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Abstract

We present a novel symmetry-preserving cut cell finite volume method which is a three-
dimensional generalisation of the method by Droge and Verstappen (Int J Numer Method
Fluids 47:979-985, 2005). A colour-coding scheme for the three-dimensional cut momen-
tum cell faces reduces the number of possible cut cell configurations. A cell merging strat-
egy is employed to alleviate time step constraints. We demonstrate the energy conservation
property of the convective and pressure gradient terms, and the second-order spatial con-
vergence with suitable benchmark cases. We used the scheme to perform highly resolved
large—eddy simulations of the flow inside a scour hole around a circular cylinder mounted
vertically in a flume. The simulation results are extensively compared to a stereoscopic
particle image velocimetry experiment of the same configuration performed by Jenssen
and Manhart (Exp Fluids 61:217, 2020). We demonstrate that for the investigated Reynolds
numbers (20,000 and 40,000) nearly converged solutions are obtained; however at large
computational efforts (up to 2.35 billion cells for the higher Reynolds number). It turns
out that the flow topology of the horseshoe vortex system is strongly dependent on the grid
resolution. For simulation results obtained on the finest grid, the mean flow and turbulence
quantities agree well with the experiment. We investigate the shape and turbulence struc-
ture of the horseshoe vortex based on three-dimensional fields, and discuss the distribution
of the mean and standard deviation of the wall shear stress in the scour hole and the impli-
cations for the physics of the scouring process over a sand bed.
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1 Introduction

Local disturbances of the flow around hydraulic structures such as bridge piers can result
in increased wall shear stress levels and the development of local scour holes. Such scour
holes can be a severe threat to the safety of the hydraulic structure. The estimation of the
depth of a scour hole is a difficult task and empirical formulae for the design of pier foun-
dations go in hand with large uncertainties (Link 2006). Numerical models coupling a
flow simulation with a sediment transport model promise a better accuracy for predicting
the evolution of scour holes (Roulund et al. 2005). However, there is a long error chain
starting with a prediction of the flow field and ending with a sediment transport model.
In every part of the modelling chain a number of uncertainties arises. It is the purpose of
this research to shed light on the uncertainties in the flow simulation and to provide highly
resolved and accurate data of the turbulent flow field inside the scour hole and thus allevi-
ate one of the numerous uncertainties in the modelling chain. A particular focus will be
placed on the reliability of the wall shear stress as it can be used as the basis of a sediment
transport model (Roulund et al. 2005; Kraft et al. 2011).

The so-called horseshoe vortex was found to be the main agent in the development of
the scour hole around a circular cylinder (Melville and Raudkivi 1977). It has been sug-
gested to give rise to large local wall shear stresses on the mobile bed. A large number of
investigations has been devoted to the dynamics of the horseshoe vortex (Dargahi 1990;
Dey and Raikar 2007; Oliveto and Hager 2002; Escauriaza 2008; Kirkil et al. 2005, 2008,
2009; Link et al. 2012; Khosronejad et al. 2012; Baykal et al. 2015). Unfortunately, very
few experimental data have been published which spatially resolved the turbulence struc-
ture and dynamics of this horseshoe vortex. Unger & Hager 2006 applied monoscopic par-
ticle image velocimetry (PIV) to measure the flow inside a half model of a scour hole.
They used a half model to gain optical access to the flow whereas in a full model, the scour
hole is hidden to an observer from the side. This optical access-problem has been solved
by Jenssen and Manhart (2020) who used a stereoscopic PIV. The stereoscopic setup has
the additional advantage that it provides three-dimensional velocity data in a two-dimen-
sional plane. Fully three-dimensional data have been reported so far only from numerical
simulations.

Previous simulations of the flow inside a scour hole have employed Reynolds-averaged
simulations (Roulund et al. 2005), detached-eddy simulations (DES) and large—eddy simu-
lations (LES) (Kirkil et al. 2008) with block-structured or overset boundary-fitted curvilin-
ear grids (Escauriaza 2008; Kirkil et al. 2009) or on boundary-fitted unstructured meshes
(Baykal et al. 2015; Song et al. 2022). In all these simulations, however, no direct compari-
son to experimental data — time-averaged flow fields, turbulence statistics and wall shear
stress distribution — has been presented. This is partly due to the unavailability of reliable
experimental data at the time the simulation was performed or due to incompatibility of the
scour geometry used. In this paper, we use the recently published measurements of Jenssen
and Manhart (2020) to validate a highly-resolved LES of the same flow configuration.

We performed LES using a three-dimensional cut cell finite volume method on a
block-structured Cartesian grid. The Cartesian grid method coupled with a variant of the
immersed boundary method has certain advantages and certain disadvantages compared
to methods which employ body-fitted grids. The main advantage of Cartesian methods is
the numerical efficiency which allows for a considerably larger number of grid cells than
unstructured mesh methods (Strandenes et al. 2015), leading to a higher numerical accu-
racy due to the absence of grid distortion effects. The Achilles heel of Cartesian immersed

@ Springer



Flow, Turbulence and Combustion (2022) 109:893-929 895

boundary methods is the near-wall resolution. In general, a proper wall-normal grid resolu-
tion requires a refinement in all three coordinate directions which is much more expensive
in terms of grid cell numbers than an anisotropic wall-normal refinement in a body-fitted
grid approach. On the other hand, an efficient refinement strategy in a Cartesian method
using zonal grids (Manhart 2004) helps to keep the numerical effort moderate and simul-
taneously provides grid resolution in off-wall critical flow zones. The choice of a cut cell
approach allows to determine the wall shear stress consistently with the simulation. In con-
trast, in a ghost cell method the wall shear stress can only be obtained in a post-processing
step, introducing additional uncertainty.

In the first part of this work (Sect. 2), we describe a novel cut cell method that general-
ises the method of Droge and Verstappen (2005) to three dimensions. The large variety of
cut momentum cells is categorised using a colour-coding scheme on which the selection of
the appropriate discretisations of the fluxes is based. A cell merging scheme is used to alle-
viate the time step constraints that would be introduced by small cut cells. The energy con-
servation property of the discrete convective and pressure gradient terms, which is a dis-
tinguishing feature of our method, is demonstrated for an inviscid flow. Moreover, second
order convergence to an analytical solution is established and the results for a benchmark
case (flow around a sphere at Re = 100) are compared to those reported in the literature.

In the second part of this work, we intend to clarify the question which computational
effort is required to achieve reliable and accurate results from a large—eddy simulation of
the flow inside a scour hole around a circular cylinder using our cut cell method. In particu-
lar, we aim to address the following research questions. What grid resolution is necessary
to obtain (i) The correct flow topology and (ii) Distributions of flow quantities that agree
with experimental results? How reliable are LES results at a given grid resolution? What is
the three-dimensional shape of the turbulent horseshoe vortex in the time-averaged sense?
What is the structure, shape and coherence of the horseshoe vortex in the instantaneous
representations? How are mean values and fluctuations of the wall shear stress distributed
and linked to the horseshoe vortex?

The paper is structured as follows. In the next section, the numerical method and its
verification are documented. The flow configuration and the simulation setup are presented
in Sect. 3. The results Sect. 4 Contains a detailed assessment of grid effects on the com-
puted flow topology 4.2 and velocity profiles 4.2). Some flow and turbulence quantities
are compared with measured results in Sects. 4.3 and 4.4 presents three-dimensional rep-
resentations of the time-averaged and instantaneous horseshoe vortex configuration. The
accuracy and distribution of the wall shear stress is discussed in Sect. 4.5. Finally in Sect. 5
we conclude and discuss our results. In the appendix some details of the cut cell method
are documented.

2 The Numerical Method
2.1 Basic Numerical Method

We solved the conservation laws for incompressible Newtonian flow by an in-house Finite
Volume solver (MGLET). This solver uses a Cartesian grid with a staggered arrange-
ment of the variables. The fluxes are approximated by second order central schemes
which lead to a skew symmetric convective term that is energy conserving (Verstappen
and Veldman 2003). For time integration, a third order Runge-Kutta scheme is embedded

@ Springer



896 Flow, Turbulence and Combustion (2022) 109:893-929

in a pressure—velocity coupling according to Chorin’s projection method (Chorin 1968).
The resulting Poisson equation for the pressure update is solved by the strongly-implicit
procedure (SIP) of Stone (1968). For local mesh adaption, we use the method of zonal
grid refinement introduced by Manhart (2004). The code is parallelised using the Message
Passing Interface (MPI).

The sub-grid scale stresses (SGS stresses) are parameterised by the WALE model
(Nicoud and Ducros 1999) and the wall shear stress is computed by the Werner-Wengle
wall function (Werner et al. 1993) which switches between the linear law of the wall and a
%—th power law depending on the wall distance.

The non-Cartesian boundaries are represented by a cut cell immersed boundary method
that will be described in the next section. A verification simulation of the implementation
will be presented in Sect. 2.3.2.

2.2 The Cut Cell Method

For the simulations presented here, we developed and implemented a variant of the cut cell
method originally proposed by Droge and Verstappen (2005), Droge (2006) and extended
upon by Cheny and Botella (2010), Nikfarjam et al. (2018), Portelenelle et al. (2019). The
advantage of the cut cell method compared to the ghost cell method (Peller et al. 2006;
Peller 2010) that we have used for previous simulations (Schander] and Manhart 2016;
Schanderl et al. 2017) is that the whole fluid volume is covered by control volumes. This
gives improved conservation of mass and momentum as no leakage flux can occur near the
immersed surface. The wall shear stress — which is one of the quantities in focus — is an
intrinsic flux quantity used in the momentum balance of the cut cells whereas in a ghost
cell method, the wall shear stress needs to be evaluated in a post-processing step.

The underlying design principle of our implementation is the cut cell method proposed
by Droge and Verstappen (2005) which derives the approximations based on the skew-
symmetry of the convective and the symmetry of the viscous operator. This approach has
the advantage of strict energy conservation on the cut cells. However, the original proposal
of Droge and Verstappen (2005), Droge (2006) was only for two-dimensional geometries.
While there have been proposals for three-dimensional cut cell methods for compressible
flows on collocated grids (Hartmann et al. 2009, 2011), for incompressible flow by Meyer
et al. (2010) or by Kirkpatrick et al. (2003) or Xie et al. (2020), the symmetry-preserv-
ing method of Droge and Verstappen (2005) has been considered as too complicated for
general 3D cases. For example, Nikfarjam et al. (2018) presented a partially three-dimen-
sional extension of the two-dimensional cut cell method of Cheny and Botella (2010), but
state that “[o]ne of the major difficulty in cut cell discretization for 3D geometries is the
large number of cases to consider: we have enumerated 16 different types of cut cells in
3D whereas there are only 3 in 2D.”, and also Beltman et al. (2020) considers the “[...]
extension of the method [of Droge and Verstappen (2005); Cheny and Botella (2010)] to
3D [as] problematic due to the many possible cut cell configurations.” We address these
problems by introducing a colour-coding scheme to classify the complicated cell faces of
the three-dimensional momentum cells. Based on the assigned face colour, the appropri-
ate discretisation of the momentum fluxes are selected. The coding scheme essentially
reduces the 3-dimensional cut cell configurations to two-dimensional ones. Another nov-
elty of our implementation is the three-dimensional cell merging scheme to alleviate the
time step constraints in explicit time integration schemes. The method was first presented
at a conference (Kurz et al. 2014) and further extended and validated for aero-acoustical
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computations by Kreuzinger et al. (2015), Ewert and Kreuzinger (2021); however, it has
not been described in detail yet. In what follows, we formulate our scheme for uniform and
cubic grids which we have used in the simulations presented here.

2.2.1 Pressure Cells and Continuity Equation

The computational grid is composed of pressure cells which are labelled with three Carte-
sian indices (i, j, k). The pressure p; ;, is located at the cell centre and the velocities u;
v;jx and w;;, are staggered in the positive x-, y- and z-coordinate direction, respectively.
The body geometry is intersected with the edges of the pressure cells. Assuming linear

u Vv Vv w w 1
cuts, the open face areas St Lk Si].k S.]. e Sii’k, Siik | and S.. the corresponding face

centre points and the open cell volume V’; . are obtained. Dependmg on the curved polygo-
nal wall face, 128 different forms of three-dimensional pressure cells are possible if rotated
and mirrored cases are taken into account.

For a cut pressure cell, the velocity is defined at the midpoint of the open face area of
the pressure cell. The discrete continuity equation is formulated according to Cheny and
Botella (2010), in which the midpoint rule is used to approximate the volume flux across
the face areas of the pressure cell by multiplying the midpoint velocity of the neighbouring
momentum cell with the cell-face area. For example, u; ;, is the volume flux between the

cells (i, j, k) and (i + 1,7, k) and is computed as u; S:-f,-,k”i e

ij.k?

ij.k —
2.2.2 Momentum Cells and Momentum Balance

As described by Droge (2006) there are two ways to formulate momentum cells which are
cut by an immersed boundary. They can be distinguished by the way how small cut cells
are treated. In the first option, small cut cells are dropped, which leads to cells which are
not part of the overall momentum or mass balance. We chose the cell-to-boundary formu-
lation in which small momentum cells are merged with neighbouring cells, thus extending
the momentum balance to the wall, see Fig. 1. This comes with the drawback of intro-
ducing additional errors due to larger aberrations between volume and face midpoints.
However, the advantage of this formulation is that the boundary created from staggered
momentum cells conforms to the three-dimensional geometry. This simplifies the calcula-
tion of boundary forces and facilitates the application of wall models.

The momentum cell is determined according to Droge and Verstappen (2005) by halv-
ing the two adjacent pressure cells in the direction of the velocity component to which the

ik Avit1k
; él’zﬂjﬁzﬂg}c Pit1iflit1gk
o " ik
Vitlj41k Lk Vitljtlk
U 5
y Ltk 4y, iy i1k
Pif1g5+1k Pit1gi-1k
vip) j4ok ’ Ak vit1gdok

Fig.1 Geometric definition of cut momentum cells. The blue lines delimit the control volume boundaries
of the staggered u-component. Left:non-balanced momentum cells (red); Right: cell-to-boundary formula-
tion
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cell belongs. When the neighbouring momentum cell is blocked, the cell is extended to the
boundary. The volume of a momentum cell can then be easily computed as

u P P
Vle 2 Vle + Vl+lz]k
default formulation by Droge and Verstappen (2005)
ey
_ _ pu
+(1 i— 1,]/() le+(1 Bi+1,]k) l+1Jk
«

~-
cell-to-boundary

where the indicator field B“J . 1s 1 if the face belonging to the velocity u,;, is open and 0 if
it is closed. Using this definition of the momentum cell ensures that the balanced volume is
the same for the mass and all momentum components.

The semi-discretised Navier—Stokes equations read

Mu, =0 (2a)

du,
VE + C(uy)u, = —Gp,, — Du,, (2b)

where M is the discrete divergence operator, V is a diagonal matrix containing momentum

cell volumes according to Eq. (1), C is the convective operator, G is the discrete gradi-
ent operator and D is the discrete diffusive operator. The symmetry-preserving method of
Verstappen and Veldman (2003) requires that G = MT, C(u,) = —C(u,)T and D + D7 is
positive definite.

The convective and diffusive approximations are selected with the help of a colour-
coding scheme for the face areas of the momentum cell. We define 7 different cell-face
categories based on their orientation and the way they are cut by the boundary. The use of
the colour-coding effectively reduces the discussion of the cell shapes from three to two
dimensions. The formulation of the fluxes is described in the appendix. The convective
approximations are implemented according to the method of Droge and Verstappen (2005)
and the viscous terms are implemented using the non-orthogonality correction of Kirkpat-
rick et al. (2003). This correction is needed because for cut cells the straightforward two-
point finite difference between the velocities located on the faces of the pressure cell is not
a second order accurate representation of the gradient projected on the normal vector at the
centre of the momentum cell face.

In the following, we describe the colour-coding of the cell faces. The faces of a momen-
tum cell in negative and positive x-direction are abbreviated with w (west) and E (east);
the faces in negative and positive y-direction with s (south) and N (north) and the faces in
negative and positive z-direction with B (bottom) and T (top). Every cell-face is subdivided
at the boundary of the pressure cell and, in the cell-to-boundary case, at the midpoint of
the pressure cell. Each segment is then marked with one or more colours. All possible col-
our-coded face categories are shown by using the example of different u-momentum cells
in Fig. 2. The coding scheme uses a total of 7 colours (orange, yellow, red, pink, black,
grey and green). The different cases can be discriminated based on the logical information
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Fig.2 Cell-face types for a u-momentum cell. Each type is represented by a different colour

whether the neighbouring u-velocity cells are open or closed. This information is repre-
sented by the B" indicator field.

The colour codes for an open u-momentum cell (BY
following rules:

k= = 1) are assigned based on the

(1) Each wall face area is assigned the colour red.

(2) If the neighbouring momentum cell at the e-face (w-face) is open, i.e. BY T =1, the
part of the e-face area which is parallel to the grid is represented by the colour orange.
For the skewed parts of the corresponding face the colour yellow is used.

(3) If the neighbouring momentum cell at the T-face (N-, s- or B-face) is open, i.e.
B“J w+1 = 1, the face part parallel to the grid is marked with the colour pink. Moreover,
if the neighbouring momentum cell at the w-face is closed (B! Lk = = 0), the T-face
area of a momentum cell is expanded towards the wall on the w side. For this segment
the additional colour grey is used if the T-w neighbouring momentum cell is open
(B Lkl = 1) and the additional colour black if the T-w neighbouring momentum cell

=0).

is closed (B” k]

(4) Else the nelghbourlng momentum T-face (N-, s- or B-face) is closed, i.e. B”J = =0.If
both neighbours at the w- and the T-w-side are open (B;_ Lk = = land B Lkl = = 1), the

face is marked with the colour green.

-1 i
H1@ Q@
O O

©® B'=0
O ©
— @ B'=0orl
O

@® B'=1

o o

pink black grey green
Fig.3 Assignment of cell-face types (colour codes) at a T-face of a u-momentum cell (i, j, k) based on the

indicator field B". The value of By, is 1 if the face area belonging to the velocity u; ;, is open and 0 if it is
closed. The shaded area schematlcally represents the original momentum cell (i, j, k)
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Fig.4 Cell-face types for a :
u-momentum cell in two three- Yé/

dimensional configurations. Each
type is represented by a different
colour

The configurations for the third and fourth rule are depicted in Fig. 3 for a T-face. Figure 4
displays two possible three-dimensional configurations of the momentum cell with colour
coding.

2.2.3 Treatment of Small Cells

When an arbitrary surface is intersecting a Cartesian grid, one cannot avoid that arbi-
trarily small cells emerge. In the two-dimensional case, the stability of the skew-sym-
metric discretisation of Droge and Verstappen (2005); Droge (2006) is not affected by
the presence of small cells. Contrarily, in the three-dimensional case small cells lead to
large imaginary eigenvalues of the discrete convective operator matrix V~'C(u,) and
thus result in a severe time step constraint (Droge 2006). In our implementation, we use
cell merging to avoid those instabilities. The cell merging approach described in Hart-
mann et al. (2011) is extended for staggered momentum cells.

A cell is considered to be small when the cell volume is smaller than 0.254xAyAz,
which turned out to be a reasonable compromise between accuracy and efficiency. Each
small cell needs an appropriate master cell to combine with for which the largest direct
neighbour is selected. The merging starts with the pressure cells and from the merged
pressure cells the staggered momentum cells are formed. Figure 5 shows a simple exam-
ple of a merged pressure cell and the associated staggered momentum cells. The veloc-
ity associated with a merged staggered momentum cell is located in the midpoint of the
cell face of the merged pressure cell as shown in Fig. 5b and c.

The fluxes across the surface of a merged cell are computed by evaluating the fluxes
on both the master and the small cells individually and then adding the results. For each
sub-cell the same formulation is used as for a non-merged cut cell; however, the modi-
fied position of the merged velocity is taken into account when gradients are computed.
After the global pressure correction, divergence-free volume fluxes are computed for all
sub-cells by solving a local Poisson problem.
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Fig.5 Merging of small cells
2.3 Verification of the Cut Cell Implementation

As the scheme we used in this project has not been verified before, we present results for
three test cases. The first test case establishes the energy conservation of the skew-sym-
metric formulation of the cut cell method. The second test case demonstrates that the
implementation including cell merging is second order in all terms of the Navier—Stokes
equation and the third test case places the method in relation to other schemes published.

2.3.1 Conservation of Energy for the Inviscid Taylor Vortex Flow Around a Body

In this section, we test the energy conservation properties of the cut cell implementation.
Following (Morinishi 2010), we simulate an inviscid flow in a periodic domain. Due to
the skew symmetry of the discrete convective operator and the adjoint relation between
the discrete gradient and divergence operators, the kinetic energy must be conserved if the
initial velocity field is divergence-free and satisfies the no-penetration boundary condition
on the immersed boundary.
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We construct the body geometry and the initial condition from the two-dimensional Tay-
lor vortex (Taylor 1923) which remains stationary in the limit of zero viscosity. It is given
by the stream function

UO
w(x,y) = ——= cos(kx) cos(xy) 3

with the wavenumber k. We set the body surface at the isocontour of the stream function
Whody = —Up/(2k), which extends from z /3 < kx < 2x/3, /3 < ky < 2z /3. Since this is
a closed streamline, the flow is always tangent to the body and thus the no-penetration wall
boundary condition for inviscid flow is satisfied. The discrete velocity fields were initial-
ised with the specific volume fluxes across the cell faces that can be easily computed from
the stream function and the open face areas. The velocity field and the body are shown in
Fig. 6a.

The flow was simulated for a total time kU,T = 2x. Four grids were considered that
cover one wavelength of the flow with a cell height x4z = 2x/10 and cell widths of
kAx = kAy = 27 /20, 27 /40, 27 /80 and 27/160, respectively. We investigated multiple
time step sizes between U, At/Ax = 5% 10™* and 5 x 107!, The simulations were per-
formed in double precision floating point arithmetic.

Figure 6b displays the relative error in the conservation of kinetic energy over the time
interval [0, 77 for the different grid resolutions. It can be seen that the error depends on
the time step size as O(4£3) and can be brought down to floating point accuracy for very
small time steps. This error is caused by the numerical dissipation of the explicit third-
order Runge—Kutta scheme. Moreover, a non-systematic dependency of the error on the
grid spacing is apparent. Please note that we have also considered rotated variants of the
case with identical results.

As the error in the conservation of the kinetic energy for any given grid can be reduced
to machine precision by choosing a small enough time step, we conclude that the imple-
mentation of the convective and pressure gradient terms in the cut cell method indeed con-
serves the kinetic energy in an inviscid flow.

(b) 104

1 ——— KAz = 21/20

1076

0.6

10-*

0.6
1010

u/Uy

Ky/2m

041 10-12

104

[Bin(t = 0) — By (t = T)] /EByn(t = T)

1 10716 . . . ,
10~ 1073 102 10~ 100
UyAt/Ax

Fig.6 Inviscid Taylor vortex flow around a body defined by y = —U, /(2x). a Streamlines and u-compo-
nent of the initial velocity field. b Relative error in the total kinetic energy E,;, = %uZVuh over the time
interval [0, T] = [0, 27 /(k U,)]. The dashed line indicates third order convergence with the time step 4t
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(b)

10° ¢
1071

1072 ¢

10} ;

1074 L

l[ts, 82 (r, T) = s (r, T) [0 /10, T)

| ) flow

1 1 1

ol b

-dp/dx

Az/a

Fig.7 Transient flow through an oblique pipe. a Configuration of the pipe in a periodic domain and the
applied pressure gradient. b Grid convergence of the L*-norm of the streamwise velocity u(r, T) at probe
points with r/a = 0,0.1, ...,0.9. The dashed line indicates second order convergence with the grid spacing
Ax

2.3.2 Convergence to an Analytical Solution for Transient Flow through an Oblique
Pipe

In this section, we demonstrate the spatial convergence of the cut cell implementation for
transient laminar flow in a circular pipe. This test case is a three-dimensional and unsteady
generalisation of the oblique channel flow considered by Droge and Verstappen (2005),
Meyer et al. (2010). The pipe of radius a is oriented the in the (1, 1, 1)-direction and is
embedded into a cubic domain of length 4a with triple periodic boundary conditions (cf.
Fig. 7a). A pressure gradient is applied along the x-direction. For this flow, an analytical
solution exists in the form of a series expansion (Pozrikidis 2017):

1 1 dp 2 22 1 Jo(a, r/a)exp< zvt) @

ur,t) = 575 a3 T,(a,) w2
where J, and J; are the Bessel functions of the first kind and a,, is the n-th zero of the
Bessel function J,. The dimensionless pressure gradient magnitude was chosen as
—dp/dxa®/(pv*) = 20. This would eventually result in a steady state Reynolds number
Re = u;, 2a/v = 2.89 with the bulk velocity u,.

The oblique orientation of the pipe ensures that the convective terms in the Car-
tesian frame are nonzero. The pressure gradient (body force) is applied in the
(1, 0, 0)-direction and forms a 54.7° angle with the pipe axis. This has the consequence
that the pressure iterations need to redirect this pressure gradient and that the pres-
sure gradient terms in the momentum equation are nonzero. Consequently, in this test
case all terms of the incompressible Navier—Stokes equations are active. Moreover, the
oblique placement of the pipe with respect to the Cartesian grid leads to a large variety
of cut cell geometries and sizes.
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Table 1 Grid configuration for the flow around a sphere at Re = 100. Grid #1 contained 3.3m cells and grid
#2 contained 26m cells

Level x-extent y- and z-extent Grid spacing #1 Grid spacing #2
#1 [—15D;49D] [—16D;16D] 0.5D 0.25D

#2 [-7D;21D] [-8D;8D] 0.25D 0.125D

#3 [-3D;15D] [-4D:;4D] 0.125D 0.0625D

#4 [-2D;13D] [-2D;2D] 0.0625D 0.03125D

#5 [-1D;5D] [-1D;1D] 0.03125D 0.015625D

Table 2 Comparison of results for the drag coefficent Cg, the friction drag coefficient C;, the pressure drag
coefficient C,, and the length of the recirculation zone L, /D for the flow around a sphere at Re = 100. The
abbreviations FD and FV stand for finite difference and finite volume method, respectively

References Method Body representation  C, C; c, L./D
(Fornberg 1988) FD (y—w) Curvilinear grid 1.085 0.5087 0.5765 0.872
(Hartmann et al. 2011) FV (p—u-E)  Cartesian cut cell 1.083 - - 0.880
(Johnson and Patel 1999)  FD (u-p) Curvilinear grid 1.08 - - 0.88
(Kim et al. 2001) FV (u-p) Cartesian cut cell 1.087 - - -

(Le Clair et al. 1970) FD (y—w) Curvilinear grid 1.096 0.590 0.507 -
(Magnaudet et al. 1995) FD (u-p) Curvilinear grid 1.092 0.584 0.508 ~ 0.85
(Marella et al. 2005) FD (u-p) Cartesian level-set 1.06 - - 0.88
Present (grid #1) FV (u—p) Cartesian cut cell 1.092  0.5602 0.5319 0.894
Present (grid #2) FV (u-p) Cartesian cut cell 1.091 0.5722 05185  0.878

We simulated the flow with 4000 time steps until vT'/a®> = 0.04 was reached. At this
time the viscous layer thickness is 20% of the pipe’s radius. We used cubic cells with a
size of a/8, a/16, a/32, and a/64, respectively. The time step v At/a> = 10~ was identi-
cal for all cases and was chosen small enough such that the temporal error is negligi-
ble compared to the spatial error. We sampled the velocity field at probe points with
r/a=0,0.1,...,0.9 and 36 points in azimuthal direction. For each radial position, we
computed the maximum error with respect to the analytical solution. Figure 7b shows
the maximum error at each radius over the grid spacing; we observe that the error
decreases towards the centre of the pipe and we see a second order convergence with
the grid spacing. Please note that the computations were performed in single precision
arithmetic.

2.3.3 Steady Flow Around a Sphere at Re = 100
Following (Kim et al. 2001; Marella et al. 2005; Hartmann et al. 2011), we simulated
steady laminar flow around a sphere of diameter D at Re = U,D/v = 100, where U,

denotes the velocity of the uniform approach flow. This flow separates from the sphere and
forms a closed recirculation region.
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The extent of the simulation domain was chosen as [—15D;49D] in the x-direc-
tion and [—16D;16D] for the y- and the z-direction. Like (Hartmann et al. 2011), we
used a zonal grid with a total of 5 levels with a cell size Ax = 0.5D on the coarsest and
Ax = 0.03125D = D/32 on the finest level (grid #1). Moreover, we performed a full refine-
ment by a factor of 2 (grid #2). Due to the block-structured grid in our code compared to
the octree grid of Hartmann et al. (2011), we had to modify the grid layout. The grid defi-
nition is given in Table 1. A constant velocity u = U, e, was set at the inlet and p = 0 and
homogeneous Neumann boundary conditions for the velocity were set at the outlet. At the
sides of the domain, slip boundary conditions were applied. The velocity field was initial-
ised with u = Uj, e, and the flow was integrated over a time U, T/D = 100 with 16000 and
64000 time steps for grids #1 and #2, respectively.

In Table 2 the friction drag coefficient Cy, the pressure drag coefficient C,, the total drag
coefficient Cy = C¢ + C, and the length of the recirculation zone from our simulations are
compared to results from the literature. The friction and pressure drag coefficients were
computed from the wall shear stress and the pressure in the cut cells as

1 /
Ci=—— 7, dA
' A 5)

1 D2
> P U g T 7 sphere

€= ;/ —pndA (©6)

p 1 D?
EpUgﬂ'T Agphere

The length of the recirculation zone L, was defined as the distance from the rear end of
the sphere at x = 0.5D to the zero crossing of the u-component on the x-axis. It can be
seen from Table 2 that the results of our simulation lie within the range of values in the
literature.

Moreover, we investigated the dependency of the time step on the cell merging thresh-
old that represents the open volume fraction of a cut cell below which a cut cell is merged
to one of its neighbours. Figure 8§ displays the maximum time step for which the numerical
solution remains stable over an integration time of Ax/U, and the minimum time step for
which the numerical solution blows up as a function of the cell merging threshold. For a
cell merging threshold larger or equal than 0.25, the time step is limited by the diffusion

Fig. 8 Dependency of the maxi- L2 1 100
mum stable time step on the cell diffusion number limit for uncut cells
merging criterion for flow around 1 v v v v

a sphere at Re = 100 (grid #1).
The time step is normalised with
the diffusion number limit of an
uncut cell; the numerical value
2.5127 represents the stability
limit of the Runge—Kutta scheme
along the negative real axis

460

0.6 +

12vAt/Ax? /2.5127

0.4}

% of merged cut cells

——— stable 120

——y—— unstable
_____ % of merged cells

L L L 0
0 0.1 0.2 0.3 0.4 0.5

cell merging criterion
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number of an uncut cell. For smaller cell merging thresholds (leading to fewer merged cells
and smaller cut cells), the maximum stable time step is reduced severely. As mentioned
earlier we therefore decided for a threshold value of 0.25.

3 Flow Configuration, Experimental and Simulation Setup
3.1 Flow Configuration

The flow under investigation is a fully developed turbulent flow in a water channel (width
b = 1.17m) with a free surface and a sandy bed (water depth 2 = 0.15m). We performed
an experiment at the hydraulic laboratory of the Professorship of Hydromechanics at the
Technical University of Munich. We placed a cylinder (diameter D = 0.1m) vertically in
an open channel. This serves as a model for a bridge pier in a river with a mobile bed. In
a preliminary study, we let a scour hole develop in a sediment bed with a grain diameter
d = 2mm and measured its geometry after certain development times (Pfleger et al. 2011;
Pfleger 2011). The measurements were performed using a laser distance sensor on a 5 mm
grid. For the measurements used herein, the scour geometry after one hour of development
was taken and milled into aluminium to provide a stable and well controlled surface which
could also be taken as a boundary for the LES. The geometry of the scour hole is depicted
in Fig. 9 and is provided in the supplementary data. The surface of the scour cannot be
regarded as smooth. Instead, there are undulations at a length scale between 2 mm and Smm
resulting from the grain size and the laser scanning resolution. The main flow is along the
x-direction. The y-direction is horizontal and the z-direction is vertical and constitutes the
axis of the cylinder.

The study targeted two nominal Reynolds numbers, 20, 000 and 40, 000 which are close
to the ones used by Dargahi (1990) and Jenssen et al. (2021) for the case of the flow of
a cylinder mounted on a flat plate. These target Reynolds numbers were not fully met in
either experiment and simulation. In the experiment, the precision of the discharge meas-
urement was limited. The simulation was performed at exactly the same friction Reyn-
olds number as in Schanderl and Manhart (2016), but the flow rate changed slightly
due to a change in the grid spacing compared to the latter simulation. When using the
depth-averaged velocity in the symmetry plane as reference, the Reynolds numbers are
Rep, = usymD/v = 21,256 and 39, 662 in the experiment and Re,, = 22,618 and 45, 958
in the LES, respectively. The Reynolds numbers based on the cross-sectionally averaged
velocity u., were Rep ., = 21,251 and 41, 342 for the LES and 20, 331 and 38, 806 for

Fig.9 Geometry of the scour 2 T
hole and definition of the global
coordinate system ~

Flow /
2.8D
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the experiment. As the simulations and the experiments were conducted in parallel, the
discrepancy in Reynolds numbers could not be compensated for. As the flow changes with
Reynolds number are relatively small in this Reynolds number range (Jenssen et al. 2021),
we will refer to the nominal Reynolds numbers in the remainder of this paper.

3.2 Experimental Setup

In this section, we describe selected aspects of the experimental setup. A detailed descrip-
tion of the experiment can be found in Jenssen and Manhart (2020). The measurements
were done by a stereoscopic PIV. A streamwise/vertical plane was illuminated by a laser
light sheet entering the water body from above. An acrylic glass plate was applied at the
water surface in front of the cylinder in order to prevent refractions of the light sheet by
surface waves. Thus, the bow wave in front of the cylinder was suppressed. Consequently,
despite of the relatively high Froude numbers of Fr = u,,/ \/@ = 0.17 and 0.33 for the
low and high Reynolds number, respectively, the water surface can be considered as flat.
The effect of this glass plate onto the flow was investigated numerically for the flat bed
case at Rep, ., = 20,000 in Alfaya (2016). It was found that near the horseshoe vortex the
velocity and the turbulence statistics are only weakly affected by the presence of the plate.

The PIV images were taken by two cameras looking from above at a 45° angle. The
optical access was realised through water-filled prisms at the water surface. After the
usual stereoscopic transformations the 16 X 16 pixel interrogation window size was
5.88 x 1073 D = 0.588mm with an overlap of 50%. In order to reduce the light reflections
the scour surface was coated by a fluorescent Rhodamine-B varnish which returned light
in a shifted wavelength which was filtered out by a band-pass filter in front of the cameras.
However, the efficiency of the Rhodamine-B varnish was not perfect and reflections were
still present in a layer along the scour surface affecting the measurements at the wall. Con-
siderable difficulties were associated with locating the wall position in the acquired images
with an accuracy related to the pixel size (= 39um). Therefore, the position of the wall
was placed in the centre of the reflection layer which resulted in an uncertainty of about 25
pixels distance. For the computation of the wall shear stress, the wall position was refined
by assuming a linear variation through the five wall-nearest points (Jenssen 2019). The
wall shear stress was then determined from the velocity vector closest to the wall. Please
note that in the flat bed case the wall shear stress obtained in this way was underpredicted
compared to the LES and a single-pixel PIV evaluation (Schanderl et al. 2017; Strobl 2017;
Jenssen et al. 2021).

3.3 Simulation Setup

As in the experiment, the cylinder and the scour hole were placed inside an open channel
of width b = 11.7 D and height & = 1.512 D. The domain consisted of a precursor domain
which was used to generate a fully turbulent inflow condition and the main domain. The
precursor grid had a length 22.4 D = 14.8h with periodic boundary conditions applied in
streamwise direction. The main simulation domain had a length of 22.4 D as well with the
cylinder placed in the centre (x/D = 0). The time-dependent velocity profiles from the pre-
cursor simulation were imposed at the inflow plane located at x/D = —11.2. At the outflow
plane, a zero-gradient condition was used for the velocities. The water surface was mod-
elled by a free-slip condition, which gives a non-deformable free surface. This corresponds
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Fig. 10 Grid configuration
around the cylinder and inside
the scour hole. Every grid box
sketched corresponds to 20° cells
at Re;, = 20,000 and to 343 cells
at Rej, = 40,000

to the limit of zero Froude number, see also discussion in Sect. 3.2. At rigid walls (bottom
wall, scour geometry, cylinder and side walls) the flow satisfies a no-slip boundary condi-
tion and the Werner-Wengle wall function was employed to compute the wall shear stress.

The flow in the precursor domain was driven by a constant pressure gradient such that
Re, = u,h/v = 1522 and 2762, respectively, with the wall shear velocity

@)

The flow domain was represented by a block-structured Cartesian grid with local
refinement on five levels each reducing the cubic grid cell spacing by a factor of two.
For both Reynolds numbers we performed a grid study by successively adding more
refinement levels. The base grid (grid #1) covered the whole computational domain,
grid #2 added refinement level #2 and so on. The grid was refined at the bottom wall,
the cylinder and inside the scour geometry (see Fig. 10). Please note that the refinement
also included the rim of the scour hole where a flow separation takes place. At the finest
resolution, a total number of 478 million and 2.35 billion cubic grid cells was used for
Re, = 20,000 and 40, 000, respectively. In Table 3 the main parameters of the computa-
tional grids are given.

In a first step, the appropriateness of the grid resolution can be judged based on the
grid spacing Ax* = u_Ax/v in wall units. On the one hand, the channel flow in grid #1

Table 3 Details of the computational grid. The spatial extent of the refinement levels was the same for both
Reynolds numbers. “+” indicates grid spacing based on the wall friction velocity u, in the precursor domain
according to Eq. (7)

Re) 20, 000 40, 000

Grid Number of cells AX; i Number of cells AX; i

#1 42m 0.028D =28t  208m 0.0165D =30
#2 89m 0.014D =14 435m 0.0082D =15%
#3 146m 0.007D =7.0" 717m 0.0041D =175"%
#4 251m 0.0035D =35t 1.23b 0.0021D =3.8*%
#5 478m 0.00175D =18" 235b 0.0010D =19*
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is resolved with a cell size Ax* ~ 30 wall units which constitutes a wall-modelled LES.
As the SGS model and wall function have been calibrated and validated with channel
flow, we expect little uncertainty in this region of the flow. On the other hand, the grid
spacing in the scour hole in grid #5 is at most Ax* = 5 wall units with the friction veloc-
ity based on the local wall shear stress (cf. the peak friction coefficient in Fig. 19). As
the Werner-Wengle wall function reduces to the linear law of the wall for Ax™ < 11.81,
the flow in the scour hole can be considered a wall-resolved LES. Hence, the refine-
ment from grid #2 to #5 gradually moves the simulation from a wall-modelled to a wall-
resolved LES. The adequacy of the grid resolution will be discussed in more detail in
the Sects. 4.1 and 4.2.

The simulations were run until a statistically steady state was achieved before
sampling was started. The samples cover a time of 450D/ug,, at Re;, = 20,000 and
118D /ug,, at 40, 000, respectively. At the finest grid resolution, this led to a computa-
tional cost of 1.0 and 2.3 million CPU hours for the two Reynolds numbers.

4 Results

In this section, we first evaluate the reliability of the LES results by investigating the devel-
opment of representative quantities with grid refinement and by comparing the finest grid
results with the ones measured by PIV. Based on this analysis we discuss certain features
of the flow. Furthermore, we put a focus on the three-dimensional shape of the horseshoe
vortex inside the scour hole as well as the wall shear stress field, since these quantities are
challenging to obtain experimentally.

4.1 Flow Topology

Before evaluating the ability of the LES to represent the flow topology in an adequate
sense, we introduce the main characteristics of the flow in the scour hole in front of the
cylinder. The flow inside the scour hole is dominated by the horseshoe vortex wrapping
around the cylinder. This vortex is the only vortex in the symmetry plane upstream of
the cylinder which can be made visible in the streamlines (Fig. 11) for the time-averaged
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Fig. 11 Time-averaged streamlines of the flow field inside the scour hole in front of the cylinder from the
PIV experiment (Jenssen and Manhart 2020) super-imposed with the velocity magnitude normalised by
Ugy, Tor a Rey, = 20,000 and b 40, 000
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22618 LVL1

Re =

Re = 15958 LVL2

-1.6 -14 -1.2 -1 -0.8 -0.6 -0.4 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

x/D

Fig. 12 Time-averaged streamlines of the flow field inside the scour hole in front of the cylinder taken from
LES super-imposed with the velocity magnitude. The “4” indicates the position of the horseshoe vortex
observed in the experiment. Left column: grids #1 — #5 for Re;, = 20, 000. Right column: grids #1 — #5 for
Rep, = 40,000

@ Springer



Flow, Turbulence and Combustion (2022) 109:893-929 911

velocity field from the experiment of Jenssen and Manhart (2020). The downflow in front
of the cylinder is a result of the vertical gradient in the velocity profile of the approach-
ing open channel flow which leads to a higher stagnation pressure at the upper part of the
cylinder than at the lower part. This drives the flow downwards. At the bottom of the scour
hole, we can find a stagnation point near x/D = —0.55. The flow upstream of the stagna-
tion point is directed into the horseshoe vortex; the flow on the other side moves around
the cylinder. The measurements could identify a secondary flow detachment between
x/D = —1.1and —1.0 at Re;, = 20,000 and a local near-wall velocity peak directly under-
neath the horseshoe vortex. This velocity peak could give rise to a large wall shear stress;
this will be discussed in Sect. 4.5.

In the following, we discuss the flow topology resulting from our simulations and its
variation with grid resolution. Figure 12 depicts the time-averaged streamlines in the
symmetry plane as well as the magnitude of the time-averaged velocity for the different
grid resolutions. We can observe a strong variation of the flow topology with the grid
spacing. In the coarsest simulations (LES #1) the flow remains attached downstream of
the rim and only separates near x/D = —1.15. At all higher resolutions, it separates from
the rim of the scour hole. At both Reynolds numbers a large single horseshoe vortex can
be observed in the grids #2 and #3 at a distance of approximately 0.1D from the posi-
tion observed in the experiment, which is marked by a “+” in the plots. In grid #4 the
horseshoe vortex moves down into the scour hole closer to the position observed in the
experiment. This gives space for a small secondary vortex in the detached shear layer
upstream of the horseshoe vortex. A further grid refinement along the wall (grid #5)
does not result in a significant change of the position of the horseshoe vortex. However
the secondary vortex becomes weaker at the lower or vanishes at the higher Reynolds
number. The shift of the vortex between grids #3 and #4 gives room for a small recircu-
lation zone at the wall at x/D = —1.05 which also is visible in the measured flow field
at Re;, = 20,000. While position and shape of the horseshoe vortex do not change sig-
nificantly between grids #4 and #5, there remains some uncertainty about the secondary
vortex that is visible in grid #5 at Rej, = 20, 000. It has not been measured in the experi-
ment. However, such a second vortex has been observed by Kirkil et al. (2008), Kirkil
et al. (2009) in a deeper scour hole at equilibrium depth which is obtained after a long
time of scour development. It might be conjectured that the change in flow topology that
is observed between the LES #3 and #4 is due to a better resolution of the flow separa-
tion at the rim of the scour hole and the detached shear layer developing upstream of the
main vortex.

Table 4 Main parameters of the horseshoe vortex. xyy /D is the location of the horseshoe vortex

Rep 20, 000 40, 000
Xuv /D 5y,maxl)/“sym TKEmaX/Mfym Xuv /D 5y,maxl)/“sym TKEmaX/szm

LES #1 -0.87 9.45 0.106 -0.91 14.4 0.076
LES #2 -0.98 16.4 0.097 -0.97 13.8 0.111
LES #3 -0.97 17.3 0.119 -0.96 18.4 0.118
LES #4 -0.90 20.3 0.101 -0.91 18.8 0.106
LES #5 —-0.88 20.3 0.100 -0.89 17.5 0.101
PIV -0.89 20 0.100 -0.92 17 0.094
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In Table 4, some global parameters of the horseshoe vortex obtained on different
grids are compared to the experimental values. The horseshoe vortex positions were
determined by the focus of the streamlines and confirmed with the swirl criterion of
Kida and Miura (1998). The maximum vorticity and turbulent kinetic energy (TKE)
were determined in the symmetry plane in the neighbourhood of the horseshoe vortex
centre. From grid #2 on, there is a roughly monotonic trend in the horseshoe vortex
positions with differences between the finest and the second finest grid below 2.5% for
both Reynolds numbers. The measured positions are close to the simulated ones at the
finest grids. The maxima of the time averaged spanwise vorticity @,,,,, and TKE in the
horseshoe vortex centre show a similar trend although no monotonous convergence.

Generally, we can conclude that the simulation at the coarsest grid #1 is far from
a grid-converged solution. It is evident that there is no monotonic convergence of the
global quantities, which show larger variations between resolutions differing in flow
topology. An application of the Grid Convergence Index (GCI) (Roache 1997) would
result in inconsistent values among the various grid refinements. However, the simula-
tion at the second finest grid #4 is close to the finest one #5 from which we can conclude
that those simulations are close to a grid-converged solution. We would also like to
emphasise here, that the statistics we could gather with our limited computing time are
probably not fully converged.

4.2 Velocity Profiles

In this section we discuss the grid dependency of selected profiles of the mean velocity at
the Reynolds number Rej, = 40, 000. This will provide further evidence to judge the uncer-
tainty in the simulations. We do not show this comparison for the lower Reynolds number
as there were some uncertainties in the normalisation of the measured values.

First, we investigate a vertical profile of the time-averaged streamwise velocity com-
ponent u through the measured horseshoe vortex centre. In Fig. 13a the velocity profiles
obtained with the different grid resolutions are compared to the corresponding profile
from the experiment (PIV). The backflow under the horseshoe vortex is well resolved in
all grids. The agreement between grids #4 and #5 is fully satisfactory. Note that grid #5

(a) b 0
g -01
Z
= -0.2
Il
-0.3+
3 S Tiesm
Ih04r 1R 4o
= LES #3
& 05 g #4
B gl ——LES#5
0.5 0 0.5 1 14 12 -1 08  -0.6
U(z = —0.92D,y = 0, Z)/usym z/D

Fig. 13 Time-averaged velocity profiles in the symmetry plane (y =0) at Re;, =40,000. a u-velocity
profile through the horseshoe vortex centre from the experiment, and b w-velocity above the scour hole
(z = 0). The grey shaded area represents the 2.8% uncertainty associated with the experimental results
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added further refinement only along the wall compared to grid #4 (cf. Fig. 10). The simula-
tions reach the measured streamwise velocity magnitude above the scour hole and there is
a slight undulation in the profiles of grids #4 and #5 around z/D = —0.1, which we cannot
explain at this moment. However, the vertical position of and the velocity gradient around
the horseshoe vortex centre fully agree between the PIV and the two simulations with the
finest grids.

Second, we present in Fig. 13b various simulated and measured horizontal profiles
of the time-averaged vertical velocity w at the upper end of the scour hole (z = 0). This
quantity can be understood as the convective velocity transporting horizontal and vertical
momentum into the scour hole. The curves indicate that (i) The results on the coarsest grid
are far from the others, (ii) The results on the two finest grids are very close and (iii) The
experimental results are not far from the simulated ones on the finest grid. We can also
observe a qualitative deviation of the profiles grids #1 — #3 from the experiment and the
simulations with the two finest grids. While the latter have a fairly monotonic decrease of
w towards the maximum downflow close to the cylinder, the solutions on the intermediate
grids show a local minimum of the downward velocity near x/D = —1.1. This seems to
be the footprint of the larger and upward shifted horseshoe vortex predicted by grids #2
and #3. While the peak amplitude of the downward velocity agrees between the simula-
tions and the experiment, the experiment shows a stronger downflow than the simulations
around x/D = —1.0. Nevertheless, the shape of the profiles predicted by grids #4 and #5
agrees quite well with the measured one.

In conclusion, we can observe good quantitative agreement between results obtained
on grids #4 and #5 for both velocity profiles and with the results presented in Sect. 4.1, we
consider those simulations sufficiently converged in terms of grid resolution. In the follow-
ing, we only discuss the results for the simulations on grid #5.

4.3 Vorticity and Turbulence Quantities in the Symmetry Plane

In this section, we compare the spatial distributions of the mean vorticity, TKE, Reynolds
stresses and production of TKE in the symmetry plane between LES and experiment at
Re;, = 40, 000.

The distributions of w, in the symmetry plane show a high level of agreement between
LES and PIV (Fig. 14). Large values of negative vorticity (corresponding to a clockwise
rotation) can be found in the shear layer detaching from the scour rim and around the

Cylinder - LES - Re = 45,958
Cylinder - SPIV - Re —

Fig. 14 Time-averaged vorticity o, = % - ‘;—z‘ normalised by ugy,

cylinder taken from a LES (grid #5), and b PIV at Re;, = 40,000. The “+” indicates the position of the
horseshoe vortex core observed in the LES and PIV, respectively

/D inside the scour hole in front of the
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Fig. 15 Turbulent kinetic energy (a,b), Reynolds normal stresses Wi (c.d), Reynolds normal stresses ww'
(e,f) and production of TKE (g,h) inside the scour hole in front of the cylinder taken from LES (grid #5)
(a,c,e,g) and PIV (b,d,f,h) at Re,, = 40,000. Data are normalised by u,,,/D. The “+” indicates the position
of the horseshoe vortex observed in the LES and PIV, respectively

sym

horseshoe vortex centre. Large positive vorticity is found upstream of the horseshoe vortex
at the wall. This can be attributed to the small recirculation region visible in the stream-
lines of the LES near x/D = —1.05 (Fig. 12).

Figures 15a and b compare the TKE predicted by our LES with the measured one. In
both data sets, a TKE maximum can be found at the vortex centre with values of 0.08 to
0.09u§ym. The distributions are very similar to each other. However, the near-wall peak at
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x/D = —1.0 is better resolved by the LES, which can be attributed to the better near-wall
resolution of grid #5 compared to the interrogation window size in the experiment (cf.
Sect. 3.2). It is important to note that in the deepest region near the cylinder, the TKE is
almost zero.

The detailed turbulence structure in front of the cylinder has been discussed by Jens-
sen and Manhart (2020). They showed that when the coordinate system is rotated to
align with the surface of the scour hole, the turbulence structure is pretty similar to
the one in front of a cylinder on a flat bed. This includes a ”C” -shaped distribution of
the TKE in which the region around the horseshoe vortex is dominated by wall-nor-
mal fluctuations and the foot of the “C” is dominated by wall-parallel fluctuations. As
shown in Fig. 15¢c—f, the distributions and levels of the streamwise and vertical Reyn-
olds normal stresses are well predicted by grid #5 in comparison to the PIV. The same
can be concluded with some reservations from Fig. 15g,h for the production of TKE,
P= —u:uj’ du;/0x;. The PIV measured the largest levels of TKE production upstream
of the horseshoe vortex centre and could not resolve the near-wall peak which is well

Mean velocity magnitude
Mean velocity magnitude

ean velocity magnitude

Fig. 16 Side view (a,b) and top view (c,d) of the mean pressure isosurface with p —p, s = —0.72pu§ym and

streamlines near the cylinder with scour hole for (a,c) Re;, = 20,000 and (b,d) Re; = 40,000. The refer-
ence pressures were computed at the location x/D = —0.5, y/D = 0 and z/D = 0.5
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(2) (b)
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l 08 ' 08
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Fig. 17 Top view of TKE isosurface with 0.05ufym and streamlines near the cylinder with scour hole for a
Rep, = 20,000 and b Re;, = 40,000

visible in the simulated results. The same could be observed in the flat-plate case
(Schanderl et al. 2017), so we are convinced that this is not an artifact of the simulation.

In summary, a highly satisfactory agreement the mean vorticity as well as second order
velocity statistics can be observed. This suggests that the LES represents a flow very simi-
lar to the one measured in the experiment.

4.4 Mean and Instantaneous Appearance of the Horseshoe Vortex

In this section, we discuss the shape of the time-average horseshoe vortex based on stream-
lines, contours of the mean pressure and the TKE. Furthermore, we investigate the appear-
ance of the horseshoe vortex at Re;, = 40,000 visible in instantaneous shapshots of the
pressure distributions.

Figure 16 shows isosurfaces of the mean pressure and streamlines of the mean veloc-
ity field in side and top view, respectively. The streamlines were seeded on the line
x/D = -1.6, z/D = 0.05. A low pressure region in the core of the horseshoe vortex con-
sistent with the streamlines is clearly visible. In front of the cylinder, the horseshoe vor-
tex core remains at an approximately constant depth of z/D = —0.2. The elevation of the
core increases as the horseshoe vortex passes around of the cylinder. Finally, the horseshoe
vortex leaves the scour hole around x/D = 0.3 for the lower and x/D = 0.2 for the higher
Reynolds number. Another interesting feature of the isosurfaces is that the length of the
low pressure region behind the cylinder decreases with the depth. This suggests that the
flow separation from the cylinder is less pronounced near the scour hole.

We also determined the core line of the horseshoe vortex from the mean velocity field
using the parallel vectors method of Roth and Peikert (1998), Haimes and Kenwright
(1999) implemented in ParaView. The core lines lie in the centre of the mean pressure
isosurfaces (cf. Fig. 16). We provide the isolated and sorted core lines for both Reynolds
numbers as supplementary data.

The horseshoe vortex is known to be a region of high turbulence intensity (Devenport
and Simpson 1990; Jenssen and Manhart 2020). Therefore, also the spatial distribution
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2

Fig.18 Top view of instantaneous pressure isosurfaces with p —p..; = —0.72pu’, _ and streamlines near

sym
the cylinder with scour hole for different times at Rej, = 40,000. The reference pressure was computed at
the location x/D = —0.5, y/D = 0 and z/D = 0.5

of the TKE can provide further evidence on the shape of the horseshoe vortex. Figure 17
shows an isosurface of TKE and streamlines of the mean velocity field. It is clearly visible
that the TKE is concentrated in the horseshoe vortex and in the wake of the cylinder. A
peculiar feature of the TKE surface associated with the horseshoe vortex is the indenta-
tion at both ends of the vortex. These indentations appear approximately where the surface
reaches the elevation of the channel bed (z/D =~ —0.1). It can be seen from both the shape
of the TKE isosurface and the streamlines that the width of the cylinder wake and the dis-
tance between the branches of the horseshoe vortex is larger for Rep = 40,000 than for
20, 000. Moreover, the comparable volume enclosed by the isosurfaces indicates that the
values of the TKE for both Reynolds numbers are quite similar when normalised with ug o

In the following, we analyse four snapshots of the flow at Re; = 40,000 that were

sampled with a temporal separation of at least 12D /u,,,. Figure 18 shows snapshots of
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an isosurface of the instantaneous pressure with the same contour value as in Fig. 16
together with instantaneous streamlines. The plots indicate that the horseshoe vortex
is also present in the instantaneous flow fields. The isosurfaces at the location of the
horseshoe vortex also show smaller turbulent vortices superimposed on the horseshoe
vortex. Low pressure regions can be observed on the sides and in the wake of the cyl-
inder; in some snapshots the vortices of the von Karman vortex street are clearly dis-
cernible. There seems to be little variation in the location of the horseshoe vortex as it
remains close to the mean position in all the snapshots. It can be seen that sometimes
the pressure isosurface near the horseshoe vortex is broken into smaller elements. A
further breakup of the vortex can be observed near the sides of the cylinder. A possible
interpretation of this is that the vortex loses its coherence and disintegrates into smaller
turbulent structures.

Please note that the Q-criterion (Hunt et al. 1988) that has been employed in compa-
rable studies to visualise the coherent structures in the vicinity of the horseshoe vortex
(Kirkil et al. 2008); Link et al. (2012) turned out not to be appropriate to isolate the
horseshoe vortex in our simulations. The reason for this is that as the Q-criterion is pro-
portional to the Laplacian of the pressure which highlights much finer scales than the
pressure field itself. Due to the high Reynolds numbers and the comparably much finer
grid, there appears to be a scale separation between the horseshoe vortex and the sea of
turbulent vortices identified by the Q-criterion (with a strong clustering inside the scour
hole.

4.5 Wall Shear Stress

The wall shear stress (defined as the stress 7,, exerted on the wall) is the key quantity for
modelling the sediment transport in the scour hole (Roulund et al. 2005) and large efforts
have been made to determine it in experimental studies (Melville 1975; Graf and Istiarto
2002; Dey and Raikar 2007) and by numerical simulations (Dey and Bose 1994; Kirkil
et al. 2008). There is a large scatter in reported experimental values which have been
given in terms of [Pa] and when transformed into a friction coefficient ¢; = 7, / pu

are around ¢; $ 3 X 10™ 3 (Graf and Istiarto 2002) and ¢s $0.15 (Dey and Raikar 2007)

0.01 0.01
0t 0
St S
< 3
~0.01} -0.01
~0.02 F -0.02
-1.4 -1.2 -1 -0.8 -0.6 -1.4 -1.2 -1 -0.8 -0.6
z/D x/D

(@

Fig. 19 Friction coefficient ¢; = wa/ pu
and b Re;, = 40,000
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Maximum values found in the LES by Kirkil et al. (2009) are ¢, ~ 0.013. In our previous
experimental investigation (Jenssen and Manhart 2020) we have determined the wall shear
stress from the velocity gradient between the wall-nearest point and the wall. The values
obtained by this procedure, ¢, < 0.01, can be regarded as lower limit only. We have seen
that our LES provide us with a much better near-wall resolution in the scour hole than the
PIV. The experiment uses a spatial resolution of 16 X 16 pixels in an interrogation window
which compiles into a size of 0.608mm, i.e. D/165. This is considerably larger than the wall
resolution achieved in grid #5 (D/1000) and lies between the resolutions of grids #2 and
#3. Thus, we can expect that the values provided by our LES establish a better estimation
of the wall shear stress in the scour hole.

In Fig. 19 we compare the time-averaged friction coefficients ¢; from LES on grid #5
with the experimental estimations. For the lower Reynolds number the computed magni-
tudes are about two times larger than the measured ones. This factor increases at the higher
Reynolds number which is not surprising as the limited near-wall resolution of the experi-
ment is more serious. There is a high level of scatter in the computed wall shear stress. The
scatter with a wavelength of Ax can be attributed to the cut cell method whereas the scatter
with a wavelength of 0.05 D is a consequence of the piecewise triangular representation of
the scour geometry obtained from the experiment by Pfleger (2011), see Sect. 3.1.

There is a very short region with a positive wall shear stress (related to near-wall flow in
the positive x-direction) in the corner between cylinder and scour surface (at x/D = —0.5).
This could be the trace of a small anticlockwise corner vortex. Moving away from the cyl-
inder (at x/D = —0.8, see Fig. 12). The edge can explain the formation of the sharp peak
in the magnitude of the wall shear stress which has not been observed in such an intensity
in the flat plate case (Schanderl et al. 2017). It is likely that the sediment material is eroded
at the edge and plateau and lifted up to be entrained by the horseshoe vortex. The wall
shear stress between the peak and the cylinder opposes gravity and can therefore stabilise
the steep slope of the scour hole. Comparing the wall shear stress distributions with the
streamlines (Fig. 12), we also can identify the footprint of the small recirculation region
near x/D = —1.1, which leads to a short region where the time-averaged wall shear stress
is positive. The erosive potential in this region is higher than the magnitude of the wall
shear stress indicates, as the gravity forces together with the positive wall shear stress can
lead to local avalanches of bed material in this region. This process has been described by
e.g. Dargahi (1990).

Furthermore, we document the grid-resolution dependency of the friction coefficient for
Rej, = 40,000 in Fig. 19b. As could be expected from the discussion of the flow topology
(cf. Sect. 4.1), there is a qualitative difference between the distribution of ¢; on grid #3 on
the one hand and on grids #4 and #5 on the other hand. On grid #3 the sharp wall shear
stress peak at x/D ~ —0.8 and its magnitude around the plateau (—0.9 < x/D < —0.8) are
considerably smaller. On the other hand the LES on grid #3 produces large negative values
at the region where the finer grids have small positive values at x/D ~ —1.05. This can be
attributed to the wrong prediction of the horseshoe vortex position and topology on the
coarser grids. Overall there is a strong dependence of the predicted wall shear stress on the
grid resolution at the wall. The grid spacing of grid #4 does not yet seem sufficient to give
grid-converged levels of the wall shear stress inside the scour hole. For Rej, = 40, 000 this
means that a grid spacing of D/1000 or even finer is required in wall-normal direction. This
poses an extreme challenge to Cartesian grid methods as grid refinement has to be done
in all three Cartesian directions. Body-fitted grids would have an advantage in this aspect.

In Fig. 20 we document the spatial distribution of the friction coefficient obtained on
grid #5. The distribution is similar for both Reynolds numbers and the magnitude of ¢,
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Fig. 20 Distribution of the friction coefficient ¢; = |7, | / puby m over whole scour hole (top view) from
LES a Rej;, = 20,000 and b Rej, = 40,000. The yellow lme represents the core line of the time-average
horseshoe vortex (cf. Sect. 4.4)

000

0.0e+00 0.0e+00

Fig.21 Distribution of the magmtude of the component-wise root mean square value of the wall shear
stress fluctuations Irw sl / pusym over whole scour hole (top view) from LES a Re; =20,000 and b
Re;, = 40,000. The yellow lme represents the core line of the time-average horseshoe vortex (cf. Sect. 4.4)

is slightly smaller for the larger Reynolds number than for the lower Reynolds number.
Please note that the triangular patches that can be made out in Fig. 20 originate from
the geometric representation of the scour hole which is based on a grid with size 0.05 D.
The cell size of the LES in these regions is 28 and 50 times smaller for the lower and
higher Reynolds number, respectively. As the scour geometry is composed of flat trian-
gular pieces, the wall shear stress varies little within a triangle and strongly across the
boundaries between triangles.
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The wall shear stress is enhanced in a ring-like region following the core of the
horseshoe vortex which is marked as a thick yellow line in the plots. At the sides of
the cylinder a region of increasingly high wall shear stress emerges and extends up to
an angle of approximately 145° from the negative x-axis. On the sides of the cylinder
the wall shear stress acts mostly in the positive x-direction. This suggests the possibil-
ity that sediment erosion can take place on the side of the cylinder and that the eroded
material would be transported downstream. Apart from the spatial variations due to the
triangulation of the scour surface, our distributions are similar to time-averaged wall
stress distributions reported by Kirkil et al. (2008).

The spatial distribution of the standard deviation of the wall shear stress is docu-
mented in Fig. 21. The most intense fluctuations can be observed directly behind the
cylinder, where the mean wall shear stress is close to zero. This is due to the alternating
vortex shedding from the cylinder in this region. Moreover, fluctuations with a stand-
ard deviation of approximately 30 — 50% of the mean wall shear stress can be observed
below the horseshoe vortex (especially below the outer branches). The location of these
fluctuations is consistent with the near-wall maximum of the turbulent kinetic energy
(cf. Fig. 15a), the Reynolds normal stress «/u’ (cf. Fig. 15¢) and of the production of
turbulent kinetic energy (cf. Fig. 15g). The turbulent dynamics under the horseshoe vor-
tex seem to give rise to increased wall shear stress fluctuations which act in the plateau
region of the scour geometry and amplify the already large mean magnitudes of the wall
shear stress in this area. On the other hand, the wall shear stress fluctuations are small
between the horseshoe vortex and the cylinder as well as on the sides of the cylinder. It
seems that these deepest parts of the scour hole are excavated by the action of the time-
averaged wall shear stress caused by the strong velocity overshoot at the sides of the
cylinder.

5 Conclusions

We performed highly resolved LES to investigate the flow inside a scour hole around a
circular cylinder using a cut cell immersed boundary method. The scour hole which was
originally determined experimentally was fixed at a depth corresponding to about a half
of the equilibrium scour depth which establishes after a very long time.

A detailed description of the cut cell method is provided. It is a three-dimensional
generalisation of the method by Droge and Verstappen (2005); Droge (2006) and con-
serves mass and momentum on consistent balance volumes. The cut cell approach
allows to directly determine the wall shear stress and wall pressure consistently with
the momentum balance. The convective term preserves the kinetic energy which makes
the scheme well suited for scale-resolved simulations. A cell merging scheme is used to
circumvent the time step constraint imposed by small cut cells. The energy conservation
property of the convective and pressure gradient terms was demonstrated for an inviscid
flow case. Moreover, a second-order convergence to an analytical solution was shown
for a transient oblique pipe flow. Finally, we simulated flow around a sphere at Re = 100
and the drag coefficient and length of the recirculation zone lie close to the values from
the literature.

In this contribution, we examined a series of simulations with increasingly fine grids
and at two Reynolds numbers Rej,, = 20,000 and 40, 000. We first compare the LES
results to a stereoscopic PIV experiment (Jenssen and Manhart 2020) of the identical
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configuration. We clarified how close to the experimental values we can get with the
LES and which numerical resolution is required to obtain results that are accurate
enough to draw conclusions on flow physics. Furthermore, we investigated the three-
dimensional shape of the horseshoe vortex in the instantaneous and time-averaged
fields. Finally, we discussed the wall shear stress field and compared it to results from
the literature.

In the simulations presented herein, we used a refinement by zonal grids within a
Cartesian solver. Therefore, refinement was not limited to the immediate wall layer. The
grid spacings in the most refined regions varied from 0.028D (36 cells per diameter) for
the coarsest grid at Re;, = 20,000 to 0.001D (1000 cells per diameter) for the finest grid
at Re;, = 40,000. We found that the topology of the time-averaged flow and the position
of the horseshoe vortex are very sensitive to the grid resolution — a finding that should
be valid also for other numerical methods. For a more detailed representation of the
flow physics and a quantitative prediction, our results indicate that at least the second
finest grid — using 285 cells per diameter at the lower and 500 cells at the higher Reyn-
olds number — was necessary. This results in a relatively large computational effort of
around 108 cells for the lower and 5 x 108 cells for the higher Reynolds number, respec-
tively. For an accurate prediction of the wall shear stress inside the scour hole the finest
resolutions near the wall are definitely required. This can be explained by the extremely
thin viscous wall layer forming in such flows, which has been demonstrated for the flow
around a cylinder mounted on a flat plate (Schanderl and Manhart 2016; Schander] et al.
2017; Jenssen et al. 2021). It is also unlikely that traditional wall models could resolve
this problems (Schanderl et al. 2017). It should be kept in mind that the statements on
necessary grid resolution are highly dependent on the numerical order of accuracy of
the code and the grid structure, topology and refinement strategy. One has to bear in
mind, however, that the grid resolution should be fine enough to resolve the shear layer
separating from the scour rim, the horseshoe vortex and its dynamics, the velocity field
between the horseshoe vortex and the wall and the wall shear stress. A refinement strat-
egy that concentrates solely on the wall would fail in our point of view as the develop-
ment of the shear layer and the interaction of the horseshoe vortex with entrained small
scale vorticity would not be captured.

Based on the LES results, the three-dimensional shape of the horseshoe vortex was
investigated. We provide the core line of the time-average horseshoe vortex as supplemen-
tary data. Moreover, the horseshoe vortex has a clear signature in the instantaneous pres-
sure field. The low pressure region of the horseshoe vortex is visible in instantaneous pres-
sure fields although it doesn’t always seem to render a fully coherent vortex structure.

We have analysed the wall-shear stress distribution inside the scour hole. This quantity
is strongly grid dependent and needs a proper representation of the flow topology and a
proper wall-normal grid resolution. The distribution is qualitatively similar to distributions
found in the literature. We found that reported results for LES at low Reynolds numbers
are of a similar order of magnitude as ours, although a direct comparison is not possible as
our scour hole geometries and depths are not the same as the ones used in other references.
Our distributions can be used to explain the character of the erosion process in the initial
phase of the scour development in which near-cylinder material is transported around the
cylinder, and in the later phases in which material is picked up under the horseshoe vortex
and entrained into the same. The sediment avalanches observed in the upper parts of the
scour hole are supported by downward pointing wall shear stresses found in the secondary
recirculation zone upstream of the horseshoe vortex.
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On a final note, we would like to point out that at the grid resolution Ax = 0.0021 D
which we found to be the minimum requirement for reliable results at a Reynolds number
Rej, = 40,000, each sand grain in the original experiment of Pfleger et al. (2011), Pfleger
(2011) would be resolved by 10 cells. This resolution has for example been employed in
Mazzuoli et al. (2019), Scherer et al. (2020) to perform grain-resolved direct numerical
simulation of sediment erosion and transport in turbulent channel flow. Therefore, a direct
simulation of the scouring process in the present configuration seems to be within the reach
of currently available high performance computing technology.

6 Supplementary Data

We provide the core lines of the horseshoe vortex obtained from the mean velocity field
of our LES at Re;, = 20,000 and 40, 000. The dataset includes the arclength s/D and the
coordinate values x/D, y/D and z/D of the points on the core line. Moreover, we provide the
scour geometry that has been used in the simulations and experiments.

Appendix
Convective Fluxes

In this section, we describe the computation of the convective fluxes in the #-momentum
equation. The equations for v and w follow by interchanging u with the respective velocity
component and i with either j or k.

For the E- and w-cell faces (orange and yellow), the convective fluxes are written as the
product of the volume flux across the momentum cell face and a transported velocity inter-
polated with the weight %

1 1
(C(uh)uh)ij,k)w =_§( i— l,/k+ut,1k) 2( i— 1Jk+ul,[k) ®)
o ~ AN ~ J/
volume flux transported velocity

The interpolation of the volume flux is chosen such that the transporting velocity field is
divergence-free on the momentum cell. The weight % in the interpolation of the transported
velocity follows from the skew-symmetry requirement of Verstappen and Veldman (2003).

The cell faces parallel to the velocity vector of the momentum cell are denoted as N- s-,
T- and B-boundaries with the possible colours pink, green, grey and black. We compute the
convective flux by summing over all colours:

Table 5 Convective fluxes at a T-face area for the momentum cell Uik

Colour —colour Wolour ucolour ucolour

ij.k i+1,j.k ij.k i+1,.k
Pink, black Low Tow 1 — ,,colour
> blac zSukW'}ivk 2Sl+l JiViELjk 2 (ui,/',k + ui,i,kH) Wik
1 ow 1 1 1
Green, grey 35 aWijk ISk 3G+ Uiy jaer) 3 F Uiy jaar)
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_ —colour _ colour —colour _ colour
(C(uh)uh)iJ,k)T = Z (Wij,k Uik +Wi+lJ,kui+lJ,k> )
colour

The definition of the volume fluxes and transported velocities is detailed in Table 5. For
every half-face, the volume flux is computed from the adjacent velocity. The transported
velocities are obtained using the rule of skew-symmetric approximation (weighting by %)
where we use the velocity of the directly neighbouring cell for a pink or black face and the
velocity from the diagonally neighbouring cell for a green or grey face.

The convective fluxes over the wall faces (red) are zero due to the impermeability condi-
tion at the wall.

Diffusive Fluxes

The viscous fluxes at immersed boundaries (red faces) are non-zero due to the no-slip con-
dition. The wall shear stress at the red cell faces is computed according to Meyer et al.
(2010). First the velocity vector is interpolated to an interpolation point at a specified wall
distance An = Ax from the red face. For this a weighted linear least squares method is
applied to neighbouring velocities. Then the wall shear stress is computed from an assumed
velocity profile for the wall-parallel velocity component (here we use the Werner-Wengle
wall function).

The geometry of the yellow face is generally quite complicated. Therefore, the vis-
cous flux across a yellow face is approximated as (i) An increased viscous flux across
the orange face and (ii) Half of the wall shear flux. The enlarged orange face has the area
%(S;’l—lzi,k +8},,) instead of min(S?, .S, ) for the original orange face. Due to these
approximations, the viscous flux across a yellow face-area is not evaluated separately, but
in combination with the fluxes across the orange and red face areas, respectively.

The combined viscous flux due to the orange and yellow parts of a w- or E-face is
formulated as

Wi — U o

ik i—1,jk 1
Du,), : =2v.. | —+(CY | =
( h)l‘l’k orange+yellow ik Axi ( x)"/’k 2

St S?,j,k) (10)
where (CY), ; is a correction term for the non-orthogonal alignment between the cell face
and the line connecting the velocities. The effective viscosity v, which is the sum of molec-
ular and SGS viscosity, is interpolated for the whole face area using a harmonic average
(Patankar 1980; Werner 1991; Peller 2010).

SSSS

s

S i Y vk e
3 ik t — ik "~
i—~l.7.k 1 — 1 B wnt
-t L ! > i ivin
7 T . z o
‘i(u‘Lln Vigh (uinty. | oo “\‘ (l‘flnt>i\i-k
< iy D) itk < y
(a) momentum cell (b) momentum cell extended to the wall

Fig. 22 Formulation of the diffusive fluxes for the red, yellow and orange cell-faces
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The combined viscous flux due to the red and yellow faces is formulated as

(Duy,); ;

1
Lk = —5[1 +(1 -

red+yellow -

u 1B
l 1,1 k) ]Bt,/ kSt,j k(TWJC)iJ»k

N——

cell-to-boundary

5 [1 +(1 - B+1Jk)]B?J kS:+IJk(wa)i+1J»k

an

cell-to-boundary

with the wall shear stress ,,, and the cut wall area inside the cell (Hartmann et al. 2011)

Sﬁ?,k = \/(S:{j,k - S?—l,j,k)z + (Siv,j,k k)2 + (Szd k Z},k—l)z (12)
which is zero if a cell does not contain an immersed boundary. Summing Eq. (11) for all
cells with BY,, = 1, the entire friction force — ), S (Tyy)iix 18 recovered.

ij.k ik Mij kN WX i,

Figure 22 displays two configurations of a u- momentum cell. For the first case
(Fig. 22a), equation (11) assigns half the wall shear flux of each adjacent pressure cell
to the depicted momentum cell whereas in the second case (Fig. 22b) the entire wall
shear flux of the left and half the wall shear flux of the right cell is assigned to the
depicted momentum cell.

The viscous fluxes across the tangential (N, s, T and B) cell faces are calculated
according to

Table 6 Effective viscosity at a T-face area for the momentum cell u; ;

Colour Vcolour colour
ik i+1,.k
Pink, black, grey 1 ( Vigabigiety 2iergpVisrin ) = ygolowr
- i
2\ VijaHVigae1 VirLik FVisLjk+1
Green l( 2Vi 1k Vieljksd 2k Vijkel ) l( Vg1 kViel k1 Vi kViadjh+l )
2\ Vist ik Vis ke VijktVijier 2 \ Vil Vi Lk Vir,ik FVis2jke 1
1 <2H+|J.k‘/x+u.k+| Vi kViadjh+l )
2 \ ViprjuHVis ks Vi, ik FVig2, ket

Table 7 Velocity gradients at a T-face area for the momentum cell u;

Colour (Au )colnur (Au )cnlour (Aw >cnlour (Aw >cnlour
4z ) ijk 4z ) iv1jk Ax Jijik A Jivjk
1 Ui Uik colour Wit1jk ~Wijk colour
Pink, black, grey kel ik _ Dok gk (4w
Lijh1 gk ij.k ik Xijk & )ik
Green Wiy jk+1 —Uiz1jik Uig) jk+1 —Hig1jk Wijk~Wi-1,jk Wi 1jk—Wijk
u —u u —u o I
Sizljktl  Cioljk Siljkal  Sidljk ijk Tizljk itljk Tijk
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lour
— 1 w | colour Au u e Aw " colour
(Duh)l}i,k|T - Z ESi,j,kvi‘]‘,k Az + Cz + <E + Cx )i‘iyk

colour ij.k (13)
colour 1
1 ' Au AW colour
Y S| () ()
colour 2 i1k i+1jk

The formulation of the effective viscosity and the velocity gradient for the half-faces can
be found in Tables 6 and 7. For pink, black and grey faces, the viscosity and the velocity
gradients are constant over the entire face of the momentum cell.

The non-orthogonality correction terms in Eqs. (10) and (13) are formulated accord-
ing to Kirkpatrick et al. 2003. The velocity gradient values for the correction terms are
computed from the assumed velocity profile that is used in the calculation of the wall
shear stress at a wall distance 4An = Ax.
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