray

images. Comput Biol Med 136(104):704

56. Neyshabur B, Bhojanapalli S, McAllester D, et al (2017)

Exploring generalization in deep learning. In: Advances in Neural

Information Processing Systems, pp 5947–5956

57. Ozay M, Okatani T (2016) Optimization on submanifolds of

convolution kernels in cnns. arXiv preprint arXiv:1610.07008

58. Rasmus A, Berglund M, Honkala M, et al (2015) Semi-super-

vised learning with ladder networks. In: Advances in Neural

Information Processing Systems, pp 3546–3554

59. Rasp S, Thuerey N (2021) Data-driven medium-range weather

prediction with a resnet pretrained on climate simulations: a new

model for weatherbench. J Adv Model Earth Syst, p

e2020MS002405

4618 Neural Computing and Applications (2023) 35:4587–4619

123

http://arxiv.org/abs/1808.00033
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1803.07728
http://arxiv.org/abs/1802.07088
http://arxiv.org/abs/1710.05468
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2005.04966
http://arxiv.org/abs/2005.04966
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1610.07008

60. Rasp S, Dueben PD, Scher S, et al (2020) Weatherbench: a

benchmark dataset for data-driven weather forecasting. arXiv

preprint arXiv:2002.00469

61. Recht B, Roelofs R, Schmidt L, et al (2019) Do imagenet clas-

sifiers generalize to imagenet? In: International Conference on

Machine Learning

62. Reddi SJ, Kale S, Kumar S (2019) On the convergence of adam

and beyond. arXiv preprint arXiv:1904.09237

63. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional

networks for biomedical image segmentation. In: International

Conference on Medical Image Computing and Computer-Assis-

ted Intervention, Springer, pp 234–241

64. Shwartz-Ziv R, Tishby N (2017) Opening the black box of deep

neural networks via information. arXiv preprint arXiv:1703.

00810

65. Sinaga KP, Yang MS (2020) Unsupervised k-means clustering

algorithm. IEEE Access 8:80716–80727

66. Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a

simple way to prevent neural networks from overfitting. J Mach

Learn Res 15(1):1929–1958

67. Teng Y, Choromanska A (2019) Invertible autoencoder for

domain adaptation. Computation 7(2):20

68. Thuerey N, Pfaff T (2018) MantaFlow. http://mantaflow.com
69. Tishby N, Zaslavsky N (2015) Deep learning and the information

bottleneck principle. In: 2015 IEEE Information Theory Work-

shop (ITW), IEEE, pp 1–5

70. Torrey L, Shavlik J (2010) Transfer learning. In: Handbook of

research on machine learning applications and trends: algorithms,

methods, and techniques. IGI Global, pp 242–264

71. Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all

you need. In: Advances in Neural Information Processing Sys-

tems, pp 5998–6008

72. Vincent P, Larochelle H, Lajoie I, et al (2010) Stacked denoising

autoencoders: Learning useful representations in a deep network

with a local denoising criterion. J Mach Learn Res 11(12)

73. Wall ME, Rechtsteiner A, Rocha LM (2003) Singular value

decomposition and principal component analysis. In: A Practical

Approach to Microarray Data Analysis. Springer, pp 91–109

74. Walters-Williams J, Li Y (2009) Estimation of mutual informa-

tion: A survey. In: International Conference on Rough Sets and

Knowledge Technology, Springer, pp 389–396

75. Wang J, Chen Y, Chakraborty R, et al (2020) Orthogonal con-

volutional neural networks. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp 11,505–11,515

76. Weigend AS, Rumelhart DE, Huberman BA (1991) Generaliza-

tion by weight-elimination with application to forecasting. In:

Advances in Neural Information Processing Systems, pp 875–882

77. Wold S, Esbensen K, Geladi P (1987) Principal component

analysis. Chemom Intell Lab Syst 2(1–3):37–52

78. Wu Z, Wang X, Zhou P, et al (2021) Transmission line fault

location based on the stacked sparse auto-encoder deep neural

network. In: 2021 IEEE 5th Conference on Energy Internet and

Energy System Integration (EI2), IEEE, pp 3201–3206

79. Xie Y, Franz E, Chu M et al (2018) tempogan: a temporally

coherent, volumetric gan for super-resolution fluid flow. ACM

Trans Graph TOG 37(4):95

80. Xu H, Caramanis C, Sanghavi S (2010) Robust pca via outlier

pursuit. arXiv preprint arXiv:1010.4237

81. Yu Y, Odobez JM (2020) Unsupervised representation learning

for gaze estimation. In: Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp 7314–7324

82. Zamir AR, Sax A, Shen W, et al (2018) Taskonomy: Disentan-

gling task transfer learning. In: IEEE Conference on Computer

Vision and Pattern Recognition, pp 3712–3722

83. Zeiler MD, Fergus R (2014) Visualizing and understanding

convolutional networks. In: European Conference on Computer

Vision, Springer, pp 818–833

84. Zhan X, Xie J, Liu Z, et al (2020) Online deep clustering for

unsupervised representation learning. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pp 6688–6697

85. Zhang L, Lu Y, Song G, et al (2018a) Rc-cnn: Reverse connected

convolutional neural network for accurate player detection. In:

Pacific Rim International Conference on Artificial Intelligence,

Springer, pp 438–446

86. Zhang R, Isola P, Efros AA, et al (2018b) The unreasonable

effectiveness of deep features as a perceptual metric. In: IEEE

Conference on Computer Vision and Pattern Recognition,

pp 586–595

87. Zhou Y, Govindaraju V (2014) Learning deep autoencoders

without layer-wise training. stat 1050:14

88. Zhou Y, Arpit D, Nwogu I, et al (2014) Is joint training better for

deep auto-encoders? arXiv preprint arXiv:1405.1380

89. Zhuang Y, Rui Y, Huang TS, et al (1998) Adaptive key frame

extraction using unsupervised clustering. In: Proceedings 1998

International Conference on Image Processing. icip98 (cat. no.

98cb36269), IEEE, pp 866–870

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:4587–4619 4619

123

http://arxiv.org/abs/2002.00469
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1010.4237
http://arxiv.org/abs/1405.1380

	Reviving autoencoder pretraining
	Abstract
	Introduction
	Related work
	Method
	Realization in neural networks
	Full network pretraining
	Localized pretraining

	Embedding singular values

	Evaluation in terms of mutual information
	Experimental results
	CIFAR-100 classification
	Transfer learning benchmarks
	Smoke generation
	Weather forecasting

	Conclusions
	Appendix A Details of the method
	A.1 Pretraining and singular value decomposition
	A.2 Examples of network architectures with pretraining
	A.3 MNIST and peak tests

	Appendix B Mutual information
	B.1 Mutual information test
	B.2 Disentangled representations

	Appendix C Details of experimental results
	C.1 Texture-shape benchmark
	C.2 Smoke generation
	C.3 Weather forecasting

	Open Access
	References

