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Abstract

Transport demand models were initially designed for simulating car trips. Nowadays
researchers and planners are considering pedestrian travel and its health and safety impacts
in the regional transport models. However, the existing transport models lack the knowl-
edge and experience in pedestrian modeling for health assessment. This paper contributes
to the modeling practice by developing an integrated model called the MITO/MoPeD. The
model builds upon previous model development and integrates the fine-grained pedestrian
modeling tool into the agent-based transport model. The MITO/MoPeD model is applied
to the Munich metropolitan area. Model performances are analyzed based on travel meas-
ures (e.g., walk share, trip length distribution, and pedestrian flow) and physical activity
volumes. Results show that the MITO/MoPeD model can better represent pedestrian travel
behavior than the existing Munich Model. It performed better in simulating the spatial
distribution of walk shares and the distribution of walk trip lengths. Moreover, it over-
comes the issue of overestimating physical activity volumes. These findings suggest that
the MITO/MoPeD model can deliver more precise travel outcomes. More importantly, it
is valuable for addressing pedestrian planning issues such as transportation infrastructure
investments, land use planning, assessment of safety and health outcomes, and evaluation
of environmental impacts.
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Introduction

In the past several years, there is a growing need to shape sustainable urban mobil-
ity, including improvements to the quality of the walking environment, developing sup-
portive land use patterns, and other investments to promote pedestrian travel. Walking,
as a low/no-tech mobility, is the most traditional mode that we experience every day.
Developing sustainable urban systems that encourage walking over private car use could
reduce energy usage and environmental issues such as air and noise pollution caused
by motorized transport. Moreover, it can improve overall public health through reduc-
tions in diseases related to obesity and cardiovascular conditions. After experiencing
the lockdown from the global pandemic, the importance of walking as a part of future
mobility has become more significant. Therefore, it is no surprise that cities tend to put
pedestrians at the forefront of future mobility policies. However, planners and policy-
makers often lack appropriate tools to address pedestrian planning questions and assess
the impacts of their policies on meeting their sustainable goals. To achieve a higher
share of walking and more sustainable urban transport use, there is a need for better
planning tools that are sensitive to pedestrian needs.

Agent-based transport models can be useful to help researchers and planners simulate
pedestrian demand and understand the health impacts of pedestrian travel. By simulat-
ing at the individual level, these models can help researchers identify transport issues at
a fine resolution. The outcomes could be used to calculate individual’s units of physical
activity (metabolic equivalents, METs) that are critical inputs to health impact assess-
ment models.

However, transport models were primarily designed to simulate car traffic, with
the aim of forecasting road congestion. These models have a limited understanding of
pedestrian behavior. In the existing operational agent-based transport models, walk
mode is usually omitted or combined with cycling as one non-motorized mode (Wad-
dell 2002). Moreover, the majority of the transport models is applied with coarse zone
systems (e.g., block group, Traffic analysis zones—TAZ). This is sufficient for under-
standing car demand on transport infrastructure. However, walk trips are usually too
short to be neglected or be considered as same-length intrazonal trips in the car-oriented
transport models. To simulate pedestrian demand in an agent-based transport model, it
is important to apply a fine-grained zone system. Another limitation is the poor under-
standing of important factors that influence pedestrian travel. Previous studies have
shown a significant influence of built environment factors on walking behavior (Gehrke
and Clifton 2014; Gehrke annd Clifton 2017), such as activity density, the existence of
parks, and the slopes. Those factors, that might be left out in the traditional car-oriented
transport models, are now necessary to be considered for better representing pedestrian
travel.

To overcome these limitations, this paper proposes an integrated modeling frame-
work (referred to as MITO/MoPeD) that incorporates a fine-grained resolution model
of pedestrian demand (MoPeD) into a sparser spatial resolution of an agent-based trans-
port model (hereafter referred to as the Munich Model). Specifically, the paper attempts
to answer the questions:

e (Can the integrated modeling framework (MITO/MoPeD) better represent pedestrian

travel behavior than the Munich Model, and
e (Can it evaluate physical activity volumes more accurately?
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The central hypothesis is that the Munich Model would not be suitable for pedestrian
modeling and health impact assessment, but the following adaptations from MoPeD could
improve their accuracy:

1. Separate walk trip decisions from the multimodal models.
2. Apply a finer zone system for walk trip decisions.
3. Apply more built environment factors for walk trip decisions.

To check the plausibility, the Munich model and the MITO/MoPeD model are applied
to the Munich study area. Model performances are tested based upon the prediction of
walk shares, walk trip length distribution, spatial distribution of walk trips, and physical
activity volumes.

The organization of the paper is as follows. “Literature review” Section reviews research
on pedestrian modeling and its representation in the agent-based transport models, after
which “Methodology” Section presents the concepts of MoPeD and MITO and the meth-
odology of integrating these two models. Travel demand results and model plausibility
analyses are discussed in “Results and Discussion” Section. Finally, a summary of the
main findings and conclusions are provided in “Conclusions” Section.

Literature review

Early attempts to model pedestrian travel were hampered by a lack of pedestrian data and
commensurate information about the built environment at appropriate scales. Thanks to the
improvement of travel survey data and data collection technologies, pedestrian research has
advanced over the last 2 decades.

First, a number of studies on the relationship between pedestrian behavior and built
environment has recently been carried out. These studies identified the various built envi-
ronment factors, which impact pedestrian behavior. It was proven many times that walking
behavior (e.g., walking frequency and distance) is strongly related to intersection density,
number of destinations within walking distance, and population density (Ewing and Cer-
vero 2010; Khan et al. 2014; Kuzmyak et al. 2014).

Second, progress has been made in simulating pedestrian travel behavior through agent-
based models (ABM). ABM is a powerful modeling technique for simulating the decision-
making and interactions of autonomous agents (Bonabeau 2002). Some of these efforts
take a simulation approach and model individual microscopic pedestrian movements
through space (e.g., public streets and plazas, airports, shopping malls) with an interest
in wayfinding, evacuation, response to crowding and queuing (Borrmann et al. 2012; Erd-
mann and Krajzewicz 2015; Kielar and Borrmann 2016). While also focusing on indi-
vidual pedestrian behaviors, other models provide estimates of the amount and nature of
pedestrian activity in an urban area with an aim of guiding land use and transportation
planning decisions (Antonini et al. 2006; Schneider et al. 2009; Schnittger and Zumkeller
2004). This paper focuses on the development of the latter type of ABM, which models
individual’s travel demand at an urban scale.

Although the research on pedestrian travel behavior has lots of key findings, there is
still insufficient work on pedestrian modeling practices, especially at a regional level. The
regional transport planning tools were originally oriented towards automobile travel. Non-
motorized modes were first incorporated into regional transport models in the early 1990s
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(Liu et al. 2012). After that, many Metropolitan Planning Organizations (MPO) made pro-
gress in their regional models for pedestrian travel.

The DVRPC Regional Travel Demand Model is applied in the Philadelphia area (Dela-
ware Valley Regional Planning Commission 2011). In the DVRPC model, the non-motor-
ized trip rates are directly modeled in the trip generation stage for three purposes. They are
stored as zonal results and are dropped off in the distribution and assignment stage. The
trip generation models for non-motorized trips include TAZ-level attributes such as the
number of households, group quarters population (such as nursing homes, military bar-
racks and college/university student housing), basic employment, and retail employment.

In the San Francisco County Model (SF-CHAMP), walk and bike trips are modeled
separately in mode choice models (San Francisco County Transportation Authority 2002).
Pedestrian environment factors such as network continuity, ease of street crossing, percep-
tion of safety, and topological barriers are considered in mode choice. The route choice
model is applied to cyclists but not to pedestrians. Trip purposes are categorized into work,
education, and others.

mobiTopp was developed and applied in the German context (Schnittger and Zumkeller
2004). The model simulates activities over a week. Walk and bike tours/trips are mod-
eled separately for eight personal purposes including shopping and leisure. Mode choice is
modeled after destination choice. There are no pedestrian environment factors included in
mode choice models.

Portland Metro Model has enhanced non-motorized travel forecasting by incorporating
walk and bike modes in the mode choice model (Portland METRO 2020). Walk and bike
choices are made by these TAZ variables: number of local intersections, households, and
total/retail employment. In addition, recreation trips are modeled, which comprise a signifi-
cant number of pedestrian and bicycle trips.

A comprehensive report of regional models is conducted by Singleton et al. (2018).
Among the 48 MPOs in the US, non-motorized trips are still excluded in 12 MPO models.
The rest of the MPO models include walking and cycling separately or only as a com-
bined non-motorized mode in mode choice. Although the shift to sustainable transport has
created increasing interest in modeling pedestrian travel, there remain improvements that
can better represent pedestrian behavior and evaluate health impacts more accurately. They
conclude that the perspectives of the research on pedestrian modeling are (1) traditional
pedestrian models with finer spatial resolution and (2) disaggregated models like agent-
based and activity-based models.

A recent study by Clifton et al. (2016b) establishes a traditional four-step model of
pedestrian demand with fine spatial resolution. It measures the built environment and
implements the model at a finer-grained scale—Pedestrian Analysis Zone (PAZ), which is
a grid cell of 80 m. It is a much finer scale than the TAZs used for modeling pedestrians in
other travel demand models. It can better represent the walking behavior and estimate num-
ber of walk trips more accurately. However, it meets challenges in model complexity, data
collection, and computational burden in running such a finer scale. Besides that, MoPeD is
an aggregate model that simulates the pedestrian trips at the zonal level. It is sufficient to
find out where the walk trips occur and which districts or neighborhoods are more walk-
able, but it cannot answer the questions of who generates more walk trips and who travels
more kilometers by foot. This individual-level information is crucial for assessing health
impacts.

In general, research and practice have well-developed for both pedestrian modeling
and agent-based transport model. However, there is a lack of experience in integrating the
advanced pedestrian modeling framework into the agent-based transport models.
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Methodology
Agent-based transport model

Agent-based transport models are well-developed in the past decades. In this study, the
Munich Model is adapted to the need for pedestrian modeling. The Munich Model is a
model suite with three modules, including the synthetic population (Moreno and Moeckel
2018), the travel demand model—MITO (Moeckel et al. 2020), and the transportation sim-
ulation—MATSim (Horni et al. 2016). The synthetic population provides a list of house-
holds and persons with sociodemographic attributes, as well as work and school locations.
This information is then fed into MITO. MITO is a microscopic travel demand model that
generates trips for every individual, which are then passed on to MATSim for trip assign-
ment. In MITO, the multinomial logit mode choice model estimates share of walk trips
but subsequently drops those trips from further analysis (as shown in Fig. 1). Most agent/
activity-based models fall within this framework (Singleton et al. 2018). At this point, it is
impossible to analyze the impact of the built environment on walking or the health benefits
for travelers choosing non-motorized modes. The Munich Model uses 4953 gradually-sized
zones as its spatial unit (Molloy and Moeckel 2017) which were designed to capture vehi-
cle trips rather than relatively short walking trips. These short trips in MITO were usually
considered as same length intrazonal trips. The length of intrazonal trips is half of the aver-
age distance to the 3 nearest neighboring zones (Okrah 2016).

Pedestrian modeling framework: MoPeD

MoPeD provides the pedestrian modeling framework in this work. MoPeD was initially
developed by Clifton et al. (2015, 2016a, 2016b, 2019) and then further enhanced by
Zhang et al. (2021). The previous work on MoPeD showed that this tool is sensitive to
the small-scale variations in local land use and transport development, and it is capable to
assess the planning policies on a regional scale (Zhang et al. 2021).

MoPeD is an aggregated trip-based urban travel demand model for pedestrian travel.
The modeling process is shown in Fig. 2. It follows the traditional four-step model, but
it changes the spatial unit from transportation analysis zones (TAZs) to a finer-grained
scale called pedestrian analysis zone (PAZ), which can better represent pedestrian
behavior. The size of PAZ varies in different study areas. In the Portland model develop-
ment and application, it is defined as 80X 80 m grid cells. Also, mode choice between

Trip

assignment

Modes used in each model stage

All modes H Motorized ‘ w Non-motorized output

Trip Trip o Trip mode
generation distribution choice

Fig. 1 Pedestrian modeling framework used in the Munich Model (adapted from Singleton et al. 2018)
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Fig.2 Modeling framework of MoPeD

walk and non-walk trips is done before destination choice, which has improved the trip
length frequency distribution of walk trips.

MoPeD employs binary logit models to estimate the probability of choosing to walk.
The models include three household attributes (income category, number of vehicles,
and children) and pedestrian accessibility as independent variables. The pedestrian
accessibility variable does not only represent the activity density but also the network
connectivity between PAZs. Pedestrian accessibility was transformed to log-form,
which leads to a better model fit. It shows a significant and positive impact in the model,
which indicates that households living in denser neighborhoods with better street net-
works tend to be more likely to walk. The log-transformation suggests that differences
in pedestrian accessibility matter a lot at the lower end of accessibilities. Once a certain
level of pedestrian accessibility has been reached, additional growth in accessibility has
less impact on the likelihood to walk.

In the two-stage destination choice process, walk trips in MoPeD first select the des-
tination SuperPAZ, which are aggregations of PAZs into 400 m grid cells (Zhang et al.
2019), then choose the constituent PAZ. We estimated multinomial logit pedestrian des-
tination choice models for both SuperPAZs and PAZs. Destination choice models were
specified using measures of impedance, pedestrian road density in kilometers, logged
size terms, pedestrian trip supports (like the existence of parks) and barriers (e.g., the
proportion of industrial jobs and slope), and traveler characteristics. Distance was a sig-
nificant and sensitive factor in the model. Retail and service employment was a strong
attractor while the share of industrial jobs has a barrier impact on choosing a destina-
tion. If it is necessary to cross the motorway to reach the destination, then the destina-
tion zone becomes less attractive.
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Model integration of MITO and MoPeD

Figure 3 shows the working process of the MITO/MoPeD model. First, MITO provides trip
generation at the individual level to MoPeD. In the MoPeD module, walk trips are gener-
ated and processed, and then fed back to MITO.

The incorporation of MoPeD and the Munich Model is not trivial. MoPeD is carried out
with a fine-grained resolution, whereas the Munich Model uses a much sparser TAZ as its
spatial unit. The difference in spatial resolution should be adapted. In addition, the walk
trip decision sequences are not aligned in MITO and MoPeD. As shown in Fig. 1, individu-
als in MITO first choose the trip destination and then the trip mode, while in MoPeD indi-
viduals choose to walk or not first, then select a destination if they walk. A hybrid decision
process needs to be defined in the MITO/MoPeD model. Moreover, the mode choice and
destination choice factors of MITO and MoPeD need to be integrated to meet the needs for
pedestrian modeling. Therefore, to develop an integrated model suite, the following adap-
tions were implemented:

(1) Appropriate zone systems for measuring pedestrian built environment and modeling
pedestrian behaviors.

(2) Built environment factors in the mode choice models and the destination choice models
for different trip purposes.

(3) Hybrid trip decision processes to establish the interfaces between MITO and MoPeD

Modeling process

Figure 4 gives an overview of the hybrid trip decision process linking MITO and MoPeD.
The framework essentially follows the paradigm of the traditional four-step model.

Given the nature of work and education trips, those trips are modeled first. The number
of work and education trips is modeled in MITO. Then, work and education trips are fed
into MoPeD to make the walk mode decisions. Work and school locations are provided by
the synthetic population files as input data. Hence, no destination choice is necessary here
for work and education trips. After that, the modes of work and education trips that are not
made by walking are modeled in MITO.

Following the work and education trips, other trips are generated which takes the num-
ber of work and education trips as one of the independent variables. Home-based shopping
(HBS), home-based recreational (HBR), and home-based other (HBO) trips are simulated

The Munich Model

, E
i i
i Households and Car, public transport, |
i persons bike, walk trips E
| ® @ |
i ) . MITO MATSim i
; Synthetic population (Travel demand model) (Traffic assignment) i

Walktrips () @Trip generation

(at person level)

MoPeD

Fig.3 The framework of the integrated modeling framework—the MITO/MoPeD model
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D E RO Trip generation for other purposes
for work and education
Home-based (HBS, HBR, HBO) Non-home-based (NHBW,NHBO)

Walk/non-walk choice

Walk/non-walk choice I Trip origin choice |

Other mode choice }— Walk trip destination choice

Walk/non-walk choice

[ Other destination choice Walk trip destination choice

[ Other destination choice l

|

[ Other mode choice

v ¢

I Time of day selection l

v

[ MATSim assignment: car, bike, pedestrian l

Modes used in each model stage/occurring in which modelling framework

| All modes/MITO | [ Non-walk modes/MITO ] Walk mode/MoPeD

Fig.4 The travel demand modeling process of the MITO/MoPeD model

before the non-home-based ones (NHBW and NHBO). This is because we assume that the
trip origins of non-home-based trips are influenced by the destination end of home-based
trips. Similar to the work and education trips, those trips are first sent to MoPeD to select
walking or not walking. The destination of walk trips is subsequently selected in MoPeD.
Then, non-walk trips are fed back to MITO for TAZ destination choice and non-walk mode
choice.

In the end, the selection of the preferred arrival time is modeled in MITO for all trips.
The resulting trips are passed on to MATSim for trip assignment on the networks of differ-
ent modes. Pedestrian flows are simulated in MATSim using the shortest path algorithm.
We recognize that pedestrians may use other decision criteria besides trip distance (e.g.
safety, comfort, scenery); however, data about network qualities are not available.

Zonal system

The Munich Model uses 4953 gradually-sized zones as its spatial unit (as shown in Fig. 5).
The sizes of zones vary from 200 m to several kilometers. Coarser scales that are larger
than 800 m might cause high errors in predicting walk behavior (Zhang et al. 2019). Thus,
a finer and uniform zone system is needed for the MITO/MoPeD model.

Previous studies have pointed out that the finest spatial resolution may not be the appro-
priate scale. The spatial resolution selection is a trade-off among model performance,
efficiency, and the availability of spatial data needed to implement (Zhang et al. 2019).
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Fig.5 The Munich Metropolitan Area with TAZ zone systems (left) and the comparison of TAZs and PAZs
(right)

The spatial units chosen to model the pedestrian behavior for this research depend on the
relevant data available for Munich. Land cover data for the Munich region is provided as
a 100x 100 m raster. More importantly, the appropriate spatial resolution highly depends
on the type of application. In this research, we aim to assess the unit of physical activity
(PA). Health studies concluded that there is a non-linear dose-response relationship for
PA (Woodcock et al. 2011). This means short walk trips might have large impacts on indi-
viduals with low PA. Because of this non-linearity, short walks need to be better captured
in the MITO/MoPeD model, which further determines the necessity of using a finer spa-
tial resolution. Therefore, we define the PAZ scale for the Munich region as 100X 100 m
raster. With such a small PAZ scale, the study area of the Munich region is covered by
approximately 2,000,000 PAZ equivalents. A comparison of TAZs and PAZs can be found
in Fig. 5.

As the trip origin and destination locations in MITO are simulated at the micro-location
level (in x/y coordinate), it is flexible to aggregate locations to any spatial resolution. The
PAZ zone system is utilized in MoPeD for walk mode choice. In the walk trip distribution
stage, destination choice is first conducted at SuperPAZs (400 m grid cells). Then, trips are
allocated from the selected SuperPAZ to the constituent PAZs. Trips that are not made by
walking are handled in MITO at the TAZ zonal structure.

Built environment factors

Walking behavior is highly correlated to built environment variables. The Munich Model
considers a few built environment variables in the walk mode choice and walk destina-
tion choice model. For example, area type dummies are used primarily to differentiate
land use at an aggregated level. To model the effects of the built environment on pedes-
trian travel behavior, the measurement of pedestrian accessibility is included in the MITO/
MoPeD model. Pedestrian accessibility is defined as population and non-industrial jobs
within an 800 m network distance. Pedestrian accessibility data in the Munich region has
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been measured at the PAZ level. First, the isochrones, also known as pedestrian catchment
areas, are generated based on the pedestrian network from OpenStreetMap. Afterward, we
calculated the total number of non-industrial jobs and population that locate within each
isochrone. Results of pedestrian accessibility for the Munich region are shown in Fig. 6.

The built environment factors used in the MITO/MoPeD model are listed in Table 1.
MoPeD has a rich list of built environment variables in the walk destination choice model.
Those factors are all implemented in the MITO/MoPeD model. The data of those factors
are mainly derived from OpenStreetMap. Trip distance is added as an explanatory variable
only in the walk mode choice models for work and education trips, as the destination of
those trips is already given in the synthetic population. For trips with other purposes like
shopping and recreation, the trip length is unknown at the walk mode choice stage. As the
focus of this paper is the model integration and application, the parameter estimates of the
home-based shopping model are shown as an example in Table 2 and the full estimation
results can be found in the technical summary report on Github (https://github.com/Qinnn
nn/MoPeD_Java).

Mode choice model calibration

Due to the lack of geographic information about the trips in the German national house-
hold travel survey, model parameters cannot be re-estimated using local surveys. Therefore,
the model estimates used in the MITO/MoPeD model were developed in the context of
the Portland, Oregon metropolitan area in the United States while they are applied to the
Munich study area in Germany.

Previous works have focused on the spatial and temporal transferability of travel fore-
casting models (Agyemang-Duah and Hall 1997; Cotrus et al. 2005; Everett 2009; Hunt-
singer and Rouphail 2013; Sikder et al. 2013). They showed the ability to transfer models
between different regions and suggested the methods used to enhance model transferability.

Pedestrian accessibility
0-2561
2561 - 5123
5123 - 7684
7684 - 10246
I 10246 - 12807
N 12807 - 15368
N 15368 - 17930
N 17930 - 20491
I 20491 - 23053
I 23053 - 25614
I 25614 - 28175
I 28175 - 30737
[ 30737 - 33298
[ 33298 - 35860
I 35860 - 38421

Fig. 6 Pedestrian accessibility in the Munich city area
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Table 1 Mode choice and

destinati hoice f Factors The MoPeD The
.esunauo‘nc‘mce actors Munich MITO/
included in different models
model moped
MODEL

Walk mode choice model

Trip distance (km) \/ - \/ (for
work
and edu-
cation
trips)

<

Area type (urban, rural)

Pedestrian accessibility
Walk trip destination choice model

Trip distance (km)

< <

Zonal attraction
Pedestrian road density (km) -
Existence of parks -
Proportion of industrial jobs -
Slope (mean) -

Cross motorway (Yes)

LR = <!
LR R R == <

Traveler characteristics -

Table 2 Estimation results of home-based shopping (HBS) models

‘Walk mode choice model-HBS SuperPAZ choice model-HBS PAZ choice model-HBS
0 Sg 0 Sg 0 Sg

Intercept —7.28 *** Distance (km) OriginPAZ 0.62 0.13
Carownership(0) 095 ##* xChild (Yes) —2.18 ***  Distance(km) —2.12  EEx
Carownership(2) —-0.24 ** xChild (No) —1.77 ***  Retail(ln) 0.82 HkE
Carownership(2+) —0.41 *** Networkdensity 0.05 0.21  Service(ln) 0.19 Hokok
Child(Yes) 0.18 *** Retail (In) 0.98 #*%  Household(In) —0.17 e
Pedestrianaccessibility(In) 0.73  *** Industrialjobshare —1.31 ** Industrialjobshare n.s
HBShop —-0.59 ***  Slope (mean) —0.39 #*  Park(arce) —-0.65 028

CrossingMotorway -0.28 0.15

Park (Yes) n.s
PseudoR? 0.14 PseudoR: 0.53 pseudoRA2: 0.22

Signif. codes: 0 “***> 0.001 “** 0.01 “* 0.05 *.’ 0.1, when significant> 0.1, the exact values are shown

n.s. refers to not significant (> 0.5), which was not estimated in the HBS models

Updating constants/adding new constants is a widely used method in practice to enhance
the model suitability.

To make a fair comparison between the two modeling frameworks, a mode choice
calibration process was implemented in the MITO/MoPeD model. In this research, we
assumed that the parameters other than the constants are transferable in two contexts.
Additional constants were introduced into the mode choice models to scale up the aver-
age walk shares to match the observed shares. Table 3 shows the final calibration factors
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Table 3 Calibration factors of

walk mode choice models by trip Purpose Calibration factor
purposes HBW 0.919

HBE 1.369

HBS 0.784

HBR 0.708

HBO 0.612

NHBW 0.781

NHBO 0.776

implemented in the models by trip purposes. These calibration factors represent the differ-
ence between the influences of unobserved factors (e.g., mobility culture, geography, and
weather) in Portland and Munich.

Figure 7 compares the simulated walk shares by trip purposes to the observed walk
shares taken from Germany household survey data 2017—Mobilitéit in Deutschland (MiD).
Before calibration, the walk mode choice models in the MITO/MoPeD model underesti-
mated the shares of walk trips across all purposes. Although there are deviations in the
absolute values, the relative relationships among purposes are consistent with the observed
data. For example, recreational trips (HBR) have the highest shares of walking while work-
related trips (HBW and NHBW) have lower walk shares.

Results and discussion

To answer the research questions mentioned above and to test the plausibility of the MITO/
MoPeD model, this section evaluates how effectively the MITO/MoPeD model structure
improves the estimation of transport outcomes and physical activity volumes. The Munich
model and the MITO/MoPeD model are applied to the Munich metropolitan area. Model

Share of walk trips
9

o

0.0

HBE HBO HBR HBS HBW NHBO NHBW
Trip Purpose

Observed data (MiD 2017) The MITO/MoPeD model_before calibration The MITO/MoPeD model_after calibration

Fig.7 Observed walk shares of MiD and predicted walk shares resulting from the MITO/MoPeD model by
trip purposes
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performances are analyzed based on average walk shares, the spatial distribution of walk
shares, mean trip length, trip length distribution, pedestrian flows, and physical activity
volumes.

Walk mode shares

The share of walk trips is one of the key outcomes for investigating policies and strategies
to encourage walking.

After calibration, both models can simulate the average walk shares accurately.
Besides the mean value, the spatial distribution of walk trips is also an important out-
come to evaluate the model performance. Figure 8 presents the spatial distribution of

a) b)

Low B
0%

Fig.8 Shares of walk trips resulting from the Munich Model across Munich metropolitan area (a) and in
Munich city (c¢); Shares of walk trips resulting from the MITO/MoPeD model across Munich metropolitan
area (b) and in Munich city (d)
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walk shares across the Munich metropolitan area resulting from two modeling frame-
works. From an overall perspective, both models demonstrate similar patterns that walk
shares in the urban areas are higher than those in the suburban or rural areas. Neverthe-
less, we note that the distribution in the Munich Model (Fig. 8a) has a boundary issue.
The border areas sometimes show high walk shares which are at the same level as the
urban centers.

There are three major reasons why these border areas have higher walk shares than
we expected. First, trip distance is a key factor of the mode selection in the Munich
Model. Shorter trips tend to use the walk mode. The border areas have limited destina-
tion alternatives and their surrounding areas are mostly rural and less attractive. Thus,
trips generated in those areas are more likely to select a closer destination with a short
distance which leads to a high share of walk trips. The second reason may be due to the
coarse zone system used in the Munich Model. Larger zones result in a greater share of
intrazonal trips. As intrazonal trips have the same trip length which is relatively short,
having larger zones causes an overestimation of walk trips. Lastly, built environment
variables like population and employment density are not considered when selecting
modes in the Munich Model. This means short trips generated in the less-populated
areas have the same likelihood of choosing walking as those in the urban areas.

Benefit from the fine spatial resolution used in the MITO/MoPeD model, trips are
modeled with more precise network distances rather than being considered as same
length intrazonal trips. In addition, by introducing the activity density into the walk
mode choice models, the MITO/MoPeD model can better capture the differences
in walk shares between urban areas and rural areas. As shown in Fig. 8b, the MITO/
MoPeD model mitigates the issue of walk share overestimation at the border areas.

To have a closer look into the walk share distributions in the Munich city area. The
results of the Munich Model (Fig. 8c) show that walk trips are sprawled in the entire
Munich city area though we can see a decreasing trend in the outer areas. Given the
coarse spatial resolution, it is difficult to observe the areas for pedestrian demand in the
Munich city area. Nevertheless, the MITO/MoPeD model can give us a clearer picture
of the hotspots for walk trips as shown in Fig. 8d.

Trip length distribution

Previous studies have found that destination choice models are the largest source of
errors in travel demand models (Zhao and Kockelman 2002). Trip length distributions
can be used to evaluate the performance of destination choice models. Figure 9a shows
the trip length distribution of all trips. Compared to the observed data, the Munich
Model has a significant deviation for the short distance trips. Figure 9b presents the
distribution of walk trips. It indicates that the Munich Model overestimated the trip
lengths for walk trips and then further confirms that the Munich Model is poor at cap-
turing pedestrian travel behaviors. Nevertheless, both figures indicate that the MITO/
MoPeD model performed better in modeling walk trip lengths. Without any calibration,
the shape of the walk trip distribution of the MITO/MoPeD model is almost matched to
the observed data. For the MITO/MoPeD model, we find that the left side of the distri-
bution and the peak are close to the observed data, but there is a large difference on the
right side of the distribution. This means that the MITO/MoPeD model underestimates
long-distance walk trips.
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Fig.9 Comparison of trip length distribution of all trips (a) and comparison of trip length distribution of
walk trips (b)

Pedestrian flows

After walk trips were generated, they were then passed on to MATSim for route assign-
ment. In this study, the shortest path algorithm is used for assigning walk trips. In future
studies, pedestrian route choice behavior needs to be further investigated and more
advanced routing techniques need to be applied to get more precise route estimates.

Figure 10 compares pedestrian volumes of network links resulting from two models. We
can find that pedestrian flows are sprawled in the Munich Model and pedestrian volumes
are much higher than those in the MITO/MoPeD model. The lack of count data is a barrier
to model validation. Thus, in this study, we cannot make a conclusion about the model per-
formance based on pedestrian flow maps. However, we hypothesize that the Munich Model
overestimated the pedestrian volumes on the links. As discussed above, the Munich model
was poor at simulating walk trip lengths. The overestimation of walk trip lengths results in
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Fig. 10 Comparison of pedestrian volumes assigned to the network links

an overestimation of pedestrian kilometers traveled in the trip assignment stage. The total
pedestrian kilometer traveled is 239,539 km in the MITO/MoPeD model while the number
is 738,599 km in the Munich Model which is almost tripled. The high value of pedestrian
kilometers traveled in the Munich Model may be the reason for high pedestrian volumes
on network links. The results from the MITO/MoPeD model show a more reasonable pat-
tern in that the network in the city center has higher pedestrian volumes with a diminishing
trend outward.

Volume of physical activity

PA volume is one of the critical inputs to measure an individual’s health indicators. PA
commonly has four domains including occupational, domestic, leisure, and transportation.
In this study, we focus on PA in the transportation domain. For this, information on all
walking and cycling activities is usually included to measure PA volume (James Woodcock
et al. 2013). In this study, modeling components of bicycle trips are unchanged so that
the cycling activities retain the same in the base model and the MITO/MoPeD model. To
avoid confounding comparisons, this study only measures the walk trips for physical activ-
ity volume.

Physical activity volume is the product of frequency, duration, and intensity. Com-
monly, it is measured over a week-long period with the unit of mMET-hours per week
(James Woodcock et al. 2013). In this study, the transport models only simulate the
travel demand on a typical day, so the walk trips are multiplied by a factor of 7. Walk
trip durations are measured using the walk trip distances resulting from MATSim. Trip
distances are converted to durations using an average speed. Ideally, speeds could be
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differentiated by age and sex to measure PA volume more precisely. However, for this
study, we try to skim off confounding factors and investigate a pure comparison between
the base model and the MITO/MoPeD model. Therefore, an average speed of 4.8 km/h
is chosen for walk trips (Kahlmeier et al. 2014). Similarly, a single value of intensity is
used for all walk trips. This is 3.61 mMETs for walking which is the median intensities
obtained from a recent objective study on commuters by Costa et al. (2015). Thus, the
PA volume of individual i is measured by the following equation:
walk trips

PA, = 7x Z walk Z’z;tance %3.61
n=1 :

Figure 11 compares the distribution of PA volume resulting from two modeling
frameworks. The observed PA distribution based on MiD 2017 is considered as the
reference. In this plot, the proportions of inactive individuals (the values at x=0) are
very high. This is because we only measured walk trips and it is incomplete for assess-
ing total PA. The results first confirm the hypothesis that the Munich Model is poor at
assessing PA volumes. The fundamental issue is that the Munich Model overestimates
the length of walk trips. As a result, the Munich Model overestimates the PA volumes of
each individual. As discussed before, the MITO/MoPeD model has a better performance
in capturing the distribution of walk trip lengths, so we didn’t see the issue of overes-
timating PA volumes in the MITO/MoPeD model. However, the plot reveals that the
MITO/MoPeD model generally underestimates PA volumes.

There are three major reasons for the underestimation of PA volumes in the MITO/
MoPeD model. First, as discussed above, the MITO/MoPeD model is poor at modeling
long and uncommon walk trips while those long walk trips are recorded in MiD data.
Missing these long walk trips causes the underestimation of PA volumes. Another rea-
son is that access and egress trips to public transport are not modeled in the transport
model, resulting in the elimination of a small share of PA. Lastly, the observed data may
be biased by walk distances since the distances in the survey were self-reported.
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&
o

0.257
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Observed data (MiD 2017) — The Munich Model — The MITO/MoPeD model

Fig. 11 Comparison of physical activity volume distribution
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Conclusions

We advanced the state of modeling pedestrian behaviors by including them in the agent-
based travel demand model. The integrated MITO/MoPeD model builds a link between
advanced pedestrian modeling techniques with the agent-based transport model. More
importantly, we applied the MITO/MoPeD model to a Munich case study. This allows us
to evaluate how effectively the MITO/MoPeD model improves the estimation of transport
outcomes when compared to the traditional agent-based transport model.

The results suggested that the traditional transport model framework—the Munich
Model-can simulate the walk behavior well at the aggregate level, but it is poor at match-
ing the individual level and the spatial distribution of walk behaviors. More importantly,
the results showed that the MITO/MoPeD model can better simulate travel outcomes than
the Munich Model. First, benefit from the fine spatial resolution used in the MITO/MoPeD
model, travel outcomes like walk shares are better reflected spatially which gives us a bet-
ter picture of how walk trips are distributed across the study areas. In addition, by intro-
ducing built environment factors in the models, the MITO/MoPeD model better captures
the differences in walk shares between dense areas and less-populated areas. The MITO/
MoPeD model also showed a better performance in modeling trip length distribution. The
finer zonal resolution helped solve the intrazonal trip issue and consequently simulates the
length of short trips more accurately. With regards to physical activity volumes, although
the results of the MITO/MoPeD model cannot perfectly match the observed data, it over-
comes the overestimation issue in the Munich Model.

This research still faces some limitations that should be addressed in future work. The
access and egress walk trips are neglected in the MITO/MoPeD model. To simulate physi-
cal activity volumes more precisely, those trips navigating to public transport need to be
considered in the model. In addition, the calculation methodology of physical activity vol-
umes has been heavily simplified. For comparison of model results, a simplified calcula-
tion methodology can help us to eliminate confounding factors. However, for a more real-
istic health assessment, future research could introduce more precise PA intensities using
available information on gradient, speed, age, and sex. Moreover, the results revealed that
long-distance walk trips were underestimated in the MITO/MoPeD model. Those long-dis-
tance walk trips could contribute a lot to health impacts so the model needs to be enhanced
to better capture long walk trips. Furthermore, though having pedestrian route choice in
the MITO/MoPeD model is an improvement. In future studies, more advanced algorithms
that consider route decision factors like safety, comfort, and scenery need to be investi-
gated and applied. Lastly, to transfer model estimates from Portland to the Munich con-
text, we applied the simple transfer method by updating constants. This approach helps us
to match the mode shares at an aggregate level, but it does not capture the differences in
the magnitude of variation in observed and unobserved factors. Therefore, more advanced
approaches can be applied in the future to enhance model transferability.

In conclusion, the presented model in this paper is one of the first to incorporate
pedestrian modeling into the agent-based transport model. This work demonstrates that
the model is capable of simulating transport outcomes more precisely. Those outcomes
are critical inputs to health impact assessment. Thus, we see the potential of the MITO/
MoPeDmodel to link with the health assessment tool to evaluate individual health impacts.
For example, the number of walk trips along or across a corridor can be used as a measure
of exposure when calculating crash rates and assessing traffic safety. Physical activity vol-
umes could be used to assess the relative risk of all-cause mortality. Routes of walk trips
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on a pedestrian network can improve the precision of these metrics but also can be used for
measuring air pollutant exposure while traveling. Such a model has a great opportunity of
incorporating health and environmental research. More importantly, it is useful for policy
analysis, including investments in transportation infrastructure, land use planning, assess-
ment of safety and health outcomes, and evaluation of environmental impacts.
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