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Abstract
First-order transition systems are a convenient formalism to specify parametric systems 
such as multi-agent workflows or distributed algorithms. In general, any nontrivial ques-
tion about such systems is undecidable. Here, we present three subclasses of first-order 
transition systems where every universal invariant can effectively be decided via fixpoint 
iteration. These subclasses are defined in terms of syntactical restrictions: negation, strati-
fication and guardedness. While guardedness represents a particular pattern how input 
predicates control existential quantifiers, stratification limits the information flow between 
predicates. Guardedness implies that the weakest precondition for every universal invariant 
is again universal, while the remaining sufficient criteria enforce that either the number of 
occurring negated literals decreases in every iteration, or the number of required instances 
of input predicates or the number of first-order variables remains bounded. We argue for 
each of these three cases that termination of the fixpoint iteration can be guaranteed. We 
apply these results to identify classes of multi-agent systems, when formalized as first-
order transition systems, where noninterference in presence of declassification is decidable 
for coalitions of attackers of bounded size.

Keywords First-order transition systems · Multi-agent systems · Universal invariants · 
Noninterference · Decidability

1 Introduction

FO transition systems (FO for First-order) are a convenient tool for specifying systems 
where the number of agents is not known in advance. This is very useful for modeling 
systems like network protocols [1] or web-based workflows like conference management, 
banking or commerce platforms. Consider, e.g., the specification from Fig.  1 modeling 
parts of the review process of a conference management system as a FO transition system.
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Assume that initially, all predicates with the exception of ���� are false, i.e., the prop-
erty H given by

holds. The predicates A1,… ,A4 are input predicates whose values either represent agents’ 
decisions or input from the environment. Intuitively, the transition system works as fol-
lows: First, each PC member x possibly declares her conflict with each paper p. Then the 
assignment relation of papers p to PC members x is extended in such a way that the conf 
relation is respected. Repeatedly, reports for PC members x about papers p arrive, where a 
subsequent discussion between PC members x1, x2 on some paper p is only possible if both 
have received a report on that paper and may update their reviews based on the discussions. 
Variants of this example have already been studied in [2, 3].

A useful property to ensure in this example is that a discussion between x1 and x2 on 
some paper p is only possible if neither x1 nor x2 are authors of p:

As FO predicate logic is undecidable, we cannot hope to find an effective algorithm for 
proving an invariant such as (2) for arbitrary FO transition systems. That does not exclude, 
though, that at least some invariants can be proven inductive and thus, to be valid. Also, 
approximation techniques may be conceived to construct strengthenings of given invariants 
which, hopefully turn out to be inductive and thus may serve as certificates for the invari-
ants in question.

The idea of using FO predicate logic for specifying the semantics of systems has per-
haps been pioneered by abstract state machines (ASMs) [4–6]. Recently, it has success-
fully been applied for the specification and verification of software-defined networks [7, 
8], of network protocols [9], of distributed algorithms [1]. The corresponding approach 
is built into the tool Ivy [9, 10]. Ivy is a proof assistant for systems specified in FO logic 
which is carefully designed around a decidable many-sorted extension of EPR (Effec-
tively Propositional Logic, or ∃∗∀∗ FO logic). In the base setting, invariants are provided 
manually and then checked for inductiveness by the theorem prover Z3 [11]. Some 
effort, though, has been invested to come up with more automatic techniques for specific 
settings such as threshold algorithms [12] or more general FO invariant inference [13, 
14]. The fundamental problem thereby is that repeated application of the weakest pre-
condition operator may introduce additional first-order variables, new instances of input 
predicates or existential quantifiers and thus result in formulas outside the decidable 
fragment of FO logic.

(1)
∀x1, x2, p, r, d.¬���� (x1, p) ∧ ¬������(x1, p) ∧

¬������(x1, p, r) ∧ ¬�������(x1, x2, p, d)

(2)∀x1, x2, p, d.¬�������(x1, x2, p, d) ∨ ¬����(x1, p) ∧ ¬����(x2, p)

Fig. 1  A conference management 
system 0

1

2

3

conf(x, p) := conf(x, p) ∨ auth(x, p) ∨A1(x, a)

assign(x, p) := assign(x, p) ∨A2(x, p) ∧ ¬conf(x, p)

report(x, p, r) := report(x, p, r) ∨A3(x, p, r) ∧ assign(x, p)

discuss(x1, x2, p, d) := discuss(x1, x2, p, d) ∨ ∃r1, r2.
A4(x2, x1, p, d, r1, r2) ∧ report(x1, p, r1) ∧ report(x2, p, r2)
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This problem also has been encountered in [3, 15, 16] where noninterference [17] is 
investigated for multi-agent workflows in the spirit of the conference management sys-
tem from Fig. 1. In [3], the authors present a a symbolic verification approach where the 
agent capabilities as well as declassification and self-composition of the original system 
T  is encoded into a FO transition system T2 . Noninterference of the original system is 
thus reduced to a universal invariant of the resulting system T2 . Further abstraction (i.e., 
strengthening of the encountered formulas) is applied in order to arrive at a practical algo-
rithm which iteratively strengthens the initial invariant.

Only for rare cases, so far, decidability could be shown. In [18], Sagiv et  al. show 
that inferring universal inductive invariants is decidable when the transition relation is 
expressed by formulas with unary predicates and a single binary predicate restricted by 
the background theory of singly-linked-lists. The same problem becomes undecidable 
when the binary symbol is not restricted by a background theory. In [3] on the other hand, 
syntactic restrictions are introduced under which termination at least of an abstract fix-
point iteration can be guaranteed. The abstraction thereby, consists in strengthening each 
occurring existential quantifier via appropriate instantiations (see also [19]). The syntactic 
restrictions proposed in [3] essentially amount to introducing a stratification on the predi-
cates and restricting substitutions to be stratified guarded updates. It is argued that these 
restrictions are not unrealistic in specifications of multi-agent systems where the com-
putation proceeds in stages each of which accumulates information based on the results 
obtained in earlier stages. The example transition system from Fig.  1, e.g., is stratified: 
there is a mapping � assigning a level �(R) to each predicate R so that the predicates occur-
ring in right-hand sides which are distinct from the left-hand side have lower levels. In the 
example, � could be given by

Intuitively, stratification limits dependencies between predicates to be acyclic. Examples 
of stratified guarded updates on the other hand, are the two statements in the loop body of 
Fig. 1. Guarded updates only allow to extend predicates where the extensions constrain the 
use of existential quantifiers to the format 𝜑 ∨ ∃z̄.Aȳz̄ ∧ 𝜓 for some input predicate A and 
quantifier-free subformulas �,�.

The loop of the example thus satisfies the requirements of [3], implying that an abstract 
fixpoint iteration is guaranteed to terminate for every universal invariant. Here, we show 
that under the given assumptions, no abstraction is required: the concrete fixpoint iteration 
in question already terminates and returns the weakest inductive invariant, which happens 
to consist of universal formulas only. We conclude that universal invariants for the given 
class of FO transition systems are decidable.

Beyond that, we extend this class of FO transition systems by additionally allowing 
stratified guarded resets. Resets are seemingly easier than updates, as they define their left-
hand sides solely in terms of predicates of lower levels without resorting to input predi-
cates. In full generality, though, when there are both updates and resets, we failed to prove 
that universal invariants are decidable. We only succeed so — provided further (mild) 
restrictions are satisfied. Our results are that jointly, stratified guarded updates and resets 
can be allowed

• when all updates are not only guarded, but strictly guarded; or
• when all substitutions are single, and all predicates of level at least 1, occur in right-

hand sides only positively; or

{𝖺𝗎𝗍𝗁 ↦ 0, 𝖼𝗈𝗇𝖿 ↦ 1, 𝖺𝗌𝗌𝗂𝗀𝗇 ↦ 2, 𝗋𝖾𝗉𝗈𝗋𝗍 ↦ 3, 𝖽𝗂𝗌𝖼𝗎𝗌𝗌 ↦ 4}
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• when resets refer to predicates at the highest and at the lowest level of the stratification 
only.

Data sharing is not applicable to this article as no new data were created or analyzed in this 
study. A preliminary version of this paper has appeared in [20]. There just single updates 
of predicates at a time have been considered — while simultaneous updates are crucial for 
the application to noninterference in multi-agent systems with declassification where agent 
capabilities are taken into account (NDA). A detailed study of that application makes up the 
second part of the paper. For this, we review the constructions for self-composition from [3] 
and present their adaptations to FO transition systems. Based on these constructions, we pro-
vide general classes of multi-agent systems, when formalized as FO transition systems, where 
NDA is in fact decidable. In this way, we strengthen the results from [3] in two ways: on 
the one hand, our systems are more general in that (some forms of) resets are additionally 
allowed; on the other, we obtain decidability of NDA where termination could only be proven 
for an abstraction of the system.

2  Basic definitions

Assume that we are given a finite set of predicate names R together with a finite set of con-
stant names C . A FO structure s = ⟨I, �⟩ over a given universe U consists of an interpretation 
I of the predicates in R , i.e., a mapping which assigns to each predicate R ∈ R of arity k ≥ 0 , 
a k-ary relation over U , together with a valuation � ∶ C → U which assigns to each constant 
name an element in U . The semantics of FO (first-order) formulas as well as SO (second-
order) formulas with free occurrences of predicates and variables in R and C , respectively, is 
defined as usual. We write s ⊧ 𝜑 or I, 𝜌 ⊧ 𝜑 to denote that � is valid for the given interpreta-
tion I and valuation � as provided by s. For FO transition systems, we distinguish between the 
set Rstate of state predicates and the disjoint set A of input predicates. While the values of 
constants as well as the interpretation of the state predicates constitute the state attained by the 
system, the input predicates are used to model (unknown) input from the environment or deci-
sions of participating agents.

At each transition of a FO transition system, the system state s′ after the transition is deter-
mined in terms of the system state s before the transition via an assumption formula g and a 
substitution � . The transition can only take place when the assumption formula g is satisfied. 
For each state predicate R ∈ Rstate , � then provides a FO formula to specify the interpretation 
of R after the transition in terms of the interpretation and valuation in s.

Technically, we introduce a set Y = {yi ∣ i ∈ ℕ} of distinct formal parameters where 
C ∩ Y = � . For a predicate R of arity k ≥ 0 , we write RȳR for the literal R(y1,… , yk) and 
assume that each substitution � maps each literal RȳR , R ∈ Rstate , to some FO formula 
𝜃(RȳR) with predicates in Rstate ∪A and free variables either from C or occurring among 
the variables in ȳ . In case that 𝜃(RiȳRi

) = 𝜓i for i = 1,… , r , and 𝜃(R�ȳR� ) = R�ȳR� for all 
R� ∈ Rstate ⧵ {R1,… ,Rr} , we also denote � by

or just

{R1ȳR1
∶=𝜓1;… ;RrȳRr

∶=𝜓r }

R1ȳR1
∶=𝜓1
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if r = 1 . In this case, we call � single. Finally, the assumption formula g at edges is omitted 
if it equals ⊤.

Example 1 In the example from Fig. 1, Rstate consists of the predicates ���� , ���� , ������ , 
������ and ������� while A consists of the predicates A1 …A4 . No constants are needed, so 
C = � . The edge from node 1 to 2 has no assumption and specifies a single substitution � 
that updates ������ with

while leaving literals of predicates ���� , ����, ������ or ������� unchanged.   ◻

Applying the substitution � to a FO formula � results in the FO formula �(�) which 
is obtained from � by replacing each literal Rz̄ with the FO formula 𝜃(RȳR)[z̄∕ȳR] . Here, 
[z̄∕ȳR] represents the simultaneous substitution of the variables in ȳR by the correspond-
ing variables in z̄ (perhaps, with appropriate renaming of bound variables in the formula 
𝜃(RȳR)).

Example 2 Consider formula � that specifies that the author of a paper p should never be 
assigned to provide a review for p:

Applying the substitution � from Example 1 results in

   ◻

A FO transition system T  (over the given sets Rstate of predicates, A of input predi-
cates and C of constant names) consists of a finite set of nodes V together with a finite 
set E of edges of the form e = (u, (g;�), v) where u, v ∈ V  , and g, � specify an assump-
tion and substitution of the predicates in Rstate , respectively. W.l.o.g., we assume that 
the assumption g and substitution � at each edge e always has occurrences of at most 
one input predicate, which we denote by Ae . For a given universe U  , a program state 
s attained at a program point is a FO structure for the predicates in Rstate and the con-
stants in C over the universe U  . Let S denote the set of all program states. A configura-
tion of T  is a pair (v, s) ∈ V × S . A (finite) run � of T  starting in configuration (v0, s0) 
and ending at node v in state s, i.e., in configuration (v, s) is a sequence of configura-
tions (vi, si) , i = 0,… , n where (vn, sn) = (v, s) and for all i = 1,… , n , there is some edge 
ei = (vi−1, (gi;�i), vi) ∈ E such that for si−1 = ⟨I, �⟩ and some interpretation Ri of the input 
predicate Aei

 , the following holds:

• I ⊕ {Aei
↦ Ri}, 𝜌 ⊧ g , and

• si = ⟨I�, �⟩ where for every state predicate R and valuation �R of the formals yi occur-
ring in ȳR , 

�(������(x, p)) = ������(x, p) ∨ A2(x, p) ∧ ¬���� (x, p)

� = ∀x, p.¬������(x, p) ∨ ¬����(x, p)

�(�) = ∀x, p.¬(𝖺𝗌𝗌𝗂𝗀𝗇(x, p) ∨ A2(x, p) ∧ ¬𝖼𝗈𝗇𝖿 (x, p)) ∨ ¬𝖺𝗎𝗍𝗁(x, p)

↔ ∀x, p.¬𝖺𝗌𝗌𝗂𝗀𝗇(x, p) ∧ (¬A2(x, p) ∨ 𝖼𝗈𝗇𝖿 (x, p)) ∨ ¬𝖺𝗎𝗍𝗁(x, p)

I�, 𝜌 ⊕ 𝜌R ⊧ RȳR iff I ⊕ {Aei
↦ Ri}, 𝜌 ⊕ 𝜌R ⊧ 𝜃(RȳR)
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Here, the operator ⊕ is meant to extend the assignment in the left argument with the assign-
ment to the right.

Subsequently, we assume that we are given an initial node v0 ∈ V together with an initial 
hypothesis H , i.e., a FO formula (with predicates in Rstate and free variables only in C ) charac-
terizing all possible initial states attained at v0.

Example 3 According to the specification in eq. (1) for the example transition system in 
Fig. 1, the single initial state (w.r.t. any given universe) is the pair of node 0 and the FO 
structure which interprets the relations ����, ������, ������ and ������� with empty relations 
each.   ◻

Input predicates may take fresh interpretations whenever the substitution of the corre-
sponding edge is executed. This should be contrasted to state predicates whose interpretations 
stay the same if they are not explicitly updated by the transition system. State predicates which 
are never updated, thus have constant interpretations. These still may be constrained by some 
background theory provided via conjuncts of the initial hypothesis.

Assume that Ψ assigns to each program point v ∈ V , a FO formula Ψ[v] . Then Ψ is a valid 
invariant (relative to the initial hypothesis H ), if every run � of the system starting in a con-
figuration (v0, s0) with s0 ⊧ H and visiting some configuration (v, s), it holds that s ⊧ Ψ[v] . Ψ 
is inductive if

If Ψ is inductive, then Ψ is a valid whenever

Indeed, it is this observation which is used in the Ivy project to verify distributed algo-
rithms such as the Paxos protocol, essentially, by manually providing the invariant Ψ and 
verifying properties (3) and(4) via the theorem prover Z3 [11].

Not every valid invariant Ψ , though, is by itself inductive. If this is not yet the case, iterative 
strengthenings Ψ(h), h ≥ 0, of Ψ may be computed as follows:

For computing the next iterate in (5), universal SO quantification over the input predicate 
Ae is required in order to account for every input possibly occurring during a run when 
executing the edge e. As, e.g., noted in [2], s ⊧ Ψ(h)[u] iff every run of length at most h 
starting in (u,  s), ends in some configuration (u�, s�) with s� ⊧ Ψ[u�] . In particular, the 
assignment Ψ is a valid invariant iff H → Ψ(h)[v0] for all h ≥ 0 . The iteration thus can be 
considered as computing the weakest pre-condition of the given invariant Ψ – as opposed 
to the collecting semantics of the FO transition system, which corresponds to the set of all 
configurations reachable from the set of initial configurations (v0, s), s ⊧ H . Whenever the 
fixpoint iteration (5) terminates, we obtain the weakest strengthening of the given invariant 
Ψ which is inductive. We have:

(3)Ψ[u] → �(Ψ[v]) forall (u, (g;�), v) ∈ E

(4)H → Ψ[v0]

(5)
Ψ(0)[u] =Ψ[u] and for h > 0,

Ψ(h)[u] =Ψ(h−1)[u] ∧
⋀

e=(u,(g;𝜃),v)∈E

∀Ae. (¬g ∨ 𝜃(Ψ(h−1)[v])
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Lemma 1 Let T  be a FO transition system and let Ψ an invariant. Assume that for some 
h ≥ 0, Ψ(h) = Ψ(h+1) holds. Then Ψ(h) is the weakest inductive invariant implying Ψ . Moreo-
ver, Ψ is valid iff H → Ψ(h)[v0] .   ◻

In general, the required SO quantifier elimination may not always be possible, i.e., there 
need not always exist an equivalent FO formula [21], and even if SO quantifier elimination 
is always possible, the fixpoint iteration need not terminate. Non-termination may already 
occur when all involved predicates either have no arguments or are monadic [2]. Termina-
tion as well as effective computability can be enforced by applying abstraction (see, e.g., 
[22] for a general discussion). Applying an abstraction � amounts to computing a sufficient 
condition for the invariant Ψ to hold. Technically, an abstraction maps each occurring for-
mula � to a formula �[�] (hopefully of a simpler form) so that �[�] → � . Subsequently, 
we list three examples for such strengthenings.

Example 4 In [3], formulas with universal SO quantifiers and universal as well as existen-
tial quantifiers are strengthened to formulas with universal quantifiers only. The idea is to 
replace an existentially quantified subformula ∃x.� with a disjunction 

⋁
y∈Y �[y∕x] where 

Y is the subset of constants and those universally quantified variables in whose scope � 
occurs. So, the formula ∀y1, y2.∃x.R(x) is abstracted by ∀y1, y2.R(y1) ∨ R(y2) . This abstrac-
tion is particularly useful, since SO universal quantifiers can be eliminated from univer-
sally quantified formulas.   ◻

Example 5 Fixpoint iteration for universally quantified formulas still may not termi-
nate due to an ever increasing number of quantified variables. The universally quan-
tified variable x in an otherwise quantifier-free formula � in negation normal form can 
be removed by replacing each literal containing x with ����� . In this way, the formula 
∀x. (Rx ∨ ¬Sy ∨ Tz) ∧ (¬Rx ∨ ¬Ty) is strengthened to (¬Sy ∨ Tz) ∧ ¬Ty .   ◻

Example 6 Assume that the quantifier-free formula � is a conjunction of clauses. Then � is 
implied by the single clause c consisting of all literals which all clauses in � have in com-
mon. The formula (Rx ∨ ¬Sy ∨ Tz) ∧ (Rx ∨ Tz ∨ ¬Tx) , e.g., can be strengthened to Rx ∨ Tz .  
 ◻

In this article, rather than focusing on abstractions, we identify sufficient criteria for the 
concrete iteration (5) to terminate without any abstraction.

3  Stratification and guardedness

Subsequently, we concentrate on initial conditions in the ∃∗∀∗ fragment and universal 
invariants, i.e., where the invariant Ψ consists of universal FO formulas only. Already for 
this setting, non-termination of the inference algorithm may occur even without SO quanti-
fication when a single binary predicate is involved.

Example 7 Consider the FO transition system T  over a monadic state predicate R, a binary 
state predicate E and a constant a. T  consists of a single node u with a single transition 
(u, �, u) where � is given by
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Consider the invariant Ψ[u] = ¬R(a) . Then for h ≥ 0,

The weakest inductive invariant thus states that the unary predicate R only holds for 
elements which are not reachable from a via the edge predicate E. This property is not 
expressible in FO predicate logic. Accordingly, Ψ(h)[u] ≠ Ψ(h+1)[u] must hold for all h ≥ 0 .  
 ◻

Our goal is to identify useful non-trivial classes of FO transition systems where the fix-
point iteration is guaranteed to terminate. One ingredient for this definition is a stratification 
mapping � ∶ Rstate → ℕ which assigns to each state predicate R a level �(R) . Intuitively, this 
mapping is intended to describe how the information flows between predicates. Thereby, we 
use the convention that �(R) = 0 only for predicates R which are never substituted, i.e., whose 
values are constant throughout each run of the transition system.

We only consider substitutions which are either guarded updates or resets. Thereby, a sub-
stitution � is called a (simultaneous) guarded update if it simultaneously modifies predicates 
R1,… ,Rr ∈ Rstate by

where A ∈ A is the input predicate of � , ȳ𝜎j
Rj

 is the sequence of variables obtained by apply-
ing the permutation �j to the sequence of FO variables ȳRj

 , z̄j is a sequence of FO variables, 
dedicatedly used for the right-hand side of Rj in � , and �j,�j are quantifier-free FO formu-
las without occurrences of predicate A which do not contain occurrences of left-hand sides 
R1,… ,Rr either. We remark here that, technically speaking, allowing permutations �j does 
not introduce extra technical difficulties, but conveniently supports specifications, e.g., as 
in Fig. 1 where a non-trivial permutation is used for the predicate ������� (see section 8 for 
a usage of such reordering).

The guarded update is called strict if additionally, all formulas �i are ⊥ (false), i.e., are 
missing. Note that we do not assume here that all left-hand sides in updates agree in their ari-
ties. Instead, for each j, the sum of the lengthes of ȳRj

 and z̄j should all equal the arity of the 
input predicate A of the update. Accordingly, also the sequences of existentially quantified 
variables in right-hand sides of guarded updates need not agree in their lengthes. Guarded 
updates according to this definition, are specific instances of the basic constituents of work-
flows as considered in [3, 15]. There, simultaneous updates are called blocks, where the left-
hand sides Ri are allowed to be extended (or filtered) by means of arbitrary FO formulas. Here, 
we only allow extensions and only by means of formulas of the restricted form (6).

Additionally, we now also allow substitutions to be resets. The substitution � is called a 
reset, if it substitutes just a single predicate R by means of

where � is a quantifier-free FO formula without occurrences of the left-hand side R or any 
input predicate. The update � is called stratified, if additionally all substituted predicates Rj 
have identical level, and each predicate R′ occurring in the �j,�j has level less than �(Rj) . 

R(y) ∶= R(y) ∨ ∃z. E(y, z) ∧ R(z)

Ψ(h)[u] = ¬R(a) ∧

h⋀

k=1

∀z1,… , zk.¬E(a, z1) ∨

k−1⋁

i=1

¬E(zi, zi+1) ∨ ¬R(zk)

(6)RjȳRj
∶= RjȳRj

∨ 𝜑j ∨ ∃z̄j.Aȳ
𝜎j

Rj
z̄j ∧ 𝜓j

(7)RȳR∶= 𝜑
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Likewise, a reset is called stratified, if all predicates occurring in the right-hand side for the 
substituted predicate R have levels less than �(R).

According to our definition, a stratified guarded update, may simultaneously substi-
tute predicates at the same level only. We thus might wonder whether this restriction 
could be lifted. For FO transition systems with this extension, however, termination can 
no longer be guaranteed.

Lemma 2 There exists a FO transition system T  without assumptions, using stratified 
strictly guarded updates and resets, with simultaneous substitutions of predicates at differ-
ent levels, together with some universal invariant Ψ such that for each h ≥ 0 , Ψ(h) is univer-
sal FO definable, but Ψ(h)[u] ↛ Ψ(h+1)[u] for some program point u.

Proof Consider the FO transition system T  as shown in Fig. 2 for some binary predicate 
E, together with the invariant Ψ = {0 ↦ ⊤, 1 ↦ ⊤, 2 ↦ 𝖾𝗋𝗋𝗈𝗋 ∨ ¬𝗁𝗎𝗅𝗅(a, b), 3 ↦ ⊤} for con-
stants a, b. Initially, the predicate ���� is set to E. By executing the loop k times, either the 
error flag ����� is set to ⊤ , or ���� receives at most (k + 1)fold compositions of E. Still, we 
can assign levels to the predicates used by T  which meet the requirements of a stratifica-
tion, namely,

For the required SO quantifier elimination of A1,A2 , we note that in order to avoid ����� 
to be set to ⊤ , ���(x, y, z) must imply ����(x, y) ∧ E(y, z) . In order to falsify the invariant at 
program point 1 whenever possible, thus, A1(x, y, z) should be set to ����(x, y) ∧ E(y, z) , and 
A2(x, z, y) at least to ���(x, y, z) . For the iterates Ψ(h) at program point 2, we therefore obtain

� = {E ↦ 0, 𝖺𝖽𝖽 ↦ 0, 𝗁𝗎𝗅𝗅 ↦ 1, 𝖾𝗋𝗋𝗈𝗋 ↦ 2}

Ψ(0)[2] = ����� ∨ ¬����(a, b)

Ψ(1)[2] = Ψ(0)[2] ∧ ∀y1.

(����� ∨ ¬����(a, y1) ∨ ¬E(y1, b)) ∧

(����� ∨ ¬���(a, y1, b))

Ψ(h)[2] = Ψ(h−1)[2] ∧ ∀yh … y1.

(����� ∨ ¬����(a, yh) ∨
⋁h−1

j=1
¬E(yj+1, yj) ∨ ¬E(y1, b)) ∧

(����� ∨ ¬���(a, yh, yh−1) ∨
⋁h−2

j=1
¬E(yj+1, yj) ∨ ¬E(y1, b)) (h ≥ 2)

Fig. 2  FO transition system 
capturing transitive closure 0

1

2

3

hull(x, z) := E(x, z)

add(x, y, z) := ⊥

{ add(x, y, z) := add(x, y, z) ∨A1(x, y, z);
error := error ∨ ∃x, y, z. A1(x, y, z) ∧ ¬(hull(x, y) ∧ E(y, z)) }

hull(x, z) := hull(x, z) ∨ ∃y. A2(x, z, y) ∧ add(x, y, z)
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Altogether, the weakest inductive invariant for program point 0 is given by ����� ∨ ¬E+(a, b) 
where E+ is the transitive closure of E. As the transitive closure of a binary relation is not 
FO definable, we conclude that the fixpoint iteration cannot terminate.   ◻

Thus, the crucial issue which results in inexpressible weakest inductive invariants, is 
the use of the same input predicate in the simultaneous update of predicates at different 
level. In the next section, we indicate how to generally deal with SO quantifiers, once a 
guarded update has been applied.

4  Universal SO quantifier elimination

It is well-known that universal SO quantifiers can be removed from otherwise quanti-
fier-free formulas [3, 23]. For example,

where for ȳ = (y1,… , yk) and z̄ = (z1,… , zk) , ȳ = z̄ is a shortcut for the formula 
(y1 = z1) ∧ … ∧ (yk = zk) . Interestingly, there are also cases where SO quantifier elimina-
tion is possible even in presence of FO existential quantifiers.

Example 8 Consider the substitution �

Then �(R(a) ∨ ¬R(b)) is given by

A closer inspection reveals that here SO quantifier elimination of A is possible where 
∀A. �(R(a) ∨ ¬R(b)) is equivalent to

In particular, the resulting FO formula has universal FO quantifiers only.   ◻

The observation in example 8 can be generalized.

Lemma 3 Assume that A is a predicate of arity r and ȳ = (q1,… , qr) is a sequence of dis-
tinct variables from Y . 

1. Assume that FO formula Ψ is of the form 

∀A.Rx̄ ∨ Aȳ ∨ ¬Az̄ ⟷ Rx̄ ∨ (ȳ = z̄)

R(y) ∶= R(y) ∨ ∃z.A(y, z) ∧ S(y, z)

∀z1.R(a) ∨ ∃z.A(a, z) ∧ S(a, z) ∨ ¬R(b) ∧ (¬A(b, z1) ∨ ¬S(b, z1))

⟷ ∀z1. (R(a) ∨ ∃z.A(a, z) ∧ S(a, z) ∨ ¬R(b)) ∧

(R(a) ∨ (∃z.A(a, z) ∧ S(a, z)) ∨ ¬A(b, z1) ∨ ¬S(b, z1))

∀z1. (R(a) ∨ ¬R(b)) ∧ (R(a) ∨ (a = b) ∧ S(a, z1) ∨ ¬S(b, z1))

⟷ ∀z1. (R(a) ∨ ¬R(b)) ∧ (R(a) ∨ (a = b) ∧ S(b, z1) ∨ ¬S(b, z1))

⟷ ∀z1. (R(a) ∨ ¬R(b)) ∧ (R(a) ∨ (a = b) ∨ ¬S(b, z1))

⟷ ∀z1.R(a) ∨ ¬R(b) ∧ ((a = b) ∨ ¬S(b, z1))
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 for m ≤ n ∈ ℕ and fresh sequences of FO variables z̄i where �i are FO formulas with-
out occurrences of A. Then ∀A. Ψ is equivalent to 

 Here, juxtaposition is meant to denote the concatenation of the corresponding 
sequences of FO variables, while an equality x̄i = x̄�

j
 for sequences x̄i, x̄′j with |x̄i| ≤ |x̄′

j
| 

denotes the conjunction of equalities between the variables in x̄i and the variables from 
the prefix of x̄′

j
 of the length |x̄i|.

2. If Ψ is of the form 

 for m ≤ n ∈ ℕ where �,�i,�j all are FO formulas without occurrences of A. Then 
∀A. Ψ is equivalent to 

In case that all formulas �i, i = 1,… ,m are all equivalent to �′ and and for 
j = m + 1,… , n , 𝜑j = ¬𝜑�[b̄jz̄j∕ȳ] where all lists āi, b̄j have the same length, then the for-
mulas (9) and (11) after second-order quantifier elimination of A, can be simplified to:

Proof We apply Ackermann’s lemma in negated form. According to the form provided in 
[24], it states that

if � contains no occurrence of A, and � only contains negative occurrences of A.
Then the equivalence for (8) follows by choosing

(8)
m⋁

i=1

(∃z̄i.Aāiz̄i ∧ 𝜑i[āiz̄i∕ȳ]) ∨

n⋁

j=m+1

(∀z̄j.¬Ab̄jz̄j ∨ 𝜑j)

(9)
n⋁

j=m+1

∀z̄j.

m⋁

i=1

(āi = b̄jz̄j) ∧ 𝜑i[b̄jz̄j∕ȳ] ∨ 𝜑j

(10)𝜑0 ∨

m⋁

i=1

(∃z̄i.Aāiz̄i ∧ 𝜑i[āiz̄i∕ȳ]) ∨

n⋁

j=m+1

𝜓j ∧ ∀z̄j.¬Ab̄jz̄j ∨ 𝜑j

(11)𝜑0 ∨

n⋁

j=m+1

𝜓j ∧ ∀z̄j.

m⋁

i=1

(āi = b̄jz̄j ∧ 𝜑i[b̄jz̄j∕ȳ] ∨ 𝜑j

(12)
n⋁

j=m+1

∀z̄j.

m⋁

i=1

(āi = b̄j) ∨ ¬𝜑�[b̄jz̄j∕ȳ]

(13)and 𝜑0 ∨

n⋁

j=m+1

𝜓j ∧ ∀z̄j.

m⋁

i=1

(āi = b̄j) ∨ ¬𝜑�[b̄jz̄j∕ȳ]

(14)∀A. (∃ȳ.Aȳ ∧ 𝜑) ∨ 𝜓 ⟷ 𝜓[¬𝜑∕A]

ȳ ≡ (y1,… , yr)

𝜑 ≡
⋁m

i=1
(āi = ȳi) ∧ 𝜑i[āi∕ȳi]

𝜓 ≡
⋁n

j=m+1
(∀z̄j.¬Ab̄jz̄j ∨ 𝜑j)
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where for i = 1,… ,m , ȳi is the prefix of ȳ of length |āi| , while z̄i is considered as the cor-
responding suffix, i.e., ȳ = ȳiz̄i . The equivalence for (10) is obtained by using the same 
definition for � , but replacing the formula � with

   ◻

Example 9 Consider the second update in the loop of the transition system from Fig. 1.

Let �4 denote this update, and consider the invariant (2) from the introduction. Application 
of �4 results in the formula

Since A4 only occurs negatively, universal SO quantifier elimination of A4 yields

   ◻

As an important consequence of lemma 3, we obtain:

Theorem  4 Assume that T  is a FO transition systems with guarded updates and resets 
only, and assumptions g of the form

where �0,�1,�2,�3 are quantifierfree formulas not containing occurrences of the SO vari-
able A. Let Ψ a universal FO invariant. Then the following holds: 

1. The iterates Ψ(h)[u], h ≥ 0 , in (5) all are effectively equivalent to universal FO formulas.
2. The iteration terminates, i.e., Ψ(h) = Ψ(h+1) for some h ≥ 0 , iff for each program point 

u, the weakest strengthening of all iterates Ψ(h)[u] is FO-definable.

Proof Due to lemma 3, for each universal FO formula � , each guard g of appropriate form, 
and each guarded update or reset � with input predicate A, ∀A. (¬g ∨ ��) is equivalent to 
a universal FO formula. That implies statement (1). Now assume for for each h ≥ 0 and 
each v ∈ V  , Φ(h)[v] is FO definable. Then due to the compactness theorem for FO predicate 
logic [25], there is some h ≥ 0 such that Ψ(h)[v] ↔ Ψ(h+j)[v] holds for all v ∈ V  and j ≥ 0 , 
iff for each v ∈ V  , the conjunction 

⋀
h≥0 Ψ

(h)[v] is again FO definable.   ◻

𝜑0 ∨

n⋁

j=m+1

𝜓j ∧ (∀z̄j.¬Ab̄jz̄j ∨ 𝜑j)

�������(x1, x2, p, d): = �������(x1, x2, p, d) ∨ ∃r1, r2.A4(x2, x1, p, d, r1, r2) ∧ ������(x1, p, r1) ∧
������(x2, p, r2)

∀x1, x2, p, d, r1, r2.¬�������(x1, x2, p, d) ∧

(¬A4(x1, x2, p, d, r1, r2) ∨ ¬������(x1, p, r1) ∨ ¬������(x2, p, r2)) ∨

(¬����(x1, p) ∧ ¬����(x2, p))

∀x1, x2, p, d, r1, r2.¬�������(x1, x2, p, d)∧

(¬������(x1, p, r1) ∨ ¬������(x2, p, r2)) ∨

(¬����(x1, p) ∧ ¬����(x2, p))

∃z̄1.𝜑0 ∧ (∀z̄2.¬Az̄1z̄2 ∨ 𝜑1) ∧ (𝜑2 ∨ ∃z̄3.Az̄1z̄3 ∧ 𝜑3)
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Example 10 Consider again the specification from Fig. 1, and let �1, �2, �3, and �4 denote 
the substitutions occurring therein.

Assume that Ψ equals the universal formula in (2), and we are interested in its validity at 
program point 2 of the transition system. The formula ∀A3. �3(∀A4. �4(Ψ)) is given by

The resulting formula Ψ� already equals the fixpoint for the loop.
Since the predicate ������ only occurs negatively in Ψ� and ���� only negatively in the 

right-hand side for ������ , the formula ∀A1.�1(∀A2.�2(Φ
�)) is constructed from Ψ� via the 

substitution ������� defined by

This means the formula Ψ�� for the initial node 0 of the transition system is given by

By the initial condition H from the introduction, ¬�������(x1, x2, p, d) generally holds at 
node 0 of the transition system, as well as ¬������(xi, p, ri),¬������(xi, p), and ¬����(xi, p) 
for i = 1, 2 . Therefore, H implies Ψ�� , and the property Ψ at node 3 of the transition system 
is valid.   ◻

In this section we have shown comprehensively how to eliminate universal SO quanti-
fiers introduced by guarded updates or resets in a FO transition system. In the next two sec-
tions, we will apply these results to FO transition systems which additionally are stratified.

5  Strictly guarded stratified updates

In this section, we consider FO transition systems without guards with stratified guarded 
updates and resets, where all guarded updates are strict. This means they all are of the form

for predicates R1,… ,Rr all of the same level. Let us call such a FO transition system 
strictly guarded and stratified.

Theorem  5 Assume we are given a strictly guarded and stratified FO transition system. 
Then for every universal invariant Ψ , the weakest inductive invariant strengthening Ψ can 
be represented by universal FO formulas, and can effectively be computed.

Proof For this proof, it is convenient to use the notation Φ ∋ ∀x̄. c for a universal 
FO formula Φ , a clause c, and a list x̄ of distinct variables so that for the prenex CNF 

∀A3. �3(∀x1, x2, p, d, r1, r2.¬�������(x1, x2, p, d) ∧

(¬������(x1, p, r1) ∨ ¬������(x2, p, r2)) ∨ (¬����(x1, p) ∧ ¬����(x2, p))

⟷ ∀x1, x2, p, d, r1, r2.¬�������(x1, x2, p, d) ∧

(¬������(x1, p, r1) ∧ ¬������(x1, p) ∨ ¬������(x2, p, r2) ∧ ¬������(x2, p)) ∨

(¬����(x1, p) ∧ ¬����(x2, p))

������(y1, y2) ∶= ������(y1, y2) ∨ ¬(���� (y1, y2) ∨ ����(y1, y2))

∀x1, x2, p, d, r1, r2.¬�������(x1, x2, p, d) ∧

(¬������(x1, p, r1) ∧ ¬������(x1, p) ∧ (���� (x1, p) ∨ ����(x1, p)) ∨

¬������(x2, p, r2) ∧ ¬������(x2, p) ∧ (���� (x2, p) ∨ ����(x2, p))) ∨

(¬����(x1, p) ∧ ¬����(x2, p))

(15){ RjȳRj
∶= RjȳRj

∨ ∃z̄j.Aȳ
𝜎j

Rj
bzj ∧ 𝜓i ∣ i = 1,… , r}
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∀z̄. c1 ∧… ∧ cm of Φ , c occurs among the cj , and x̄ is the subsequence of variables in z̄ 
which occur in c. We rely on the following technical lemma.

Lemma 6 Assume that c is a clause and � a stratified reset or a stratified strictly guarded 
update with input predicate A which substitutes predicates of level s.

Let c′ be a clause with ∀A. 𝜃(c) ∋ ∀z̄. c� where z̄ is the list of newly introduced variables 
in c′ . Then either c = c� and z̄ is empty, or the number of literals at level s of c′ is less than 
the corresponding number of literals in c, while the set of literals at levels exceeding s stays 
the same.

Proof Assume that the clause c is of the form

where Riȳi,Rjȳj are the literals of c substituted by � , while c0 does not contain occurrences 
of left-hand sides of �.

If � is a reset, all literals containing Ri are eliminated from c.
Therefore, the assertion of the lemma holds. Now assume that � is a strictly guarded 

update where 𝜃(RiȳRi
) = RiȳRi

∨ ∃z̄i.Aȳ
𝜎i
Ri
z̄i ∧ 𝜓i for some permutation �i . Then by lemma 3,

where z̄j is a fresh list of FO variables of the same length as z̄ , and z̄J is the concatenation 
of all lists z̄j, j ∈ J.

In particular for J = � , z̄J is empty and the corresponding clause equals c. If on the other 
hand J ≠ ∅ , the number of negated literals occurring in the clause has decreased.   ◻

By lemma 6, the number of literals at level s therefore either decreases, or the clause 
stays the same.

Let Θ denote a finite set of stratified guarded substitutions where all updates in Θ are 
strictly guarded, and let c0 denote any clause.

Consider a sequence (𝜃t,∀x̄t.ct), t ≥ 1 , where for all t ≥ 1 , �t ∈ Θ with some input predi-
cate At , and ∀At. (𝜃tct−1) ∋ ∀x̄t. ct holds.

We claim that then there is some t′ ≥ 1 so that ct� = ct�� and x̄t′′ is empty for all t′′ > t′.
In order to prove that claim, we introduce for t ≥ 1 , the vector vt = (vt,L,… , vt,1) ∈ ℕ

L 
where L is the maximal level of a predicate in Rstate , and vt,i is the number of literals with 
predicates of level i.

By lemma 6, it holds for all t ≥ 0 , that either ct = ct+1 and z̄t is empty, or vt > vt+1 w.r.t. 
the lexicographic order on ℕL . Since the lexicographical ordering on ℕL is well-founded, 
the claim follows.

We conclude that the set of quantified clauses ∀z̄.c with Ψ(h)[u] ∋ ∀z̄.c for any u and h, 
is finite. From that, the statement of the theorem follows.   ◻

Theorem 5 leaves open the case of transition systems with stratified resets and strati-
fied guarded updates of which some are not strictly guarded. To these, the presented 

c0 ∨

m⋁

i=1

Riȳi ∨

n⋁

j=m+1

¬Rjȳj

∀A. 𝜃(c) ⟷ c0 ∨
⋁m

i=1
Riȳi ∨

⋁n

j=m+1
¬Rjȳj ∧

∀z̄j.(
⋁m

i=1
(ȳ

𝜎i
i
= ȳ

𝜎j

j
z̄j) ∧ 𝜓i[ȳ

𝜎j

j
z̄j∕ȳ

𝜎i
Ri
z̄i] ∨ ¬𝜓j[ȳj∕ȳRj

])

⟷
⋀

J⊆[m+1,n] ∀z̄J . (c0 ∨
⋁m

i=1
Riȳi ∨

⋁
j∉J ¬Rjȳj ∨⋁

j∈J

⋁m

i=1
(ȳ

𝜎i
i
= ȳ

𝜎j

j
z̄j) ∧ 𝜓i[ȳ

𝜎j

j
z̄j∕ȳ

𝜎i
Ri
z̄i] ∨ ¬𝜓 �

j
[ȳj∕ȳRj

])
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proof technique cannot be easily extended. The reason is that a non-strictly guarded 
update � for some predicate R, when applied to some clause c, may result in a quanti-
fied clause ∀z̄. c� with ∀A.𝜃(c) ∋ ∀z̄. c� so that neither c = c� holds nor does the number of 
literals ¬Rb̄ decrease.

6  Positive guarded and stratified updates

Let us consider another case where termination can be guaranteed in presence of 
updates as well as resets. We call an update or reset � positive if all predicates only 
occur positively in the right-hand sides of � . Let us call a FO transition system positive 
if it uses no assumptions and only positive stratified guarded updates and resets at all 
levels at least 1.

Theorem 7 Assume that T  is a positive FO transition system where all updates are single. 
Then for every universal invariant Ψ , the weakest inductive invariant implying Ψ is again 
universal and can effectively be computed.

Proof Let Θ denote the substitutions occurring at edges in T  . For � ∈ Θ , let [[�]] denote 
the transformation of universal FO formulas which maps every universal FO formula � to 
a universal FO formula equivalent to ∀A.�(�) , if A is the input predicate corresponding to 
� . Let � = �L … �1 denote a sequence of substitutions from Θ . Then [[�]] = [[�N]]◦… ◦[[�1]] 
is the composition of the transformations corresponding to the substitutions occurring in 
� . Now consider a quantifierfree formula � in conjunctive normal form with predicates 
from Rstate and FO variables from X. Consider some � ∈ Θ . Since � is a stratified reset or a 
stratified guarded update which is single and positive, [[�]](�) can be chosen in such a way 
that all occurring argument lists b̄ of positive literals Rb̄ , R ∈ R , only use variables from X. 
Since � is single, SO quantifier elimination of the input predicate A of � can be realized by 
a single substitution of the form

for suitable n ≥ 0 and sequences āi of FO variables from X. Let us call the right-hand side 
here a worst attacker. This means that, for all levels t = L,… , 1 , there are only finitely 
many possibilities of worst attackers to substitute the occurring input predicates. Let L 
denote the maximal level of predicates from Rstate . Moreover for t = L,… , 1 , let z̄t denote 
one distinct enumeration of variables occurring in substitutions in Θ whose right-hand 
sides are of level t. The formulas [[�N]](�) thus can all be represented as finite conjunctions 
g of generalized clauses c(L) according to the following grammar:

where c0 is a disjunction of literals without negative literals ¬Rb̄ using FO variables from 
X; while for 0 ≤ t ≤ L , the clause c(t) satisfies the following side constraints:

Aȳz̄ ∶=

n⋀

i=1

(ȳ ≠ āi)

g ∶∶= c1 ∧… ∧ cr
c ∶∶= c0 ∨ c(L)

c(t) ∶∶= ⊥ ∣ c(t) ∨ ¬Rb̄ ∣ c(t) ∨ et ∣ c
(t) ∨ o(t)

o(t) ∶∶= (
⋁n

i=1
(b̄ = āi) ∨ ∀z̄t.c

(t−1)
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• For every occurring negative literal ¬Rb̄ , �(R) ≤ t holds and all variables in b̄ are con-
tained in X or occur in z̄L … z̄t+1;

• et ranges over equalities or disequalities between FO variables from X or z̄L … z̄t+1.

Moreover, for o(t) , all FO variables occurring in the lists āi are from X only, while those 
occurring in b̄ are either from X or occur in z̄L … z̄t−1 . By induction on t, we verify that for 
each level t ≥ 0 , the number of non-equivalent formulas o(t) and thus also the number of 
non-equivalent formulas c(t) is finite. We conclude that also the number on non-equivalent 
formulas c as well as the number of non-equivalent formulas g is finite.

Accordingly, the number of non-equivalent formulas ∀A1 …AN .�(�) is finite — imply-
ing that for every universal invariant Ψ , Ψ(h+1) = Ψ(h) for some h ≥ 0 . From that, the state-
ment of the theorem follows.   ◻

The proof argument for theorem 7 cannot easily be extended to unrestricted stratified 
guarded substitutions. In presence of negated literals in substitutions or updates which are 
not single, the arguments of positive literals Rā occurring in [[�]](�) need not necessariliy 
have already occurred in � . For the next result, we therefore have to rely on a different 
proof strategy.

7  Stratified guarded updates

Let us finally consider FO transition systems without assumptions where all occurring sub-
stitituions are resets or guarded updates which are stratified. Let us call such a FO transi-
tion system stratified guarded. In [3], termination was announced for stratified guarded FO 
transition systems without resets, where additionally instantiation of existential quantifiers 
was applied as an abstraction to enforce all occurring formulas to be universal. Here, we 
improve on that result in two respects. First, we present a proof that termination can also be 
guaranteed without any abstraction. Second, we generalize the setting by allowing stratified 
resets — at least at the maximal and minimal levels.

Theorem 8 Assume that T  is a stratified guarded FO transition system where resets only 
occur for predicates of level 1 and the maximal level L. Then for every universal invariant 
Ψ , the weakest inductive invariant is again universal and can effectively be computed.

Proof We show that there is some h ≥ 0 , so that Ψ(h+1) = Ψ(h) . Since by lemma 3, Ψ(h)[u] 
is a universal formula for all h ≥ 0 and program points u, the statement of the theorem 
follows.

Let Θ denote the finite set of stratified guarded substitutions occurring in T  . W.l.o.g., 
we assume that each substitution in Θ simultaneously substitutes all predicates at a given 
level t. Let � a quantifierfree FO formula in negation normal form. Let � = �N ,… , �1 be 
any sequence of substitutions where for each i = 1,… ,N , �i = ��[Ai∕Aei

] holds for a fresh 
input predicate Ai , and some substitution �� ∈ Θ . Thereby, let �(Ai) denote the level of left-
hand sides of �′ . Termination of fixpoint iteration is based on the following lemma.   ◻

Lemma 9 There is a fixed finite sequence z of variables only depending on � and the sub-
stitutions from T  so that ∀AN …A1.�(�) = ∀z.� � for some quantifierfree FO formula � ′ . 
In particular, z can be chosen independently of the length N of �.
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Since the number of quantifierfree FO formulas with a given fixed finite set of FO vari-
ables is finite, lemma 9 implies that the number of non-equivalent universal FO formulas 
possibly occurring as ∀AN …A1.�(�) for every universally quantified FO formula � , and 
thus also the number of non-equivalent conjunctions of these formulas is finite. Accord-
ingly, there must be some h ≥ 0 so that in (5), Ψ(h+1) = Ψ(h) , and the theorem follows.  
 ◻

It therefore remains to prove lemma 9.

Proof of lemma 9 Let us first consider the case where there is no reset of predicates. Let 
Rstate denote the finite set of predicate symbols used by T  . Let X and Z denote the finite 
sets of variables occurring in � and introduced by substitutions from Θ , respectively. Let 
L denote the maximal level of a predicate in R . For 1 ≤ t ≤ L , let Vt denote the set of all 
variables

with z ∈ Z , �(R) = t , and b̄ a sequence of variables from X ∪ VL ∪… ∪ Vt+1 whose length 
equals the arity of R. We then will use the set V = V1 ∪… ∪ VL as our set of bound vari-
ables. According to the definition of the Vt , the set V is finite. By induction on the length N 
of � , we construct a formula in a particular normal form �N which is equivalent to �(�) . In 
this construction, we make sure that all variables bound by existential or universal quantifi-
ers are always taken from V. The normal form g of formulas we rely on, consists of a finite 
conjunction of generalized clauses c which are built up according to the following abstract 
grammar

In the second line, c0 is an ordinary clause without occurrences of input predicates, A′ is an 
input predicate where all predicates occurring in g′ have levels less than �(A�) . In the third 
line, R is a predicate, b̄ are sequences of arguments, z̄R is a sequence of FO variables whose 
length only depends on R and contains all FO variables required by substitutions of R, An 
are input predicates of levels �(R) , and all predicates occurring in any of the cn have levels 
less than �(R) . A formula fR,b̄ is also called negation tree with head ¬Rb̄ . fR,b̄ is called non-
trivial, if it contains occurrences of input predicates, i.e., the conjunction in the second 
conjunct is non-empty. Thereby, we maintain the invariant that on the toplevel, i.e., outside 
the scopes of all quantifiers, the heads of all negation trees are distinct.

This normal form can be obtained for � by constructing the conjunctive normal form 
of � and thereby, removing all duplicates of literals in clauses. Let �0 denote the result-
ing conjunction for � . Now assume that we have already constructed the normal form 
�N−1 . By using distributivity of ∧ , the corresponding normal form for �N = �N(�N−1) 
can be readily computed. For maintaining the invariant on negation trees, we recall that 
¬Rb̄ ∨ ¬Rb̄ ∧ g ⟷ ¬Rb̄ , i.e., newly created literals ¬Rb̄ in clauses kill already existing 
negation trees with this head.

Given the normal form �N for �(�) , we now successively apply SO quantifier elimina-
tion. We proceed from input predicates Ai of higher levels downwards towards the input 
predicates of smaller levels. For each clause, we thereby collect the lists of FO variables 
z̄t required to be universally quantified and prove that these lists possibly introduced for 
level t, consist of variables from Vt only. In the end, we thus arrive at a formula ∀z1 … zL.�

� 

(16)zR,b̄

g ∶∶ = ⊤ ∣ c ∧ g

c ∶∶ = c0 ∣ c ∨ ∃z̄.A�āz̄ ∧ g� ∣ c ∨ fR,b̄
fR,b̄ ∶∶ = ¬Rb̄ ∧ ∀z̄R.

⋀r

n=1
(¬Anb̄

𝜎n z̄n ∨ cn)
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where zt is the sequence of variables in Vt , and � ′ is a quantifierfree conjunction of (plain) 
clauses with variables from X ∪ V  only. Since there is only a finite set of of such clauses, 
the theorem follows.

So, let � denote a permutation of {1,… ,N} so that �(A�(N)) ≤ … ≤ �(A�(1)) holds. In 
particular, �(A�(1)) and �(A�(N)) denote input predicates of highest and lowest occurring 
levels, respectively. Then we successively remove the occurrences of A�(1),A�(2),… by 
maintaining the normal form of the resulting formulas — while introducing fresh bound 
variable names just from the set V. Let � �

L+1
= �N . Now we proceed level by level. for 

L ≥ t > 0 , assume that ∀zt+1 … zL.�
�
t+1

 has already been constructed such that � �
t+1

 is in 
our normal form where the heads of all non-trivial negation trees on top-level are dis-
tinct and have levels at most t. Let us consider a single generalized clause c of � �

t+1
 . Let 

fR1,b̄1
,… , fRmb̄m

 denote the sequence of top-level negation trees in � �
t+1

 of level t in c.
If this sequence is empty, then we set zt = � (the empty sequence) and � ′

t
 as the for-

mula obtained from � �
t+1

 by removing all occurrences of subformulas ∃z̄R.A�b̄z̄ ∧ 𝜓 � with 
�(A�) = t.

Otherwise, let A�(j1)
…A�(j2)

 denote the subsequence of input predicates of level t occur-
ring in c. Then for each j = 1,… ,m , the negation tree fRj,b̄j

 is of the form

for suitable input predicates A′
k
 of level t, subsequences z̄jk of z̄Rj

 and (generalized) clauses 
cjk containing predicates only of levels less than t. Since the heads of the negation trees 
fRj,b̄j

 are all distinct, we can rename the corresponding universally quantified variables to 
distinct sequences z̄Rj,b̄j

= z(Rj ,b̄j),1
… z(Rj,b̄j),lj

 if lj is the length of the corresponding list of 
bound variables and let the sequences z̄b̄j,jk be appropriate subsequences of this list for the 
z̄jk . By inductive hypothesis for variables in b̄j and the definition of the set Vt , all these vari-
ables are contained in Vt . Therefore, c is equivalent to the formula ∀zt.c� where c′ coincides 
with c up the negation trees of level t, which now take the form

( j = 1,… ,m ). Performing SO quantifier elimination of all input predicates A�(j1)
,… ,A�(j2)

 
in a row removes all subformulas ∃z̄R� .A�āz̄R� ∧ 𝜓 � where �(A�) = t from c′ , and additionally 
replaces the subformulas (18) with formulas

for suitable conjunctions of (generalized) clauses gji in with constants from X and free vari-
ables from z̄R and some list of parameters ȳ for which a subformula ∃z̄ji.A�

k
ā
𝜎ji

ji
z̄ji ∧ gji[āji∕ȳ] 

has occurred in c′ . In particular, each predicate occurring in any of the gji is of level less 
than t. By distributivity, the resulting formula is equivalent to a conjunction g′ of (general-
ized) clauses c′′ each of which is obtained from c′ by replacing each of the subformulas 
(18) with ¬Rjb̄j , or, for some k and some subset I ⊆ {1,… , nj} , with the clause

(17)¬Rjb̄j ∧ ∀z̄Rj
.

nj⋀

k=1

¬A�
k
b̄
𝜎k
j
z̄jk ∨ cjk

(18)¬Rjb̄j ∧

nj⋀

k=1

¬A�
k
b̄
𝜎k
j
z̄b̄j,jk ∨ cjk[z̄Rj,b̄j

∕z̄Rj
]

(19)¬Rjb̄j ∧

nj⋀

k=1

nj⋁

i=1

(ā
𝜎ji

ji
= b̄

𝜎k
j
) ∧ gji[b̄

𝜎k
j
z̄b̄j ,jk∕ȳ

𝜎ji

ji
z̄ji] ∨ cjk[z̄Rj,b̄j

∕z̄Rj
]
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where c′
ji
 is any clause of gji . The clauses from g′ constructed in this way, may contain 

negation trees which agree in their heads. Consider two such negation trees both with head 
¬Rb̄ occurring in the same clause c′′ of g′ on top-level. If both originate from � or have 
been introduced by means of the same substitution, say, �j , the same sequence of substitu-
tions has been applied to both, and subsequently also to their negation trees. Accordingly, 
the two negation trees are equivalent, meaning that one of them can be removed from c′′ . 
Therefore, now assume that one literal ¬Rb̄ has been introduced by substitution �j while the 
the other did already occur in �j−1 . That means that the sequence of substitutions applied to 
the later one and its negation tree, also is applied to the earlier one and its negation tree. In 
their disjunction (now introduced due to SO quantifier elimination), therefore, the negation 
tree of the earlier literal implies the negation tree of the later, and therefore can be omitted. 
Performing this normalization on the clauses of g′ , we achieve that in the resulting con-
junction g′′ of (generalized) clausesall heads of top-level negation trees are distinct. Then 
we set � ′

t
 to g′′.

In order to compute an explicit bound on the number of possible FO variables occurring 
as arguments to predicates of level t = L,… , 0 , let us introduce the following structural 
parameters:

For t = L,… , 0 , we inductively determine a bound Bt to the number of distinct FO varia-
bles possibly occurring as arguments of literals at level t. Thereby, we set BL = v , since the 
only literals at level L occurring in c′ already must have occurred in � . Therefore, assume 
that t < L and a bound Bt+1 has already been found. Given the number Bt+1 , the number of 
negated literals of predicates at level t + 1 can be bound by m ⋅ Br

t+1
 . For each of these liter-

als, a fresh list of variables of length at most l may be provided. Accordingly, we set

Altogether, this means that the total number B of variables possibly occurring in literals of 
c′ at level at least 0 is bounded by

It remains to consider the case when resets occur either on the highest level L or at level 1. 
We claim that with these kinds of resets, still the same set V for bound variables suffices 
to construct a FO universally quantified formula for ∀A1 …AN .�(�) . Let us first consider 
resets of predicates at top-level L. Each of these, either has no effect or replaces all occur-
rences of one predicate R with �(R) = L with a quantifierfree formula with occurrences of 
state predicates of lower levels and no input predicates. The only FO variables occurring 
in literals Rb̄ or ¬Rb̄ for predicates R of level L are the variables from X occurring already 
in � . Accordingly, we modify the first phase of constructing �1,… ,�N as follows. We put 

(20)
⋁

i∈I

(ā
𝜎ji

ji
= b̄

𝜎k
j
) ∨

⋁

i∉I

c�
ji
[b̄

𝜎k
j
z̄b̄j,ik∕ȳ

𝜎ji

ji
z̄ji] ∨ cjk[z̄Rj,b̄j

∕z̄Rj
]

v — the number of variables occurring in 𝜓

L — the number of levels of predicates

r — maximal arity of a predicate

m — maximal number predicates at some level i

l — maximal length of z̄in subformulas ∃z̄.𝜓occurring in the substitutions from Θ

Bt = Bt+1 + l ⋅ m ⋅ Br
t+1

≤ (1 + l ⋅ m) ⋅ Br
t+1

(21)B ≤

{
(1 + l ⋅ m)L ⋅ v if r = 1

(1 + l ⋅ m)
rL−1

r−1 ⋅ vr
L

if r > 1
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the list zL as universally prenex in front of all �j in order to have a reservoir of FO variables 
for all univerally quantified bound variables introduced at level L. As soon as an update 
substitution �i of a predicate R at level L occurs, we rename in each clause the universally 
quantified variables from z̄R introduced for ¬Rb̄ to z̄R,b̄ from the reservoir and immediately 
perform SO quantifier elimination for Ai . Then we bring the resulting formula into the for-
mat g to obtain �i . With this preparation, a reset �j at level L can be dealt with during the 
construction of the sequence �1,… ,�N just by replacing literals at level L with appropriate 
clauses of literals with predicates of lower level all using variables from X as arguments 
only. In particular, no new variables are introduced. For the second phase, it then remains 
to perform SO quantifier elimination just for the levels L − 1,… , 1.

Now additionally, consider resets of predicates at level 1. In principle, we proceed as 
before. The resets at level 1, however, may additionally introduce subformulas of the form 
ob̄ in clauses where

where b̄ is a sequence of variables, Ak are input variables of level 1, and cn contains predi-
cates of level 0 only with arguments possibly from X, b̄ , and z̄ . No uniqueless can be guar-
anteed for subformulas of the form ob̄ . We note, however, that in the second phase when we 
perform SO quantifier elimination of SO predicates of level 1 for a (generalized) clause c, a 
formula is encountered of the form

where c0 consists of literals using variables from V ′ , the lists of variables ālji are only from 
V ′ , and the subformulas glji and clj use state predicates of level 0 only where all occurring 
FO variables are from V � ∪ Z . The number of non-equivalent such formulas glji as well as 
clj with this restriction onto the occurring FO variables, however, is finite. Therefore, there 
is a fixed finite prefix of FO variables, independent of the length of the sequence of substi-
tutions � to take all universal quantifications from (23) into account.

Altogether, therefore, the number of FO variables in quantified clauses ∀z̄�.c� contained 
in �(�) remains bounded – even when we allow resets both on the maximal level and on 
level 1. This completes the proof of lemma 9.

We remark that theorem 8 remains true if there are predicates R′ with stratified guarded 
updates as well as resets also at non-extremal levels — given that neither their updates nor 
their resets introduce FO variables, i.e., the variable lists z̄ in (6) are empty. In general, though, 
the proof technique of theorem 8 cannot easily be extended to FO transition systems with arbi-
trary resets of the form (7), since then conjunctions of the form ob̄ with non-empty lists of 
quantified variables may also occur at higher levels — where it is no longer clear how to prove 
that their number is finite.

(22)ob̄ ∶∶ = ∀z̄R.

n⋀

k=1

(¬Akb̄z̄ ∨ ck)

(23)c0 ∨

r⋁

l=1

∀z̄R.

ml⋀

j=1

(

nlj⋁

i=1

(b̄l = ālji) ∧ glji ∨ clj)
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8  Noninterference for Multi‑agent systems

In the following we would like to apply the termination results from the last section 
to prove non-interference for multi-agent systems represented as FO transition system. 
In this representation, we assume the FO transition system to be executed by agents. 
Thereby, an agent a can observe all tuples of state relations that mention her in the first 
component (i.e., all tuples of the form ab̄ satisfying some predicate R). Accordingly, 
we assume all predicates to have arities at least 1. Subsequently, we assume that each 
substitution of the FO transition system T  either is an update or a reset. In particular, 
there are no conditions at edges in the control-flow graph. Besides public input from 
the environment, we distinuish two dedicated further kinds of input predicates, namely, 
oracles and choices.

An oracle predicate O is used to represent secret data input to the FO transition sys-
tem which is meant to be disclosed only to a subset of agents. Thereby, each oracle O 
comes with a FO formula 𝛿Oxȳ specifying for each agent x, which tuples ȳ should pos-
sibly be visible to x.

We remark that an oracle predicate O with 𝛿Oxȳ = ⊤ (true) for all x, ȳ , does not pose any 
restrictions on the visibility of tuples ȳ and thus may serve as (public) input from the envi-
ronment. It is for conceptual clarity only, that we consider environment input separately.

Choice predicates C formalize the behavior and individual decisions of agents. The 
literal Cxȳ , when true, indicates that agent x offers tuple xȳ for the current update opera-
tion. Let Renv,Rhigh,Rlow ⊆ A denote the set of all environment input, oracle and choice 
predicates, respectively, that are used by the given FO transition system.

Consider, e.g., the FO transition system from Fig. 1. Then A1,A2 may be considered 
as input from the environment (providing information on conflicts and the assignment of 
papers to pc members), while A3 is an oracle: it provides reports on papers which should 
not be disclosed to all members of the pc. The input predicate A4 , on the other hand, 
represents the choices of pc members what to contibute to the discussion on papers. 
According to our convention, it is agent x2 who (by means of A4 ) decides to add tuples 
to predicate ������� which in this way become visible to x1.

Noninterference is best formulated as a 2-hyperproperty [26], that is, a property of 
pairs of traces. In our application, the sequence of edges traversed by an execution of the 
workflow is determined externally, i.e., independent of any oracle or choice predicate. For 
instance in case of a conference management system, it is up to the PC chair to decide 
when a particular stage is complete and which next stage to execute. This means that we 
are only interested in 2-hyperproperties where the considered two traces follow the same 
control flow path, but may differ in the sequences of attained states. This restriction has 
also been imposed in [15, 16]. In order to reason about the pairs of states attained by a pair 
of traces, we introduce a copy R� = {R� ∣ R ∈ R} of the predicates in R and assume that 
the states s′

i
 are expressed by means of the predicates in Rstate

′ , i.e., primed state predi-
cates. Thus, we can combine each pair ⟨si, s′i⟩ of first-order structures into a single structure 
si ⊗ s′

i
 over Rstate ∪Rstate

� . Following [3, 15, 16], noninterference is expressed from the 
point of view of a single (but arbitrary) agent, and the notions of high/low security inputs/
outputs from the standard definition of noninterference [17] are interpreted with respect to 
this agent. Furthermore, the property is parameterized by an assumption on the behavior 
of agents (called agent model) and by declassification conditions, which specify when and 
what information can be legitimately exposed. Therefore, Noninterference with Declassifi-
cation and Agent model (NDA) is expressed by the FOLTL formula
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where � is the LTL globally operator. The property states that for any two traces following 
the same control-flow path, a given agent model for every agent a, and the assumption that 
public input from the environment does not differ on both traces, that the noninterference 
property holds iff agent a is never able to observe a difference between two traces that dif-
fer only in the (non-declassified) inputs from the oracles:

where ȳR, z̄R, z̄O are sequences of distinct variables of appropriate lengthes. For each oracle 
predicate O and agent x, the formula 𝛿Oxz̄O using predicates from Rstate encodes a declassi-
fication condition that specifies which tuples z̄O from O can be made visible without caus-
ing a security breach to x. For our running example, we use �O(x, y, p, r) ∶= ¬���� (x, p) . 
This example declassification condition allows any agent x to safely read reports p by 
reviewer y on paper p, as lang as x neither is an author of p nor has declared conflict with p.

For any agent, we consider two kinds of possible behavior. One agent either stubbornly 
makes the same choices, independently of its observations; or its choices may depend on 
previous observations, i.e., it acts causally. Causal behavior characterizes the behavior of 
members of an adversarial coalition who in this way try to spread secret information. The 
two behaviors are captured by the following formulas, respectively.

where

and � denotes the weak until LTL operator. Note that any stubborn agent also satisfies the 
causality assumption which allows for more behaviors. Therefore, the most general agent 
model is when each agent is causal, while the most restrictive model is when each agent is 
stubborn.

We thus assume that the agent_model formula from the formalization of NDA can be 
instantiated with one of the following formulas:

where t ≥ 0 . Note that agent_model(c,0) ≡ ∀x.stubborn(x) . We denote this formula by 
agent_model(s).

(24)
G public_env ∧ agent_model →

∀a.(G same_high_inputs(a)) → (G same_observations(a))

public_env ∶=
⋀

R∈Renv

(
∀ȳR.RȳR ↔ R�ȳR

)

same_observations(x) ∶=
⋀

R∈Rstate

(
∀z̄R.Rxz̄R ↔ R�xz̄R

)

same_high_inputs(x) ∶=
⋀

O∈Rhigh

∀z̄R.
(
𝛿Oxz̄O → (Oz̄O ↔ O�z̄O)

)

stubborn(x) ∶= � same_low_inputs(x)

causal(x) ∶= same_low_inputs(x)� ¬same_observations(x)

same_low_inputs(x) ∶=
⋀

C∈Rlow

(
∀z̄C.Cxz̄C ↔ C�xz̄C

)

agent_model(c,t) ∶= ∃y1,… , yt.
�⋀t

i=1
causal(yi)

�
∧�

∀x. (
⋀t

i=1
x ≠ yi) → stubborn(x)

�

agent_model(c) ∶= ∀x.causal(x)
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9  Encoding agent models and declassification

The key idea for verifying NDA from [3] is to introduce a fresh agent constant a, and then 
encode property (24) for a, a particular agent model and a given FO transition system T  as 
an invariant of a (suitably defined) synchronous self-composition of the FO transition sys-
tem T  in a way that the invariant consists of universal FO formulas only. For convenience, 
we recall these constructions in order to adapt these to the specific setting of FO transition 
systems with guarded stratified updates and resets. Let us first assume that all agents are 
stubborn. The new FO transition system P(s)

a
(T) then is constructed as follows. Let R′

state
 

denote the set of primed predicates R′ corresponding to the state predicates R used by T  . 
For a first-order formula � with predicates from Rstate , let [�]� denote the formula obtained 
from � by replacing each predicate R ∈ Rstate with the corresponding predicate R′ in R′

state
 . 

Then each edge e = (u, �, v) of T  gives rise to a sequence of edges

for a sequence of fresh auxiliary nodes ue,1,… , ue,r and a sequence �0,… , �r = P(s)
a
� 

defined as follows. 

Reset.   If � is a reset of the form Rȳ ∶=𝜑 , then P(s)
a
(�) is given by the sequence of 

resets, first, of R, then of R′ : 

Update.   Now assume that � is an update of the form 

 If A is an input predicate from the environment, or a choice predicate, then A is used both 
for updating the state predicates and the primed state predicates. This means that P(s)

a
(�) is 

given by the single update 

 In particular, no auxiliary nodes are required here.
If the input predicate A equals some secret oracle O, then the construction must make 

sure that, generally, the value of O may differ on both traces – up to when declassification 
for O and a applies. Accordingly, we split the corresponding update into the sequence of 
updates �0, �1, �2.

The update �0 takes care of argument tuples xȳ where declassification w.r.t. agent a 
applies, while �1, �2 deal with argument tuples where declassification does not apply.

The update �0 is as (25) only that the formulas �j, [�j]
� in the right-hand sides are now 

replaced with

respectively.
Tuples then may independently be added to Rj and R′

j
 , when declassification does not 

apply. This independent addition is taken care of by the updates �1, �2:

(u, �0, ue,1), (ue,1, �1, ue,2),… , (ue,r−1, �r−1, ue,r), (ue,r, �r, v)

Rȳ ∶=𝜑;

R�ȳ ∶= [𝜑]�

{RjȳRj
∶=𝜑j ∨ ∃z̄j.Aȳ

𝜎j

Rj
z̄j ∧ 𝜓j ∣ j = 1,… , r}

(25)
{RjȳRj

∶= RjȳRj
∨ 𝜑j ∨ ∃z̄j.Aȳ

𝜎j

Rj
z̄j ∧ 𝜓j;

R�
j
ȳRj

∶= R�
j
ȳRj

∨ [𝜑j]
� ∨ ∃z̄j.Aȳ

𝜎j

Rj
z̄j ∧ [𝜓j]

�∣j = 1,… , r}

𝜓j ∧ 𝛿Oaȳz̄ and [𝜓j]
� ∧ 𝛿Oaȳz̄
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Causality. Let us now consider causal agents. The corresponding new FO transition sys-
tem P(c)

a
(T) is constructed as the FO transition system P(s)

a
(T) – with the only difference that 

choices of agents now may depend on whether they previously have acquired knowledge 
about secrets or not.

In order to capture causality, a new unary predicate I(x) is introduced which records all 
agents x that have already made observations depending on information secret to a. These 
agents’ choices may diverge when updating predicates R,R′ , respectively. Initially, ∀x.¬I(x) 
holds.

Moreover, after each sequence of substitutions realizing the modification of unprimed 
or primed state predicates, the predicate I itself must be updated — depending on whether 
the substituted predicates R1,… ,Rr differ from their primed versions. This update �I is 
given by

where z̄j are lists of distinct FO variables, and z̄ is an enumeration of all FO variables 
occurring in the lists z̄j . Informally, update �I checks wether a difference in any relation Rj 
can be been observed by agent x and if so, adds x to the predicate I . The input predicate 
A guards this check, which allows us to later eliminate the existential quantifier during the 
fixpoint iteration.

Beyond the addition of �I , a second modification occurs for updates � of the form

which query some choice predicate C. This update is simulated in the self-composition by 
the sequence of substitutions �0, �1, �2, �I . Thereby, �0 is defined as (25) (with A = C ) — 
with the only exception that the subformulas �j, [�j]

� in right-hand sides are replaced with

if x is the first variable from the sequence ȳ𝜎j
Rj
z̄j . The substitutions �1, �2 perform independ-

ent updates — given that agent x already has been informed. This means that

Note here that there is just one instance of the predicate I which is queried both for updat-
ing unprimed and primed versions of state predicates.

Example 11 Consider in Fig. 1 the update

(26)𝜃1 = {
RjȳRj

∶= RjȳRj
∨ ∃z̄j.Aȳ

𝜎j

Rj
z̄j ∧ 𝜓j ∧ ¬𝛿OaȳRj

z̄j

∣j = 1,… , r}

(27)𝜃2 = {
R�
j
ȳRj

∶= R�
j
ȳRj

∨ ∃z̄j.Aȳ
𝜎j

Rj
z̄j ∧ [𝜓j]

� ∧ ¬𝛿OaȳRj
z̄j

∣j = 1,… , r}

(28)I(x) ∶= I(x) ∨ ∃z̄.Axz̄ ∧

r⋁

j=1

¬(Rjxz̄j ↔ R�
j
xz̄j)

{RjȳRj
∶=𝜑j ∨ ∃z̄j.Cȳ

𝜎j

Rj
z̄j ∧ 𝜓j ∣ j = 1,… , r}

�j ∧ ¬I(x) and [�j]
� ∧ ¬I(x)

(29)𝜃1 ={RjȳRj
∶=RjȳRj

∨ ∃z̄j.C1ȳ
𝜎j

Rj
z̄j ∧ 𝜓j ∧ I(x) ∣ j = 1,… , r}

(30)𝜃2 ={R
�
j
ȳRj

∶=R�
j
ȳRj

∨ ∃z̄j.C2ȳ
𝜎j

Rj
z̄j ∧ [𝜓j]

� ∧ I(x) ∣ j = 1,… , r}



Formal Methods in System Design 

1 3

A3 is a secret oracle with corresponding declassification formula ¬����(a, p) . Let us first 
consider stubborn agents only: Then the transformation results in the sequence of three 
updates

In case of causal agents, subsequently also the informedness predicate I must be updated 
by

Now consider the substitution

where A4 is a choice predicate, allowing agent x2 to decide which tuples to add. In case 
of stubborn agents, agent choices are independent of acquired information about secrets. 
Therefore, the transformation results in just one (simultaneous) update of both ������� and 
�������′ together with an update of the predicate I . In case of causal agents, however, four 
updates are introduced in a row, namely,

Splitting the updates to ������� and �������′ into three only takes effect for agents x2 which 
are already informed, i.e., for which I(x2) holds true. For the others, just the first (simulta-
neous) update takes effect.   ◻

The transformed workflow P(c)
a
(T) (or P(s)

a
(T) ) captures all pairs of traces of T  that 

satisfy the causal (or stubborn) agent model together with declassification, relative to a. 
We recall the following theorem from [3].

Theorem 10 [ [3]] Let T  without assumptions and stratified guarded updates and resets 
only.

������(x, p, r) ∶= ������(x, p, r) ∨ A3(x, p, r) ∧ ������(x, p)

{ ������(x, p, r) ∶= ������(x, p, r) ∨ A3(x, p, r) ∧ ������(x, p) ∧ ¬���� (a, p);

�������(x, p, r) ∶= �������(x, p, r) ∨ A3(x, p, r) ∧ �������(x, p) ∧ ¬���� (a, p)

}

������(x, p, r) ∶= ������(x.p, r) ∨ A3(x, p, r) ∧ ������(x, p) ∧ ���� (a, p)

�������(x, p, r) ∶= �������(x.p, r) ∨ A3(x, p, r) ∧ �������(x, p) ∧ ���� (a, p)

I(x) ∶= I(x) ∨ ∃p, r.A3(x, p, r) ∧ ¬(𝗋𝖾𝗉𝗈𝗋𝗍(x, p, r) ↔ 𝗋𝖾𝗉𝗈𝗋𝗍�(x, p, r))

�������(x1, x2, p, d) ∶= �������(x1, x2, p, d) ∨

∃r1, r2.A4(x2, x1, p, d, r1, r2) ∧ ������(x1, p, r1) ∧ ������(x2, p, r2)

{ 𝖽𝗂𝗌𝖼𝗎𝗌𝗌(x1, x2, p, d) ∶= 𝖽𝗂𝗌𝖼𝗎𝗌𝗌(x1, x2, p, d) ∨

∃r1, r2.A4(x2, x1, p, d, r1, r2) ∧ 𝗋𝖾𝗉𝗈𝗋𝗍(x1, p, r1) ∧ 𝗋𝖾𝗉𝗈𝗋𝗍(x2, p, r2) ∧ ¬I(x2);

𝖽𝗂𝗌𝖼𝗎𝗌𝗌�(x1, x2, p, d) ∶= 𝖽𝗂𝗌𝖼𝗎𝗌𝗌�(x1, x2, p, d) ∨

∃r1, r2.A4(x2, x1, p, d, r1, r2) ∧ 𝗋𝖾𝗉𝗈𝗋𝗍�(x1, p, r1) ∧ 𝗋𝖾𝗉𝗈𝗋𝗍�(x2, p, r2) ∧ ¬I(x2)

}

𝖽𝗂𝗌𝖼𝗎𝗌𝗌(x1, x2, p, d) ∶= 𝖽𝗂𝗌𝖼𝗎𝗌𝗌(x1, x2, p, d) ∨

∃r1, r2.A4(x2, x1, p, d, r1, r2) ∧ 𝗋𝖾𝗉𝗈𝗋𝗍(x1, p, r1) ∧ 𝗋𝖾𝗉𝗈𝗋𝗍(x2, p, r2) ∧ I(x2);

𝖽𝗂𝗌𝖼𝗎𝗌𝗌�(x1, x2, p, d) ∶= 𝖽𝗂𝗌𝖼𝗎𝗌𝗌�(x1, x2, p, d) ∨

∃r1, r2.A4(x2, x1, p, d, r1, r2) ∧ 𝗋𝖾𝗉𝗈𝗋𝗍�(x1, p, r1) ∧ 𝗋𝖾𝗉𝗈𝗋𝗍�(x2, p, r2) ∧ I(x2);

I(x1) ∶= I(x1) ∨ ∃x2, p, d.A4(x1, x2, p, d) ∧

¬(𝖽𝗂𝗌𝖼𝗎𝗌𝗌(x1, x2, p, d) ↔ 𝖽𝗂𝗌𝖼𝗎𝗌𝗌�(x1, x2, p, d))
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Let P(s)
a
(T) ( P(c)

a
(T) ) denote FO transition systems obtained as the self-composition of T  

for stubborn (causal) agents. Let ΦNDA denote the universal invariant mapping each node 
u to the formula

where for each predicate R ∈ Rstate , ȳ′R is an appropriate list of distinct FO variables, and 
ȳ is an enumeration of the FO variables occurring in any of the ȳ′

R
.

Then the following holds for T  with initial hypothesis H . 

1. 2-hyperproperty (NDA) holds for stubborn agents iff invariant ΦNDA holds for P(s)
a
(T) 

with initial hypothesis 

2. 2-hyperproperty (NDA) holds for causal agents iff invariant ΦNDA holds for P(c)
a
(T) with 

initial hypothesis 

  ◻

10  Application to noninterference

Theorem 10 allows us to apply our methods for constructing weakest inductive invariants 
for proving NDA for certain FO transition systems. Let us first consider stubborn agents 
only. Assume that the FO transition system T  is stratified and guarded without using 
assumptions at edges. Then the same is true for the transformed workflow P(s)

a
(T) which 

takes care of stubbornness of agents and declassification relative to a — at least, when for 
each oracle O, the declassification formula �O is sufficiently well-behaved — i.e. is quanti-
fierfree and uses only predicates of level less than the left-hand sides of substitutions where 
O is queried. Thereby, we assign to primed predicates R′ the same levels as the correspond-
ing unprimed predicates R. Furthermore, if all resets of T  occur either on level 1, or the 
maximal level, then this property also holds for P(s)

a
(T) . Likewise, if T  uses arbitrary resets, 

but strict updates only, then the same holds true also for P(s)
a
(T) . As application of Theo-

rems 8 and 5, we therefore obtain:

Theorem 11 Consider a FO transition system T  without assumptions, but with resets and 
stratified guarded updates Assume that for each oracle O queried in some update � , the 
corresponding declassification formula �O is quantifierfree where each predicate occurring 
in �O has level less than the level of the left-hand sides in � . Assume further that one of the 
two conditions are met: 

(31)∀ȳ.
⋀

R∈Rstate

Raȳ�
R
↔ R�aȳ�

R

(32)H ∧
⋀

R∈Rstate

∀ȳR.RȳR ↔ R�ȳR

(33)H ∧ ∀x.¬I(x) ∧
⋀

R∈Rstate

∀ȳR.RȳR ↔ R�ȳR
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1. All updates are strictly guarded; or
2. All resets either occur at maximal level or at level 1.

Assume that the initial hypothesis H for T  is given as a FO formula from the prenex class 
∃∗∀∗ . Assume that all agents participating in T  are stubborn. Then NDA for T  with stub-
born agents is effectively decidable.
Proof Under each of the two assumptions, the self-composition P(s)

a
(T) can be effectively 

constructed and satisfies either the assumptions of Theorem 5 or Theorem 8. Therefore for 
every universal invariant ΦNDA , the weakest inductive invariant Ψ can be effectively com-
puted so that Ψ[u] → Φ[u] for every is again uniform and leveled. This invariant then holds 
iff the conjunction of the formula (32) and ¬Ψ[v0] is unsatisfiable. Since both formulas are 
effectively contained in the prenex class ∃∗∀∗ , the claim of the theorem follows.   ◻

Example 12 Consider again the FO transition system T  from Fig. 1 where all participating 
agents are stubborn. In order to prove NDA for the arbitrary agent a, it suffices to verify for 
every program point of the self-compostion P(s)

a
(T) the following invariant holds:

Since the self-composition P(s)
a
(T) is stratified strictly guarded (here even without resets), 

the iterative strengthening of the invariant terminates with a weakest inductive invariant. 
This invariant is too complicated to be spelled out here. We argue, however, that through-
out all program points 0, 1, 2, 3 of the FO transition system,

holds. Moreover, we have at all program points,

where

holds. The latter property can, e.g., be proven for the original FO transition system T  . Each 
of these invariants is already inductive. Together, they imply that

holds for all program points as well — implying that the invariant (34) holds.   ◻

We would like to apply the same strategy to certify NDA now for FO transition systems 
with causal agents. Again assume that the FO transition system T  is stratified and guarded. 
The workflow P(c)

a
(T) , however, is no longer stratified. This is due to the auxiliary predicate 

I introduced by P(c)
a

 . That predicate is queried at updates of all updated predicates R,R′ , 
R ∈ Rstate where a choice predicate is queried. Likewise it is updated by means of formulas 
which depend on the same predicates. Still, we can apply fixpoint iteration on universal for-
mulas — which, however, is no longer guaranteed to terminate. Thus, we obtain a possibly 

(34)

∀p. 𝖼𝗈𝗇𝖿 (a, p) ↔ 𝖼𝗈𝗇𝖿 �(a, p) ∧

∀p. 𝖺𝗌𝗌𝗂𝗀𝗇(a, p) ↔ 𝖺𝗌𝗌𝗂𝗀𝗇�(a, p) ∧

∀p, r. 𝗋𝖾𝗉𝗈𝗋𝗍(a, p, r) ↔ 𝗋𝖾𝗉𝗈𝗋𝗍�(a, p, r) ∧

∀x, p, d. 𝖽𝗂𝗌𝖼𝗎𝗌𝗌(a, x, p, d) ↔ 𝖽𝗂𝗌𝖼𝗎𝗌𝗌�(a, x, p, d)

∀x, p. (𝖼𝗈𝗇𝖿 (x, p) ↔ 𝖼𝗈𝗇𝖿 �(x, p)) ∧ (𝖺𝗌𝗌𝗂𝗀𝗇(x, p) ↔ 𝖺𝗌𝗌𝗂𝗀𝗇�(x, p))

∀x, p, r. 𝖼𝗈𝗇𝖿 (a, p) ∨ (𝗋𝖾𝗉𝗈𝗋𝗍(x, p, r) ↔ 𝗋𝖾𝗉𝗈𝗋𝗍�(x, p, r))

∀p, r. ¬���� (a, p) ∨ ¬������(a, p, r)

∀x, p, d. 𝖽𝗂𝗌𝖼𝗎𝗌𝗌(a, x, p, d) ↔ 𝖽𝗂𝗌𝖼𝗎𝗌𝗌�(a, x, p, d)
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incomplete method for certifying NDA for agent model agent_model(c) . The potential non-
termination, however, does not come as a surprise as NDA in general is undecidable for an 
unbounded number of causal agents [15]. Interestingly, the situation is different when only 
a fixed bounded number of agents behaves causally, while all others behave stubbornly.

Assume that at most t ≥ 0 agents behave causally, while all other agents are stub-
born. Our goal is to provide a dedicated self-composition of the given FO transition sys-
tem T  which takes care of the particular agent model, while preserving stratification and 
guardedness of the transition system. In the case that there are at most t causal agents, 
the informedness predicate I may receive only finitely many values. These finitely many 
values, however, can be encoded into the program points of the transformed FO transition 
system itself. Updates to I now, however, show up as assumptions at certain control flow 
edges.

Let y1,… , yt denote a sequence of t distinct fresh variables. The initial program point 
of the self-composition Pc,t

a
(T) then is given by ⟨v0, ∅⟩ , since no causal agent is informed 

in the beginning. Now consider the substitution � at an edge e = (u, �, v) of T  possibly 
modifying predicates R1,… ,Rk . Let �0,… , �r = P(c)

a
� denote the sequence of substitutions 

of P(c)
a
(T) meant to simulate � , where the last substitution �r is the update to the predi-

cate I . Let ue,1,… , ue,r denote the auxiliary nodes introduced by P(c)
a
(T) for simulating the 

sequence of substitutions P(c)
a
� . Let Y ⊂ Y � ⊆ {y1,… , yt} where Y is the set of informed 

causal agents before the execution of �0,… , �r , and Y ′ a possible set of causal agents 
informed afterwards.

First assume that � does not query a choice predicate, i.e., none of the substitutions �j 
mentions the predicate I . Then Pc,t

a
(T) has edges

• (⟨u, Y⟩, �0, ⟨ue,1, Y⟩), (⟨ue,1, Y⟩, �1, ⟨ue,2, Y⟩),… , (⟨ue,r−1, Y⟩, �e,r−1, ⟨ue,r, Y⟩) ; together 
with

• (⟨ue,r, Y⟩, ��, ⟨v,Y⟩) where �� is the identical substitution, and
• (⟨ue,r, Y⟩, (gY ,Y � ;��), ⟨v, Y �⟩) where the assumption gY ,Y ′ is given by 

where z̄j are lists of distinct FO variables of appropriate length and z̄ is an enumeration of 
all variables occurring in any of the z̄j . Assuming that all agents in Y are already informed, 
the assumption gY .Y ′ implies that at the new node ⟨v,Y ′⟩ , (at least) all agents from Y ′ are 
informed.

Finally, assume that � is an update querying a choice predicate C. Then the same con-
struction applies — only that in the substitutions �0,… , �r−1 the literals I(x) and ¬I(x) must 
be replaced with the formulas

respectively. The correctness of the transformation can be proven along the same lines as 
Theorem 10. Theorems 8 and 5 can still be applied, since no assumptions are introduced 
inside strongly connected components. Therefore, we finally obtain:

Theorem  12 Consider a FO transition system T  and declassification formulas satisfy-
ing the same assumptions as in theorem 11, and assume that at most t ≥ 0 of the agents 

⋀

y�∈Y ��Y

k⋁

j=1

∃z̄.¬(Rjy
�z̄j ↔ R�

j
y�z̄j)

⋁

y�∈Y

x = y� and
⋀

y�∈Y

x ≠ y�
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participating in T  are causal, while all other agents are stubborn. Then NDA for T  is 
effectively decidable.   ◻

Example 13 Consider again the FO transition system from Fig.  1, but now with causal 
agents and the self-composition P(c)

a
(T) where informedness of agents is maintained via the 

explicit auxiliary predicate I . Interestingly, the fixpoint iteration for proving the invariant 
(34) still terminates with a rather complicated inductive invariant. The latter, however, is 
not weak enough to prove NDA. In fact, this property cannot be guaranteed, as is indicated 
by the following counterexample:

Intuitively, pc member a has declared conflict with paper p, but has been assigned paper 
p′ . Pc member a′ on the other hand, has declared no conflict and has been assigned both 
papers p and p′ . Since pc members a, a′ share a common paper p′ for which both have 
received a report, they may start a discussion on paper p′ . This discussion can be used by 
a′ to leak secret information on paper p, i.e., depending on the received report on p, a′ may 
contribute d1 or d2 to the discussion of p′ .   ◻

11  Conclusion

We have investigated FO transition systems where all substitutions are either guarded 
updates or guarded resets. For these, we observed that the exact weakest pre-condition of a 
universal FO formula is again a universal FO formula, thus allowing us to realize a fixpoint 
computation of iterated strengthening for proving the validity of universal invariants. In 
order to identify subclasses of FO transition systems where termination can be guaranteed, 
we relied on a natural notion of stratification. Here, we were able to prove termination (and 
thus decidability) for three interesting subclasses of stratified guarded FO transition sys-
tems. However, it remains as an open question whether termination can be proven for all 
FO transition systems with stratified guarded updates and resets.

In the second part, we applied the obtained termination results to multi-agent systems 
encoded as FO transition systems. This formalism subsumes the workflow language as 
considered in [3] for analyzing noninterference in presence of declassification and agent 
coalitions (NDA). We indicated how NDA can be naturally encoded as a universal invari-
ant of suitably defined self-compositions of the given FO transition systems [27, 28]. At 
least for the case of stubborn agents [16], i.e., agents who do not participate in adversarial 
coalitions and for the case where the number of causal agents is bounded, our novel decid-
ability results translate into decidability of NDA.

Acknowledgements This work was supported by Shota Rustaveli National Science Foundation of Georgia 
under the project FR-21-7973.

U = {a, a�, p, p�, r, r1, r2, d1, d2}

I ���� = {(a, p)}

I ������ = {(a, p�), (a�, p), (a�, p�)}

I ������ = {(a, p�, r), (a�, p�, r), (a�, p, r1)}

I ������� = {(a, p�, r), (a�, p�, r), (a�, p, r2)}

I ������� = {(a, a�, p�, d1)}

I �������� = {(a, a�, p�, d2)}
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