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Abstract
The sea level observations from satellite altimetry are characterised by a sparse spatial and temporal coverage. For this
reason, along-track data are routinely interpolated into daily grids. These grids are strongly smoothed in time and space and
are generated using an optimal interpolation routine requiring several pre-processing steps and covariance characterisation.
In this study, we assess the potential of Random Forest Regression to estimate daily sea level anomalies. Along-track sea
level data from 2004 are used to build a training dataset whose predictors are the neighbouring observations. The validation
is based on the comparison against daily averages from tide gauges. The generated dataset is on average 10%more correlated
to the tide gauge records than the commonly used product from Copernicus. While the latter is more optimised for the
detection of spatial mesoscales, we show how the methodology of this study has the potential to improve the characterisation
of sea level variability.

Keywords Sea level anomalies · Satellite altimetry · Spatio-temporal interpolation · Machine learning · Random Forest
Regression

1 Introduction

The monitoring of sea level is conventionally performed
using tide gauges and a network of radar altimeters orbi-
ting the Earth. Tide gauges are in situ instruments that regis-
ter measurements at high frequency (often multiple mea-
surements per hour) and are scattered irregularly along the
global coastlines (Woodworth et al. 2016). Altimeters sam-
ple along satellite tracks, spanning the same area after a
defined number of days depending on the chosen repeating
orbit (Fu and Cazenave 2001). Efforts aimed at finding new
strategies to improve the characterisation of sea level vari-
ability at sub-seasonal time scales and in the coastal and
shelf seas to “reduce the gap” between altimetric and tide
gauge observations are ongoing as shown in previous works
such as Cipollini et al. (2017).
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Since altimetry data are along-track measurements scat-
tered in time and space, interpolating algorithms are routi-
nely used to generate sea level maps that are regularly sam-
pled in space and time. The European Union’s Earth obser-
vation programme, Copernicus, currently releases daily sea
level maps and their along-track sources through the Coper-
nicus Marine Service (CMEMS). The CMEMS daily maps
are produced using a processing based on optimal interpo-
lation, requiring several steps and assumptions described
in Le Traon et al. (1998) and Taburet et al. (2019). The
along-track data are sub-sampled and filtered twice, using
variable cut-off wavelengths ranging from 200 to 65 km
depending on the latitude. The optimal interpolation uses a
variable number of observations in time and space, with spa-
tial correlation scales ranging from 80 to 400 km and time
correlation scales ranging from 10 to 45 days. It is based on
the best linear least square estimator described by Brether-
ton et al. (1976), in which the covariance matrix of the
observations is needed as an input. The covariance matrix
is provided by means of assumptions on the errors of the
different geophysical corrections applied to the along-track
measurements (Pujol et al. 2016).

It has been recently argued that data-driven interpolation
is able to perform better than conventional optimal inter-
polation schemes, whose choice of covariance priors tends
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to over-smooth the sea level variability (Lguensat et al.
2019). The concept behind data-driven interpolation is to
exploit machine learning to provide an estimation based on
patterns and statistical relations acquired from the training
data, rather than from external instructions and assumptions
(Zhou et al. 2017). The objective of this paper is to adapt
an established machine learning technique to the problem
of the estimation of daily sea level maps from along-
track altimetry measurements. We use the Random Forest
Regression algorithm, described by Breiman (2001), in
the implementation of Pedregosa et al. (2011), which has
already been successfully used to fill gaps due to missing
observations of the ocean (e.g. Gregor et al. (2017) used
it to interpolate sparse in situ surface CO2 observations in
the Southern Ocean). In this study, we test a method based
on Random Forest Regression to grid sparse along-track
measurements based on neighbouring observations. The test
is carried out on a regional scale for 1 year of data in the
North Sea and we validated using tide gauge data and the
optimally interpolated maps from CMEMS.While CMEMS
daily grids have only been validated using monthly averages
from tide gauges as ground truth, we adopt in this work the
daily averages of the Global Extreme Sea Level Analysis
(GESLA, version 3), a global archive of high-frequency tide
gauge data (Woodworth et al. 2016; Haigh et al. 2021).

2 Data

In this case study, we consider the year 2004 and the exten-
ded North Sea including Skagerak/Kattegat in the east and
the English Channel in the west. The available altimetry
missions in this year were Jason-1, Envisat, Topex/Poseidon
and Geosat Follow-on. The North Sea is an ideal testbed
for our experiment, thanks to the availability of an extensive

tide gauge network at high frequency, which allows for
validation of a daily product. To our knowledge, previous
studies involving the comparison of gridded altimetry and
tide gauges have only involved monthly data, analysing
trends and interannual variability (e.g. Dettmering et al.
(2021)). The region of interest and its geographical
coordinates are delimited by the red square in Fig. 1.

To train the Random Forest Regression, we use the
CMEMS Level 3 (i.e. along-track) sea level anomalies
(SLA), reference number: SEALEVEL GLO PHY L3 REP
OBSERVATIONS 008 062. We recall that the SLA is
defined as the sea level above the mean, corrected for atmos-
pheric and tidal effects. A list of all applied corrections
is available in Taburet et al. (2019). We compare the daily
machine learning–based SLA from this study (nicknamed
ML from now on) with the latest version of the CMEMS
Level 4 gridded SLAs, reference number: SEALEVEL
GLO PHY L4 MY 008 047. We stress the difference in the
use of the data sources from CMEMS: the along-track data
are the observations that are used to build the regression
model; the gridded SLAs are only used for comparison with
respect to the results of this study.

As external truth for the validation, we use high-
frequency data from tide gauges available from the Global
Extreme Sea Level Analysis (GESLA-3, www.gesla.org,
Woodworth et al. (2016)). To make the tide gauge data com-
parable to the altimetry dataset, the following processing
steps are needed. Firstly, the atmospheric component is
removed using the same correction applied to obtain
the SLAs, i.e. the dynamic atmosphere correction from
Carrère and Lyard (2003). Secondly, the tidal variability
is suppressed using a 40-h LOESS filter, which has been
tested to most effectively reduce tidal variance at periods
lower than 2 days by Saraceno et al. (2008). The mean of
the full sea level record is computed and subtracted from

Fig. 1 Examples of along-track observations included in spatial (left) and temporal (right) neighbourhoods associated to one particular location.
The red box indicates the area of study. The latter is extended in the search for neighbouring observations, in order to allow for the estimations at
the domain’s border
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each time series in order to obtain the sea level anomalies.
Finally, since data are provided at hourly and sub-hourly
frequencies, the obtained tide gauge sea level anomalies are
averaged at a daily rate.

3Method

The concept of our methodology is the use of along-track
SLAs as truth to train the random forest regressor in the
estimation of unknown SLAs (our target variable) on a
set of grid points. As predictors, we use means, weighted
means and standard deviations of the SLAs at different
neighbourhoods in space and time. Furthermore, to better
describe the evolution of the target variable in both space
and time, the ratios among these predictors from the diffe-
rent neighbours are also used as predictors.

This methodology is inherited from Leirvik and Yuan
(2021), who used spatial neighbourhoods to constrain a
Random Forest Regression for the interpolation of a sur-
face solar radiation dataset. We expand the methodology by
considering the time dimension as well. The following sub-
sections are dedicated to the details of our implementation.

3.1 Preliminary steps

All along-track data for 2004 from CMEMS are collected in
the area of study, enlarged by 2.5◦ in latitude and longitude
to guarantee the definition of the neighbourhoods at its
borders.

The target variable ytraining to train the regressor is the
field sla unfiltered, where the 1-Hz SLAs (roughly one
measurement every 7 km along the track) are stored. The
CMEMS Level 4 gridded SLA uses the field sla filtered
when interpolating Level 3 data. Such a field is a smoother
version of the along-track data obtained using variable filter
lengths of several tens of kilometers. Our experiments have
shown that the neighbourhood method proposed in this
study does not need further filtering and our objective is
to keep as much signal as possible. Further discussion and
comparison with the CMEMS Level 4 in these regards are
provided in Section 4.

We define the locations for computing the SLA, our
unknown independent variable y, as the geographical
coordinates of a daily unstructured grid. This grid is spaced
at intervals of 0.125 degrees in both latitude and longitude,
which is equivalent to the grid resolution of the CMEMS
Level 4 product.

3.2 Definition of neighbourhoods

We define three spatial neighbourhoods and three temporal
neighbourhoods to group the along-track altimetry observa-
tions in the proximity of the locations in ytraining and y.

The spatial neighbourhoods are concentric circles with a
radius of 100 km, 200 km and 300 km from the location
of the target variable. The temporal neighbourhoods contain
the along-track data collected within 5, 10 and 15 days
from the time set by the target variable, within a distance
that does not exceed 300 km. An example of the along-
track locations assembled through the neighbourhoods of
one target variable is provided in Fig. 1.

The borders of the neighbourhoods are selected to be
within the average global correlation scales of sea level in
time and space (see for example Fig. 4 from Pujol et al.
(2016)). Nevertheless, the choice for this experimental study
is empirical and could be further optimised, for example by
using global maps of variable correlation scales depending
on the region, such as what is done in the generation of
the CMEMS Level 4 grids. We anticipate that we do not
observe a substantial change in the performances by slightly
changing the neighbourhood definitions.

3.3 Definition of predictors

We define in this section the following classes of predictors:
time and space clusters, single-neighbourhoods statistics
and multi-neighbourhoods statistics.

3.3.1 Time clustering

The time cluster contains the month in which the variable of
interest is defined. Given that the annual cycle is the most
prominent SLA periodic signal in time series whose length
cannot catch decadal variability, we expect this information
to be relevant for the regression. Indeed, Fig. 2a shows the
two very different probability densities (PDs) of the SLA
for January (blue) and July (red) based on the full training
dataset.

3.3.2 Spatial clustering

Several choices could be done concerning spatial cluster-
ing. In this exploratory study and in order to generalise the
approach, we choose the agglomerative hierarchical cluster-
ing (Ward Jr. 1963) in the implementation of Pedregosa et al.
(2011). This is an unsupervised classification method that
we use to separate the domain in different regions, simply
based on the Euclidean distance between the locations in our
case. We choose to divide our subdomain in nine clusters,
an example of the different PDs of SLA from two of them is
visualised in Fig. 2b. We reckon that this is a choice driven
by simplicity and other oceanographic information could be
used to refine the clustering, for example taking into con-
sideration the spatial correlation with respect to tide gauges
(the so-called zone of influence approach from Oelsmann
et al. (2020)).
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Fig. 2 Probability density of the
sea level anomalies associated to
specific predictors from the
training dataset. Panel (a):
months of January and July.
Panel (b): two geographical
clusters. Panel (c): the mean of
the sea level anomalies for the
first (100-km radius) and third
(300-km radius) spatial
neighbourhoods. Panel (d): the
mean of the sea level anomalies
for the first (5 days) and third
(30 days) time neighbourhoods

3.3.3 Single-neighbourhoods statistics

For the SLAs contained in every spatial and temporal
neighbourhood, we compute the following statistics: mean,
spatial-based weighted mean, time-based weighted mean
and standard deviation. The weighted means are based on
inverse distance weighting, i.e. maintaining the notation of
Leirvik and Yuan (2021), the weighted means are defined
as:

z̃(N) =
∑

zi∈N

λizi (1)

where N defines the neighbourhood, zi is every SLA value
within it and the weights λi are defined as:

λi = d−r
i0∑

zi∈N

d−r
i0

(2)

For the spatial-based weighted mean, di0 is the Euclidean
distance in kilometers of every SLA within the neighbour-
hood and the location of the target variable. For the time-
based weighted mean, di0 is the time difference in seconds
between the passing time of the altimeter at the observation
i and the time stamp of the target variable. Note that the
time difference is multiplied by a factor 10−4 in order to
achieve similar orders of magnitude between spatial-based
and time-based weighted means.

The exponent, r , expresses the relative importance of
close-by observations. The highest exponent found in the
literature is r = 5 from Leirvik and Yuan (2021).
We tested lower values and the sensitivity of our results
to the choice of r (results are reported in Section 4.2

and found the best performances for r = 2). This is
not surprising, since a high exponential gives a high
importance to the closest observations, while SLA is a
field characterised by large spatial and temporal scales
of correlation. Given three spatial neighbourhoods and
three temporal neighbourhoods, we obtain therefore twenty-
four single-neighbourhood predictors. An example of the
different PDs of the predictors is given in Fig. 2, where the
PD of the mean SLA for the first and third spatial (panel c)
and temporal (panel d) neighbourhoods is provided.

3.3.4 Multiple-neighbourhoods statistics

The multiple-neighbourhoods statistics are the ratios
between the single-neighbourhoods statistics of the same
kind for consecutive neighbourhoods. For example, as in
Leirvik and Yuan (2021), considering the mean of the SLAs,
we compute the ratio of the mean SLAs between first and

second neighbourhoods, Z
k1,k2

, and the ratio of the mean

SLAs between second and third neighbourhoods, Z
k2,k3

.
Considering the typical objective of the altimetry missions
to achieve a 1-cm SLA accuracy at 1-Hz posting rate (Bon-
nefond et al. 2013), we round up (or down, for negative
numbers) to the nearest centimetre the single neighbour-
hood statistics previously obtained before computing each
ratio.

3.4 Final steps

The predictors are computed for both ytraining and y

locations, generating the predictor matricesXtraining andX,
in which each row corresponds to the predictors associated
with each location. Outliers in ytraining and Xtraining are
identified using a 3σ criterion, where σ is the standard
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deviation of each variable. Observations in which the SLA
or its predictors are identified as outliers are eliminated from
the training dataset. Finally, the Random Forest Regression
is applied on the training dataset. The obtained regressor
f (·) is then applied to estimate the desired SLA on the grid
points as y = f (X).

4 Results and discussion

4.1 Examples

To investigate the advantages and the limitations of the
generated daily ML product, we first consider examples in
time and space. Figure 3 shows the time series of daily
averaged data from tide gauges (in green), whose locations
are specified at the top of each subplot. The ML product (in
blue) and the CMEMS product (in orange), corresponding
to the closest location to each tide gauge, are shown for a
period comprised between the 15th of January and the 15th
of December. This latest choice is because we have only

worked with data from 2004 and therefore the regression
would generate worse results at the beginning and the end
of the period investigated.

The CMEMS time series appears significantly smooth in
time, while the ML product preserves time scales that better
match the ones of the tide gauges, although of course the
full extent of the high-frequency variability is not captured.
Despite CMEMS being smoother than the ML product, the
root mean square error (RMSE), computed taking the tide
gauges as the truth, is systematically lower for ML. This
gives us confidence that the ML time series is not simply
noisier than the CMEMS, but it is indeed more accurate.

In Fig. 4, we show a snapshot of ML and CMEMS SLAs
for the 24th of April 2004. While the large-scale gradients
are similar in both products, the CMEMS map has more
defined contours identifying mesoscale variability. The
higher variability of ML is the counterpart in space of
what has been seen in time in the previous example. The
objectives of ML and CMEMS are indeed different: the
CMEMS optimal interpolation scheme is dedicated to the
retrieval of mesoscale structures (Taburet et al. 2019), while

Fig. 3 Time series estimated
from satellite altimetry from this
study (ML, blue) and CMEMS
(orange) at the closest point to
four tide gauges (green), whose
coordinates are shown at the top
of each panel. Also shown as
text is the root mean square
error (RMSE) of the altimetry
dataset considering the tide
gauges as ground truth
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Fig. 4 The daily maps of sea
level anomalies (SLA) from this
study (ML) and CMEMS
estimated for the 24th of April
2004

with ML we attempt to achieve a better compromise to
observe local sea level variability. The latest statement is
quantified and verified for this case study in Sections 4.2
and 4.3.

The spatial resolution of the ML grid appears degraded
compared to CMEMS, in which eddy-like structures can
be recognised. Still, it is important to recall that dedicated
efforts to assess CMEMS effective spatial resolution conclu-
ded that it is not better than 100 km wavelength, which is
the resolution reached at the highest latitudes (Ballarotta
et al. 2019). Here, we further notice that the CMEMS map
is affected by unrealistic extremes of SLA in single pixels in
particularly challenging areas such as the English Channel.
This is remarkable, considering that the input along-track
data of ML and CMEMS are exactly the same, except for
the along-track filtering applied by the latter.

4.2 Validation against tide gauges

We assess the general performances of ML and CMEMS
computing Pearson’s correlation coefficient (CORR) and
the RMS between the time series obtained from altimetry
and the daily means of the tide gauge data at the closest
grid point. Figure 5 shows in the upper panels the RMS and
the CORR for ML and in the lower panels the difference
with respect to the same statistics computed using CMEMS.
The colourbar of the latter is adjusted to show that when
the colour is red, an improvement is seen when using the
ML product with respect to CMEMS. Good performances
(CORR 0.7) are reached along the coasts facing a large
open ocean area at the centre of the domain, such as the
eastern coast of the United Kingdom (UK). Notably, good
performances are also seen in much more enclosed areas
situated at the periphery of the domain, such as the Kattegat
Sea between Denmark and Sweden (the easternmost part
of the domain). This advocates for the robustness of
the neighbourhood strategy previously presented. Lowest
performances are reached in some enclosed bays and on

both sides of the Channel between UK, France and Belgium
(the southernmost part of the domain). Here the quality of
the SLAs, also in terms of the geophysical corrections used
to extract them, plays a dominant role as shown in previous
studies at different temporal scales, such as Dettmering et al.
(2021) using monthly time series. The most remarkable
result of the validation is that in almost all of the domain (29
tide gauges out of 32) ML performs better than CMEMS.
In more than half of the domain, there is at least a 5%
improvement in both CORR and RMS considering the
tide gauges as ground truth. The average improvement in
correlation is 9.98% (6.99% considering RMS), with peaks
over 30% that include some of the most problematic areas
for satellite altimetry such as the Channel. Concerning the
sensitivity of these results to the choice of the weighting
factor r , explained in Section 3.3, we tested integer values
of r from 1 to 5. The differences between the best and worse
average performances are 0.36% in terms of correlation
improvement and 1.2% in terms of RMS improvement with
respect to CMEMS. In no case among the ones considered
did the choice of r determine worse results of ML compared
to CMEMS.

In order to understand whether this result depends on
the choice of using unfiltered SLAs as training dataset, we
also repeated the same experiment starting from the target
variable sla filtered (see Section 3.1 for description). We
find that using sla filtered produces marginal improvements
in the statistics (the average improvement in correlation is
10.17%, 7.45% considering RMS). This corroborates the
finding as a result of the ML approach described, with
scarce dependence on the smoothing applied to the along-
track data. The unfiltered approach is still kept as the basic
approach of this study, since our objective is to avoid as
much as possible the suppression of the physical signal.

Despite the short time series considered in this experi-
ment, we also compute the magnitude squared coherence
(as defined, for example, in Thomson and Emery (2014))
to investigate the agreement between the tide gauges and
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Fig. 5 Results of the validation
of daily sea level anomaly maps
coupled with tide gauges at the
closest point. Root mean square
(RMS, panel a) and Pearson’s
correlation coefficient (CORR,
panel b) between the product of
this study (ML) and the time
series from the tide gauges
(panel a). Panels c and d:
Difference between these
statistics and the equivalent
computed using the CMEMS
product, in which the red colour
palette indicates an
improvement using ML

the altimetry time series at different frequencies. We show
the mean coherence using ML and CMEMS obtained con-
sidering all the available tide gauges and periods below 90
days, in order to have at least 4 time windows to consider
out of 1 year of data. The results, displayed in Fig. 6, show
that a clear improvement in the coherence is obtained with
the ML approach from periods higher than 10 days. Lower
periods are dominated by noise, which is expected given
that the data are corrected for the dynamic atmosphere cor-
rection, which largely suppresses the oceanic variability at
these frequencies that are badly sampled by the altimetry
constellation (Carrère and Lyard 2003).

4.3 SLA variability

Finally, we assess how realistic the variability of the sea
level from the daily grids is. For this purpose, we compute
the interquartile range (IQR) of the time series at every
grid point and every tide gauge. The IQR is an index of
variability computed by taking the difference between the

75th and the 25th percentile of the data, and it is typically
used instead of standard deviation or variance because of
its robustness. It is commonly used in sea level studies
comparing in situ and satellite time series (for example
Wöppelmann and Marcos (2016)) and proves fit for our
purposes, given that we only assess 1 year of data.

Figure 7a displays the results on the map, showing
a consistently increasing variability of ML towards the
southeastern part of the domain, which is confirmed by
the tide gauge records. In Fig. 7b, the IQR at tide gauges
is compared with the variability observed by ML and
CMEMS at the closest point. To evaluate this comparison
and considering the tide gauges as the ground truth, we
compute an index of the average misrepresentation of the
sea level variability:

Errvar =

N∑

i=1

(IQRalti − IQRT G)

IQRT G

· 100

N
(3)

Fig. 6 Results of the validation
of daily sea level anomaly maps
coupled with tide gauges (TG)
at the closest point: mean
magnitude squared coherence
for periods lower than 90 days
expressing similarity between
the time series from TG and
CMEMS (orange), and from TG
and ML (blue)
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Fig. 7 Panel a: Variability of sea
level anomaly (SLA) estimated
using the interquartile range of
the time series at each grid point
estimated in this study (ML) and
from the tide gauges (circles).
Panel b compares the same
statistics at the tide gauges (TG)
with the closest grid point from
ML and CMEMS products

where N is the number of tide gauges and IQRalti is the
IQR of the altimetric time series at the closest point to
each tide gauge. The best results are obtained by ML with
Errvar = 4.4%, while when using CMEMS Errvar =
7.6% is achieved. However, it is also noticed that ML
underestimates the variability in the two stations with the
highest IQR.

5 Conclusions

This study has analysed the potential of using a data-
driven approach to produce daily maps of SLAs starting
from along-track observations from satellite altimeters.
This approach allows for circumventing several hypotheses
needed to characterise the covariance of the observations
and their errors in the optimal interpolation. Building on
the existing literature, we have tested a Random Forest
Regression that uses statistics extracted from spatial and
temporal neighbourhoods. By doing so, we have obtained 1
year of daily sea level maps that are on average 10% more
correlated to the observations from tide gauge stations in the
North Sea, compared to CMEMS data.

We believe that the main heritage of this study is the
idea that along-track SLA data can be used to train machine
learning routines aimed at generating gridded maps. The
latter appear less smoothed in space than their CMEMS
counterpart and will therefore need further filtering to be
used for the identification of mesoscale features such as
eddies. Nevertheless, the method presented allows for a
more realistic representation of the sea level variability,
as verified by the comparison against coastal in situ
data. Such comparison has been conducted using high-
frequency tide gauges, which is in our opinion a much

more realistic external validation than the use of monthly
means, if the objective is to assess the capability of the
altimetry constellation to observe sea level at short time
scales.

Since this is an exploratory study, we have to acknowl-
edge both potential and limitations. To speed up the exper-
iments, we have chosen one single year of data (2004), in
which four altimeters were in orbit, and a specific region
(the North Sea). Extending this methodology to a longer
time series will allow to perform coherence studies and
distinguish therefore the performances at different time
frequencies. We have used one single regressor, because
clusters based on time and geographical locations of the
observations were part of the predictors. Nevertheless, the
feasibility of this choice will need to be assessed for stud-
ies involving more years and a wider area, also in terms of
computing time.

The validation against tide gauges shows the strong
potential of machine learning to improve the characterisa-
tion of coastal sea level at a time in which the altimetry
community has recognised the possibilities to improve the
quality of sea level data close to the coast (Benveniste et al.
2020). We expect therefore further improvements by using
SLAs whose estimation is optimised for the coastal zone
(Passaro et al. 2021; Birol et al. 2021), which will neverthe-
less require significant post-processing of the along-track
data, in order not to decrease the quality of the training
dataset.
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