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Abstract
Objectives There is a clinical need for a non-ionizing, quantitative assessment of breast density, as one of the strongest inde-
pendent risk factors for breast cancer. This study aims to establish proton density fat fraction (PDFF) as a quantitative biomarker
for fat tissue concentration in breast MRI and correlate mean breast PDFF to mammography.
Methods In this retrospective study, 193 women were routinely subjected to 3-T MRI using a six-echo chemical shift encoding-
based water-fat sequence. Water-fat separation was based on a signal model accounting for a single T2* decay and a pre-
calibrated 7-peak fat spectrum resulting in volumetric fat-only, water-only images, PDFF- and T2*-values. After semi-
automated breast segmentation, PDFF and T2* values were determined for the entire breast and fibroglandular tissue. The
mammographic and MRI-based breast density was classified by visual estimation using the American College of Radiology
Breast Imaging Reporting and Data System categories (ACR A-D).
Results The PDFF negatively correlated with mammographic and MRI breast density measurements (Spearman rho:
−0.74, p < .001) and revealed a significant distinction between all four ACR categories. Mean T2* of the fibroglandular
tissue correlated with increasing ACR categories (Spearman rho: 0.34, p < .001). The PDFF of the fibroglandular tissue
showed a correlation with age (Pearson rho: 0.56, p = .03).
Conclusion The proposed breast PDFF as an automated tissue fat concentrationmeasurement is comparable with mammographic
breast density estimations. Therefore, it is a promising approach to an accurate, user-independent, and non-ionizing breast density
assessment that could be easily incorporated into clinical routine breast MRI exams.
Key Points
• The proposed PDFF strongly negatively correlates with visually determined mammographic and MRI-based breast density
estimations and therefore allows for an accurate, non-ionizing, and user-independent breast density measurement.

• In combination with T2*, the PDFF can be used to track structural alterations in the composition of breast tissue for an
individualized risk assessment for breast cancer.
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Introduction

Breast cancer accounts for almost 25% of all diagnosed can-
cers in women and is the leading cause of cancer-related
deaths among women worldwide [1]. In both screen-
detected and symptomatic patients, high breast density has
been identified as one of the strongest independent risk factors
and is associated with a twofold increase in breast cancer
incidence rates [2–4].

In clinical practice, the breast density is assessed in mammo-
grams by visual estimation of the content of radiopaque
fibroglandular parenchyma within the breast and classified ac-
cording to the American College of Radiology (ACR) categories
under the Breast Imaging Reporting and Data System® (BI-
RADS®, 5th edition) in 4 grades: (A) almost entirely fatty, (B)
scattered fibroglandular densities, (C) heterogeneously dense,
which may obscure small masses, and (D) extremely dense,
which lowers the sensitivity of mammography [5]. However,
several limitations lead to a non-consistent intra- and inter-
reader variability of mammography-based breast density mea-
surements. First, the technical execution requires a compression
of the breast which is then exposed to low-dose ionizing radia-
tion. Slight deviations in tissue compression or radiation expo-
sure calibration may already confound breast density measure-
ments [6]. Furthermore, the resulting two-dimensional projection
of the volumetric body has a limited capacity to provide objective
proportions of the breast composition [4]. Altogether, these fac-
tors combined with the non-neglectable, detrimental exposure to
ionizing radiation, especially at younger age, challenge the accu-
racy and reliability of mammography in assessing breast density
and cancer risk prediction.

Magnetic resonance imaging (MRI) presents a suitable al-
ternative for an objective, volumetric quantification of the
structural composition of the breast without the use of ionizing
radiation. Standard T1-weighted imaging techniques have
been primarily used to separate adipose and fibroglandular
breast tissue [7, 8]. Recent studies using chemical shift
encoding-based water-fat separation (Dixon imaging) im-
proved the contrast in separating fat from water proton signals
in the breast. These approaches yielded favorable results in the
differentiation of adipose and fibroglandular breast tissue and
the measurement of a signal-weighted breast fat fraction but
are dependent on the imaging protocol and the breast density
segmentation processing pipeline [9–11]. A promising quan-
titative biomarker for the tissue fat concentration is the water-
fat MRI-based proton density fat fraction (PDFF). The PDFF
is defined as the ratio of density of triglyceride protons to the
total density of triglyceride and water protons and therefore
accurately reflects the concentration of fat within that tissue.
The PDFF values derive directly from automatically calculat-
ed PDFF maps that are insensitive to changes in acquisition
parameters which renders the PDFF a comprehensive and
clinically practical biomarker [12–14]. In previous studies,

the PDFF has been successfully correlated to different struc-
tural tissues such as muscle, pancreas, and liver [15–17] and
has been only recently applied for breast density assessment
[18, 19].

Therefore, the purpose of this study is to establish the pro-
ton density fat fraction as a quantitative biomarker for fat
tissue concentration in breast MRI by correlating its outcome
to mammography as the most widely used breast density mea-
surement in clinical practice.

Material and methods

Study population

This institutional review board–approved retrospective study
initially included 300 pre- and postmenopausal women out of
which 193 women (median age 48 years, range 29–81 years)
had received digital mammography within 1–15 months (me-
dian 9) prior to the conductance of the MRI scan from August
to November 2020 (Fig. 1). Indication for breast imaging was
either screening in high-risk patients, surveillance of cancer
patients, or further work up of unclear findings.

Breast density measurements

Qualitative breast density measurements in two-dimensional
mammograms, currently the most widely used breast density
estimation in clinical practice, were used as the clinical standard
reference. Mammography was performed by using full-field
digital mammographic units (GE Healthcare). The visual eval-
uation of the composition of breast tissue was performed in the
craniocaudal and mediolateral-oblique view and classified into
the American College of Radiology (ACR) Breast Imaging
Reporting and Data System® (BI-RADS®) categories, 5th

Fig. 1 Study flow chart
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edition [20], by the reporting radiologist (4 years of experi-
ence in mammography) as well as an independent reader (1
year of experience in mammography) blinded to the study in
one session. The inter-reader reliability was assessed using
Cohen’s kappa.

Furthermore, the same visual evaluation was performed in
MR T1-weighted images according to the ACR-BIRADS cat-
egories by the same reporting and independent radiologists
blinded to the results of the mammographic readings.

MR measurements

Each woman was examined in prone position using a dedicat-
ed 7-channel breast radiofrequency (RF) coil in a 3.0-T MRI
scanner (Philips Ingenia, Philips Healthcare). In addition to
conventional T1- and T2-weighted sequences, a six-echo 3D
spoiled gradient-echo sequence employing bipolar imaging
readouts in axial plane was routinely includedwith the follow-
ing parameters: 1.7 mm isotropic acquisition voxel size, field
of view (FOV, mm): AP = 220, RL = 440, FH = 190, TR/TE/

ΔTE = 8.8/1.43/1.1, flip angle = 3°, scan time: 2 min 11 s per
stack. A combination of sensitivity encoding (SENSE) and
compressed sensing was employed based on the vendor’s im-
plementation (Compressed SENSE, Philips Healthcare) with
an acceleration factor equal to 3. This proton density Dixon
sequence was part of the clinical routine protocol to provide
artifact-free 3D fat-suppressed images before contrast
injection.

After phase error correction, water-fat separation was
performed online using the water-fat separation algorithm
of the vendor (mDixon Quant, Philips Healthcare). Water-
fat separation was performed based on a signal model
accounting for a single T2* decay and a pre-calibrated
7-peak fat spectrum accounting for the presence of multi-
ple peaks in the fat spectrum. Resulting volumetric fat-
only, water-only images, PDFF maps (Fig. 2), and T2*
values were generated. The PDFF maps were automatical-
ly computed as the ratio of the fat signal over the sum of
fat and water signals. The visual estimation of the breast
density in conventional MR in native T1-weighted images

Fig. 2 Segmentation workflow. A Axial MRI fat-separated image. B
Axial MRI water-separated image. C PDFF map. D–F Fat, water, and
foreground mask as a result of k-means clustering. G Manual
segmentation delineating the border between the pectoralis muscle and

breast parenchyma. H Automated completion of segmentation masks of
left and right mask. I Final automated segmentation of the fibroglandular
tissue
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according to the BI-RADS classification was performed
by a radiologist with 10 years and a radiologist with 1
year of experience in MR breast readings blinded to the
study in one session.

MR image processing

Breast density analysis was performed on breasts unaffected
by cancer, fibroadenomas, cysts, lipo-necrosis after treatment
or immediate radiation effects, and without breast augmenta-
tion or implantation material to minimize interference with the
breast density analysis. Semi-automated breast segmentation
was performed by manually delineating the border between
the pectoralis muscle and the breast parenchyma on every
second slice in fat-only images using the open-source segmen-
tation program ITK-Snap (www.itksnap.org, version 3.8.0,
Fig. 2G) [21]. Using the Image processing toolbox
(MATLAB R2020b, The MathWorks), k-means clustering
was performed, and the FOV was divided into water, fat,
and background signal. The manually selected borders were
connected with a dilation step and the centroids of the left and
right breast were calculated by projecting the manual delinea-
tion in AP orientation. Both the centroid position and the
border delineation helped separating the breast from the tho-
rax using “bwselect” from the Image processing toolbox.
Finally, the mean PDFF over the entire breast and the mean
PDFF and T2* over only the fibroglandular tissue of the iso-
lated breasts were automatically extracted. The fibroglandular
tissue was segmented using the sharp delineation between fat
and fibroglandular tissue as well as a fat-concentration cut-off
of 20% as fibroglandular tissue empirically contains very low
fat signal (0–10%). All segmentation steps were performed by
the same operator. The workflow of the image segmentation is
illustrated in Fig. 2.

Statistical analysis

All statistical analyses were performed using the open-source
software R (R Foundation for Statistical Computing, version
1.3.1056, 2020). The Shapiro-Wilk normality test revealed a
non-Gaussian distribution of the nominal variables including
age, and the PDFF and T2* of the entire breast and the
fibroglandular tissue. Calculations of the left and right breast
were compared using the intraclass correlation coefficient
(ICC) followed by paired t-tests. To reduce bias, one breast
in each woman was chosen according to the exclusion criteria
for further analysis (Fig. 1). The inter-reader reliability of the
mammographic and MRI-based breast density estimations
was assessed using Cohen’s kappa. The Cohen’s kappa refer-
ence values were used established by McHugh et al [22]. To
test the concordance between the categorical mammographic
and nominal MRI-based breast density measurements, the
Spearman correlation coefficient r was calculated. To

examine the relationship between the categorical, visually es-
timated mammographic and MRI-based breast density, the
chi-squared test of independence was performed. The PDFF
values were plotted in relation to the four ACR breast density
categories. To evaluate their congruity, the Kruskal-Wallis
test was performed followed by the Bonferroni-Holm correc-
tion criteria to adjust the p values in multiple comparisons due
to their non-Gaussian distribution. To test for differences of
average measures, paired t-tests were used. A two-tailed p
value < 0.05 was considered statistically significant.

Results

Evaluable PDFF maps were obtained in 138 women, excluding
55 patients due to different sources of artifacts. In detail, 21
datasets were excluded due to the presence of silicone implants
(current Dixon processing does not account for silicone signals).
In addition, 34 datasets were excluded due to a failing phase error
correction in the fat quantification (Fig. 1). The failing phase error
correction step resulted in erroneous fat fraction values over the
entire field of view and was mostly likely related to an erroneous
phase error estimation due to the lack of signal in the lungswithin
a large portion of the imaging field of view.

Patient and breast characteristics are displayed in Table 1.
In this patient cohort, 91 women (66 %) presented with a
reported history of breast cancer treated with surgical breast
conserving therapy (n = 58), and/or a combination of radia-
tion, chemotherapy, and additional antihormonal treatment (n
= 46). All cancer patients revealed normal MRI follow-ups
without any signs of recurrence. Separate calculations for right
and left breasts showed similar results with a range of ICC of
0.997 to 0.999 (p < .001) for breast density and glandular
tissue, and paired t-tests demonstrated no significant differ-
ences (p = .94). The chi-squared test revealed a significant
relationship between visual mammographic and conventional
MRI-based breast density readings (p < .001). The inter-reader
reliability in mammographic breast density estimations was
found to be low (k = 0.5, 95% confidence interval [CI] 0.38,
0.62) [22]. The inter-rater reliability in conventional MRI-
based breast density estimations was moderate (k = 0.7, 95%
CI 0.6, 0.79). Interestingly, the inter-rater reliability between
mammographic and conventional MRI-based breast density
readings revealed a minimal agreement (k = 0.3, 95% CI
0.17, 0.42). There was no difference in qualitative breast den-
sity between the craniocaudal view and left mediolateral-
oblique view of the breast (p = .25).

Across all patients, the mean PDFF of the entire breast was
76.1 % and the mean PDFF of only the fibroglandular tissue
was 7.7 %. Figure 3 shows an exemplary comparison of mam-
mograms and PDFF maps of all four ACR categories. The
PDFF of the entire breast strongly, negatively correlated with
the mammographic breast density measurements (Spearman
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rho: −0.69, p < .001) and revealed a significant distinction
between all four ACR categories following the Bonferroni-
Holm correction (Fig. 4, Table 2). The PDFF of the entire breast
also correlated with MRI-based visual estimation of the breast
density (Spearman rho: −0.56, p < .001). Furthermore, the
PDFF of fibroglandular tissue showed a correlation with age
(logistic regression coefficient −0.02, p = .007, Pearson rho:
0.56, p = .03, Fig. 5). Mean T2* over the fibroglandular tissue
also positively correlated with increasing ACR categories
(Spearman rho: 0.34, p < .001). Mean T2* of the fibroglandular
tissue did not correlate with age (p = .72, Fig. 5) but showed a
trend towards shorter T2* values with increasing fat concentra-
tion stratified by ACR categories (p < .001).

Discussion

The main finding of this study is that the breast PDFF strongly
negatively correlates with mammographic and conventional

MRI-based visual estimation of the breast density. The
PDFF is an objective quantification of the breast density and
in combination with T2* also provides information about the
structural composition of the breast. The acquisition of the
PDFF maps only requires a few minutes of MRI scan time
which facilitates its applicability in clinical breast MR.
Altogether, the PDFF allows for a robust, non-ionizing, quan-
titative alternative to measure the breast density and track
structural alterations in the composition of the breast.
Therefore, the PDFF can be used as a parameter for an indi-
vidualized risk assessment for breast cancer.

Breast density estimation has emerged as a priority for
assessing breast cancer risk as it is identified as one of the
most prevalent risk factors for breast cancer and is implement-
ed in most of the multifactorial risk assessment software tools
[3, 23, 24]. Although radiographic mammography is the most
widely used breast density measurement in clinical practice,
its informative value is limited by a low intra- and inter-reader
reliability. This discordance is influenced by the experience of
the reporting radiologist and an incongruent technical execu-
tion [6, 25, 26]. Furthermore, the resulting two-dimensional
projection of the volumetric body has a limited capacity to
provide objective proportions of the breast composition, espe-
cially in dense breasts [4].

The clinical gold standard to estimate breast density re-
mains mammography mainly due to its wide availability
and relatively fast conductance. With the introduction of
the BI-RADS classification system, the visual estimation
of the breast density in T1-weighted MRI images was in-
ternationally standardized but is also still subject to moder-
ate inter-rater reliability issues. The proposed, water-fat
chemical-shift-based PDFF overcomes the 2D projection
limitations of conventional mammography and presents a
reliable, objective discriminator of tissue fat and water con-
tent. Previous works assessing breast density with MRI
have relied on thresholding of T1-weighted and Dixon im-
ages [8, 10, 11, 27]. Tagliafico et al proposed a semi-
automated method with an intensity threshold for dense
breast parenchyma which is related to the entire breast vol-
ume [8]. Furthermore, Thomson et al used a defined thresh-
old as a proposed MRI-based breast density measure calcu-
lated as the ratio of breast voxels with < 80% apparent fat
fraction [27]. These approaches are susceptible to partial
volume effects because of the sharp thresholding assigned
to each breast voxel which ultimately increases breast den-
sity estimation errors. Besides, these methods did not ac-
count for the T1 bias which potentially results in a relative
amplification of the signal of fat compared to the signal of
water. The present work uses a low flip angle gradient echo
sequence for mapping the PDFF, which is independent of
the underlying relaxation properties and therefore reduces
T1 bias. In another approach, Ding et al employed a Dixon
acquisition using an IDEAL-GRASE sequence to quantify

Table 1 Patient characteristics

Parameter Overall patient cohort N
(%)

No. of patients 138

Age (median [IQR]) 49.5 (43–56)

Breast characteristics

ACR

A 13 (9.4)

B 52 (37.7)

C 53 (38.4)

D 20 (14.5)

PDFF (median [IQR]) 81.83 (73.31–87.97)

Breast cancer in history

Yes 91 (65.9)

Surgery 58 (42.0)

Radiation therapy 40 (29)

Chemotherapy 28 (20.3)

Hormone therapy 24 (17.4)

No 47 (34.1)

Family history for breast cancer

Positive 26 (18.8)

Negative 77 (55.8)

Gene mutation (including BRCA, FANCM,
CHEK2)

Yes 29 (21.0)

No 49 (35.5)

Patient and tumor characteristics. IQR interquartile range, ACRAmerican
College of Radiology categories, [A] almost entirely fatty, [B] scattered
fibroglandular densities, [C] heterogeneously dense, and [D] extremely
dense, PDFF proton density fat fraction, BRCA breast cancer gene,
FANCM Fanconi anemia, complementation group M, CHEK2
Checkpoint Kinase 2
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breast density based on the fraction of fibroglandular tissue
and actual water content in each voxel. However, this se-
quence is limited by an intrinsic fat-water signal bias and
therefore requires additional calibrations to remove T1- and
T2-weighting effects [11]. In this study, a 6-echo gradient
echo acquisition was used accounting for a single T2* de-
cay and a pre-calibrated 7-peak fat spectrum accounting for
the presence of multiple peaks in the fat spectrum in order
to reduce potential confounding imaging factors, as also
recently proposed [18]. In addition, scanning time remained
under 3 min which renders the PDFF imaging sequence
easily incorporable into clinical routine breast MRI exams.

Ascertained PDFF is independent of field strength, scanner
platform, and specific scanning parameters and highly corre-
lates with parenchymal triglyceride concentration [12].
Consequently, the PDFF has been already successfully ap-
plied in other organs and reliably quantified even small chang-
es in tissue fat concentration [15, 28–30]. Unlike the signal
fat-fraction, the PDFF reflects the actual content of fat in the
breast and therefore presents a potentially reliable, standard-
ized biomarker of breast density, as recently proposed [18]. In
this study, the PDFF especially of the fibroglandular tissue
also correlated with age which potentially mirrors the struc-
tural change of the breast with age [31]. Most prominent

Fig. 3 Mammograms with breast density estimation following the American College of Radiology Breast Imaging Reporting and Data System
categories A-D with corresponding PDFF maps

Fig. 4 (A) Correlation of entire
breast PDFF values to the four
American College of Radiology
Breast Imaging Reporting and
Data System categories with
adjusted p values revealing a
significant negative correlation.
(B) Significant correlation of T2*
of fibroglandular tissue of the
breast to ACR A-D

3815European Radiology  (2023) 33:3810–3818



across the menopausal transition of 50–60 years, the
fibroglandular tissue shows a natural decline in the amount
of dense breast tissue with aging [32] that is also detectable
with PDFF and T2* measurements. The observed dependence
of fibroglandular tissue T2* with the ACR categorization
might be also related to magnetic susceptibility differences
between the water and fat components or to changes in the
glandular component within the fibroglandular tissue [33].
The introduction of the PDFF (in combination with T2*)
might provide additional and valuable information in the
course of an individual risk assessment in screening patients
and follow-up MRIs. The denser and more heterogeneously
composed the breast presents, the higher is the risk to develop
breast cancer but the lower is the detectability rate on mam-
mography. As demonstrated in the DENSE trial, the addition-
al use ofMRI in clinical screening exams in very dense breasts
with normal results in mammography significantly decreased
the occurrence of interval cancers [34]. With the supplemental
integration of the PDFF, the breast density can be objectively
classified for a robust and standardized, individual risk assess-
ment especially in patients with very dense and heteroge-
neously composed breasts to enable tailorized screening re-
gimes. Furthermore, structural changes over time may be

objectively tracked for an individualized risk assessment or
treatment response estimation after cancer occurrence or
anti-hormonal treatment [35, 36].

The present work has some limitations. First, it is focused
on the relationship between breast PDFF and the mammo-
graphic and conventional MRI-based density metric. No val-
idation of the reported fat fraction to another MR-based fat
concentration measure was performed. However, the em-
ployed PDFF methodology has already accounted for con-
founding effects known from the application of the method-
ology in other organs. Second, no breast PDFF reproducibility
analysis was presently performed. High reproducibility of
PDFF for liver fat content and breast fat content in volunteers
has been already confirmed [13, 37], therefore PDFF for
breast parenchyma fat concentration in patients would be also
expected to be high. Third, the employed methodology was
based on a bipolar readout acquisition which accounted for
phase errors in the quantification but showed failing behaviors
in a small number of datasets. Further work using monopolar
readout gradient could alleviate such problems [38].

The proposed breast PDFF mapping is a promising ap-
proach to an accurate, user-independent, and non-ionizing tis-
sue fat concentration measurement that is directly comparable
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Fig. 5 Correlation of mean PDFF values of the fibroglandular tissue to different age groups with adjusted p values revealing a positive correlation

Table 2 MRI parameter results
stratified by the four American
College of Radiology Breast
Imaging Reporting and Data
System categories (ACR A-D)

ACR Mammography Breast MR PDFF entire breast PDFF fibroglandular T2* fibroglandular
N (%) N (%) Median % (IQR) Median % (IQR) Median % (IQR)

ACR A 13 (9.4) 10 (7.2) 91.4 (89.8–93.2) 8.6 (7.6–9.5) 17.6 (15.2–20.7)

ACR B 52 (37.7) 52 (37.7) 85.1 (81.3–88.1) 8.5 (7.0–10.2) 19.9 (17.6–23.4)

ACR C 53 (38.4) 52 (37.7) 79.7 (73.8–84.8) 7.6 (6.1–9.3) 21.8 (19.8–24.4)

ACR D 20 (14.5) 24 (17.4) 64.0 (57.9–73.2) 5.8 (4.4–6.8) 23.1 (20.3–27.1)

MRI parameter results. ACRAmerican College of Radiology according to the Breast Imaging Reporting and Data
System (BI-RADS, 5th edition), [A] almost entirely fatty, [B] scattered fibroglandular densities, [C] heteroge-
neously dense, whichmay obscure small masses, and [D] extremely dense, PDFF proton density fat fraction, IQR
interquartile range
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with visual mammographic, and conventional MRI-based
breast density estimations. The improved concordance of the
poor reader reproducibility, its platform and scan parameter
independence, and the simple integration of the PDFF in clin-
ical routine breast MRI exams may provide clinicians with a
valuable tool for an individualized cancer risk assessment ac-
curate and a reliable evaluation of longitudinal, structural
changes in breast density and composition.
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