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Abstract

Purpose: The adjustment of medical devices in the operating room is currently done by the circulating nurses. As digital
interfaces for the devices are not foreseeable in the near future and to incorporate legacy devices, the robotic operation of
medical devices is an open topic.

Methods: We propose a teleoperated learning from demonstration process to acquire the high-level device functionality with
given motion primitives. The proposed system is validated using an insufflator as an exemplary medical device.

Results: At the beginning of the proposed learning period, the teacher annotates the user interface to obtain the outline of the
medical device. During the demonstrated interactions, the system observes the state change of the device to generalize logical
rules describing the internal functionality. The combination of the internal logics with the interface annotations enable the
robotic system to adjust the medical device autonomously. To interact with the device, a robotic manipulator with a finger-like
end-effector is used while relying on haptic feedback from torque sensors.

Conclusion: The proposed approach is a first step towards teaching a robotic system to operate medical devices. We aim at
validating the system in an extensive user study with clinical personnel. The logical rule generalization and the logical rule
inference based on computer vision methods will be focused in the future.

Keywords Clinical assistance systems - Intuitive robots - Learning from demonstration - Expert systems - Medical device
adjustment

Purpose major challenges [1]. One approach to ease the situation is the
integration of autonomous self-navigating clinical assistance
systems (ASCAS) into the existing workflows [2]. These
robotic systems can alleviate the workload of healthcare
workers by performing monotonous or physically strenuous
tasks, allowing the human personnel to focus on tasks of
direct patient care.

A mobile service robot currently developed in the scope
of the research project Autonomous Self-Navigating Robotic
Operating Room Assistance (AURORA) is transferring these
concepts into the operating room itself by automating
selected tasks that are currently performed by circulating

In today’s healthcare system, the shortage of qualified per-
sonnel and the resulting overload of healthcare workers pose
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As the development of digital interfaces to control these med-
ical devices is slowed down by strict regulation and security
concerns, the robotic system is required to use the mechani-
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cal, human-centreed interfaces of the medical devices. Using
this approach, legacy devices without digital interfaces can
be incorporated as well.
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Due to the amount of different devices, it is desirable that
the robot learns the device functionality and does not depend
on hard-coded solutions by technical experts. To speed up
the learning process and to ensure proper functionality in a
safety-critical environment, the knowledge of the medical
staff can be utilized by having them supervise the learn-
ing process as a “teacher.” While the interfaces of medical
devices are built with simplicity in mind, the challenge of
teaching a robot to operate the devices is still non-trivial.

This short communication introduces a technical setup and
workflow where a human operator teaches the operation of
medical devices to the robot by interacting with a digital twin
of the device presented in a graphical user interface (GUI).
The robot mirrors the actions taken by the user on the virtual
representation and performs them on the physical device.
This realizes a remote teaching process where the clinical
personnel can teach the robot intuitively without having to
be present in the operating room.

Methods

The clinical environment poses specific challenges on the
learning from demonstration (LfD) problem. As the environ-
ment is time-critical and the equipment is also not available
for extensive training sessions, the learning has to be fast,
and subsequently only a limited amount of data is available
to train on. Additionally, in the operating room, requirements
on safety are high as the patient outcome cannot be endan-
gered. Therefore, many more recent LfD methods, which
focus on learning motion primitives alongside of high-level
plans [3], are not fit for the problem. Instead, we propose
to use an expert system based on Prolog [4] to encode the
internal functionality of the device, which provides an inter-
pretable and explainable model.

For the teleoperated teaching process, we use a similar
approach to [5] where the elements were annotated on a tablet
before experimenting with the operation of the interaction
elements. To localize the devices, we are using ArUco mark-
ers [6] to determine which devices are in sight. Afterwards,
to obtain the exact pose, we use the scale-invariant feature
transform [7] to match the features of the detected device
interface with the camera image. We use the ssocr [8] library
to evaluate seven-segment displays.

The project AURORA aims at developing a mobile service
robot. The mobile platform is not relevant for the isolated task
of the device adjustment and therefore is ignored in this paper.
The robotic setup is shown in Fig. 1. The robot arm PANDA
of FRANKA EMIKA [9] is mounted on top of a static plat-
form. The end-effector consist of a camera and a manipulator
to actuate the medical device. The RGBD camera [11] is
used to read the medical devices and perform collision avoid-
ance during robot arm movements. The manipulator is a fixed
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Fig. 1 Setup consists of the seven degree of freedom, collaborative
robot arm PANDA of FRANKA EMIKA [9] and an insufflator [10] on
a medical equipment cart

finger-like structure without any additional sensors or actua-
tors. To validate the methods, an insufflator [10] is used as an
exemplary medical device. The interface of this insufflator
consists of several push buttons and a rocker to switch on
the device. The device displays the current state using three
seven-segment displays and several bar graphs and LEDs.

Results

The resulting system is discussed by starting with the teach-
ing process from the user’s perspective, before the technical
details are explained. The device representation is discussed
first. Afterwards, the robotic interaction with user interfaces
and the logic engine is outlined.

Teaching process

The complete teaching process (Fig. 2) can be done remotely
with a tablet displaying the GUI. The process is initiated
when the robot detects an unknown device. The first step of
the teaching procedure is the annotation of the user interface
to obtain the external description of the user interface, also
called the affordances of the device. In the beginning, the
user marks the outer bounds of the interface in the camera
image. The robot then moves to centre the device inter-
face in the camera frame. The image of the device interface
is saved alongside the affordances in order to localize the
device. Thereafter, the interaction elements in the interface
are marked and annotated with a button type and a human-
readable name (Fig. 3).

After completing the annotation, the user demonstrates
the usage of the device. The user interacts with a digital twin
of the device interface, which leads to a sequence of com-
mands that the robot performs on the actual device at the
same time. The output state of the device is mirrored back
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to the digital representation such that the user can see the
current state. During this process, the user gets feedback on
the coverage percentage of the elements to derive the overall
teaching progress.

To conclude the teaching, the user tests the ability of the
robot to operate the device by choosing a goal state of the
device and checking if the robot is able to reach it. If an error
occurs, the systems falls back into the demonstration phase
and requires the teacher to add more knowledge. This test is
repeated until the human teacher decides that the device is
completely understood by the robot.

Device representation

The device description is separated into the description of
external elements and internal logic (Fig. 4). The external
description, also referred to as affordances, details the struc-
ture of the physical interface of the device and contains all
interaction elements. The internal logic contains the func-
tionality of the device and describes how the interaction with
the physical elements affect the internal state of the device.
The affordances of the device are the collection of all
interaction elements. Each element is defined by a unique
name, the relative position inside the device interface and an

Fig.2 Visualization of the
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Fig.4 Device description is separated into the external description of
the physical interface (affordances) and the internal description of the
device in form of the logic
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element type. These types are grouped into input and out-
put elements. In [5], an extensive study on robotic actuation
of buttons and switches was conducted, and a categoriza-
tion of those elements by physical properties was introduced.
Those categories pose the subset of input elements. The out-
put elements consist of LEDs, seven-segment displays and
bar graphs.

The internal functionality of the device is represented by
logical clauses describing under which precondition the inter-
action with an element on the interface leads to a certain
outcome. A custom clause action is defined to represent the
logic of the device (Listing 1).
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Fig.3 Annotation software while annotating the insufflator. The elements of the interface are listed on the left, while the interface is visible on the

right. The rocker button to switch the device on is selected
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Listing 1 Prolog definition of the logical rule set

action(element_name, [preconditions], [outcome])

Robot device interaction

The interaction with the device utilized fixed routines that
can operate the elements if given the relative position of the
element in the interface and the element type. By not trying
to learn the control of the robotic arm itself, the learning
process is faster and also the safety of the movement can be
ensured as the depth data generated by the camera are used
to avoid collision during all movements.

During the interaction with the medical devices, the torque
sensors of the robot arm are utilized to realize haptic feed-
back. The haptic feedback allows the robot to detect the tactile
point where the force has reached the necessary level to press
the button and the button is activated. By detecting the tactile
point, it is possible to detect whether a button was indeed
successfully pressed. In order to keep the moving mass low
during the operation of the device, the robot first approaches
a position with the end-effector placed right on the element
before moving only the last joint to actuate the element,

which is similar to a human button operation [12]. To cal-
culate the force on the element, the torque of the last joint
is used together with a lever length of 0.44 m, which leads
to better readings than estimating the 3D contact force using
multiple joints torques and the Jacobian. The corresponding
torque measurements are shown in Fig. 5 where the measured
torque during a single rotational button pressing is displayed.
Additionally, the tactile points are marked.

Logic engine

The experience gained from interacting with the physical
device contains all interactions with prior state and resulting
state. The experience set allows interpolating the device oper-
ation and to infer action sequences in already known regions.
In order to also extrapolate the device behaviour, it is nec-
essary to derive a generalized logical rule set from existing
experiences. With each new interaction, the gained experi-
ence is saved and checked against the generalized rules to
see if there is a conflict which requires a new computation of
the generalized rules. In Listing 2 exemplary experience data
are displayed for increasing the pressure. The corresponding
generalized rules can be seen in Listing 3.

Fig.5 Sensor readings from the 5.0
torque sensor in the last joint
during a single button pressing.
The blue line contains the raw
data, while the orange line 45 -
displays filtered sensor data. ’
Point a and b mark the moments
when the button is pressed and
released, respectively
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Listing 2 Example experiences gathered while increasing the pressure using the

button named pressure_plus

Q

[pressure(9.8)]
[pressure(9.9)]
[pressure(10.0)
[pressure(11.0)

action (pressure_plus,
action(pressure_plus,
action (pressure_plus,
(

1
action(pressure_plus, 1

, [pressure(9.9)1])
, [pressure(10.0)
1, [pressure(l1.0
], [pressure(12.0)

1)
) 1)
1)

Listing 3 Example of the generalized rules obtained from experience displayed in Listing 2

action(pressure_plus, [pressure(X), X < 107,
< [increment (pressure, 0.1)1)
action(pressure_plus, [pressure(X), X >= 107,

< [increment (pressure, 1)1])

After the teaching process is concluded, the logical rules
are used to query an action sequence to reach a desired goal
state from the current state. The rules are used to perform a
Breadth-first search (BFS). Each rule is tested whether the
preconditions are met and if so, the resulting state and action
sequence is added to the search tree until the goal state is
reached.

Discussion and conclusion

In this paper, we proposed a workflow enabling clinicians
to teach a robot to operate medical devices. A GUI allows
the non-technical user to annotate unknown devices and to
demonstrate the device operation remotely. The affordances
are used to operate the device with haptic feedback and to
generate a digital twin to command a desired device state
in a GUIL The logic engine allows the system to extrapo-
late the device behaviour outside the demonstrated regions.
By encoding the behaviour into sets of logical rules, the
system is insensitive against faulty or suboptimal demon-
strations. However, incomplete demonstrations can lead to
faulty adjustments in unknown regions. In case of failure of
the logical rules in areal application, the GUI can also be used
to teleoperate the robot and ensure a fast and convenient error
recovery. Currently, the setup is limited to two-dimensional
user interfaces but is extensible to arbitrary interface shapes
by 3D scanning the device and altering the user-interface to
work on a 3D model instead of a 2D image. Future work will
focus on the effective rule generalization and the derivation
of rules based on the interface configuration. A further open
field is the computer vision-based annotation of the device
interface to ease the workload of the human operator. The out-
put elements need to be extended by units in order to allow
a natural language interaction that uses the affordances to
interpret the intent of the speaker and retrieve the mentioned

goal state. Additionally, the results have to be validated by
extensive user studies.
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