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Abstract
This work proposes a novel model and numerical formulation for lubricated contact problems describing the mutual inter-
action between two deformable 3D solid bodies and an interposed fluid film. The solid bodies are consistently described 
based on nonlinear continuum mechanics allowing for finite deformations and arbitrary constitutive laws. The fluid film 
is modelled as a quasi-2D flow problem governed by the (thickness-)averaged Reynolds equation. In contrast to existing 
approaches, the proposed model accounts for the co-existence of frictional contact tractions and hydrodynamic fluid tractions 
at every local point on the contact surface of the interacting bodies and covers the entire range of lubrication in one unified 
modelling framework with smooth transition between these different regimes. From a physical point of view, this approach 
can be considered as a model for the elastic deformation of asperities on the lubricated contact surfaces. The finite element 
method is applied for spatial discretization of the 3D solid-mechanical problems and the 2D interface effects, consisting 
of the averaged Reynolds equation governing the fluid film and the non-penetration constraint of the mechanical contact 
problem. A consistent and accurate model behavior is demonstrated by studying several challenging benchmark test cases.

Keywords  Mixed lubrication · Asperity contact · Averaged Reynolds equation · Large deformation

1  Introduction

The development of a new model and numerical formula-
tion that allows for the investigation of the transition from 
boundary lubrication to elastohydrodynamic lubrication 
(EHL) of lubricated contact problems is the focus of this 
contribution. The interaction of contacting surfaces sepa-
rated by a thin fluid film is of great importance in various 
engineering and biomechanical applications. It is related 

both to the large field of contact problems as well as to the 
wide field of fluid–structure interaction (FSI) problems 
involving the relative motion, and possibly, the deforma-
tions of solids upon their interaction with fluids. Many areas 
that correspond to these type of problems, mainly vary in 
space scales, time scales, operating conditions, and material 
properties. This broad range prohibits the use of one type of 
approach fitting for all these problems, and requires the use 
of specific methods tailored for the questions and problems 
of interest. One approach would be to try to tackle lubri-
cated contact problems starting from a full FSI approach, i.e. 
using a 3D fluid model goverend by the Navier–Stokes equa-
tions. Among others, this would allow to handle scenarios 
where both lubricated contact regions as well as larger flow 
fields, that are connected to it and are also interacting with 
deformable solids, need to be handled. However, most FSI 
approaches are unable to handle topology changes or contact 
scenarios. Recently, novel approaches and models that allow 
such scenarios have been introduced for example in [1, 2]. 
Classically, however, lubrication type problems are based 
on a reduced, thickness-averaged fluid model defined on the 
2D interface between the interacting bodies. Therefore, the 
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lubricated contact problem is a particular kind of FSI prob-
lem, in which the fluid part is modeled using the thickness-
averaged Reynolds equation upon adopting the thin-film 
approximation. The continuum mechanics problem under-
lying the solid domain in the existing lubrication approaches 
is typically modeled using linear elasticity frameworks by 
assuming small deformations and a linear elastic material 
behavior, further simplified often in combination with addi-
tional linear elastic half-space approximations [3–5]. The 
use of linear elasticity and half-space approximations works 
well for hard EHL problems, while in soft EHL problems, 
this approach may not be suitable due to the large deforma-
tions and associated geometrical and material nonlineari-
ties occuring in this application. Formulations investigating 
the EHL of two high-stiffness elements, such as spur gears 
or ball bearings, are known as hard EHL. Relatively high 
pressures feature those applications, consequently making 
the effect of pressure-dependent viscosity (piezo-viscosity) 
important in hard EHL. On the other hand, soft EHL is con-
sidered for applications in which one or both of the lubri-
cated bodies are characterized by a soft material behavior, 
such as rubber seals or wet tires. Another major application 
area for soft EHL models are biotribological systems, with 
examples being synovial joints, contact-lens lubrication, eye 
eyelid contact, human skin contacts, and oral processing of 
food (e.g., [6–9]). Thereby, large elastic deformations take 
place despite low fluid pressure, making the problem more 
complex from a modeling point of view. The focus of this 
paper is on the more challenging case of soft EHL problems 
possibly including the above mentioned different lubrication 
regimes and, in particular, on the consistent representation 
of finite deformations and the (possibly nonlinear) material 
behavior in the solid domain.

By definition, application areas in the lubrication field are 
multi-disciplinary in nature combining aspects, e.g., from 
solid mechanics to tribology and further to hydrodynam-
ics and different application areas like, for example, biome-
chanics. This vast range of fields involving lubrication phe-
nomena urges an in-depth theoretical understanding of the 
fundamental physics. However, only a small portion of the 
lubrication problems can be studied analytically as usually 
significant simplifications, e.g. of the geometry, are required. 
Experimental investigations in this field comprise initial 
studies on the lubricant-roller bearing interactions [10]. 
Although helpful for studying various material character-
istics like lubricant viscosity [11] and counter checking the 
theoretical analysis, the high costs and the limited accessibil-
ity of certain quantities and physical fields in experimental 
investigations are major hindrances that do not favor their 
extensive application. Therefore, numerical modeling can 
be considered as a highly promising approach to study the 
general class of lubricated contact problems. The focus in 
this paper is set on the macroscopic continuum perspective 

of describing the interaction between the fluid lubricant 
and the confining solid bodies, rather than computationally 
expensive microscopic approaches, explicitly resolving the 
length scale of individual surface asperities and the associ-
ated 3D flow problem by direct numerical simulation of the 
Navier–Stokes equation.

In recent times, the Tribology community is paying 
increased attention to mixed lubrication models. In typical 
engineering applications, the nominal contact area is differ-
ent from the real contact area, which means that the contact-
ing surfaces interact at discrete points due to the asperities’ 
presence (attributed to surface roughness). Hence, when 
mechanical contact is established between the peaks of sur-
face asperities on the contacting interfaces, resulting e.g. 
from the high applied load, the high surface roughness or the 
low relative sliding velocities, the problem enters into the 
mixed lubrication regime. At this point, the load-carrying 
role is shared between the surface asperities as well as the 
lubricant. In this case, the effect of surface roughness also 
needs to be considered. Researchers have proposed various 
stochastic models to deal with surface roughness by statisti-
cal parameters, with the first approaches dating back to the 
pioneering work of Patir and Cheng (PC) [12, 13]. They 
solved the rough surface model problems and derived an 
averaged flow model based on representative flow factors. 
These flow factors are included as coefficients in a modified 
Reynolds equation solved on a smooth macroscale domain 
without resolving asperities. This distinguishes the problem 
in view of the averaged effects from the deterministic rough-
ness. Furthermore, the mixed lubrication necessitates mod-
eling the asperity contact constraints. First fully-coupled and 
monolithic system approaches to resolve lubricated contacts 
were presented in [14]. Later on, a semi-system approach 
was presented, which could handle EHL problems in a wide 
range of operating conditions by enhancing the contribu-
tion of the right-hand side of the Reynolds equation [15]. 
A model to manage the EHL region and the asperity con-
tact region simultaneously for the first time was proposed in 
[16]. They solved the Reynolds equation in the EHL region 
by utilizing a multi-grid scheme and treated negative film 
thickness as penetration to get asperity contact pressure by 
de-convolution in the asperity contact region. Afterwards a 
unified model in succession was published, where the Reyn-
olds equation was employed in the whole interaction area 
[17]. In 2000, EHL formulations were improved towards 
higher numerical efficiency due to localized couplings and, 
therefore sparsely populated matrices [18]. Azam et al. pre-
sented a model to simulate the tribofilm growth within the 
unified mixed lubrication framework [19]. The limitation of 
all these studies was the fact that all of them relied on the 
linear elastic half-space approximation.

The first contributions towards the nonlinear finite 
deformation regime were made in [20–22] for the soft EHL 
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problem underlying elastomeric seals. In those works, the 
sliding rod and housing of the seal are assumed to be rigid 
bodies, which circumvents the interface coupling modeling. 
In [23] the transient averaged Reynolds equation for the 
computation of soft EHL was solved based on the strong 
coupling of a nonlinear finite element model. Their method 
is an extension of the study in [22] which realize the mixed 
lubrication case by an exponential contact model using the 
critical film thickness and contact pressure estimated from 
experiments and is restricted to planar or axisymmetric 
geometries. In the meanwhile, new robust techniques for 
interface discretization such as the mortar method were 
developed to tie non-matching meshes and also in the con-
text of frictional contact mechanics. The first application 
of mortar finite element discretizations to lubricated con-
tact problems was performed in [24]. Therein, the lubricant 
film thickness is directly related to the gap between the 
deforming bodies’ surfaces by means of mortar projection. 
In turn, the fluid forces are prescribed to the solids’ sur-
faces, leading to a flexible formulation, applicable to a wide 
range of lubricated contact problems in the full respectively 
elastohydrodynamic lubrication regime. Recently in [25] a 
monolithic finite-element framework was proposed to solve 
thin-film flow in a contact interface between a deformable 
solid with resolved asperities and a rigid flat surface. In their 
model, identifying the local status of each interface element 
is required to distinguish between contact and fluid flow and 
then, the respected domains are solved separately as either 
dry contact or lubrication problem. The fluid flow is solved 
using a simplified version of the Reynolds equation without 
considering the tangential relative motion of the solid walls. 
All the works mentioned above have tried to introduce a 
suitable approach to solve the lubricated contact problems. 
However, they lack contact between two deformable sol-
ids with arbitrary surface geometries and do not address 
the mixed lubrication regime along with other lubrication 
regimes in a unified manner. Therefore, developing a com-
prehensive tool is necessary to treat all the complexities 
involved in lubricated contact problems simultaneously.

The present paper now closes the gap of existing 
approaches by developing an averaged model for the lubri-
cated contact between deformable 3D solid bodies based on 
a novel approach. The solid bodies are consistently char-
acterized using nonlinear continuum mechanics granting 
consideration of finite deformations and arbitrary constitu-
tive laws. The fluid film is described as a quasi 2D flow 
problem on the interface between the solids governed by the 
averaged Reynolds equation. The averaged Reynolds equa-
tion accounts implicitly for surface roughness employing 
spatially homogenized, effective fluid parameters. Contrary 
to the existing approaches, the proposed model considers 
the co-existence of frictional contact tractions and hydro-
dynamic fluid tractions at every local point on the contact 

surface of the interacting solids, leading to a unified frame-
work capable of modeling the full range of lubrication 
regimes from boundary to full film lubrication in a continu-
ous way with smooth transition. Furthermore, it combines 
the advantages of classical penalty and Lagrange multiplier 
methods by expressing the mechanical contact pressure as a 
function of the effective gap between the solid bodies while 
limiting the minimal gap value taking place at the limit of 
infinitely high contact pressures. The finite element method 
is applied for spatial discretization of the problem allowing 
the possible application of the model to very general and 
complex geometries. The mechanical contact tractions are 
discretized by variationally consistent mortar methods. A 
consistent and accurate model behavior is demonstrated and 
validated by employing several challenging and practically 
relevant benchmark test cases. The ability of the model to 
accurately represent the velocity-dependent friction coeffi-
cient of the different lubrication regimes (i.e. mixed, elasto-
hydrodynamic and full film lubrication) according to the 
well-known Stribek curve is also demonstrated via test 
cases. Eventually, a parametric study is performed to analyze 
the effect of regularization parameter choice.

The outline of this paper is as follows: In Sect. 2, the 
lubricated contact model for rough, thin-film FSI is depicted. 
In Sect. 3, the solid domain’s governing equations, lubri-
cation domain, and the conditions on their coupling and 
contact interface are discussed. A particular focus is set on 
the contact behavior of rough surfaces, the choice of the 
regularization function, and regularized contact conditions. 
This is followed by presenting the proposed finite element 
formulations in Sect. 4, including a derivation of the weak 
form and the discretization of the individual fields. The 
computational results of several challenging examples are 
presented in Sect. 5, demonstrating the capability of the pro-
posed computational model to serve as a valuable tool for 
complex applications in lubricated contact problems includ-
ing solids undergoing large deformation and nonlinear mate-
rial behavior.

2 � Lubricated Contact Model

In this section, we introduce the general modeling approach 
for the proposed lubricated contact framework. The different 
lubrication regimes shall be explained with the help of the 
Stribek curve [4], depicted in Fig. 1. It schematically shows 
the transition of the lubrication condition along with a change 
of the frictional coefficient with respect to increasing relative 
sliding velocity of the contacting surfaces. For a more detailed 
presentation of the distinct lubrication regimes, the interested 
reader is referred to the corresponding literature [4]. To under-
stand the lubricated contact problem better, we focus on mixed 
lubrication. The friction condition, where solid as well as 
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hydrodynamic friction components in lubricated contacts are 
present at the same time, is called mixed lubrication. Gener-
ally, the transition from hydrodynamic lubrication to mixed 
lubrication is defined by the asperity contact. In mixed lubrica-
tion, the total traction of lubricated contact tlub at a local inter-
face point additively splits into the asperity contact traction tc 
and the lubricant traction tf as shown in Fig. 1. The asperity 
contact occurs when the surfaces of solid bodies approach 
each other and the thickness of the fluid gap in between gets 
very small or even vanishes, which depends on the roughness 
parameters of the contacting surfaces. In this context, the film 
thickness is also termed as contact gap g as it defines the rela-
tive normal distance between the nominal surface profile of 
potentially contacting bodies. In the limiting case when the 
contact gap g tends to zero, the Reynolds equation is no longer 
valid. Therefore, we define a positive regularization thickness 
gmax as regularization of our mathematical model equations, 
which can be interpreted as the maximal possible surface pen-
etration and occurs when surface asperities are completely flat-
tened in the limit of infinite contact pressures. Fortunately, 
there is also a physical interpretation of this regularization 
value: It describes the length scale, across which the transi-
tion from hydrodynamic to mixed lubrication takes place, thus, 
it is a measure for the (spatially averaged) surface roughness. 
Thus, we propose to relate the regularization thickness gmax 
value to the combined root mean square of the roughness of 
the contacting surfaces

Here, Rq,1 and Rq,2 are the root-mean-square roughnesses 
Rq of the contacting surfaces 1 and 2, respectively. In this 
work, under the assumption of a Gaussian distribution of the 

(1)Rq =
√

R2
q,1

+ R2
q,2

surface profile, the regularization thickness gmax ≈ 3 ⋅ Rq is 
used. However, we do not resolve individual asperities in 
contact and only the effective influence of the microscale 
surface roughness on the macroscale mechanics are taken 
into account in terms of statistical parameters incorporated 
in the large-scale model using the Patir and Cheng average 
flow model [12, 13]. Following this analogy, the film thick-
ness h used in the Reynolds equation reads as

By these definitions, now the film thickness holds always 
positive h > 0 , although the contact gap g can be positive or 
negative. A negative value g < 0 means penetration, which 
is the case when contact normal pressure pn is acting. A 
positive value g > 0 means the bodies are not in contact, i.e. 
contact normal pressure pn is zero. In Fig. 2, a schematic 
view of the final regularized model for the lubricated con-
tact problem is presented, where all involved physical and 
numerical parameters are shown. It should be mentioned 
that we consider a combined surface roughness on one side, 
equivalent to the roughness of two contacting surfaces. In 
this work, a regularization function ĝ(pn) for the contact con-
straint in the regularized layer in the case of negative con-
tact gap g < 0 is defined by an exponential relation between 
regularized film thickness ĝ and asperity contact normal 
pressure pn according to

While the regularization thickness gmax is a measure 
for the height of surface asperities, in a similar fashion, 

(2)h = g + gmax

(3)ĝ(pn) = gmax

(
1 − e

−
1

gmax ⋅𝜅
⋅pn
)

Fig. 1   a Lubrication regimes. b Schematic of total pressure in mixed lubrication



Tribology Letters (2023) 71:11	

1 3

Page 5 of 25  11

regularization stiffness � can be interpreted as a measure 
for the stiffness of surface asperities. More precisely, the 
regularization stiffness � represents the initial gradient of 
the asperity contact pressure curve (Fig. 2).

Considering the strain measure �Layer in the regularized layer 
which can be defined as

Then, the stiffness of surface asperities in the regularized 
layer reads as

where E′ is the physical stiffness of the layer and is denoted 
as

There are two limit cases which need to be considered to 
determine E′ . First case is when E′ value is equal to or higher 
than E , representing the bodies with very stiff asperities, 
which will lead to infinite value of pn as soon as the bodies 
come into contact. On the other hand, the second case is 
when E′ value is far smaller than E . This case means that the 
asperities are too elastic and very small pn can deform them 
largely. Therefore, as soon as contact appears, the surface 

(4)
𝜕pn

𝜕ĝ
‖ĝ=0 = 𝜅

(5)�Layer =
g

gmax

− 1

(6)
𝜅 =

𝜕pn

𝜕ĝ
=

𝜕pn

𝜕𝜀Layer
⋅

𝜕𝜀Layer

𝜕ĝ
=

𝜕pn

𝜕𝜀Layer
���

E�

⋅

1

gmax

,

(7)E� = � ⋅ gmax

asperities are completely flattened which again leads to infi-
nite pn . By these definitions, the regularization stiffness � in 
this work is chosen as

Indeed, physically speaking the regularization is represent-
ing the compression of the surface asperities in occurrence 
of asperity contact. In this sense, tlub will be an additional 
contributing to the interface traction. Alternatively the regu-
larization thickness gmax and the regularization stiffness � 
can also be determined by fitting these parameters to experi-
mental data (see e.g. [26, 27]).

Remark  This model is made for lubrication problems focus-
ing on mixed lubrication and transition between mixed and 
full film lubrication, i.e. boundary lubrication is the limit 
where still local fluid domains are present, meaning the 
resulting asperity contact traction tlub is considered the 
same as for dry contact in the limit of vanishing velocity 
and will be determined solely using the regularized contact 
constraints. Therefore, the theoretical case that the surface 
asperities are completely flattened by (infinitely) high exter-
nal forces, which would lead to a vanishing film thickness 
h = 0 and, thus, to infinite pressure values in the Reynolds 
equation, are beyond the scope of the presented model. 
This means, for practically relevant loading, the minimal 
values of the film thickness h will always be well above zero. 
However, to make the numerical model more robust it is 

(8)
� ≈

E

10
⏟⏟⏟

E�

⋅

1

gmax

Fig. 2   a Schematic of the thin film flow between surfaces in relative motion. b Regularization function: relation between asperity contact pres-
sure and the regularized film thickness
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recommended to add a small tolerance 0 < TOL ≤ 1 to gmax 
in Eq. (3) comparing to gmax in Eq. (2) such that

According to Eq. (9), the scenario of infinitely high mechan-
ical contact pressures, which leads to ĝ = gmax according to 
Eq. (3), results in a non-zero film thickness

This can ensure that also in presence of numerical discre-
tization and round-off errors as well as in non-equilibrium 
configurations arising during the iterations of the non-linear 
solver (e.g. Newton–Raphson), fluid film thickness values 
close/equal to zero can be avoided resulting in a more robust 
solution scheme.

3 � Governing Equations for Large 
Deformation Lubricated Contact Problem

The lubricated contact problem statement involves charac-
terising equations for the solid field, the lubrication field, 
their respective coupling and the contact interaction. The 
solid equations are based on the initial boundary value prob-
lem (IBVP) of finite deformation elastodynamics, which can 
be derived from considerations of non-linear kinematics, 
stress and strain measures and the balances of linear and 
angular momentum.

The IBVP is supplemented by the lubricated-contact-spe-
cific traction boundary condition on the lubrication interface 

(9)gmax‖Eq. (3)
= (1 − TOL)gmax‖Eq. (2)

(10)
h =g‖g<0 + gmax = ĝ + gmax = −gmax(1 − TOL)

+ gmax = TOL ∗ gmax

which includes the fluid tractions related to the pressure 
solution of the Reynolds equation and in the case of mixed 
lubrication and mechanical contact occurrence, the asperity 
contact contribution to the interface traction vector.

The lubricant behaviour is determined by the aver-
aged Reynolds equation in conjunction with the cavita-
tion condition, which will be detailed in Sect. 3.2. As, in 
our case, the displacement solution is time-dependent, the 
lubrication field is not stationary in the context of such 
coupled problems. A lubricated contact problem involv-
ing two deformable solid bodies and a thin lubricant film 
in between is considered. Figure 3 gives an overview of 
the two-body lubricated contact problem setup. The open 
sets Ω(i)

0
⊂ ℝ

n and Ω(i)
t ⊂ ℝ

n, i = 1, 2, n = 2, 3 represent the 
two domains of the solid bodies in the reference and cur-
rent configuration, respectively, traced by a bijective and 
orientation preserving mapping Ω(i)

t = �t(Ω
(i)

0
) . As usual, 

upper case letters refer to quantities in the refrence configu-
ration and lower case letters to the current configuration. 
The boundaries �Ω(i)

0
 are divided into three distinct subsets

where Γ(i)
u

 and Γ(i)
�

 are the Dirichlet and Neumann boundaries 
with prescribed displacements and tractions, respectively. 
Γ
(i)

l
 represent the lubricated boundaries which are specific 

to lubricated contact problems and specifies the part of the 
boundary where the contact (in this framework, presumed 
to be either lubricated or dry) develops.

(11)�Ω
(i)

0
= Γ(i)

u
∪ Γ(i)

�
∪ Γ

(i)

l

(12)Γ(i)
u
∩ Γ(i)

�
= Γ(i)

u
∩ Γ

(i)

l
= Γ

(i)

l
∩ Γ(i)

�
= �,

Fig. 3   a 3D domain of the two-body lubricated contact problem visualized in 2D. b Lubrication domain, 2D interface domain of a 3D problem
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The counterparts of the boundaries in the current configu-
ration are denoted as � (i)

u
 , � (i)

�
 and � (i)

l
 . In accordance to the 

notation in contact mechanics, Γ(1)

l
 will be referred to as the 

slave surface and Γ(2)

l
 is the master surface. The lubrication 

domain, which is a manifold with one dimension less than the 
solid domains and, in 3D problems, which is the underlying 
surface for solving the averaged Reynolds equation, equals the 
slave surface. In the reference configuration, it is denoted as

This particular definition will become relevant for the defi-
nition of the discrete coupling in Sect. 4. For the moment, 
it can be interpreted as a tied coupling of the lubrication 
domain and the slave surface. On the contrary, the location 
of the master surface Γ(2)

l
 is unknown a priori and needs to 

be determined by normal projection of the slave surface.
As shown in Fig. 3, the lubricated contact domain Ωf , taken 

as the part of the slave surface Γ(1)

l
 is divided into two differ-

ent subdomains, Ωfl
 with a positive pressure and Ωfc

 where 
the lubricant has cavitations and is ruptured. ΓfD

 is the sur-
face where the Dirichlet boundary conditions (on pressure) 
are prescribed for the averaged Reynolds equation. ΓfR

 , which 
is called the Reynolds boundary, is the boundary between Ωfl

 
and Ωfc

 . These definitions result in:

3.1 � Solid Part

The solid phase of a lubricated contact problem is governed 
by the well-known initial boundary value problem (IBVP) of 
finite deformation elastodynamics formulated in the reference 
configuration Ω(i)

0
 , which reads as follows:

Herein, F(i) , P(i) and S(i) are the material deformation gradi-
ent as well as first and second Piola–Kirchhoff stress tensor. 
N(i) is the outward pointing normal vector on Γ(i)

�
 . b̂

(i)

0
 and 

t̂
(i)

0
 refer to the external body forces and tractions, which are 

defined with respect to the undeformed unit volume and sur-
face, respectively. T  is the end of the considered time inter-
val. Equation (15) involves partial derivatives with respect to 
time, i.e. the accelerations ü(i) . Hence, additional conditions 
on the displacements u(i) and velocities v(i) = u̇(i) at the initial 
time t = 0 need to be defined:

(13)Ωf = Γ
(1)

l

(14)Ωf = Ωfl
∪ Ωfc

(15)𝜌(i)ü(i) = � ⋅

(
F(i)

⋅ S(i)
)
+ b̂

(i)

0
in Ω

(i)

0
× (0, T],

(16)u(i) = û
(i)

0
on Γ(i)

u
× (0, T],

(17)P(i)
⋅ N(i) = t̂

(i)

0
on Γ(i)

𝜎
× (0, T]

The IBVP needs to be supplemented by a suitable constitu-
tive model in order to define a relation between the stresses 
and strains. For simplicity, a widely used, isotropic, hyper-
elastic constitutive law, known as the Neo-Hookean model, 
has been utilized for all the analyses in this work. For such 
hyperelastic materials the constitutive relations are fully 
defined by the strain energy function �ΨNH , and the fourth-
order constitutive tensor ℂ , the Green–Lagrange strain 
tensor E and the second Piola–Kirchhoff stress tensor are 
defined as:

However, it is emphasized that the formulation in this work 
is independent of the material model and no limitation 
has been placed on the solid phase constitutive law. In the 
“Lubricated Contact” context, the solid bodies are subjected 
to the lubricated contact traction t(i)

lub
 , i.e.

where n(i) denotes the outward pointing normal on � (i)
l

 . The 
lubricated contact traction t(i)

lub
 includes contact pressure t(i)c  

and fluid pressure t(i)
f

 contributions and couples the mechani-
cal problems of the two solid bodies interacting via lubri-
cated contact. The contact and fluid pressure contributions 
will be specified in Sects. 3.3 and 3.4.

3.2 � Lubrication Part

Motivated by Sect. 2, the lubricant behaviour is characterized 
by the averaged Reynolds equation which is assumed to be 
valid over a surface domain, that in the current formulation 
is considered to be the slave side of the contacting interface, 
Γ
(1)

l
 , and includes the cavitation contribution and boundary 

conditions prescribing the pressure. The governing equation 
in Ωf × (0, T] is given as

(18)u(i)(X(i), 0) = û(i)(X(i)) in Ω
(i)

0
× 0,

(19)v(i)(X(i), 0) = v̂(i)(X(i)) in Ω
(i)

0
× 0,

(20)S(i) =
�ΨNH

�E
, ℂ =

�2ΨNH

�E2
, E =

1

2
(FTF − I)

(21)� ⋅ n(i) = t
(i)

lub
on �

(i)

l
× (0, T],

(22)t
(i)

lub
= t(i)

c
+ t

(i)

f
,

(23)

𝜕(𝜌h)

𝜕t
+ �̃

⋅

�
−
𝜌h3

12𝜂
Φp�̃p +

𝜌(ṽ(1) − ṽ(2))𝜚

2
Φs +

𝜌(ṽ(1) + ṽ(2))

2
h

�

= 𝜖⟨−p⟩,
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where � denotes the lubricant current mass density, which 
is assumed constant, h is the fluid film thickness, which 
directly relates to solid phase deformation Eq. (2), � marks 
the viscosity of the lubricant, ṽ(1) and ṽ(2) are (tangential) 
projections of slave and master surface velocity vectors onto 
the contact surface fo the interacting solids, the positive sca-
lar � is the penalty parameter and the Macaulay brackets 
⟨.⟩ denotes a ramp function, and p stands for the primary 
unknown of Eq. (23), namely the fluid pressure. It is worth 
to mention that lubricant density and viscosity are taken to 
be constant in this framework, since it addresses the soft 
EHL regime and compressibility as well as piezoviscosity 
effects are not relevant in this context. Otherwise, this is not 
a restriction of the proposed model and it can be extended 
to account for these effects. Φp and Φs are the pressure and 
shear flow factors, respectively, that are the statistical param-
eters from the Patir and Cheng average model [12, 13]. For 
isotropic topographies with Gaussian roughness height dis-
tribution these quantities were obtained through numerical 
simulations carried out for representative domains at the 
microscopic scale and are given as

where � is the standard deviation of surface roughness. Φf  
is the correction factor for roughness and will be used in 
the average shear stress expression in the coupling section. 
The first term of Eq. (23) includes �

�t
 denoting the local time 

derivative, while �̃ in the second term expresses the surface 
gradient operator, i.e. the projection of the total gradient 
onto the slave surface.

The boundary of the lubrication domain is a Dirichlet 
boundary with prescribed conditions on the pressure p:

The considerations on the cavitation region Ωfc
⊆ Ωf and 

the associated boundary ΓfR
 apply accordingly. Their loca-

tions are not explicitly determined but indirectly found as 
part of the solution which adds yet another non-linearity 
to the problem and makes it more difficult to solve. In this 
work, a standard penalty regularization method similar to 
the literature (cf. [24, 28–30]) is followed which transfers 
the original problem to an equivalent complementary prob-
lem. The term on the right hand side of Eq. (23) adds a 

(24)Φp = 1 + 3
(�
h

)2

(25)Φs =
−3

(
�

h

)
− 30

(
�

h

)3

1 + 6
(

�

h

)2

(26)Φf = 1 +
(�
h

)2

,

(27)�Ωf = ΓfD

contribution to the flow in case of negative pressures and 
its magnitude is directly related to the extent of constraint 
violation. This type of constraint enforcement goes along 
with the advantage that no additional unknowns need to be 
determined. Moreover, the location of the Reynolds bound-
ary is automatically found as part of the solution without 
the need of an iterative boundary search and adjustment. 
Dirichlet boundary conditions on the pressure read

The fluid pressure in the cavitation domain Ωfc
 is close to the 

atmosphere pressure, making it negligible in comparison to 
the fluid pressure in the lubrication domain Ωfl

 . As a result, 
it reads

Finally, it has to be noted that the lubricant equation is not 
stationary in the “Lubricated Contact” context. The pressure 
p is a function of time since the lubrication coupling quanti-
ties, namely the film thickness h and surface velocities ṽ(i) , 
are determined from the solid dynamic behaviour. In order 
to make them accessible for the lubrication domain, they 
need to be defined with respect to the coordinates of the 
slave surface. For a point x(1) on the slave surface (in spatial 
configuration), one can find an associated point x̂(2) on the 
master surface by projecting x(1) along its current outward 
normal vector n(1)

l
.

where ẋ(1) and ̂̇x(2) are the material velocities of x(1) and 
x̂(2) , respectively. Special considerations are required for x̂(2) 
and ̂̇x(2) , which are master side quantities associated with 
coordinates X(1) of the slave side via projection. A suitable 
interface map 𝜒 ∶ x̂(2) → 𝛾

(2)

l
 , needs to be defined, which 

will be discussed in more detail later on in Sect. 4. It should 
be noted that following the model description in Sect. 2, 
the value of gmax is considered as constant across the entire 
slave side.

3.3 � Contact Interface

Having mentioned the solid and lubrication problems, we 
turn our focus to the contact interface part. We introduce 
regularized contact conditions which can be interpreted 
as constitutive contact laws on the contact interfaces 

(28)p = p̂, on ΓfD
× (0, T],

(29)p = 0, on Ωfc
× (0, T],

(30)
h‖

𝛾
(1)

l

= −n
(1)

l
⋅ (x(1) − x̂(2)(X(1)))

�������������������������������
g

+gmax

(31)ṽ(1)‖x̂(2) = (Indim − n
(1)

l
⊗ n

(1)

l
) ⋅ ẋ(1)

(32)ṽ(2)‖x̂(2) = (Indim − n
(1)

l
⊗ n

(1)

l
) ⋅ ̂̇x(2)(X(1))
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representing the elastic deformation of surface asperities 
instead of enforcing a strict zero-penetration constraint [26, 
31–39].

We consider again the two body finite deformation lubri-
cated contact problem as mentioned in Fig. 3. Both bodies 
are governed by the IBVP described in Sect. 3.1, enhanced 
with the constraints of frictional contact at the potential con-
tact boundary Γ(i)

l
 . Since the focus is on finite deformations, 

the geometrical contact constraints such as the non-pene-
tration condition have to be satisfied in the current configu-
ration, i.e. they have to be enforced between the potential 
contact surfaces Γ(i)

l
= �t(Γ

(i)

l
) . As mentioned in the begin-

ning of this Section, we will refer to Γ(1)

l
 as the slave surface, 

and to Γ(2)

l
 as the master surface. The slave contact traction 

t
(1)

lub
 acts on the entire contacting interface Ωf in addition to 

the fluid pressure and is decomposed as follows to obtain 
the normal contact pressure pn and the tangential contact 
traction t�,

3.3.1 � Regularized Contact Conditions

Now, we introduce regularized Karush–Kuhn–Tucker (KKT) 
conditions for normal and tangential contact according to the 
lubricated contact model proposed in Sect. 2. The regular-
ized normal contact law is as follows

where ĝ(pn) is the regularization function presented in 
Sect. 2. The contact constraints in tangential direction can 
be formulated via Coulomb friction law on the slave contact 
surface,

where � is the dry solid friction coefficient. Eq. (35) 
requires that the magnitude of the tangential stress vector 
does not exceed the coefficient of friction times the nor-
mal contact pressure. When the tangential stress is less than 
the Coulomb limit ( ‖t𝜏‖ < 𝜇 ⋅ pn ), the continuity equation 
( � ⋅ [‖t�‖ − � ⋅ pn] = 0 ) forces � to be zero and accordingly 
the tangential relative velocity must be zero. This is called 
the stick state. When the tangential stress is at the Coulomb 
limit ( ‖t�‖ = � ⋅ pn ), � may be greater than zero in the con-
tinuity equation and therefore the tangential stress is forced 
to oppose the relative tangential velocity in ( ̃v + 𝛽t𝜏 = 0 ). 
This is called the slip state.

(33)
pn = n ⋅ t

(1)

lub
,

t𝜏 = (1 − n⊗ n) ⋅ t
(1)

lub

(34)
p
n
≥ 0 gmax ≥ −ĝ(p

n
) p

n
⋅ (gmax + ĝ(p

n
)) = 0 on 𝛾

(1)

l
,

(35)
f fr ∶= ‖t𝜏‖ − 𝜇 ⋅ pn ≤ 0 ṽ + 𝛽t𝜏 = 0 𝛽 ≥ 0

𝛽 ⋅ f fr = 0 on 𝛾
(1)

l

Remark  Our framework currently uses a classic Coulomb 
law with a pressure-independent coefficient of friction. 
Nevertheless, the framework allows to use general dry solid 
friction models that depend, e.g., on contact pressure, slid-
ing velocity, or temperature. There is ongoing research on 
how this coefficient of friction depends on contact pressure 
and also potentially on lubricant in dry friction scenarios, 
since asperities are still filled by lubricant even in case of 
very slow tangential movement meaning that the lubricant 
still can influence the dry solid friction coefficient [40–42].

3.4 � Coupling

The strong coupling of the two subproblems i.e., the fluid 
problem and the contact problem, is the crux behind the lubri-
cated contact problem. Primarily, the lubricant film thickness h 
depends on the solid field deformation. In the present formula-
tion, the local film thickness h of the fluid problem is charac-
terized by the projection algorithm that defines the specific 
geometrical dependence of h on displacements of the solid 
field. Secondly, the hydrodynamic pressure p of the fluid prob-
lem defines the fluid contribution t(i)

f
 of the lubricated contact 

traction t(i)
lub

 , acting on the interface of the solid bodies. Accord-
ing to Eq. (22), lubricated contact traction t(i)

lub
 consists of fluid 

traction t(i)
f

 and the asperity contact traction t(i)c  , where the lat-
ter is already explained in Sect. 3.3. It is worth to mention 
again that both of the fluid traction as well as potential contact 
traction acts on the entire lubrication domain (Ωf) , however 
the asperity contact traction t(i)c  can be still zero depending 
on if the gap g is positive or not. According to Eq. (23), t(i)

f
 is 

defined by the fluid pressure, its gradient and the current solid 
geometry, thus

where p and u are governed by the averaged Reynolds equa-
tion and the IBVP of the solid phase respectively, see Eqs. 
(23) and (15). Particularly, the parabolic velocity profile 
assumed by the averaged Reynolds equation leads to the 
following definition for the fluid traction on the slave side:

The term tf
(1)

∥
 consists of the shear stress owing to the Poi-

seuille flow contribution originated by the pressure gradient. 
The term tf

(1)

∦
 includes the normal traction due to the hydro-

(36)t
(i)

f
= t

(i)

f
(p,�p, u),

(37)t
(1)

f
= tf

(1)

∥
+ tf

(1)

∦

(38)tf
(1)

∥
= −

h

2
Φp�̃p

(39)tf
(1)

∦
= −pn

(1)

l
−

𝜂

h

(
ṽ(1) − ṽ(2)

)
2

(Φf + Φs)
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dynamic pressure contribution p , where n(1)
l

 is the outward 
normal of the lubricated boundary Γ(1)

l
 on the slave interface 

in the deformed configuration, and the shear (friction) stress 
resulting from a Couette flow contribution associated with 
the tangential relative velocity (ṽ

(1)−ṽ(2))

2
.

On the master side, the fluid traction is denoted as

where the expression � ∶ �
(1)

l
→ �

(2)

l
 represents a suitable 

mapping from the slave to the master surface.
The averaged Reynolds equation is formulated in an arbi-

trary Lagrangian Eulerian frame on the contact boundary of 
the solid, and this includes an extra coupling [43, 44] due to the 
finite configuration changes. The surface on which the aver-
aged Reynolds equation is defined and solved, is not known 
a priori and comprises a part of the solution of the problem. 
Practically, upon finite element discretization, the positions 
of the nodes of the finite element mesh used to solve the aver-
aged Reynolds equation Eq. (23) depend on the deformation 
of the solid field.

4 � Finite Element Formulation

To formulate the finite element discretization of the lubri-
cated contact problem, we follow the classical finite element 
approach and derive the weak form of the problem with stand-
ard procedures. Therefore, we consider P and Q as the solution 
and weighting function spaces for the fluid pressure field p and 
its variations �p , respectively. U(i) and V(i) are the correspond-
ing function spaces for the displacement field u(i) , (i = 1, 2) 
and its variation �u(i) respectively.

The following sections start with the derivation of the weak 
formulation of the individual subproblems and then, the basics 
of finite element discretization are introduced and applied. 
Finally, the solution strategy is presented for the resulting non-
linear system of equations.

The temporal discretization, based on the generalized-� 
time-integration scheme for the IBVP governing the solid 
domain is not explicitly presented. The reader is referred to 
the following publications for details [45].

4.1 � Solid Part

4.1.1 � Weak Form

The focus here is on the derivation of the weak form of the 
IBVP of the solid bodies; the asperity contact contribution 
and the fluid part of the lubricated contact traction will be 
handled separately in Sect. 4.3. If the particular interpreta-
tion of the weighting functions �u(i) as virtual displacements 
is made, the weak form of the IBVP can be identified as 
the principle of virtual work. After weighting the residuals 

(40)t
(2)

f
= [tf

(1)

∦
− tf

(1)

∥
]◦� ,

of the balance equation Eq. (15) and the boundary condi-
tions on the Neumann Eq. (17) and lubrication boundaries 
Eq. (21), respectively, for both bodies Ω(i)

0
, i = 1, 2 , apply-

ing Gauss divergence theorem and invoking that the virtual 
displacements �u(i) on the Dirichlet boundaries Γ(i)

u
 , the weak 

form of the IBVP of the solid bodies in the reference con-
figuration is obtained.

The first term corresponds to the virtual work �Wlub of the 
lubrication traction including �Wf and �Wc due to the fluid 
film traction t(i)

f
 and contact traction t(i)c  respectively, which 

will be explained in Sect. 4.3. The second and third terms 
are well-known from the classic virtual work principle of 
elastodynamics and denote the kinetic virtual work contribu-
tion �Wkin and the sum of the internal and external virtual 
works �Wint,ext . Summing up, the weak form of the solid part 
of the lubricated contact problem is defined as follows: Find 
u(i) ∈ U

(i) such that

is satisfied for all weighting functions �u(i) ∈ V
(i) . It is note-

worthy, that the standard terms of solid dynamics, namely 
the kinetic, internal and external virtual work contributions 
are expressed in the reference configuration whereas the 
virtual work due to the lubrication loads and the lubrica-
tion equation are formulated with respect to the current 
configuration.

4.1.2 � Discrete Form

The weak form of the solid part of lubricated contact prob-
lem Eq. (42) is continuous with respect to space and time 
and requires discretization. Spatial discretization is per-
formed by employing standard isoparametric finite elements. 
The finite element meshes of the two solid subdomains are 

(41)

G
u
(u, p, 𝛿u)

∶=

2�
i=1

�
G(i)
u
(u(i), p, 𝛿u(i))

�

∶= −

2�
i=1

∫𝛾(i)
l

𝛿u(i) ⋅ t
(i)

lub
d𝛾

�������������������
lubrication traction

+

2�
i=1

⎧⎪⎪⎨⎪⎪⎩
∫Ω(i)

0

𝜌(i)𝛿u(i) ⋅ ü(i)dΩ

���������������������������
kinetic

+∫Ω(i)
0

�
−𝛿u(i) ⋅ b̂

(i)

0
+ 𝛿E(i) ∶ S

(i)
�
dΩ − ∫Γ(i)𝜎 𝛿u(i) ⋅ t̂

(i)

0
dΓ

���������������������������������������������������������������������������������������
int,ext

⎫
⎪⎪⎬⎪⎪⎭

= 0

(42)−�Wkin − �Wint,ext − �Wlub = 0
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non-conforming, resulting in non-matching meshes at the 
lubricated interface. The mesh of the lubrication domain coin-
cides with the mesh on slave surface. The discretization of the 
virtual work contributions �Wkin and �Wint,ext is standard and 
will not be treated here. Instead, it is referred to the available 
literature, such as [46–48]. The focus of this work is set on the 
discretization of the interface phenomena related to lubricated 
contact problems which is explained in Sect. 4.3.

4.2 � Lubrication Part

4.2.1 � Weak Form

The finite element formulation of equations Eqs. (23–29) 
necessitates a transformation of the problem such that weaker 
differentiability requirements are imposed on the solution 
functions for p . In particular, second spatial derivatives of p 
appear in Eq. (23), which will be eliminated in the following 
derivation of the weak form. The weak form is obtained by 
weighting the residuals of the balance equation Eq. (23) and 
integrating them over the respective domain. Moreover, homo-
geneous Neumann boundary conditions are commonly applied 
in EHL [24]. The Dirichlet condition Eq. (28) does not appear 
in the weak formulation, but will be respected by restricting 
the solution and weighting function spaces later on. Employ-
ing the compact notation from Eq. (23), the weak form reads

where �h
�t

 is the time derivative of film thickness which gives 
the squeeze term. The hydrodynamic lubrication problem 
has been transformed into the equivalent weak form, which 
can be stated as: Find p ∈ P such that Eq. (43) is satisfied 
for all weighting functions �p ∈ Q.

4.2.2 � Discrete Form

As explained in Sect. 3, the lubrication domain coincides with 
the slave surface in the continuous setting. This choice is also 
retained after discretization, i.e. the discretized lubrication 
domain in the reference configuration is given by Ωf,0,h = Γ

(1)

l,h
 

and geometrically coinciding lubrication nodes and elements 
are defined. The same shape functions as introduced in Eq. 

(43)

Gf(u, p, 𝛿p) ∶= ∫Ωf

𝜕h

𝜕t
⋅ 𝛿pdΩ

+ ∫Ωf

h3

12𝜂
Φp�̃p ⋅ �̃𝛿pdΩ

− ∫Ωf

𝜀p⟨−p⟩𝛿pdΩ

− ∫Ωf

�
ṽ(1) + ṽ(2)

2
h

�
⋅ �̃𝛿pdΩ

− ∫Ωf

�
ṽ(1) − ṽ(2)

2
𝜚Φs

�
⋅ �̃𝛿pdΩ = 0,

(51) are employed to interpolate the geometry, pressure and 
weighting function values. The discrete version of the weak 
lubricant equation can be written as

with npnod = n
(1)

nod
 denoting the number of lubrication nodes. 

These terms can be identified (from left to right) as Poi-
seuille, squeeze, Couette, shear and cavitation term. It 
should be noted that the integrals are evaluated with respect 
to the deformed geometry Ωf,t and the film thickness hh and 
surface velocities ṽ(i)

h
 are spatially discretized weighted quan-

tities as follow

where the shape function Nk is associated to the slave node k 
and also to the matching lubrication node respectively. The 
weighted gap at slave node k is determined as

where Φk is the dual base shape function associated to the 
slave node k and h is given in Eq. (30). The weighted rela-
tive tangential velocity ṽ(i)

k
 at slave node k is determined as

such that (ṽ
(1)−ṽ(2))

2
 satisfies the requirement of frame indif-

ference, see e.g. [49] for further explanations. With those 
definitions at hand, the final discretized lubrication equation 
Eq. (43) can be obtained in term of global vectors. All terms 
are integrated element-wise and assembled into the global 
residual vector, which is now dependent on displacements 
and pressure

(44)

npnod�
j=1

�
∫Ωf,t

h3
h

12𝜂
Φp�̃Nj ⋅ �̃phdΩ

+ ∫Ωf,t

𝜕hh

𝜕t
⋅ NjdΩ − ∫Ωf,t

𝜀p⟨−ph⟩NjdΩ

− ∫Ωf,t

�
ṽ
(1)

h
+ ṽ

(2)

h

2
hh

�
⋅ �̃NjdΩ

− ∫Ωf,t

�
ṽ
(1)

h
− ṽ

(2)

h

2
𝜚Φs

�
⋅ �̃NjdΩ]𝛿pj = 0

(45)hh =

n
(1)

nod∑
k=1

Nkhk

(46)ṽ
(i)

h
=

n
(1)

nod∑
k=1

Nkṽ
(i)

k
,

(47)hk =
∫
�
(1)

l,h

Φkhd�

∫
�
(1)

l,h

Φkd�
,

(48)ṽ
(i)

k
=

∫
𝛾
(1)

l,h

Φk
(ṽ(1)−ṽ(2))

2
d𝛾

∫
𝛾
(1)

l,h

Φkd𝛾
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4.3 � Fluid and Contact Interface Coupling

4.3.1 � Weak Form

To preapre the subsequent mortar finite element discretization 
of the lubricated contact problem, the virtual work �Wlub of the 
lubrication traction in Eq. (41), including �Wf and �Wc due to 
the fluid film traction t(i)

f
 and contact traction t(i)c  respectively, is 

now explained. The contact traction t(i)c  , Eq. (33) contributes to 
t
(i)

lub
 in case of asperity contact occurrence. Therefore, a vector-

valued Lagrange multiplier field is introduced at the slave side 
of the contact interface, to enforce the mechanical contact con-
straints Eqs. (34) and (35), which can be identified as the nega-
tive slave side contact traction �c = −t

(1)

lub
 . The contact Lagrange 

multiplier is decomposed into a normal part �c
n
 and a tangential 

part �c
t
 analogously to the contact traction in Eq. (34). As men-

tioned in Sect. 3.4, the fluid film traction t(i)
f

 consist of tf
(1)

∥
 con-

tribution due to the Poiseuille flow and tf
(1)

∦
 contribution due to 

the hydrodynamic pressure and a viscous shear stress. Since the 
lubricant equation is solved solely on the slave surface, the pres-
sure distribution p is only known there. Neglecting inertia of 
the lubricant, inserting �c , tf

(1)

∥
 and tf

(1)

∦
 into the virtual work 

expression of the lubrication traction in Eq. (41) and reformula-
tion with respect to the current configuration yields

The expression � ∶ �
(1)

l
→ �

(2)

l
 represents a suitable mapping 

from the slave to the master surface. As the two surfaces are 
subjected to relative motion in lubricated contact problems, 
the mapping is deformation dependent. Thus, the integral 
in Eq. (50) and the fluid traction t(1)

f
 need to be evaluated 

in the current, i.e. deformed configuration. Consequently, 
the weak form of the averaged Reynolds equation, derived 
in Sect. 4.2, needs to be solved on the deformed lubrication 
boundary to allow for a consistent evaluation of the fluid 
film (contact) traction.

4.3.2 � Discrete Form

As already mentioned in Sect. 3.4, the lubricated contact prob-
lem is coupled in the sense that the displacement solution u(i) 
of the solid field is dependent on the lubricated contact traction 
t
(1)

lub
 and the pressure solution p in the lubricant is associated 

with the film thickness h and the surface velocities ṽ(i) defined 

(49)
rp(d, p) = rsqz(d) + rpsl(d, p) + rctt(d)

+ rshr(d) + rcav(d, p) = 0.

(50)

�Wlub = ∫�
(1)

l

(
tf
(1)

∦
+ �

c
)
⋅

(
�u(1) − �u(2)◦�

)
d�

+ ∫�
(1)

l

tf
(1)

∥
⋅

(
�u(1) + �u(2)◦�

)
d�

by the solid problem. Those quantities need to be interchanged 
among the lubrication domain and both solid surfaces. The 
interchange of quantities between the slave surface and the 
lubrication field is straight forward, due to the coinciding 
nodes and shape functions. The coupling between the slave 
and master surface, which are characterized by non-matching 
meshes, is established via mortar discretization, which will 
be introduced in this section. Lastly, the lubrication field and 
the master surface are indirectly coupled. Kinematic master 
surface quantities are mortar projected onto the slave surface.

In the following, the geometry interpolations are introduced 
for the discretization of the lubricated surfaces:

Following the isoparametric concept, the same shape func-
tions will be used for discretization of the displacement u(i)

h
 

and virtual displacement �u(i)
h

 . Here n(1)
nod

 and n(2)
nod

 correspond 
to the number of nodes on the slave and master surface, 
respectively. Discrete nodal positions x(1)

k
 and x(2)

m
 , displace-

ments d(1)
k

 and d(2)
m

 , and virtual displacements �d(1)
k

 and �d(2)
m

 
are introduced on both surfaces. They are vectors of size 
ndim and locally interpolated by N(1)

k
 and N(2)

m
 . Those shape 

functions are associated with the discretization of the bulk 
domains

where n(1)
bnod

 and n(2)
bnod

 correspond to the number of nodes of 
the bulk solids. The fluid film traction t(1)

f
 is solely evaluated 
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on the slave side, and therefore an adequate coupling needs 
to be established in order to obtain its virtual work con-
tribution on the master side, too. In this paper, the mortar 
discretization as presented in [24] is the method of choice. 
To discretize the fluid film traction

where t(1)
j

 is the traction vector at node j. It contains the 
surface gradient of pressure �̃p at the slave node j which 
introduces additional complexity for the lubricated contact 
problem considering that the pressure gradient is not con-
tinuous at each individual node commonly. Thus some 
weighting treatments has to be carried out, which is done 
here following the smoothing procedure applied by Yang and 
Laursen [24]. It should be noted, that the choice of the dis-
crete function space for the fluid traction and the associated 
shape functions Φj is of particular importance regarding the 
mathematical properties and numerical efficiency of the 
mortar coupling.

Remark  In fact, the definition of dual shape functions based 
on a biorthogonality relation with the slave displacement 
shape functions N(1)

k
 will heavily facilitate projections 

between the master and slave side. The dual basis functions 
are constructed such that they fulfill a biorthogonality con-
dition [50]

where �ij denotes the Kronecker symbol, i.e. �ij = 1 if i = j 
and �ij = 0 otherwise. In practice, the easiest way to define 
those dual basis functions is via an element-wise linear com-
bination of the standard shape functions Ni , see e.g. [50]. 
For details on their construction, linearization and applica-
tion to contact mechanics with small and large deformations 
including friction, the reader is referred, for instance, to [34, 
36–38, 51, 52].

The Lagrange multiplier �c representing the asperity 
contact traction is interpolated by dual basis functions Φj , 
similar to Eq. (55) and discrete nodal values �c

j
:

Inserting the virtual displacement interpolation according to 
Eqs. (51), (55), and (57) into Eq. (50) gives

(55)t
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where �h denotes a discrete version of the mapping oper-
ator � . The integrals appearing in Eq. (58) are deforma-
tion-dependent since they are evaluated on the deformed 
slave surface and also due to the discrete mapping opera-
tor �h ∶ �

(1)

l,h
→ �

(2)

l,h
 . They make up the nodal blocks of 

the so-called mortar matrices D[j, k] and M[j,m] , with 
j, k = 1, ..., n

(1)

nod
 and m = 1, ..., n

(2)

nod
 which obviously become 

diagonal when using the dual basis from Eq. (56). Indim 
denotes an identity matrix of size ndim . The evaluation of 
the M[j,m] integral in Eq. (58) requires special considera-
tions, since N(2)

m
 , which is a shape function with respect to 

the parameter space of master side elements, is integrated 
over the slave surface, for which different integration tech-
niques exist [53].

Going back to the discrete virtual work contribution of the 
lubrication traction, Eq. (58) can be expressed in global matrix 
notation as given below. Therein, dT

S
 and dT

M
 denote discrete 

vectors containing slave and master displacement DOFs. A 
more convenient notation can be achieved, when sorting the 
global discrete displacement vector d = (dN, dS, dM) with dN  
containing all the DOFs which are not part of the lubricated 
boundaries.

f lub can be interpreted as the discrete global vector of the 
forces applied by the lubricant and the asperity contact. 
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Next, this lubrication force has to be incorporated in the 
discrete balance of linear momentum, which is done in a 
fully implicit way, and complements the discrete equilibrium 
with a lubrication traction contribution. Applying similar 
finite element discretizations to the other virtual work terms 
in Eq. (42) yields

with the global mass matrix M and the vector of non-linear 
internal forces f int . The external forces f ext are assumed 
to be deformation-independent for the sake of simplicity. 
All the discrete vectors are of size nddof = ndim ⋅ ndnod , where 
nddof refers to the number of displacements DOFs.

The discretization of the interface constraint is not being 
detailed in this paper and interested readers are refered to [27, 
34, 51]. The discrete system derived afterwards includes dis-
crete inequality constraints for normal contact Cnj and Cou-
lomb friction C�j at all slave nodes S which can be treated 
using the nonlinear complementarity (NCP) functions, see e.g. 
[27, 34, 51].

4.3.3 � Overall Formulation for the Coupled Lubricated 
Contact Problem

The fully coupled nonlinear system of equations of the 
lubricated contact problem to be solved for each time step 
comprises the solid Eq. (60) and lubrication equilibrium Eq. 
(49), and finally, the contact NCP functions, Cnj and C�j . All 
in all, we obtain

The two complementarity functions are semi-smooth due 
to the max-function and the Euclidean norm therein. This 
justifies to solve this coupled system of equations monolithi-
cally using a non-smooth version of Newton’s method [54].

To reduce the computational effort, the discrete contact 
Lagrange multipliers, are eliminated from the global system 
of equations Eqs. (61–64) via condensation at a global level. 
Details on the condensation procedure and the consistent 
linearization of the contact complementarity functions in the 
finite deformation case are omitted here, but a step-by-step 
derivation can be found in [36–38]. Accordingly, the remain-
ing linear system to be solved consists of displacement and 
pressure degrees of freedom only:

(60)rd(d, p) = Mü + f int(d) − f ext − f lub(d, p,�
c) = 0

(61)
rd(d, p,�

c) = Mü + f int(d)

− f ext − f lub(d, p,�
c) = 0

(62)rp(d, p) = 0

(63)Cnj(d,�
c) = 0

(64)C�j(d,�
c) = 0

5 � Numerical Results

In the following sections, three numerical examples with 
focus on different aspects of computationally solving lubri-
cated contact problems are presented. To start with, the rela-
tive motion of a cylinder on a rigid, flat surface with zero 
dry contact traction contribution is analyzed to demonstrate 
the principle processes present in the Elastohydrodynamic 
regime including large deformations. Next, an elastic pin 
on rigid plane example is studied which includes dry con-
tact traction contribution. The examination of the elastic pin 
on rigid plane problem proves the ability of the framework 
to correctly model the continuous transition from mixed to 
full film lubrication. Finally, a ball-on-disk Tribometer is 
analyzed, which includes large contact areas, and validates 
the capability of our lubricated contact algorithm to accu-
rately represent the lubricated contact problem during the 
full range of the Stribeck curve by comparing the results 
to experimental studies. For all examples presented in this 
section, eight-noded linear hexahedron elements (HEX8) are 
applied for the spatial discretization of all solid domains 
and four-noded linear quadrilaterals elements (QUAD4), 
which consistently result from the HEX8 elements evaluated 
at element surfaces, for the lubrication domain. Moreover, 
for all examples spatial convergence studies have been per-
formed and verified that the presented results are converged 
and grid-independent. All presented algorithms have been 
implemented in our parallel in-house multiphysics research 
code BACI [55]. A semi-smooth Newton scheme is applied 
to solve the resulting system of nonlinear equations. As 
convergence criterion, a value of 1e−8 has been set for the 
(absolute) L2 norm of the residual vector.

5.1 � Cylinder on a Rigid Flat Surface

In this example, a 2D elastohydrodynamically lubricated line 
contact problem is analyzed to test the performance of the 
formulation with regard to large deformations. As illustrated 
in Fig. 4a, we now consider a thin layer of fluid film between 
the elastic roller (half cylinder) and a rigid flat surface. Two 
simultaneous motions generate pressure inside the fluid film. 
The rigid surface is moving with a velocity u in positive 
x-direction, while the cylinder is moving vertically in nega-
tive y-direction. The pressure in the fluid film will deform 
the elastic cylinder, and the deformation causes the change 
in the fluid film profile. This problem lies in the full film 
lubrication regime, meaning asperity contact does not exist 

(65)
[
Kdd Kdp

Kpd Kpp

] [
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= −
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in this case, which has been confirmed by several research-
ers with different numerical methods (see, for instance, the 
work by [56]). However, in most of these research works, 
the elastic deformation of the cylinder was evaluated by a 
semi-analytical integral equation, and the fluid phase was 
solved by either finite difference methods or finite element 
methods. These types of semi-analytical approaches can 
only be applied for small deformation problems in which 
there is an analytical relation between the applied pressure 
and the deformation for the solid phase. Another drawback 
of the semi-analytical approach is that the shear stress in the 
fluid film is not considered when computing the solid phase 
deformation. In such approaches, the shear stress is usually 
obtained from post-processing after solving the pressure 
field in the fluid film.

In the present study, a Neo–Hookean material law with 
Young’s modulus E = 10 MPa and Poisson’s ratio � = 0.3 
is utilized for the cylinder. Low Young’s modulus and espe-
cially the low structural rigidity of the cylinder makes this 
problem highly elastic, which gives low pressure magni-
tudes and cause the effect of pressure on viscosity negligi-
ble. Therefore, in this example, an isoviscous lubricant with 
� = 40 mPa s is considered. The penalty parameter for the 
cavitation region is taken to be 108 s/mm.

The radius of the cylinder is 4 mm and the wall thick-
ness is 0.1 mm. The dimensions of the flat do not matter for 
the problem, since the flat is assumed to be long enough in 
negative x direction and rigid. The velocity evolution u of 
the flat is defined by a constant acceleration of 2 mm/s2 and 
an initial velocity of zero. The load is applied as prescribed 
displacement at the two uppermost surfaces of the half cyl-
inder until the total reaction force reaches the desired value. 
In this regard, the cylinder has a constant velocity of − 0.2 
mm/s prescribed as displacement-controlled move on the 
upper surface in (negative) y-direction. The problem is simu-
lated with constant time steps as a quasi two-dimensional 
one, i.e. with one element in wall thickness direction. The 
rigid flat surface is defined as the master surface and the 
bottom surface of the cylinder is defined as the slave sur-
face. The mesh (two dimensional mesh) for the lubrication 
phase is therefore inherited from the cylinder surface. The 

last boundary condition applied on the problem is on the 
lubrication domain. The pressure is set to zero on the in- and 
out-flow side of the lubrication domain. The slave surface 
has 4800 elements, which refers to the full outer boundary 
of the cylinder.

In Fig. 5, the lubricant film thickness and pressure distri-
bution in the lubricant film at the 55th and 150th timestep 
with Δt = 0.05 s are shown. One of the first points stand-
ing out is the graph of the film thickness at 150th timestep, 
caused by the low stiffness of the cylinder. The cylindrical 
geometry is largely distorted and the deformations dominate 
the fluid film profile. Figure 4b shows a considerable dif-
ference compared to the initial configuration Fig. 4a. The 
increase of the film thickness resulting from the concave 
cylinder surface shape at the center of the contact area also 
goes in hand with a change of the pressure distribution, as 
shown in Fig. 5b. In particular, the film thickness curve has 
two minima and almost exactly at those points, the peak 
pressures can be seen.

5.2 � Elastic Pin on Rigid Plane

As second example, a simplified two dimensional elastic 
pin on rigid plane problem is studied, which roughly cor-
responds to the pin-on-disk tribological test. This example 
aims at illustrating the ability of the framework to correctly 
model the continuous transition from mixed to full film 
lubrication. At the beginning, the hyperelastic pin is pressed 
onto a rigid plane with a constant normal reaction force W, 
in order to squeeze out the lubricant and let the asperity 
contact occur (Boundary lubrication). Then, the rigid plane 
begins moving (sliding) to the right with a constant accel-
eration a, whilst the top of the pin is pressed and kept in the 
same vertical postion. This movement generates pressure 
inside the lubricant film which lifts the bottom of the pin 
up, while the top position is still fixed by the DBCs, and 
this elastic deformation of the pin increases the film thick-
ness (full film lubrication). It should be noted that the force 
W is taken as the normal reaction force resulting from the 
prescribed DBC at the top surface of the pin until the total 
reaction force reaches the desired value. In this regard, the 

Fig. 4   The quasi two dimen-
sional elastohydrodynamic 
lubricated contact problem: a 
Initial state along with problem 
schematic. b Deformed configu-
ration at time t = 7.5

(a) (b)
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top of the pin is completely DBC-controlled (in vertical and 
horizontal direction) and it has a prescribed vertical dis-
placement with constant velocity of v in the beginning while 
it is horizontally fixed. Constant time steps are used in this 
example. See Fig. 6 for the schematic of the problem and 
the geometry used in the computations. Geometrical, mate-
rial and process parameters are summarized in Table 1. The 
hyperelastic Neo-Hookean material model is adopted for the 
pin. The dimensions of the plane do not matter for the prob-
lem, since the plane is assumed to be long enough in nega-
tive x direction and rigid. The rigid plane surface is defined 
as the master surface and the bottom surface of the pin is 
defined as the slave surface. The mesh (two dimensional 
mesh) for the lubrication domain is therefore inherited from 
the pin surface. As boundary conditions for the lubrication 
problem the hydrodynamic pressure is prescribed to zero on 
the left and right end of the lubrication domain. The slave 
surface has 40 elements. The range of rigid plane veloci-
ties is specified in Table 1 and corresponds to the product 
of rigid plane velocity and lubricant viscosity U� varying 
between 0 and 1.4e−5 N/m. Film thickness profiles, and 
hydrodynamic and asperity contact pressure distributions are 
illustrated in Fig. 7 for various individual time steps and rep-
resentative value of the product of rigid plane velocities and 
lubricant viscosity U� . The (horizontal) position is meas-
ured along the surface, and the zero value corresponds to the 
horizontal position of the centre of the pin. It can be seen in 
Fig. 7 that in the very beginning, where U� = 0.0 N/m, the 
gap is closed and contact pressure is the only active pressure 
while there is no sliding, i.e. the hydrodynamic pressure is 
zero. After the plane starts to move towards the right with 
constant acceleration, while keeping the constant reaction 
force on the pin, the hydrodynamic pressure initiates which 

can be seen in the graph corresponding to U� = 1.2e−6 N/m 
and is found to increase furthur, at U� = 2.4e−6 N/m while 
the contact pressure is diminishing. With increasing the rigid 
plane velocity, the hydrodynamic pressure develops more 
and becomes the dominant pressure of the system, which can 
be seen in the graph related to U� = 7.2e−6 N/m, and this is 
accompanied with film thickness growth at the same time. 
Further increase of rigid plane velocity induces the pin to lift 
up gradually and the contact pressure to disappear, shown 
in U� = 1e−5 N/m. Graph related to U� = 1.4e−5 N/m cor-
responds to the highest rigid plane velocity considered, lead-
ing to large lubricant film thickness. In this case the gap 
between the plane and the pin is clearly visible. To conclude, 
the elastic pin on rigid plane example, the simulated friction 
coefficient as a function of the product of rigid plane veloc-
ity U and lubricant viscosity � is presented in Fig. 8. The 
friction coefficient is calculated as the ratio of the measured 

Fig. 5   Cylinder on a rigid, flat surface: pressure distributions and the film thicknesses for elastohydrodynamic lubricated contact problem at two 
different time steps: a timestep 55, b timestep 150

Fig. 6   Elastic pin on rigid plane: schematic of problem
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horizontal reaction forces and the vertical force W at the top 
of the pin. It is seen that the solution covers the entire range 
of the Stribeck curve shown in Fig. 1, and also that the fric-
tion coefficient reaches the dry solid friction coefficient for 
very low rigid plane velocities.

5.3 � Ball‑on‑Disk Tribometer

The last example illustrates the application of the present 
model to a fully coupled large deformation lubricated 
contact problem. The setup corresponds to a ball-on-disk 
tribometer studied experimentally in [44]. Therein, an 
elastomeric ball is placed in a grip and is loaded by a 
normal force to be pressed against a rotating rigid flat 
disk. The setup allows testing of steady-state lubrication 
in pure sliding only, and the sliding velocity is adjusted 
by changing the angular velocity of the supporting disk 
and the radial position of the ball. In a first step, the disk 
is assumed to be rigid. At the end of this section, the suit-
ability of our model to represent the lubricated contact 
interaction of two deformable bodies is demonstrated, by 
modeling the disk as a deformable body as well.

In this example, a hyperelastic ball of radius R is 
loaded by a normal force W, thus being pressed against 
a rotating rigid flat disk. The disk is driven with dif-
ferent values of constant angular velocity which results 
in sliding velocities V in the range of 62–690 mm/s for 
a fixed distance of the ball from the axis of rotation. 
The corresponding radius of the sliding path is 42 mm. 
The study is carried out at normal contact force levels 
W equal to 0.25 N, 0.98 N, 5.13 N and 19.3 N which are 
applied via prescribed DBC on the top surface of the ball 
until the total reaction force reaches the desired constant 

steady-state value. See Fig. 9 for the schematic of experi-
mental setup and the finite-element mesh.

The geometrical, material and process parameters are 
presented in Table 2. The hyperelastic behaviour of the 
ball is governed by a Neo-Hookean material model. The 
material properties for the fluid film have been chosen 
according to five different lubricants, namely distilled 
water and four silicone oils (Polsil OM 10, OM 50, OM 
300 and OM 3000). For each lubricant and for each nor-
mal load, the dry friction coefficient has been taken from 
experimental results [44, Fig. 2]. The rigid disk surface 
is defined as the master surface and the bottom surface 
of the ball is defined as the slave surface. The lubrication 
domain with coinciding nodes is defined on the lubri-
cated boundary of the slave surface and a steady-state 
lubrication problem is solved. The mesh (two dimen-
sional mesh) for the lubrication phase is, therefore, 
inherited from the ball bottom surface. The cavitation 
pressure is assumed to be equal to zero, and the Dirichlet 
boundary condition for the Reynolds equation, p = 0 , is 
prescribed at sufficient distance from the contact zone, 
which corresponds to the fully flooded condition. The 
finite element mesh comprises almost 94,000 elements, 
and a total of 284,000 unknowns including nodal dis-
placements of the solid body and pressure degrees of 
freedom on the lubricated contact surface.

5.3.1 � Study of Stribeck Curve

Figure 10 shows the maps of contact gap g for selected 
values of load W along with the fluid pressure and con-
tact pressure contours, all for a value of 0.001 N/m for 
the product of entrainment velocity and viscosity U� , 
where the entrainment velocity is equal to one half of the 
sliding velocity, U = V∕2 . It can be seen that the contact 
gap grows with increasing normal load W. Increasing 
normal load W also goes along with raise of the fluid 
pressure and the contact pressure. Fluid pressure and 
contact pressure profiles along the symmetry plane x = 0 
are shown in Fig. 11 for different values of load W and 
also two different values for the product of entrainment 
velocity and viscosity U� . It can be seen that the contact 
pressure and the fluid pressure increase when raising 
the normal load W. It is also clear that the fluid pres-
sure raises with increasing U� , however, as both values 
of U� correspond to the mixed lubrication regime, the 
contact pressure is the dominant pressure in both cases. 
Figure 12 shows a log–log plot of the calculated friction 
coefficient as a function of the product of viscosity � and 
entrainment velocity U. It should be noted that the fric-
tion coefficient is calculated as the ratio of the measured 
horizontal forces and the vertical force W at the top of the 
ball. Here, the prediction of the presented fully nonlinear 

Table 1   Elastic pin on rigid plane: geometrical, material and process 
parameters

Pin radius 1.5 mm
Pin height and length 1 mm
Plane thickness 1 mm
Cavitation penalty parameter 108 s/mm
Young’s modulus 1e−2 MPa
Poisson’s ratio 0
Lubricant viscosity, � 40 mPa s
Rigid plane velocity, U 0–0.35 mm/s
Friction coefficient of dry solid, � 0.25
Pin constant velocity, v 0.05 mm/s
Plane constant acceleration, a 0.01 mm/s2

gmax 3.0 μm
Regularization stiffness, � 1 MPa/mm
Surface roughness standard deviation, � 1.0 μm
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model is compared to experimental results presented 
in [44]. The results corresponding to a fixed load are 
denoted by markers of the same colour, and the results 
corresponding to a fixed lubricant are denoted by mark-
ers of the same shape, see the legend in Fig. 12. It can 
be seen that the results corresponding to each load form 
a part of the classical Stribeck curve with a transition 

between the results corresponding to the lubricants of 
different viscosity. At high values of U� , the dependence 
of the friction coefficient on U� appears approximately 
linear on the log–log plot which indicates that the con-
tact operates in the hydrodynamic lubrication regime. 
At low values of U� , the contact operates in the mixed 
lubrication regime and the friction coefficient increases 

Fig. 7   Elastic pin on rigid plane: hydrodynamic pressure, contact pressure and film thickness corresponding to different time steps and the prod-
uct of rigid plane velocity and lubricant viscosity U� (increasing from top left to bottom right) for the lubricated contact problem
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with decreasing U� . Considering the dependence on the 
load, it is apparent that the friction coefficient decreases 
with increasing load in the whole range of the examined 
values of U� . The numerical and experimental results are 
in very good agreement during the full range of lubrica-
tion regimes which validates the ability of the devel-
oped framework to model the continuous transition from 
mixed to full film lubrication. Indeed, the dependence 
of the friction coefficient on U� (i.e., the slope on the 
log–log plot) and the dependence on the load are in a 
good agreement.

5.3.2 � Sensitivity of the Formulation for Variations 
of the Regularized Contact Parameters

In the following, the sensitivity of the formulation for 
variations of the regularized contact parameters on the 
lubricated contact model is analyzed. In Sect. 2, regu-
larization thickness gmax and regularization stiffness � 
were introduced. It is seen in Fig. 2 that the regulariza-
tion thickness is added to the film thickness in order to 

keep the lubrication problem resolvable while the asper-
ity contact occurs and the gap closes. A discussion on the 
choice of these parameters value is presented here. For 
all computations in this section, the values in Table 2 are 
used and only specified parameters values are changed 
according to Table  3. The viscosity and disk sliding 
velocity are chosen in a way to represent the mixed lubri-
cation regime, which is relevant to the novelty of this 
study. The normal load is also selected as 5.13 N, in 
order to investigate the case with higher asperity contact 
pressure. Three values for the product of regularization 
stiffness � and gmax are chosen, representing different 
cases. The lowest value 0.175 MPa is equal to 5% of ball 
Young’s modulus which corresponds to the case where 
the surface asperities density is lower, meaning that the 
asperities are less stiff and consequently are flattened 
faster. On the other hand, the highest value 0.5 MPa is 
equal to 20% of ball Young’s modulus which resembles 
the case where the surface asperities density is higher 
and surface asperities resist against the deformation. 

Fig. 8   Elastic pin on rigid plane: friction coefficient as a function of 
the product of rigid plane velocity U and lubricant viscosity �

Fig. 9   Ball-on disk tribometer: a Schematic of experimental setup (Redrawn from [44]), b, c finite element mesh

Table 2   Ball-on-disk tribometer: geometrical, material and process 
parameters

Ball radius 10.7 mm
Disk radius 53 mm
Cavitation penalty parameter 108 s/mm
Ball material-Young’s modulus of Rubber (NBR) 3.5 MPa
Poisson’s ratio 0
Lubricant viscosity at 25 °C, � : Distilled water 0.891 mPa s
� : OM 10 9.42 mPa s
� : OM 50 49.3 mPa s
� : OM 300 339.5 mPa s
� : OM 3000 2735 mPa s
Disk sliding velocity, V 62–690 mm/s
gmax 4 μm
Regularization stiffness, � 1e2 MPa/mm
Ball surface roughness standard deviation, � 1.33 μm
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The latter case correlates to the surface with higher 
roughness.

Figure  13a illustrates the effect of regularization 
parameters, � ⋅ gmax on f luid and contact pressure in 
the symmetry plane x = 0 . It can be observed that con-
tact pressure increases smoothly by adding to � ⋅ gmax . 
From the physical point of view, it completely makes 

sense that the contact pressure gets higher for the sur-
face with higher roughness. It should also be noted that 
the increase in the contact pressure is limited, since the 
study is carried on in low velocity corresponding to 
mixed lubrication. In the mixed lubrication regime, the 
asperity contact pressure is already dominant and large. 
On the other hand, lower values of � ⋅ gmax represent a 

Fig. 10   Ball-on-disk tribometer: a Maps of contact gap g in mm (position in mm). b Contour of fluid pressure. c Contour of contact pressure. All 
figures correspond to the lubricant OM 10 in U� = 0.001 N/m (Scales are different)
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smoother surface which can be seen in the higher fluid 
pressure values obtained. This parameter study reveals 
that the recommended value of regularization param-
eters in Sect. 2 is reasonable and ensures an accurate 
and robust solution of the lubrication problem when the 
contact gap tends to zero.

5.3.3 � Study of two deformable bodies

Finally, the suitability of our model to represent the 
lubricated contact interaction of two deformable bodies 
is demonstrated, by modeling the disk as a deformable 
body as well. The study is carried out at normal load 
levels W equal to 0.25 N, 0.98 N and 5.13 N which are 

applied via prescribed DBC similar to the previous rigid 
disk study. The geometrical, material and process param-
eters for computations in this section are presented in 
Table 4. The hyperelastic behaviour of the disk is also 
governed by a Neo-Hookean material model in this sec-
tion. The lubricant viscosity and disk sliding velocity are 
chosen in a way to correspond to the mixed lubrication 
regime. The elastic disk surface is defined as the mas-
ter surface and the bottom surface of the ball is defined 
as the slave surface. The definition of the lubrication 
domain and its finite element mesh and boundary con-
dition are carried out identical to the setup in study of 
the rigid disk before. The finite element mesh for this 
computation comprises 100,000 elements, and a total of 
300,000 unknowns including nodal displacements of the 
solid body and pressure degrees of freedom on the lubri-
cated contact surface.

The finite element mesh of two deformable bodies 
after deformation is shown in Fig. 14. Figure 15 shows 
the maps of contact gap g for selected value of load 
W along with the fluid pressure and the contact pres-
sure contours for the case of 2.9e−4 N/m for product of 
entrainment velocity and viscosity U� . It can be seen that 
the pressure contours have more maximum points, which 
is as a result of large deformation in this case, similar 

Fig. 11   Ball-on-disk tribometer: profile of fluid pressure and contact pressure in the symmetry plane x = 0 corresponding to different entrain-
ment velocities

Fig. 12   Ball-on-disk tribometer: friction coefficient as a function of 
the product of entrainment velocity U and viscosity � for five lubri-
cants and a range of loads W 

Table 3   Ball-on-disk tribometer: geometrical, material and process 
parameters for sensitivity analysis

Lubricant viscosity at 25 °C, � : OM 10 9.42 mPa s
Disk sliding velocity, V 62 mm/s
� ⋅ gmax 0.175–0.35–0.5 MPa
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to the first example (Cylinder on a rigid, flat surface). 
Fluid pressure and contact pressure profiles along the 

symmetry plane x = 0 are shown in Fig. 13b for different 
values of load W and the product of entrainment velocity 
and viscosity U� = 2.9e−4 N/m. It can be seen that the 
contact pressure and the fluid pressure increase when 
raising the normal load W. The presence of more maxi-
mum points as a result of large deformation also is clear 
in this graph for the contact pressure profile.

6 � Summary/Conclusion

In this paper we propose a novel modeling approach to 
solve lubricated contact problem across the full range 
of lubrication regimes. Critically, the model relies on a 
recently proposed regularization scheme for the mechani-
cal contact constraint combining the advantages of clas-
sical penalty and Lagrange multiplier approaches by 

Fig. 13   Ball-on-disk tribometer: Profile of fluid pressure and contact pressure in the symmetry plane x = 0 corresponding to U� = 2.9e−4 N/m. 
a Effect of regularization parameters � ⋅ gmax . b Two deformable bodies

Table 4   Ball-on-disk tribometer: geometrical, material and process 
parameters for study of two deformable bodies

Ball radius 10.7 mm
Disk radius 53 mm
Cavitation penalty parameter 108 s/mm
Ball material-Young’s modulus of Rubber (NBR) 3.5 MPa
Disk material-Young’s modulus 4.5 MPa
Poisson’s ratio 0
Lubricant viscosity at 25 °C, � : OM 10 9.42 mPa s
Disk sliding velocity, V 62 mm/s
gmax 4 μm
Regularization stiffness, � 1e2 MPa/mm
Ball surface roughness standard deviation, � 1.33 μm

Fig. 14   Ball-on disk tribometer: 
two deformable bodies after 
deformation from two point of 
views
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expressing the mechanical contact pressure as a func-
tion of the effective gap between the solid bodies while 
at the same time limiting the minimal gap value occur-
ring at the (theoretical) limit of infinitely high contact 
pressures. From a methodological point of view, this is 
the key ingredient to regularize the pressure field in the 
averaged Reynolds equation, i.e., to avoid the pressure 
field’s singularity in the limit of vanishing fluid film 
thickness, and thus to enable a smooth transition between 
all relevant lubrication regimes. From a physical point of 
view, this approach can be considered as a model for the 
elastic deformation of surface asperities, with a bounded 
magnitude depending on the interacting solids’ surface 
roughness. To apply the model, this framework com-
bines the Reynolds approximation of the thin film fluid 
equations to describe the fluid behavior on the interface 
and the equations of finite deformation elastodynam-
ics to govern the solid body behavior without impos-
ing restrictions on the constitutive model. Mortar finite 
element methods are employed in order to couple the 
non-matching discretizations at the interface and to allow 
for an imposition of the fluid film tractions on both sur-
faces. This coupling is also utilized in order to relate the 
fluid film thickness and sliding velocity to the displace-
ment field of the solid bodies. Those quantities enter 
to lubrication equation and lead to a fully-coupled, dis-
placement- and pressure-dependent system of equations. 
Concerning frictional contact, dual Lagrange Multipliers 
with regularized contact condition is implemented as the 
contact constraints which utilize a nonlinear complemen-
tary function leading to a semi-smooth Newton method. 
The resulting non-linear, fully-coupled, 3D equations are 
solved monolithically with a non-smooth variant of New-
ton’s method owing to consistent linearization.

This model enables the numerical method to allow 
for a continuous transition throughout changes in the 
lubrication domain for contacting and non-contacting 

solid bodies, which grant to investigate entire lubrica-
tion regimes. Finally, three different numerical examples 
were presented to show the behavior and capabilities of 
the presented model. The first was a typical configura-
tion to analyze the behavior of the lubricated contact 
model in large deformations. The second configuration 
focused on the contacting and lift-off of elastic pin on 
rigid plane configuration in order to show the applica-
bility of the model to full range of lubrication regimes. 
In the final numerical example, to validate the pro-
posed monolithic formulation of the model, we studied 
ball-on-disk Tribometer and compared the results with 
experimental work. A sensitivity study on the included 
regularized contact constraints parameters allowed for 
a specification of a proper range for these parameters.
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