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Abstract
Multidisciplinary design optimization has great potential to support the turbomachinery development process by improving 
designs at reduced time and cost. As part of the industrial compressor design process, we seek for a rotor blade geometry 
that minimizes stresses without impairing the aerodynamic performance. However, the presence of structural mechanics, 
aerodynamics, and their interdisciplinary coupling poses challenges concerning computational effort and organizational 
integration. In order to reduce both computation times and the required exchange between disciplinary design teams, we 
propose an inter- instead of multidisciplinary design optimization approach tailored to the studied optimization problem. 
This involves a distinction between main and side discipline. The main discipline, structural mechanics, is computed by 
accurate high-fidelity finite element models. The side discipline, aerodynamics, is represented by efficient low-fidelity 
models, using Kriging and proper-orthogonal decomposition to approximate constraints and the gas load field as coupling 
variable. The proposed approach is shown to yield a valid blade design with reasonable computational effort for training the 
aerodynamic low-fidelity models and significantly reduced optimization times compared to a high-fidelity multidisciplinary 
design optimization. Especially for expensive side disciplines like aerodynamics, the multi-fidelity interdisciplinary design 
optimization has the potential to consider the effects of all involved disciplines at little additional cost and organizational 
complexity, while keeping the focus on the main discipline.

Keywords Multidisciplinary design optimization · Multi-fidelity methods · Kriging · Proper-orthogonal decomposition · 
Turbomachinery

1 Introduction

Reduced development costs and decreased emissions are two 
of the goals set by the aerospace industry and the European 
Commission (2011) in the Flightpath 2050. Reduced devel-
opment costs imply shorter design cycles with less iterations 
between the disciplines, motivating the use of multidiscipli-
nary approaches. Decreased emissions can be achieved by 
either innovative concepts or by optimizing existing aircraft 
components.

One of the main aircraft engine components is the com-
pressor, responsible for raising the pressure level of the 
intake air, while it passes through several rows of rotor 
and stator blades, see Fig. 1. The compressor development 
involves several engineering disciplines, notably aerodynam-
ics and structural mechanics.

1.1  Aero‑structural optimization problem 
statement

As part of the industrial aero-structural compressor design 
process, we seek for the best possible blade geometry. After 
the initial design optimization by the aerodynamic depart-
ment, the second step is a structural optimization of individ-
ual blades. However, design changes that are beneficial from 
the structural mechanics point of view may counteract the 
aerodynamic performance and disturb the aerodynamic inte-
gration with the neighboring stages. Structural blade design 
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problems should thus include aerodynamic constraints and 
aero-structural coupling.

A frequently arising optimization problem is the minimi-
zation of stresses in the compressor blades without impair-
ing the aerodynamic performance. It is herein studied for 
the third-stage rotor blade, highlighted in orange in Fig. 1. 
Figure 2 shows the qualitative pressure field on the third-
stage surfaces, as a result of CFD simulations with the ini-
tial geometry. It induces aerodynamic loads, the gas loads, 
which in turn affect the stress field, depicted in Fig. 3 for the 
rotor suction side.

The blade design problem can be treated either by an 
iterative process between disciplinary design teams or in a 
multidisciplinary design optimization (MDO) (Sobieszczan-
ski-Sobieski and Haftka 1997). Papageorgiou et al. (2018) 
reviewed recent advancements and challenges in MDO of 
aerial vehicles and provided a roadmap including nine fun-
damental elements, among others computational efficiency 
and organizational integration.

For the above-mentioned aero-structural compressor 
blade design task, these two elements are particularly chal-
lenging and inhibit the application of MDO as a standard 
tool in the industrial development process. First, computing 
times can be prohibitively long if expensive aerodynamic 
simulations are performed in addition to the structural 
analyses in every optimization iteration. Interdisciplinary 
coupling additionally increases computational cost and com-
plexity. It is therefore often neglected or strongly simplified 
at the expense of model accuracy. Second, the integration 
into company structures is usually difficult, as disciplinary 
department boundaries impede multidisciplinary develop-
ments. The aim for a practical optimization approach thus 
is as little disciplinary interdependence as possible and as 
much as needed for a useful optimization result. In other 
words, a multidisciplinary feasible solution should be 
obtained while maintaining the division of work between 
responsible discipline-focused company units.

1.2  Multi‑fidelity approaches

The first challenge, the computational efficiency, is com-
monly tackled by parallelized computations and multi-
fidelity methods. An additional option is adjoint methods 
for efficient gradient-based optimization, not discussed 
herein, as used among others by He et al. (2020) in an 
uncoupled aero-structural compressor blade optimiza-
tion. Multi-fidelity methods (Viana et al. 2014) speed up 
computations by complementing a comparatively small 
number of high-fidelity simulations, here finite element 
(FE) and computational fluid dynamics (CFD) simulations, 
with a large amount of low-fidelity model evaluations. 
The latter are cheaper to evaluate, while providing use-
ful information within the design domain. They are also 
called surrogate models or metamodels. Before outlining 
our ideas, we review recent literature on the application 
of low-fidelity models in aero-structural optimization of 
aircraft engine blades.
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Fig. 1  High-pressure compressor frontblock annulus geometry illus-
tration with inlet guide vane (IGV) and four stages of rotor and stator 
blades. The third-stage rotor and stator blades, highlighted in orange 
and red, are the subject of the treated optimization problem. The 
arrows indicate the airflow in x-direction
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Fig. 2  Pressure field on the third-stage rotor and stator blade surface 
and annulus walls as a result of the CFD simulations. The four pro-
file sides pressure side (PS), suction side (SS), leading edge (LE), and 
trailing edge (TE) are indicated on the rotor blade
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Fig. 3  Maximum principal stress field on the rotor blade suction side 
as a result of the FE simulations. The stresses depend on the rotor 
blade geometry and are induced by centrifugal forces, thermal loads, 
and gas loads. The latter result from the aerodynamic pressures in 
Fig. 2. The dashed line indicates the fillet region
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The most widely used low-fidelity models are data-fit 
models. Cuciumita et al. (2021) approximated a maximum 
stress constraint by a radial basis function (RBF) model. 
Aissa and Verstraete (2019) proposed a bounded Kriging 
model as robust method for surrogate-assisted MDO of 
compressor blades. Neural networks were recently used 
by Ghalandari et al. (2019) to model aerodynamic per-
formance and stress levels, or by Vanti et al. (2018) in an 
uncoupled aeroelastic optimization.

Another type of low-fidelity models are reduced-order 
models, including proper-orthogonal decomposition 
(POD). Benamara et al. (2017) proposed multi-fidelity 
non-intrusive POD to predict isentropic efficiency and 
pressure ratio. Instead of approximating the response vari-
ables, Zhang et al. (2018) replaced the 30 original design 
parameters in the MDO by only four POD coefficients to 
decrease computation time.

In the above turbomachinery references, static aero-
structural coupling is mostly neglected. In aircraft wing 
optimization, Coelho et al. (2009) used reduced-order 
models to approximate pressure loading and displacement 
field. The low-fidelity models enabled coupling at little 
additional computational cost, enhancing the accuracy of 
the disciplinary high-fidelity results.

The second challenge, the organizational integration 
of MDO, is a much less active research area (Papageor-
giou et al. 2018). Lian and Liou (2006) are one of the 
few references to address both challenges together for a 
statically coupled aero-structural compressor optimization. 
They used genetic algorithms solely based on quadratic 
response surface models. These low-fidelity models were 
in turn based on high-fidelity samples with unidirectional 
coupling via the aerodynamic pressure field, realized 
by sequential CFD and FE simulations. Hu et al. (2016) 
employed a collaborative optimization (CO) strategy for a 
bidirectionally coupled aero-structural turbine blade opti-
mization. The distributed CO strategy guarantees disci-
plinary autonomy for better organizational integration. Its 
commonly prohibitive computational expense was reduced 
by quadratic response surface models, based on data from 
medium-fidelity aerodynamic and structural analyses and 
high-fidelity fluid–structure interaction simulations.

The above literature references have in common that 
they treat both disciplines as equally important. They do 
not exploit the fact that industrial aero-structural optimi-
zations are often performed with focus on monodiscipli-
nary objectives, and include multidisciplinary coupling 
and constraints merely not to interfere with the respective 
other discipline.

1.3  Proposed approach

This work addresses the question of how low-fidelity models 
can be employed to improve the aero-structural optimization 
of compressor blades with regard to both computational effi-
ciency and organizational integration.

For the compressor blade optimization problem stated 
in the beginning, we propose a multi-fidelity optimization 
process which is inter- instead of multidisciplinary. This 
involves a distinction between main and side discipline. The 
main discipline is structural mechanics, as it is the objective 
and focus of the optimization problem. The side discipline 
is aerodynamics. The main discipline is represented by a 
high-fidelity model. Additionally, the side discipline and the 
coupling from side to main discipline is taken into account 
by low-fidelity models only. Thereby, the main discipline is 
evaluated as accurately as possible, while the side discipline 
is computed only as accurately as necessary for a useful 
optimization result.

The benefit of the proposed approach is shown by com-
parison to a common uncoupled and purely high-fidelity 
MDO. Despite a significant computation speed-up, the 
approach provides a valid blade design that is not only struc-
turally optimized, but also respects aerodynamic effects and 
constraints.

The paper is structured as follows: In Sect. 2, multi-
fidelity and multidisciplinary optimization approaches are 
outlined, followed by the employed low-fidelity modeling 
methods in Sect. 3. The proposed interdisciplinary optimi-
zation process is presented in Sect. 4. Afterward, in Sect. 5, 
the computational set-up and concrete optimization problem 
of the compressor blade application are defined. The results 
are presented in Sect. 6 and the paper is concluded by a sum-
mary and outlook in Sect. 7.

2  Multi‑fidelity and multidisciplinary 
optimization methods

In the present context, optimization (Martins and Ning 2021) 
uses numerical methods to seek the overall best design of an 
engineering system. It can yield an improved system perfor-
mance at reduced time and cost compared to a conventional 
development process. However, the correct problem formu-
lation is crucial and requires expertise in both the involved 
engineering discipline(s) and numerical optimization.

A standard optimization problem is to minimize an objec-
tive function by varying the design variables within their 
prescribed bounds subject to equality and inequality con-
straints. For compressor blade design, common objectives 
are minimum stresses or maximum efficiency, the design 
parameters define the blade geometry, and constraints 
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concern for example mass flow, pressure ratio, surge margin, 
stresses, and eigenfrequencies.

In every optimization iteration, objectives and constraints 
need to be evaluated. With aerodynamics and structural 
mechanics as the most influential disciplines in compressor 
blade design, this usually entails thousands of CFD and FE 
simulations.

2.1  Multi‑fidelity optimization processes

Expensive high-fidelity simulations can be partly or fully 
replaced by efficient low-fidelity model evaluations within 
the optimization. Models of various fidelities are combined 
in multi-fidelity optimization (MFO) processes, either by 
adaptation, fusion, or filtering (Peherstorfer et al. 2018; Kha-
touri et al. 2022).

In adaptive MFO, the low-fidelity model is improved by 
high-fidelity results at new sampling points during the opti-
mization. Fusion strategies combine the outputs of models 
of different fidelities. Filtering means that the high-fidelity 
model is only evaluated if the low-fidelity output meets a 
predefined criterion. Note that all of these approaches com-
bine models of multiple fidelities with the same output 
parameters and thereby differ from the approach we propose 
in Sect. 4.

2.2  Multidisciplinary optimization processes

Just like models of various fidelities are embedded in a 
multi-fidelity optimization process, the presence of sev-
eral disciplines allows different approaches for the efficient 
organization of the disciplinary analyses and optimization 
methods. MDO processes, or architectures, were extensively 
reviewed by Martins and Lambe (2013) and compared by 
Tedford and Martins (2009) and Gray et al. (2013) based on 
benchmark problems. They classify MDO architectures as 
monolithic or distributed.

The former treat the MDO problem in a single optimiza-
tion and are therefore simple to implement and well-suited 
for small problems. However, they are inefficient for prob-
lems with a large number of disciplines. Here, distributed 
architectures may perform better. They decompose the MDO 
problem into disciplinary optimization subproblems which 
are coordinated by a system-level optimization subprob-
lem. Thereby, they try to mimic the structure of industrial 
development teams and strive for independence between the 
disciplines. Although the ideas of distributed architectures 
seem promising, they exhibit a slow convergence for many 
problems (Martins and Ning 2021).

The basic monolithic MDO architecture is the multi-
disciplinary feasible (MDF) approach. It treats the MDO 
as a common disciplinary optimization problem, with the 
difference that objective and constraints are computed by 

multidisciplinary analyses in every optimization iteration. 
MDF has the advantage that it makes use of established 
optimization and multidisciplinary analysis methods. The 
optimization problem remains as small as possible and is 
thus also suited for gradient-free methods. Moreover, the 
multidisciplinary analysis ensures physical compatibility 
after every optimization iteration. This is especially useful 
for engineering and industry applications, where the aim 
usually is finding a better design, rather than a mathemati-
cal optimum, and optimizations are often terminated pre-
maturely. The main disadvantage is the computational effort 
and often slow convergence of the multidisciplinary analyses 
in case of strong interdisciplinary coupling.

With regard to the use of low-fidelity models, concurrent 
subspace optimization (CSSO) is an interesting distributed 
approach. It was introduced by Sobieszczanski-Sobieski 
(1989) and extended to the version considered herein by 
Sellar et al. (1996). In CSSO, the coordinating system-level 
subproblem is optimized based on low-fidelity models. Each 
disciplinary subproblem is optimized based on high-fidelity 
models for the corresponding discipline and low-fidelity 
models for all other disciplines. The disciplinary subproblem 
results are used to update the low-fidelity models. Despite 
the fast low-fidelity model evaluations, the slow convergence 
hinders its efficient application.

3  Low‑fidelity models

Before starting the interdisciplinary optimization process, 
low-fidelity models of the aerodynamic quantities of interest 
must be generated. According to Peherstorfer et al. (2018), 
low-fidelity models can be divided into three categories: 
data-fit models, projection-based models, and simplified 
models. While data-fit models are purely mathematical 
response surfaces, projection-based models, hereinafter 
referred to as reduced-order models, represent a system by 
its most important eigenmodes and thereby provide a cer-
tain physical interpretability. Simplified models, for exam-
ple with a coarser mesh, are based on the original problem 
physics. However, their evaluation often takes a lot longer 
than for the other two categories and they may be difficult 
to combine with the high-fidelity models; that is why they 
are omitted in this work.

The process of data-fit and reduced-order model genera-
tion followed for the optimization problem herein is illus-
trated as a flowchart in Fig. 4. First, a set of input points in 
the design space is selected, also called design of experi-
ments (DoE) (Giunta et al. 2003). Popular approaches are 
Monte Carlo sampling, Latin hypercube sampling (LHS), 
and low discrepancy sequences. Then, the corresponding 
outputs are computed by high-fidelity simulations, here CFD 
for aerodynamics.
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Based on the resulting data set, a correlation or sensitivity 
analysis (Saltelli et al. 2007), for instance in form of Spear-
man correlation coefficients (Spearman 1904), can provide 
a better understanding of the problem at hand and help to 
identify variables with negligible influence on the quantities 
of interest. Omitting these variables during the low-fidelity 
model generation can allow for more accurate models with 
respect to the remaining variables, especially in case of lim-
ited sampling budget.

The CFD results serve as a common training base for 
both kinds of low-fidelity models. We use a data-fit model, 
Kriging, to approximate the scalar aerodynamic constraints. 
A reduced-order model, consisting of POD and Kriging, 
approximates the gas load field for aero-structural coupling. 
Both are explained in what follows.

3.1  Data‑fit model: Kriging

Popular data-fit models are polynomial response surface 
models, moving least-squares, RBF interpolation, Kriging, 
or support vector regression, summarized by Forrester et al. 
(2008). We use Kriging (Krige 1951; Matheron 1963; Sacks 
et al. 1989), because it does not assume a certain problem 

structure and can thus yield accurate predictions for various 
function forms.

Kriging is also known as Gaussian process (GP) regres-
sion (Rasmussen and Williams 2006). It predicts an 
unknown output by interpolation between the values in 
its vicinity. The response is considered as a random vari-
able, contrary to its actual properties as observed response 
obtained by deterministic computations. This takes into 
account the actual uncertainty of the prediction.

Since the method is very popular, we only briefly reca-
pitulate the main steps of Kriging model fitting and predic-
tion. To start with, the a-priori GP is defined as sum of mean 
and covariance function. In ordinary Kriging, used herein, 
the mean is an unknown constant. The covariance is speci-
fied by kernel functions. For modeling physical quantities, 
the Matérn kernels are in general preferred over the squared 
exponential kernel, because the latter are unrealistically 
smooth (Rasmussen and Williams 2006). Then, the model 
is fitted to the training data by optimizing the hyperparam-
eters, that is the unknown mean and the kernel parameters, 
commonly using maximum likelihood estimation (MLE). 
The resulting a-posteriori GP can be used to compute the 
most probable output values and the prediction uncertainty 
at new input points.

3.2  Reduced‑order model: POD + Kriging

While data-fit models approximate scalar quantities, like the 
efficiency, reduced-order models approximate multi-dimen-
sional outputs, like the gas load field. The underlying idea 
is to extract the most important features, or modes, of the 
physical field and then represent the field as a linear com-
bination of these modes. The resulting lower-dimensional 
system representation is much easier to handle.

The most popular method for obtaining the lower-
dimensional representation is POD. It is similar to princi-
pal component analysis (PCA) from the field of statistics. 
Non-intrusive snapshot POD, developed by Sirovich (1987), 
is employed in this work and will be outlined in what fol-
lows. Case studies of snapshot POD in both aerodynamics 
and structural mechanics were presented by Swischuk et al. 
(2019). An overview of non-intrusive reduced-order models 
was provided by Yu et al. (2019).

Following the right branch of Fig. 4, the lower-dimen-
sional outputs, that is the POD coefficients, are approximated 
by Kriging models, like in the previous subsection. The pro-
cedure of reduced-order model generation and prediction is 
summarized hereinafter. For more details and underlying 
equations of snapshot POD, we refer to the above references.

The starting point of POD is the snapshot matrix con-
taining n samples of m-dimensional simulation results. 
This matrix is projected onto the subspace spanned by the 
dominant modes. Mathematically, this is achieved using thin 
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Fig. 4  Flowchart of the low-fidelity model generation process. The 
high-fidelity aerodynamic model, CFD, is approximated by a data-fit 
model, Kriging, and a reduced-order model, consisting of POD and 
Kriging
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singular value decomposition (SVD). The resulting matrices 
can then be truncated after the first k modes, loosing as lit-
tle information as possible for a given reduced rank k. The 
reduced rank k can either be specified in advance or chosen 
such that the proportion of energy, or variance, captured by 
the first k modes should be above or equal to a given thresh-
old � , typically � ≥ 90% . In case of computational meshes 
with thousands of nodes, the energy usually decreases rap-
idly with increasing rank and k ≪ m . As lower-dimensional 
representation of the high-dimensional samples, the POD 
coefficients are computed by projecting the snapshot vectors 
onto the first k POD modes.

Afterward, a Kriging model can be trained to approxi-
mate the POD coefficients as a function of the original input. 
Note that the number of degrees of freedom to be modeled 
decreases from m nodal values to k ≪ m coefficients due to 
the model order reduction.

For the low-fidelity model prediction, the POD coeffi-
cients are predicted by the Kriging models. The full-order 
physical field can then be approximated as a linear combina-
tion of POD coefficients and modes.

4  Proposed interdisciplinary optimization 
process

The goal of this work is a fast and industrially integrable 
aero-structural optimization approach for the compressor 
blade design problem stated in Sect. 1.1. For this purpose, 
we combine the methods explained in the two previous sec-
tions. We propose a combination of a simple MDF archi-
tecture and a multi-fidelity approach inspired by the CSSO 
disciplinary subproblems. The resulting interdisciplinary 
optimization (IDO) process can be categorized as mono-
lithic architecture and is illustrated as a flowchart in Fig. 5.

The underlying idea is the distinction between main and 
side discipline, leading to an inter- rather than multidisci-
plinary optimization problem. It follows the concept of a 
disciplinary design team, that maintains an interdisciplinary 
exchange with its neighboring teams, but does not have fully 
multidisciplinary competences.

The main discipline is the focus of the aforementioned 
design team and the optimization objective, here structural 
mechanics to minimize stresses. It is evaluated by a high-
fidelity FE model. While the side discipline, aerodynamics, 
is neither the optimization objective, nor the expertise of the 
design team, it needs to be considered for a useful optimiza-
tion result. Therefore, the side discipline is treated as a low-
fidelity model, which completely replaces the high-fidelity 
CFD simulations. It thus generates very little additional 
computational effort in each optimization iteration. Instead 
of exchanging large amounts of data, complex CFD models, 
and simulation tools plus the corresponding licenses, only 

simple low-fidelity models need to be provided by the aero-
dynamic design team.

Nevertheless, the aerodynamic influence is considered 
via both constraints and coupling variables. The constraints 
are represented by data-fit models, here Kriging, the high-
dimensional coupling variables by reduced-order models 
combining POD and Kriging, see Sect. 3. The effect of the 
aerodynamics on the structure is represented by unidirec-
tional coupling, transferring the aerodynamic load field 
as a boundary condition for the static structural analysis. 
The rapid approximation enables a concurrent coupling, 
meaning that it is computed during the structural simula-
tion set-up and requires no additional time, contrary to com-
mon sequential computations. Cross-coupling, in our case a 
bidirectional exchange of aerodynamic loads and structural 
displacements, would make the sampling much more com-
plex and expensive. Approaches for POD and interpolation 
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Fig. 5  Flowchart of the proposed multi-fidelity IDO process. The 
structural mechanics simulations are based on high-fidelity FE mod-
els, the aerodynamic simulations are replaced by low-fidelity models
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(POD + I) model generation for cross-coupled multidis-
ciplinary analyses were presented by Coelho et al. (2009) 
and Berthelin et al. (2022). Herein, unidirectional coupling 
via the aerodynamic loads is assumed to yield sufficiently 
accurate results, because the low-fidelity model is not fully 
accurate by definition. This also resolves any multidiscipli-
nary analysis convergence issues.

The most widely used approach for aero-structural tur-
bomachinery blade optimization is a MDF architecture with-
out coupling, as employed in most references in Sect. 1.2. 
The proposed approach differs in that the aerodynamic simu-
lation is replaced by the low-fidelity models (orange build-
ing blocks in Fig. 5), enabling a speed up and a coupling 
via the gas load field (yellow block in Fig. 5). Contrary to 
common MFO strategies, as presented by Peherstorfer et al. 
(2018), in the proposed approach the multiple fidelities are 
not combined within one discipline, but separated between 
the disciplines. In particular, adaptation is omitted, because 
it would hinder the interdisciplinary applicability.

To summarize, the main discipline structural mechanics 
is evaluated as accurately as possible, including updated 
coupling via gas loads, while the side discipline aerodynam-
ics is computed only as accurately as necessary for a useful 
optimization result. The IDO is much faster than a complete 
MDO and better integrable into company structures, because 
complex high-fidelity CFD models are no longer required in 
the optimization. Provided sufficiently accurate surrogate 
models, it fulfills the aim of an industrial MDO, which is 
an improved design, rather than a mathematical optimum.

5  Compressor problem set‑up

To illustrate the proposed approach, it is applied to a con-
crete compressor rotor blade design problem. More pre-
cisely, we seek to optimize the rotor blade geometry of a 
compressor stage so as to minimize the stresses in the fillet, 
while fulfilling a number of structural, aerodynamic, and 
geometrical constraints. The simulation set-up and optimiza-
tion problem are specified in what follows.

5.1  Computational set‑up

Our model represents the third stage of a high-pressure com-
pressor in a next-generation turbofan aircraft engine. It is 
based on a model from the Clean Sky 2 (Clean Aviation 
2021) project by the European Union.

Geometry parameterization and generation are carried out 
using AirFoil Designer pdesk (atech GmbH 2022) and are 
explained in Sect. 5.2.

The FE simulations including meshing are performed 
in the open-source program CalculiX (Dhondt 2004). 
They consist of a static analysis at cruise conditions, and 

a dynamic analysis at red line conditions to prevent reso-
nance. The structural analyses are carried out for the rotor 
blades only, which are a critical component in the con-
sidered problem. A structural analysis takes on average 
6 min on 4 CPUs.

For the CFD simulations, the mesh is generated using 
AutoGrid (Cadence 2022). Then, the unsteady RANS 
flow solver TRACE (German Aerospace Center 2022) is 
employed, which is specialized on compressor and turbine 
components. The aerodynamics are computed for cruise 
conditions, that is at the aero design point (ADP). Here, 
the entire stage is of interest, to investigate the interaction 
between rotor and stator. One CFD simulation takes on 
average 33 min on 8 CPUs.

A fully coupled multidisciplinary analysis would 
require several sequential iterations of FE and CFD simu-
lations to ensure compatibility of structural displacements 
and aerodynamic pressures on the blade surface. This 
would take a prohibitively long time in each optimiza-
tion iteration. Therefore, the structural displacements are 
neglected in the CFD model, also because the aerodynam-
ics are only treated as side discipline. The pressure field 
is obtained from a 2D flow solver, which is only capable 
of estimating a 1D radial distribution of the total pres-
sure loads. It represents an approximation of the difference 
between PS and SS pressures and does not account for 
3D blade geometry changes. The resulting loads are then 
projected only onto the blades’ PS surface using a heuristic 
tool to produce the 2D gas load distribution. The gas load 
field is thus considered constant and only applied to the PS 
surface unless replaced by the reduced-order model, which 
is based on 3D CFD samples. Thermal loads are applied 
in a similar manner.

The computational effort of the CFD is considerably 
higher than for the FE simulations. This further motivates 
the use of aerodynamic low-fidelity models in an optimi-
zation focusing on structural mechanics. For each design 
evaluation herein, FE and CFD simulations are run in par-
allel. Additionally, 20 designs are evaluated in parallel to 
speed up computations in both sampling and optimization.

The optimizations are run using AutoOpti (Siller et al. 
2009), a program tailored to the multidisciplinary optimi-
zation of turbomachinery components, which can handle 
high-dimensional non-linearly constrained problems. It 
is based on an efficient global optimization (Jones et al. 
1998) approach, combining evolutionary algorithms, adap-
tive Kriging surrogate models, and an expected improve-
ment infill criterion. However, our data-fit models for the 
side discipline are not directly integrated into the opti-
mizer for the sake of modularity. The optimizer is not the 
focus of this work and can theoretically be exchanged with 
other gradient-free methods.
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5.2  Optimization problem definition

Our optimization problem represents the second step in the 
industrial blade design process, after the initial aerodynamic 
design step. We focus on structural mechanics as the main 
discipline, but also consider aerodynamic aspects, in order to 
reduce the number of subsequent interdisciplinary iterations. 
The optimization problem is defined in Table 1.

We seek for a rotor blade geometry, which minimizes the 
maximum static principal stress �I, max in the fillet, that is 
the transition between blade hub and disk in a blisk (blade 
integrated disk), indicated in Fig. 3. Low maximum stresses 
in the fillet region are crucial for robust compressor designs. 
Structural constraints are the maximum static principal 
stresses on the four blade sides PS, SS, LE, and TE, indi-
cated in Fig. 2. Moreover, the first two eigenfrequencies are 
constrained to prevent resonance. Aerodynamic constraints 
refer to the mass flow, the isentropic efficiency, and an inci-
dence criterion at five radial positions. The equality con-
straint for the mass flow, in order to maintain the initial oper-
ating point, is implemented as narrow two-sided inequality 
constraint. In addition, the maximum blade thickness for the 
upper part of the blade is constrained to avoid extremely thin 
profiles. This is particularly important to prevent significant 
changes in the higher frequency torsion modes of the blade, 
which are not explicitly set as structural constraints. The 
constriction at eleven radial positions is limited for good 
manufacturability.

The design variables are rotor blade geometry parameters, 
as illustrated in Fig. 6.

The free design parameters are the blade angles � , the 
stagger �S , the wedge angles � , and the distance wedge l. 
These parameters define the 2D blade profiles for each of the 

three radial airfoil sections at hub, mid, and tip by setting the 
four base points. The profiles are then constructed by spline 

Table 1  Interdisciplinary compressor rotor blade optimization problem with main discipline structural mechanics

Objective Type Discipline

Max. static principal stress �I, max in the fillet Minimization Structural mechanics

Constraints Type Discipline

Max. static principal stress �I, max PS, SS, LE, TE Upper bound Structural mechanics
Eigenfrequency f 1, 2 Lower & Upper bound Structural mechanics
Mass flow ṁ Equality constraint (= baseline) Aerodynamics
Isentropic efficiency �is Lower bound (= baseline) Aerodynamics
Incidence criterion slice 1–5 Upper bound (= baseline) Aerodynamics
Max. blade thickness near tip Lower bound Geometry
Constriction slice 1–11 Lower bound Geometry

Design variables (each for rotor hub, mid, tip) Range (relative to baseline) Discipline

Blade angle � LE, TE ±5% Geometry
Stagger �S ±4% Geometry
Wedge angle � LE, TE ±10% Geometry
Distance wedge l ±5% Geometry

αTE

αLE

2γLE

2γTE

l

βS

θ

x
r

(a) blade profile parameterization

hub

mid

tip

r

x
θ

(b) blade stacking

Fig. 6  Blade geometry parameterization. Modified from Arsenyev 
(2018). The parameters in a at blade hub, mid, and tip (see b) are the 
design variables of the optimization problem
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interpolation between these base points, which also separate 
the four sides PS, SS, LE, and TE. The resulting 2D profiles 
are stacked in radial direction to obtain the 3D blade geometry. 
The profiles’ position in space is defined by the axial and cir-
cumferential location of their centers (highlighted in red), which 
are fixed within the optimization. The blade shape between the 
predefined profiles is interpolated, for instance by fourth-order 
splines defined by five radial control points as shown in Fig. 6b. 
In this work, the three control points at hub, mid, and tip allow 
for second-order splines to interpolate the design variables. 
Finally, the transition between blade and disk is smoothed by a 
fillet with fixed radius. The stator blade geometry is generated 
analogously and remains constant throughout the optimization, 
which is common for a structural optimization.

In total, the optimization problem sums up to 26 response 
variables (one objective plus 25 constrained variables) and 
18 design variables.

6  Results

In the following, data-fit models of the aerodynamic con-
strained variables and reduced-order models of the aero-
dynamic loads are generated to replace the expensive CFD 
simulations in the optimization. Multi-fidelity IDO results 
are validated and compared to purely high-fidelity MDO 
results as a reference.

6.1  Data‑fit model generation

The proposed approach involves data-fit models that predict 
the aerodynamic constrained variables: the mass flow, the 
efficiency, and the five incidence criteria. For the Kriging 
model generation, we follow the flowchart in Fig. 4, tak-
ing the left branch. The prediction accuracy is estimated by 
10-fold cross-validation. The aim is a NRMSE < 5% (nor-
malized by the respective variable range) and a correlation 
coefficient R2 > 0.9.

The initial design space is the one used later in the optimiza-
tion, see Table 1. The sampling points are obtained by LHS. For 
a reasonable sampling effort, the number of CFD simulations 
is limited to half of what would be required for a comparable 
high-fidelity optimization. 300 sampling points are evaluated, 
of which 11 fail, leaving 289 samples available for the training.

Correlations between design and response variables are 
analyzed based on Spearman’s correlation coefficients and 
scatter plots. The former are shown in Fig. 15 in the appen-
dix. The results indicate that blade angle and stagger vari-
ables correlate strongly with the quantities of interest. Fur-
thermore, wedge angles and distance wedge at hub and tip 
are only weakly correlated to the aerodynamic constraints. 
These six design variables are therefore kept constant in the 
sampling.

The Kriging model implementation relies on the Python 
package scikit-learn (Pedregosa et al. 2011) that in turn 
builds upon the formulations by Rasmussen and Williams 
(2006). An isotropic Matérn 5/2 kernel is chosen, as it yields 
the best fit among various considered kernels.

The distribution of the errors over the response variables 
is shown by the gray bars in Fig. 7. Although the mean error 
measures are below the self-imposed limits, the prediction 
of the isentropic efficiency still poses a challenge.

Based on the response variable distribution in the training 
data, three significant outliers can be recognized in the set of 
289 samples. They can be associated with very unrealistic 
geometries generated by the automated sampling. Removing 
these outliers, the errors clearly improve, especially for the 
isentropic efficiency and the mass flow, see the orange bars 
in Fig. 7. Consequently, a Kriging model with Matérn 5/2 
kernel, based on the training set without outliers, is chosen 
as low-fidelity model for all aerodynamic constraints.

With 33 min per design evaluation and 20 evaluations in 
parallel, the sampling runs 8.25 h. Afterward, the aerody-
namic data-fit model generation takes only about 1.5 s. Its 
evaluation takes less than one millisecond, instead of 33 min 
for a CFD simulation in each optimization iteration.

6.2  Reduced‑order model generation

For a concurrent aero-structural coupling in the IDO, we 
train reduced-order models of the gas load field on the 
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Fig. 7  Error measures for the Kriging data-fit models with and with-
out inclusion of three outliers in the set of 289 samples, based on a 
10-fold cross-validation
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blade surface, following the right branch of the flowchart 
in Fig. 4. First, the high-dimensional field is reduced to 
a low-dimensional representation using POD. Then, the 
POD coefficients are predicted by a Kriging model. The 
NRMSE (normalized by the range at the respective node) 
and R2 are estimated using a 10-fold cross-validation based 
on the sampling data.

The training data originate from the same sampling as for 
the data-fit models and thus requires no additional run time. 
For each sample, the pressure field on the blade surface is 
interpolated onto the mesh of the structural simulations. Note 
that the structural mesh topology remains constant throughout 
all simulations. This is a prerequisite for a direct construction 
of the snapshot matrix from the nodal gas load values.

The implementation of the POD uses the SVD algorithm 
from scipy (Virtanen et al. 2020). It is embedded in a self-
implemented reduced-order model generation, closely fol-
lowing the theory in Sect. 3.2.

The reduced rank k is computed such that � = 99% 
of the energy is conserved. Table 2 holds the resulting 
reduced ranks, compared to the original full rank, that is 
the number of degrees of freedom m, equal to the number 
of nodes. The POD is conducted separately for each of 
the four blade sides. For pressure and suction side, the 
rank is reduced by more than two orders of magnitude, 
for leading and trailing edge by a factor of more than 
ten. Over the whole blade surface, 4048 nodal values are 
reduced to 33 POD coefficients to be approximated by 
the data-fit model.

After the model order reduction, the POD coefficients are 
computed as output variables for the data-fit model genera-
tion. Here, a Kriging model with Matérn 5/2 kernel is used, 
as in Sect. 6.1, and all 289 samples are considered. The over-
all low-fidelity model error estimates, due to the reduction 
plus the data-fit approximation, are shown in the lower part 
of Table 2. The combination of high loads and a small area 
make the prediction on the leading edge challenging. At the 
other three blade sides, the self-imposed accuracy targets 

(NRMSE < 5% , R2 > 0.9 ) are achieved, notably also for the 
highly loaded pressure side.

Based on the above accuracy estimates, the reduced-order 
models of the gas loads on the blade surface can be consid-
ered a large improvement in accuracy compared to the previ-
ously used constant gas loads. First, the loads predicted by the 
reduced-order model are applied to the entire blade surface, 
instead of the pressure side only. Moreover, they are based 
on 3D CFD, instead of 2D flow solutions, and hence take 
into account the blade geometries. As geometry-dependent 
boundary conditions in the FE analyses, the reduced-order 
model gas loads enable a weak aero-structural coupling.

Since the reduced-order model is generated based on the 
same samples as the data-fit models in the previous section, 
no additional sampling time is required. The reduced-order 
model generation takes less than 10 s. The gas load field is 
predicted within milliseconds and the respective input files 
for the FE models are written in about 0.2 s during the struc-
tural simulation set-up. Consequently, the structural analyses 
in the optimization can start without delay despite the uni-
directional coupling.

6.3  Optimization studies

The proposed multi-fidelity IDO process is compared to 
a purely high-fidelity MDO approach as a reference, to 
assess the potential to solve the aero-structural compressor 
blade optimization problem defined in Sect. 5.2. The two 
approaches are specified in Table 3.

Both involve high-fidelity structural analysis via 3D FEM, 
as the structural behavior is the focus of the optimization and 
thus the main discipline. The aerodynamic constraints are 
computed either by high-fidelity 3D CFD or the low-fidelity 
data-fit model. The aero-structural coupling is realized either 
by a constant gas load field from 2D computations, or by the 
low-fidelity reduced-order model predictions based on 3D 
CFD. A coupling directly via high-fidelity 3D CFD gas loads 
would be prohibitively expensive.

Since the employed evolutionary optimization algorithm 
is non-deterministic, both approaches are repeated five times 
with the same low- and high-fidelity models. 20 individu-
als are evaluated in parallel for 30 optimization iterations, Table 2  Ranks and error measures for the reduced-order models of 

the gas load field on the four blade sides

The full rank is equal to the number of degrees of freedom m on the 
respective side. The reduced rank k is obtained by snapshot POD with 
� = 99% energy conservation, based on 289 samples. The error meas-
ures of the final model (POD + Kriging) are averaged over the associ-
ated nodes and are based on 10-fold cross-validation

PS SS LE TE

Full rank m 1932 1932 92 92
Reduced rank k 9 11 7 6
NRMSE (%) 3.10 2.73 6.53 3.62
R2 0.965 0.977 0.869 0.966

Table 3  Model fidelities in the two compared optimization 
approaches

MDO is the high-fidelity reference multidisciplinary optimization, 
IDO is the proposed multi-fidelity interdisciplinary approach

Structural  
mechanics

Aerodynamics Coupling via 
gas loads

MDO High-fidelity High-fidelity Constant
IDO High-fidelity Low-fidelity Low-fidelity
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which makes 600 design evaluations in total. Figure 8 shows 
the development of the objective function values over the 
number of iterations.

Both optimization approaches converge quickly and most 
runs achieve a stress reduction by about 40% after 20 itera-
tions, compared to the initial blade from the predesign step. 
Afterward, there is only little improvement. The differences 
in aerodynamic model fidelity and type of gas loads do not 
seem to considerably affect the convergence behavior.

The optimizer itself requires a similar amount of time for 
both high- and multi-fidelity optimizations. Consequently, 
the aero-structural analysis time, illustrated in Fig. 9, deter-
mines the difference in overall computation time.

Considering 30 iterations with 33 min each, the analysis 
time can be reduced by more than 80% from 16.5 h to only 
3 h due to the low-fidelity models in the IDO. Additionally, 
the 8 CPUs for the CFD simulations are no longer necessary. 
For a holistic consideration, the 3 h of simulation time in 
the multi-fidelity IDO must be offset by the sampling time, 
adding up to 11.25 h. Note that multiple optimizations with 
varying objective functions and constraints can be run with 
a single sampling, reducing the sampling time per optimiza-
tion. Moreover, the sampling can be arbitrarily parallelized, 
depending on the computational resources.

Figure 10 shows the aerodynamic responses for the IDO 
results.

The low-fidelity data-fit model results are indicated in 
orange. They satisfy all optimization constraints, that is they 
lie inside the light gray ranges, as expected for a feasible 
optimization result. For validation, the low-fidelity results 
are recomputed by high-fidelity CFD simulations, indicated 
in black. They show that all aerodynamic inequality con-
straints are also satisfied for the high-fidelity model. The 

relaxed equality constraint for the mass flow with very nar-
row bounds is slightly violated. The clear trends in the devia-
tions between low- and high-fidelity model predictions can 
be explained by all runs converging to a similar region in the 
design space, see Fig. 12. The mean, minimum, and maxi-
mum errors are shown in Table 4 in the appendix. In sum-
mary, all deviations are within reasonable limits and do not 
undermine the validity of the overall optimization results.

In addition to the aerodynamic result variables, the gas 
loads on the rotor blade surface are predicted in the IDO 
approach. As an example of the prediction quality, Fig. 11 
compares the CFD result and the reduced-order model pre-
diction of the gas load field on the pressure side for an opti-
mized blade design.
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Fig. 8  Convergence of the objective function, normalized with its ini-
tial value, as a function of the optimization iteration. Only feasible 
results with improved objective values are plotted
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Fig. 9  Mean simulation time per optimization iteration for the two 
different optimization approaches. The whiskers show minimum and 
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Comparing the high- and low-fidelity results in Fig. 11a 
and b, distributions are in good agreement. The normalized 
error in Fig. 11c indicates that the prediction is very accurate 
on the majority of the blade’s pressure side. The error only 
increases in the area of high gradients near the leading edge. 
The mean, minimum, and maximum errors are shown in 
Table 5 in the appendix. Overall, the gas load prediction can 
be considered a large improvement in accuracy compared 
to the constant loads from the 2D flow simulations. The 
computational effort for model generation and evaluation 
is negligible, as it exploits existing samples from the scalar 
aerodynamic response predictions.

The optimized design variables of the two approaches are 
shown in the parallel coordinates plot in Fig. 12.

Both yield the same trends compared to the initial design. 
The variation among the results of each approach is larger than 
the variations between the approaches. Moreover, the gas load 
accuracy improvement in the IDO does also have no visible 
effect on the optimization results. Its impact may be weakened 
by dominating centrifugal loads in the present case. One can 
conclude that the multi-fidelity approach is accurate enough to 
provide design proposals for industrial applications, where opti-
mizations are stopped when improvements become minor, like 
between 20 and 30 iterations in the convergence plot in Fig. 8.

Figure 13 shows an optimized blade design from the pro-
posed IDO approach in orange, in comparison to the ini-
tial geometry in gray. Starting at the blade hub, the profile 
becomes considerably thicker, for higher stiffness in the fillet 
region, which in turn reduces the stresses and thus the objec-
tive function. This is realized by an increase in the wedge 
angles at both LE and TE hub, that also show a strong cor-
relation to the fillet stresses, see Figs. 12 and 15. Continuing 
toward the blade tip, curvature and chord length were signifi-
cantly changed, which is likely to affect higher order eigen-
modes and eigenfrequencies. They should thus be included 
for an improved problem formulation in future optimizations.

The effect of the design changes can be observed in 
the stress field, notably the maximum static principal 
stresses. The maxima occur on the pressure side, which is 
shown in Fig. 14. We compare again the initial and opti-
mized blade design from the proposed IDO approach. The 
maximum is shifted from the fillet to a second peak in the 
middle, to relieve the fillet region without exceeding the 
upper bound set as constraint in the optimization problem.

(a) high-fidelity CFD result (b) reduced-order model prediction (c) error = (a) - (b)

Fig. 11  Gas load field on the pressure side of an optimized rotor blade from the proposed IDO approach, scaled (a,b), and normalized (c) with 
the range from the high-fidelity CFD result
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7  Conclusions

An interdisciplinary approach for the optimization of com-
pressor blade geometries so as to minimize structural stresses 
without impairing the aerodynamic performance is proposed 
in this work. We consider structural mechanics as main 
discipline, aerodynamics as side discipline, and static aero-
structural coupling. Combining high- and low-fidelity models, 
we imitate the interdisciplinary workflow of design teams in 
industry. The main discipline is the objective and focus of 
the optimization and therefore evaluated by high-fidelity FE 
models. The side discipline computations inside the optimi-
zation are entirely replaced by low-fidelity model evaluations 
with almost negligible computation time and model complex-
ity compared to high-fidelity CFD. The scalar aerodynamic 
constraints are approximated by Kriging models. The gas 
load field is predicted using POD combined with Kriging. 

The latter enables a unidirectional concurrent aero-structural 
coupling at no additional time in each optimization iteration 
and thereby enhances the high-fidelity structural analysis 
accuracy.

Consequently, aerodynamic effects of design changes 
can be considered at very low cost inside the optimiza-
tion. Moreover, the required exchange of data and expertise 
between disciplinary design teams is greatly reduced, facili-
tating the organizational integration compared to common 
multidisciplinary optimization approaches.

The proposed approach is illustrated by a structural com-
pressor blade optimization with 25 structural, aerodynamic, 
and geometric constraints and 18 design variables. The 
results show that sufficiently accurate low-fidelity models 
(NRMSE < 5% , R2 > 0.95 ) can be obtained at reasonable 
cost (300 sampling points, as opposed to 600 design evalua-
tions in each optimization). The multi-fidelity optimizations 
yield valid designs. Design evaluation times in the optimiza-
tion are reduced by more than 80% compared to the high-
fidelity reference. This shows the great potential to reduce 
computation time, especially for expensive side disciplines 
like aerodynamics.

Based on the above results, a number of interesting 
directions for future research and developments can be 
discussed. For different problems, for example if the 
aerodynamic design team sets the isentropic efficiency 
as objective function, main and side disciplines could 
be reversed. Since high-fidelity aerodynamic evalua-
tions are more expensive than structural ones, low-fidel-
ity structural constraints would not reduce the overall 
simulation times for parallel disciplinary evaluations. 
Here, additional adaptive low-fidelity models for the 
main discipline may be useful. For unidirectional cou-
pling variables, however, the low-fidelity models would 
still enable a concurrent coupling. The benefit in terms 
of organizational integration remains, independent of 

Fig. 13  Optimized rotor blade 
design from the proposed 
IDO approach in orange. For 
comparison, the initial design is 
depicted in semitransparent gray

(a) initial design (b) optimized design from the IDO

Fig. 14  Maximum principal stress field on the rotor blade pressure side, normalized with the maximum allowed value defined in the optimiza-
tion problem. In the fillet region, indicated by the dashed line, the stress peak is minimized. On the rest of the blade, the stresses stay below the 
maximum allowed value
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the computational effort. Besides, the proposed IDO 
approach is readily extendable to additional side disci-
plines, for example thermodynamics in the compressor 
blade design. With regard to the organizational struc-
ture of most companies, more than one main discipline 
does usually not make sense. Finally, the potential of the 
proposed approach should be confirmed for even larger 
problems, for example by a multi-stage compressor blade 
optimization. The problem size may then require not only 
to decouple disciplines, but also split the design domain, 
for instance into single stages. Here, reduced-order mod-
els have great potential to predict physical interfaces.

Appendix

See Fig. 15 and Tables 4 and 5.

Acknowledgements The authors would like to thank the MTU Aero 
Engines and Technical University of Munich for their support in this 
work.

Author Contributions Conceptualization: LP; Methodology: LP; Soft-
ware: LP; Formal analysis and investigation: LP, IA; Writing—original 
draft preparation: LP; Writing—review and editing: LP, IA, CC, FD; 
Supervision: IA, FD.

Funding Open Access funding enabled and organized by 
Projekt DEAL. This project is funded by the Bayerische 

bl
ad

e
an

gl
e
L
E

hu
b

bl
ad

e
an

gl
e
L
E

m
id

bl
ad

e
an

gl
e
L
E

ti
p

bl
ad

e
an

gl
e
T
E

hu
b

bl
ad

e
an

gl
e
T
E

m
id

bl
ad

e
an

gl
e
T
E

ti
p

st
ag

ge
r
hu

b
st
ag

ge
r
m
id

st
ag

ge
r
ti
p

w
ed

ge
an

gl
e
L
E

hu
b

w
ed

ge
an

gl
e
L
E

m
id

w
ed

ge
an

gl
e
L
E

ti
p

w
ed

ge
an

gl
e
T
E

hu
b

w
ed

ge
an

gl
e
T
E

m
id

w
ed

ge
an

gl
e
T
E

ti
p

di
st
an

ce
w
ed

ge
hu

b
di
st
an

ce
w
ed

ge
m
id

di
st
an

ce
w
ed

ge
ti
p

incidence criterion slice 5
incidence criterion slice 4
incidence criterion slice 3
incidence criterion slice 2
incidence criterion slice 1

isentropic efficiency
mass flow

2nd eigenfrequency
1st eigenfrequency

max. static principal stresses TE
max. static principal stresses LE
max. static principal stresses SS
max. static principal stresses PS

max. static principal stresses fillet

0

0.2

0.4

0.6

0.8

1

Fig. 15  Spearman’s correlation coefficients for the design and response variables of the optimization problem defined in Table  1. The coef-
ficients indicate a relevant monotonic relationship of the structural responses to all design variables. The aerodynamic responses show a strong 
correlation with blade angles and stagger in the middle of the blade, but only weakly relate to wedge angles and distance wedge

Table 4  Mean, minimum, and maximum errors of the data-fit model predictions for the optimized rotor blades from the multi-fidelity IDO, nor-
malized by the respective variable range from the sampling

Error (%) Mass flow Isentropic 
efficiency

Incidence crite-
rion slice 1

Incidence crite-
rion slice 2

Incidence crite-
rion slice 3

Incidence 
criterion slice 4

Incidence crite-
rion slice 5

Mean 7.46 0.40 2.16 3.64 1.24 3.00 7.00
Min 7.03 0.12 0.80 3.00 0.31 1.92 5.38
Max 8.17 1.03 4.70 4.08 1.83 4.60 9.10

Table 5  Mean, minimum, and maximum errors of the reduced-order 
model gas load predictions for the optimized rotor blades from the 
multi-fidelity IDO, normalized by the respective nodal range from the 
sampling

Error (%) PS SS LE TE

Mean 7.88 5.27 7.93 12.11
Min 7.26 4.78 4.88 10.75
Max 8.84 5.65 17.53 13.97
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