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Abstract Several methods to localise sources of vibrations have been established in the literature. A great
amount of those methods are based on databases with features of known impact positions. Great effort needs
to be put into highly expensive experiments that deliver those databases. In this paper, we propose several
simulation techniques that may replace the expensive experiments for source localisation. The paper compares
the localisation accuracy of simulated and experimental data for two different localisation approaches, the
reference database method and neural networks. Both methods process signal arrival time differences from
several positions on the structure. The methods are exemplarily applied to a complex small-scale structure
from the automotive industry: The small dimensions of the brake disk hat and the inclusion of holes is a
challenging task for the accuracy of the applied localisation techniques. Results show that simulated data
can replace experimentally gained data well in case of the reference database method, whereas the neuronal
networks approach should stick to experimentally gained data. The evaluations show that, despite the small
dimension, the relative localisation accuracy is within accepted ranges of literature.

Keywords Localisation · Reference database · Wheel assembly · Acoustic emission testing · Neural
networks

1 Introduction

Stick–slip vibrations occur in various systems which involve friction processes. These range from the string
vibrations of violins, and creaking doors, from everyday life to highly complex engineering problems. One
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Fig. 1 Wheel assembly and an experimental setup with the brake disc hat

of the latter represents the subject of this paper from the automotive industry: the contact between the rim,
brake disc hat and the wheel carrier can give rise to acoustic phenomena under certain boundary conditions.
To investigate the mechanisms at the contact, the exact localisation of the points of excitation is essential.
Several studies focus on the localisation of sound sources with the help of measurements with microphone
arrays [1–6]. Another strategy is to use signals that are recorded by sensors, directly mounted on the surface
of the object. In the literature, there are several studies that use one (triaxial) sensor, see, e.g. [7–9]. In this
study, the focus lies on strategies using more than one sensor mounted on the surface. Furthermore, the study
focuses on the determination of the point of impact and not on determining the force-time history like it is
presented in [10–12]. In the following, we present the experimental setup and some localisation strategies that
are suitable for this type of problem.

1.1 Geometry of the investigated problem

In this paper, we investigate the feasibility of localising acoustic sources from the wheel assembly, whose
principal layout is shown in Fig. 1. The brake disc hat is part of a vehicle’s braking system and has been chosen
for the analysis due to its small dimensions and inhomogeneities. The geometry is visualised in Fig. 1a. The
brake disc hat in the case at hand is made of aluminium and includes a hole for centring the disc hat on a car
wheel carrier. The five smaller holes are called through bores and are used for the wheel bolts; the sixth one
is used to fix the brake disc hat onto the wheel carrier. The disc has a thickness of 7mm and a diameter of
155mm. For this setup, the high velocity of the structure-borne sound waves, the dimensions of the disc, plus
the inhomogeneities induced by the material cutouts lead to a challenging task.

1.2 Basics of source localisation using acoustic emissions

Generally, the localisation of sources of vibrations, often caused by damage or impacts, can be performed
by the so-called Acoustic Emission (AE) technique. AEs are defined as the generation of transient acoustic
waves due to a sudden redistribution of stress in the material. The sources of AE can be of different nature
like thermal or mechanical stresses, cracks or friction processes. An important source of AEs in the context
of the aforementioned stick–slip effects is the transition from a stick phase to a slip phase [13]. The thereby
induced waves travelling through the material can be recorded by AE sensors, placed at different positions on
the structure. The signals recorded by the sensors are then processed to determine the wave’s point of origin
[14]. Different methods exist in the literature for this purpose. Different categorisations for the approaches
have been proposed in several review papers [7,14–17]. Hereinafter, some of the algorithms that are based on
the use of arrival time differences of the waves at the different sensors will be briefly summarised.

Travel times can be obtained from the difference between the time of excitation texc and the time of arrival
t pAT,i at a sensor i . The arrival time t pAT,i when exciting a structure at position p is determined from the recorded
raw signals of the sensors, using methods for Arrival T ime Picking (ATP) that are comprehensively introduced
in Appendix B. All determined arrival times at sensors 1 to nsens from one source p are stored in the vector
tp
AT:
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tp
AT = [t pAT,1t

p
AT,2 . . . t pAT,nsens

]. (1)

When sensor data is recorded fromanunknown impact location, the timeof excitation texc is unknown.However,
the travel time differences from the source location to the divergent sensors correspond to the differences in
arrival times �t pAT,i j at the sensors that can be determined by

�t pAT,i j = t pAT,i − t pAT, j . (2)

The most established source localisation technique for isotropic and homogeneous structures is triangulation
[16,18]. It is based on the differences in travelled distances�d p

i j between the source and two different sensors:

�d p
i j = v�t pAT,i j (3)

where v is the velocity of thewave travelling through thematerial. Thewave speed has to be chosen according to
the wave type that the sensors recognise first. Different types of waves propagate through the material [19] and,
in this study, it has to be focussed on the P wave which can be identified as it arrives first. In the triangulation,
the acoustic source is determined by constructing three circles around three sensor positions based on the
differences in travelled distance. The circle radii are increased equally until they intersect at one common
point, which is the location of impact [16]. Triangulation is predominantly suitable for simple, homogeneous
structures without holes, as these would disturb a straightforward propagating wave. A minimum of three
sensors is necessary for the determination of the impact position in the case of a two-dimensional structure
with isotropic material [20].

1.2.1 Arrival time approach

The so-called Arrival T ime Approach (ATA) is based on an arrival time function f (xS,i, xexc), which describes
the arrival time t pAT,i at a sensor i at position xS,i when the structure is excited at position xexc at time texc:

t pAT,i = texc + f (xS,i, xexc) (4)

Different strategies for solving this equation exist, depending on the complexity of the arrival time function.
A simple example for f (xS,i, xexc) is [7]

f (xS,i, xexc) =
√

(xS,i − xexc)2 + (yS,i − yQ)2 + (zS,i − zexc)2

cp
. (5)

Iterative and non-iterative techniques to solve a set of Eq. (4) for nsens sensors are summarised in [7,17]. Non-
iterative methods are, in general, simple to apply and quicker, whereas iterative methods allow more complex
velocity models. The USBM [21] and the Inglada method [22] are examples for solving these equation non-
iteratively. Examples for iterative approaches are derivative approaches [23,24], the Simplex algorithm [25–27]
or genetic algorithms [28–33]. More examples for localisation strategies using an optimisation technique for
isotropic or anisotropic plates can be found in [16,34–38]. All these iterative and non-iterative methods aim
to converge at one single point which is interpreted as the point of impact.

1.2.2 Artificial neural networks

To overcome the arising localisation issues when dealing with complex structures or inhomogeneousmaterials,
ArtificialNeuralNetworks (ANNs) are frequently used, e.g. [39–55]. Feed-forward neural networks with back-
propagation are a suitable network type for localisation problems [51,53,54]. This kind of ANN is also the
most commonly applied one [56]. The inputs of the model are the arrival time differences of the acoustic
signals at the different sensors. The outputs of the ANN are the predicted coordinates of the acoustic source.
In [53], the ANN approach is compared to classic approaches regarding the localisation accuracy.
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1.2.3 Reference database method

Similar to ANN, the reference DaTaBase method (DTB) [43,57–64] uses a large amount of datasets with
known input features and results. An unknown impact can be located by comparing the input features from
a set of known sources with that of the unknown impact. Database features and features from an unknown
excitation are compared by correlation analysis [58,59,63,65,66] or calculating root mean square values [61–
63]. As only discrete test points can be stored in the databases, an interpolation is normally applied between
the entries of the databases [57–60]. The last two data-based approaches, ANN and DTB, are compared in
[57] regarding the localisation performance for impacts on a composite plate.

1.3 Outline of the paper

The majority of the methods discussed in the cited literature rely on the construction of databases based on
experiments. The effort and costs involved raise the question of whether data can also be generated differently,
for example by simulation. An approach to obtain arrival time data numerically is shown by [64]. The travel
times are determined by

t iT T =
√

(xexc − xS)2 − (zexc − zS)2

cp
(6)

where (xexc, zexc) and (xS, zS) are the coordinates of the source and the sensor respectively. This definition
works well for simple plate structures without holes.

In this paper, two main targets are pursued on the basis of the presented structure:

• The first question is whether a digital twin of an experimental setup can replace the generation of real
experimental data.

• The second question is if existing methods from the literature fed by either experimental or simulated data
are suitable for a small-scale problem like the aforementioned problem in the wheel assembly.

Different simulation models of the hardware problem are compared for their modelling effort and localisation
accuracy. The replacement of experimental data by simulated data is analysed for two different localisation
approaches, the DTB method and localisation with ANNs. The sensitivity of the localisation accuracy of the
localisation process with respect to several parameters is investigated using experimental data with known
impact positions. Section2 will focus on the acquisition of data, both by simulation and experiment. Section3
will introduce the two localisation methods based on data sets that are discussed in this paper. Section4 shows
how to parametrise the methods with the goal of tuning various parameters of both methods to improve their
localisation accuracy. The methods with tuned parameters are compared in Sect. 5.

2 Data acquisition methods

The localisation approaches applied in this paper are based on the usage of data sets that are collected prior to
the localisation process. To avoid costly experiments as discussed in Sect. 2.1, different simulation models of
varying complexity are established to describe the sound propagation in elastic materials and to collect data:

• Direct Ray Approach (DRA); presented in Sect. 2.2
• Ray T racing (RT); presented in Sect. 2.3
• Finite ElementMethod (FEM); presented in Sect. 2.4

After an introduction to experimental data acquisition in Sect. 2.1, the application of DRA, RT and FEM on
the brake disc hat is introduced.

2.1 Experimental data acquisition

A classic method to obtain data for the establishment of databases are experiments where the real structure
is impacted at several locations. The experimental set-up for this purpose consists of the brake disc hat
located on foam which has a much lower wave speed than aluminium to avoid bypasses. Ten tear-drop charge
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Fig. 2 a Response of sensor 1 due to an impact on the brake disc hat. b Zoom of subplot (a) to show the ATP performance of the
AIC and the STA/LTA criterion

accelerometer sensors are mounted on both sides of the structure. The signals are collected at a sampling rate
of 5 MHz. During the experiments, 470 different positions are excited on the structure. A steel ball is used as
an impulsive excitation of the structure. Figure2a shows an example of the signal obtained from one of the
sensors.

As travel times with respect to the impact cannot be revealed directly, normalised arrival times τAT,p are
used: these refer to the arrival time t pAT,s f at the sensor s f , the sensor that records the signal first and thus has
the shortest distance between source and sensor [43]:

τAT,p = tp
AT − t s fAT,p. (7)

By sorting all normalised arrival times in a vector, the normalised arrival time vector τAT,p is obtained:

τAT,p = [τ p
AT,1τ

p
AT,2 . . . τ

p
AT,s . . . τ

p
AT,nsens

]. (8)

Different methods, such as the Akaike Information Criterion (AIC), the Short T ime Average over Long T ime
Average (STA/LTA) and a correlation-based approach are applied for the purpose of ATP, and are briefly
introduced in Appendix B. Figure2b zooms in on Fig. 2a near the detected arrival time of the wave. The
vertical lines mark the determined arrival times picked by the AIC and the STA/LTA method. Figure3 shows
the normalised arrival times (Eq. (7)) for measurements with five repetitions as black, dashed lines. The results
indicate very good reproducibility. Sensors 1 and 6 as well as 2 and 7 (and other pairs of sensors) detect similar
arrival times of the waves as they are similarly distant from the source, but on different sides of the hat; see
Fig. 4. The additional lines represent the normalised arrival times for the three simulation approaches described
later in this section. The simulated results differ slightly for sensors close to the point of excitation. Greater
differences are found for sensors 5 and 10, which had the largest distance from the point of excitation.

2.2 Simulation: direct ray approach

The DRA is the simulation technique with the highest reduction in complexity of the presented structure. In
this approach, the source and sensors are connected by the shortest geometrical distance li between them; see
Eq. (6) or [64]. The travel times t iT T are determined by dividing the length of this "direct ray" by the wave
propagation speed:

t iT T = li

cp
(9)

If this linear function intersects with the circular cutout in the centre of the plate, the arc length between the two
intersection points is taken instead of the direct connection. To keep this approach simple, the algorithm still
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Fig. 3 Reproducibility of the measured data (black, dashed lines) and approximation of the experimental data with different types
of wave propagation simulations

chooses the direct connection when the ray intersects with one of the through bores where the effect is lower
than that of the big cutout in the centre of the plate. The advantage of this approach is the short calculation
time and the low effort required to construct the database. The blue, dashed lines in Fig. 4 visualise direct rays
between a sensor and two different possible points of excitation.

2.3 Simulation: ray tracing

The RT is a refined version of the direct ray approach. If a ray intersects with one of the circular cutouts, the
ray is bent around it. This is visualised by the green, solid lines shown in Fig. 4. The length of the rays hitting
the desired end point (sensors) are compared so that the shortest distance between the source and sensor can
be determined. Travel times are finally calculated by inserting the shortest distance into Eq. (9). A detailed
description of the algorithm is given in Appendix C.

2.4 Simulation: finite elements

This approach uses a finite element model of the brake disc hat to simulate the wave propagation and arrival
times at the different sensors. In the simulation, the brake disc hat is supported by several soft springs to model
the foam on which the disc is positioned in the validation experiments. The excitation signal is idealised as
a triangular pulse as shown in Fig. 5a. The excited frequency range depends on the duration of the triangular
load: short durations lead to higher frequency inputs, but may cause numerical issues. A duration of 2 · 10−7 s
is chosen. The object of investigation is represented through an ABAQUS explicit model, which is simulated
for a total time of 3 · 10−5 s using a numerical time step procedure. The output signal for five out of ten
sensors is shown in Fig. 5b. The arrival times at the different sensors are highlighted as vertical, dashed lines.
A threshold-based ATP algorithm is used to extract the times of arrival.

3 Methods for localisation

To investigate the localisation potential with computer-generated data, two approaches of localisation are
discussed within this paper: the comparison of recorded data from an unknown source position with that from
databases, (Sect. 3.1) and the application of a neural network that is trained with reference data (Sect. 3.2).
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Fig. 4 Illustration of the direct ray approach (blue, dashed lines) and the ray tracing approach (green, solid lines) of wave
propagation within the disc (Color figure online)

Fig. 5 a The excitation is modelled by a triangular pulse with a duration of 2 · 10−7 s. b Recorded signals at different sensor
positions in the FEM model. The dashed, vertical lines mark the arrival times picked by a threshold-based algorithm

3.1 Approach A: comparison with reference data

In the following, data related to travel times from different known positions of excitation are compared with
data from an unknown location. Delta Arrival T ime (DAT) matrices Ap

AT ∈ R
nsensxnsens are constructed from

the normalised arrival times:

a p
AT,i j = τ

p
AT,i − τ

p
AT, j ∀i, j = 1...nsens (10)
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Fig. 6 a Brake disc hat with a grid of test points for the databases. b Error distribution ε p after comparison of simulated data
with experimental data from the unknown point of excitation that is highlighted in (a)

The approach to localising an unknown point of excitation is based on the comparison between the unknown
DAT matrix Ãp

AT and that from possible reference positions from the database Ap
AT by subtraction:

δa p
AT,i j =

√
(ã p

AT,i j − a p
AT,i j )

2. (11)

For every point p, a residuum εp is determined:

εp = 2

n2sens − nsens

nsens∑

i=1

i∑

j=1

δa p
AT,i j . (12)

In this study, the proposal for the point of excitation is determined using a weighted average over k points with
coordinates xi :

xprop = 1
∑k

i=1(wi )

k∑

i=1

wi xi (13)

Using a weighted average enables us to propose source coordinates from a continuous field and not only the
discrete points that are stored in the database. The weights wi depend on the error determined at the respective
position:

wi = εges − εi wi th εges =
k∑

i=1

εi . (14)

Fig. 6b visualizes this approach. Green areas mark points with low values of εp whereas red areas indicate a
high deviation from the measured data to that from the database.

3.2 Approach B: artificial neural networks

In the second approach, an ANN is trained with sensor data to predict impact source locations. A feedforward
ANN is chosen for the task. It is considered themost suitable network type for localisation problems [51,53,54].
Its architecture is shown in Fig. 7. The ANN consists of nodes, referred to as neurons, which are arranged in
several layers. All the neurons in one layer are connected to all the neurons in its neighbouring layers. The
applied ANN has three different types of layers: the arrival times τ

p
AT,s are inserted into the network at the

input layer. The so-called hidden layers process the data. The results of the network are the predicted source
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Fig. 7 Architecture of the ANN that is used to predict the coordinates of an impact by processing arrival time data

coordinates xprop, zprop, and are obtained in the output layer. Input as well as output data are continuous in this
case. The processing of data in the applied ANN is performed in the same way in all layers. The connections
forward values from neurons in one layer to neurons in another layer. The incoming values are combined using
weighted sums by the neurons of the receiving layer. The thereby applied weights and biases are learnable
parameters of the network. The weighted sums form the input of so-called activation functions. The values
of the functions are the outputs of the neurons and are forwarded to the subsequent layer. The weights and
biases of the network are adjusted using supervised learning with data of known impact positions. The error
backpropagation rule is applied to update the parameters [56]. Since the weights and biases are only slightly
adjusted in each step, the data sets are processed several times by the network. A single run through all the
training data is called a training epoch. After training, the performance of theANN is evaluated in the validation
phase. The percentage of the validation data in the complete data is specified by the validation split. After
validation, the ANN can be applied to predict unknown source positions.

4 Tuning of parameters for the localisation and data generation methods to increase localisation
accuracy

In this section, localisation process parameters that influence the localisation accuracy are varied to find the best
set-up for the comparison of the methods in the discussion in Sect. 5. Here, the data sets from the experiments
are used as validation points for the purpose of parameter tuning: the recorded signals from the validation points
are used as an input for the localisation methods, while proposed positions of excitation xprop are compared
with the actual ones xexc. An error criterion ξ is defined based on the distance between these two points:

ξ =
√

(xprop − xexc)2 + (zprop − zexc)2 (15)

There are different causes for the error: firstly, errors arise during the measurements due to uncertainties in
the exact positions of sensors and impact positions, the sensor dimensions and some other minor aspects
[54]. The ATP process affects arrival times and, therefore, has an impact on the localisation accuracy. In
the case of simulated data acquisition, the abstraction of the method (DRA, RT, FEM) and its parameters
(mesh size, material properties, etc.) influence the localisation accuracy. Finally, the localisation approaches
themselves have parameters that influence the accuracy. The goal of this section is, on the one hand, to find
parameters for both approaches that minimise the total error and, on the other hand, to quantify the effects of
the different parameters. The localisation accuracy of all 450 test points should be taken into account when
different parametrisations of the methods are compared. A cumulative frequency analysis is performed, which
evaluates the percentage of all test points that have an error smaller than a certain reference value.
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Fig. 8 Influence of the method of ATP on the localisation accuracy. The AIC and the correlation method show similar results

4.1 Influence of parameters of approach A on the localisation accuracy

For the comparison of different data acquisitionmethods, the parameters of the localisation and data acquisition
process need to be tuned. The effect of different parameters is presented in the following.

4.1.1 Data preparation: influence of the ATP method

The influence of the ATP methods that are introduced in Appendix B is considered in Fig. 8. The parameters
of the different approaches are adjusted to estimate the arrival times as accurately as possible. The chosen
parameters and how they are defined can be found in Table 5 in Appendix B. The AIC and the correlation
approach lead to similar results. STA/LTA leads to worse results for the majority of the considered points. In
general, different ATP methods should be used and compared for robust detection. In this case, it seems that
the improvement obtained using a more accurate ATP method would be small or even unnoticeable, since two
independent ATP approaches led to similar results. For the discussion in Sect. 5.1, the results gained from the
AIC are chosen.

4.1.2 Database creation: sound propagation velocity

Preliminary investigationswith the experimental setup yielded awave velocity of c = 5391 m
s , seeAppendixD.

Nevertheless, a study on the influence of the wave propagation speed on the localisation accuracy is conducted
in the following, as this value will vary in reality due to the scatter of the material properties. Figure9a–c
shows the localisation accuracy of the DRA, RT and FEM for different wave propagation velocities. It can be
deduced from Fig. 9a and b that using the determined wave speed leads to an enhanced localisation accuracy
for the DRA and RT. The optimal value for the FEM simulation of c = 5200 m

s represents a deviation of
3.6% from the experimentally obtained value. All graphics show that determining the wave propagation speed
is essential, as higher deviations from the real value significantly influence the localisation accuracy.

4.1.3 Database creation: influence of database mesh

The influence of the mesh size of the simulation techniques is investigated in this section. Databases with
500, 1000, 3000 and 5000 reference points that are generated by the DRA and RT will be compared. In the
case of the FEM model, the reference mesh of the brake disc hat with 15,524 elements is refined to 123,712
elements and re-meshed with 2446 elements. The localisation results with all these different meshes are shown
in Fig. 9g–i. The graphic shows that a refinement of the mesh leads to better results. Investigations with an even
finer mesh do not lead to further improvement of the accuracy for any of the types of simulation approach. For
the discussion in Sect. 5.1, the finest meshes for each case are chosen.
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Table 1 Chosen parameters for approach B

Property Value

Validation Split 0.3
Activation Fct. (hidden layers) tanh
Activation Fct. (output layer) linear
Number of neurons in layer 1 DRA: 20;

RT: 9;
FEM: 15

Number of neurons in layer 2 DRA: 10;
RT: 10;
FEM: 15

Number of training epochs DRA: 8;
RT: 52;
FEM: 28

4.1.4 Comparison: number of considered sensors

This paragraph investigates the effect of using different numbers of sensors in the case of the complex geometry
of the break disc hat. Figure9d–f shows the influence of the number of considered sensors on the localisation
accuracy for the simulated approaches. Thementioned number of sensors xmeans that x sensorswith the lowest
time of arrival are considered, whereas the remaining 10-x sensors with higher arrival times are neglected. The
figure shows that taking 8 sensors into account leads to better results than 10 sensors. It is important to note
that this does not mean that installing more sensors on the structure always leads to worse results: the figure
demonstrates that the precision of localisation improves when the sensors nearest to the source are considered,
and the sensors that have a larger distance from the source are neglected. This observation is further discussed
in Sect. 5.1.

4.2 Influence of parameters of approach B on the localisation accuracy

In order to find adequate parameters for the training process, different properties of the neural networks are
investigated, including the number of neurons per layer or the number of epochs. The parametrisation of the
network and its training process is evaluated by averaging the error ε over all test points. Figure10a shows the
influence of the number of neurons in the first and the second hidden layer. The graphic shows that a minimum
number of three neurons is necessary in both layers to avoid poor localisation results. Above that minimum,
no clear tendency can be determined from Fig. 10a. The same result holds for Fig. 10b, which visualises the
influence of the number of training epochs. Again, a minimum number of training epochs is necessary to avoid
the effect of underfitting the neural network, leading to worse results. If too many epochs are chosen (� 100
in the case at hand), results get worse again due to the effect of overfitting.

The performance of neural networks is further influenced by the type of optimiser, the activation function,
the way of preparing the data and many other parameters. The optimisation of all these parameters is not dealt
with in this paper. A setup with parameters that lead to satisfying results is chosen for the discussion in Sect. 5.1
and is summarised in Table 1. The number of neurons in layer 1 and layer 2, and the number of training epochs
are chosen based on a full factorial design. The values are different depending on the type of input data.

5 Results and discussion

In this section, the data acquisitionmethods are compared and some results from Sect. 4 are discussed.Whether
experimental data can be replaced by simulated data in the case of the two presented localisation approaches
is also discussed.

5.1 Comparison of the localisation performance of experimental and simulated data

The localisation accuracy is an essential criteria when considering the replacement of experimental data by
simulated data. Figure11 shows the localisation error for the four different approaches of data acquisition, both
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Fig. 9 Influence of the P wave propagation velocity for DRA (a), RT (b) and FEM (c). Influence of the number of sensors that
are considered for localisation for DRA (d), RT (e) and FEM (f). Influence of the mesh size on the localisation accuracy for DRA
(g), RT (h) and FEM (i)
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Fig. 10 Influence of network parameters on the localisation performance of ANN. The error is averaged over all test points. a
Number of neurons per layer (network trained with RT data and applied to experimental points). b Number of epochs in the
training process for networks trained with simulated data

Fig. 11 Comparison of the different methods of data acquisition on the localisation accuracy for a approach A and b approach B

for localisation approach A and B. In the case of approach A, the extension of wave bending around the holes
by refining DRA towards RT leads to a noticeable increase in performance. Compared to RT, the more detailed
FEM simulation does not further improve the results. A possible explanation could be the additional ATP
process, which adds an additional source of error. All approaches based on simulated data yield better results
than those based on experimental data, even though it should be mentioned that much fewer experimental data
points could be used with respect to the simulated ones. A different conclusion can be drawn for approach
B: the highest localisation accuracy is obtained for the application of a neural network that is trained with
experimental data. When an ANN is trained with simulated data, its parameters are adjusted to the laws and
assumptions on which the simulation model is based. An ANN trained with simulated data can therefore not
deal with all the properties and effects of data obtained by an experimental setup using the real structure. Hence
less accurate results are achieved when applying this ANN to experimental data.

5.2 Comparison of the effort and quality of data acquisition methods

The effort of the data acquisition process is the second important criterion that should be considered if exper-
imental data should be replaced by simulated data. First of all, it will be shown that more experimental points
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Fig. 12 Influence of the number of reference points on the localisation accuracy. 180 points means that 180 points are used for
the establishment of the database while the remaining 270 points are used as validation points

Table 2 Comparison of the different methods of data acquisition

Category Property DRA RT FEM Measurement

Effort Preparation effort + – – +
Acquisition effort ++ – + –
ATP necessary no no yes yes

Behaviour Bending of rays no yes yes yes
Sensor properties included no no no yes

Accuracy Approach A accuracy 0 + + –
Approach B accuracy 0 + + +

increase localisation accuracy. The 450 data points are grouped randomly in five groups of 90 points, each
containing the data of different excitation points. Between one and four of these groups are then used as “train-
ing sets" to parametrise the localisation method while the corresponding remaining groups serve as validation
points. For a training set of 180 points, e.g., there are nine possible combinations of groups, leading to nine
graphs in Fig. 12. The remaining points, that are not used as a basis for establishing the database, are used as
validation points. The figure shows the influence of the number of database points on the localisation accuracy.
It becomes clear that the more points there are, the higher the localisation performance is, which obviously
also leads to higher effort and costs in the data generation phase.

Table 2 summarises and compares the presented approaches of data acquisition. "Preparation effort" evalu-
ates the effort for implementing the simulation model or rather building up the experimental set-up. In contrast,
the "acquisition effort" describes the effort that is needed for data acquisition when the method is prepared,
i.e. the simulation model is validated or rather the experimental set-up is ready for use. An advantage of
applying measurement data is that both the sensor properties as well as the actual wave propagation speed are
"included" in the database. These properties are not taken into account in the simulation models. The FEM
needs an additional ATP because the output of the method are the time series of the sensors. In many appli-
cations, a FEM model may be already available for other purposes, and this constitutes an advantage of this
approach. DRA and RT are limited to simple structures like plates with holes, and are not suitable for complex
3D geometries. The effort to implement RT as presented in Appendix C is significantly higher than the effort
for DRA due to the consideration of wave reflections. Localisation accuracy depends on the combination of
the data acquisition method and localisation approach. As shown in Sect. 5.1, approach A worked well with
simulated data, whereas approach B led to better results with experimental data. Costs for hardware are not
taken into account, as in the case of simulated data acquisition, measurement hardware is still needed for the
collection of data from unknown sources.

The following is a brief comparison of the two discussed localisation approaches. Approach A is very
simple to implement. The main problem of approach B, the neural network approach, is the high effort for
determining good parameters of the training process and the network itself. As shown in Sect. 4.2, localisation
accuracy is sensitive to properties of the network itself.
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Table 3 Mean value and standard deviation of the localisation errors by the different localisation techniques

Data Acquisition DTB ANN

DRA 6.34 mm ± 6.23 mm 7.23 mm ± 6.57 mm
RT 5.34 mm ± 5.71 mm 7.63 mm ± 7.29 mm
FEM 5.21 mm ± 4.72 mm 6.13 mm ± 6.11 mm
Experiment 7.59 mm ± 4.71 mm 4.96 mm ± 5.41 mm

5.3 Discussion on the localisation accuracy in small-scale problems

The mean errors and corresponding standard deviations of the localisation errors that are shown in Fig. 11 and
are summarised in Table 3. The mean errors range from 5.34mm to 7.59mm. Taking the diameter of the disc
of 17cm into account leads to relative errors of 3.14 to 4.47 %. We then compared these values with results
in the literature. In [53], a comparison of the localisation performance between a classic localisation method
and an ANN is shown for a vessel with a diameter of 500mm. The mean deviations from the actual point of
excitation are 70–140mm for the classic localisation technique and 20–50mm for the ANN, depending on the
type of excitation. With regard to the circumference of the vessel of 500mm, the deviations are between 0.6
and 4.7% of the circumference of the vessel. Further accuracy estimations of classic localisation methods can
be found in seismology. Beside the choice of the localisation method, several factors, such as the accuracy of
the crust velocity models and the density of the seismic stations network influence the localisation precision.
Therefore, it is difficult to make a general statement. However, in [67] it is shown that, for distances between
source and station of approx. 100–200km, an error of 5km, that is, 2.5–5%, is expected. It can be concluded
that the localisation accuracy for the small-scale problem at hand is within the range of known values in the
literature.

5.4 Discussion on the influence of the number of considered sensors in the comparison step

In Sect. 4.1.4, the influence of the number of sensors that are considered during the feature comparison step
with the database is shown. Due to the damping properties of the material, the slope of the amplitude of the
signal at arrival is less steep when sensors have a larger distance from the source. ATP is more difficult for the
algorithm if the rise of the signal is less steep. As shown in Fig. 13a, sensors that have a larger distance from
the source (red, thick lines) exhibit a less steep amplitude slope at arrival than sensors nearer to the source
(thin, green lines). Signals at sensors that have a larger distance from the source and are the last to detect the
wave, may show errors in ATP and consequently, lead to a reduction in localisation accuracy, if they are still
considered.

This negative impact of sensors that have a larger distance from the source should be minimised in the
following by determining a criterion θ that helps to identify which signals should be neglected and which
should be kept in the localisation process. The "steepness" of the signal at arrival is quantified by determining
the area under the derivative of the signal d f

dt in the time interval [0, τev]. The trapezoidal rule of integration
replaces the integrals because the measured signals are discrete. A criterion θ is defined in the following way
where fs is the sampling rate:

θ =
∫ τev

0

∣∣∣∣
d f

dt

∣∣∣∣ dt ≈
τev fs∑

i=1

∣∣∣∣
fi+1 − fi

2

∣∣∣∣�t. (16)

Figure13b shows that this criterion takes higher values for sensors near the source, i.e. sensors that recognise
the wave first. The idea is to choose those signals for the comparison step of approach A for which θ > θth
holds. The two parameters of this criterion, the threshold θth and the time interval of evaluation τev are chosen
optimally from a full factorial design. Figure14 shows the performance of the described criterion compared
to taking all sensors into account (black dashed line). To get an optimal line for the criterion, every point is
localised by taking 2 to 10 sensors into account, leading to different errors between the proposed and actual
point of impact for the different number of considered sensors. The minimum of these nine values is then
stored for every test point, leading to a vector of optimal results. The green, dashed line represents the optimal
result when the ideal number of sensors is considered for every test point. It becomes clear that the defined
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Fig. 13 Definition of a criterion to select signals for the database comparison step. a Shows that signals of sensors that have a
larger distance from the source have a less steep increase of the signal. All signals are shifted by their corresponding arrival time.
b Shows the dependency of the criterion θ on the rise position of the sensor

Fig. 14 Localisation performance for different strategies of selecting signals for the localisation process

criterion increases localisation accuracy over taking all sensors into account. Nevertheless, there is still some
room for improvement left for the criterion compared to the optimal results.

6 Conclusion

Themain question of this paper is whether simulated data can replace experimental data in data-based localisa-
tion strategies. For this purpose, a small complex aluminium plate is chosen as the investigation object, to find
out if the approaches perform accurately for problems where classic localisation approaches generally have
issues to deal with. Two different localisation approaches, the DTB method and neural networks, are imple-
mented and fed with different types of data. Besides classic experimental data acquisition, different simulation
techniques are presented for the creation of databases: the direct ray approach, which is simple to implement,
the ray tracing approach, which extends the direct ray approach by accounting for waves bending around
structural holes, and the finite element method, which allows for a more detailed structural representation. The
parameters of the whole localisation process are tuned to increase the localisation accuracy and to perform a
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final comparison of the approaches with experimental or simulated data. The main contribution of the paper
can be summarised as follows:

• The localisation accuracy, described by the mean error, varies between 3.14 and 4.47 %. This means that
all the presented methods are, in general, suitable for localising impacts on the investigated small-scale
structure.

• Simulated data have the potential to replace experimental data when considering the localisation accuracy.
Combining simulated data with the DTB localisation method led to even better results than using experi-
mental data. However, ANNs trained with experimental data led to better results than ANNs trained with
simulated data.

• The RT and the FEM approach showed the best performance among the presented wave propagation sim-
ulation techniques. Nevertheless, the DRA can be an interesting approach thanks to its low computational
load and simplicity in implementation.

• The localisation accuracy obviously depends on the mesh size of the data set. A localisation with simulated
data has the main advantage that a mesh refinement only increases the computational load, avoiding effort
related to experiments.

• Results showed that the localisation accuracy depends on the number of sensors that are taken into account
when comparing the features of an unknown event with features from the database. A criterion is presented
that helps to select which signals should be taken into account. Using this criterion improves localisation
accuracy compared to the case of an unfiltered use of the signals of all sensors.

Finally, we would like to emphasize that the presented approach can be applied to various localisation
problems that have a punctual excitation in tangential and/or normal direction. However, the type of excitation
influences the wave type travelling through the material and the corresponding velocities of the waves. The
presented simulation techniques have to be parametrised according to the specific problem.
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Appendix A: List of symbols

Table 4 summarise all symbols that are used within this paper. Symbols that are only used in the appendix are
not listed.

Appendix B: ATP

Several approaches for the purpose of ATP are proposed in the literature, see, e.g., [68,69]. The AIC, the
STA/LTA and a correlation-based criterion are presented in the following.

http://creativecommons.org/licenses/by/4.0/
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Table 4 List of symbols

Symbol Description

Ap
AT Delta Arrival Time (DAT) matrix

cp Velocity of sound propagation
�t pAT,i j Time differences of arrival
�d p

i j Differences of travelled distances
δa p

AT,i j Differences of two DAT matrices
εp Difference between a measured DAT and a DAT from database
fs Sampling rate
nsens Number of sensors
texc Time of excitation
t pAT,i Time of arrival at sensor i when impacted at point p
t pAT,s f re Time of arrival of the fastest sensor s f when impacted at point p
tp
AT Vector of all times of arrival when impacted at point p
tiT T Travel time between source and sensor i
τAT,p Normalised time of arrival at sensor s when impacted at point p
τev Time interval of evaluation
� Criterion to choose which sensors should be evaluated
�th Minimum value of the criterion Theta
ξ Error criterion that evaluates the localisation accuracy
xprop Vector with potential coordinates of the sound source,

Predicted by the localisation algorithm
xexc X-coordinate of the source
zexc Z-coordinate of the source
xS, xS,i X-coordinate of the sensor i
zS, zS,i Z-coordinate of the sensor i

B.1 AIC

The AIC for the discrete time signal f is defined for all time steps k = 1...N as follows [70]:

AIC(k) = k log(var( f (1, k))) + (N − k − 1) log(var( f (k + 1, N ))) (B1)

where var(x) is the variance function and N the length of the discrete time signal f . f (a, b) means that all
discrete samples of f from index a to b are taken. The ToA is determined at the minimum value of AIC(k).
The discrete time signal f is shortened to the interval [t0 − tw,1; t0 + tw,2] so that the AIC is not determined
for all samples of the recorded signal. tw,1 and tw,2 are user-defined window lengths.

B.2 STA/LTA

This criterion is defined by the ratio of STA to LTA, which are computed by [69]:

ST Ai = 1

ns

i∑

j=i−ns

f j (B2)

LT Ai = 1

nl

i∑

j=i−nl

f j . (B3)

where ns and nl are the short term and long term window lengths, respectively. The arrival time is determined
when the ratio r = ST A

LT A > dLTA,STA for the first time, where dLTA,STA is a user-defined threshold. We slightly
changed this criterion and defined the arrival time at the point where the derivative of r exceeds a certain
threshold for the first time. This change lead to better results in the case at hand.
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Fig. 15 Influence of the ATP approach on the normalised arrival times for the ten sensor positions. Different points of excitation
are shown: a x̂ = (4.0, 0.1, −1.0), b x̂ = (4.0, 0.1, 1.0), c x̂ = (−1.5, 0, 6.5), d x̂ = (−5.5, 0, −4.5). Dimensions are given in
cm; compare with Fig. 4

B.3 Correlation

The idea of this approach is to focus on comparing signals from different sensors, because arrival time differ-
ences are—in contrast to travel times—available. The time series are shortened to the interval [t0 − tw/2; t0 +
tw/2], where t0 is the point where the derivative of the signal exceeds the threshold dcor,A for the first time. tw
is the block length. The signal is set to 0 for all t > t1. t1 is the point where the derivative of the signal exceeds
the threshold dcor,B for the first time. The signals are normalised by the value f (t1) so that the maximum value
of all blocks is 1. A cross-correlation of all combinations of recorded signals is calculated to determine the
delays between the signals, which describes the arrival time differences that should be determined.

B.4 Threshold

This algorithm simply searches for the point where the absolute value of the recorded signal exceeds the
threshold dtresh,C for the first time. This algorithm is not suitable for measured signals because of their noise.
Nevertheless, tests showed that this criterion lead to better results than the AIC and the STA/LTA criterion for
time series gained from FEM simulations.

B.5 Comparison of the criterion

Fig. 15 compares the normalised arrival times for different points of excitation. Whereas the AIC criterion and
the correlation method yield similar results, the STA/LTA criterion deviated for the sensors with the largest
distance from the point of impact. The arrival time differences are very similar for the three different criteria.
This is an important conclusion as it shows the robustness of the algorithms.

B.6 Chosen parameters for the ATP methods

The chosen parameters for the different ATP methods are summarised in Table 5.
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Table 5 Chosen parameters for the different ATP methods

Method Property Value

AIC tw,1 500
tw,2 5000

LTA STA ns 100
nl 6000
dLTA,STA 10

Correlation tW 4.286 ·10−5

dcor,A 1.156 ·105
dcor,B 3.014 ·104

Threshold (FEM) dtresh,C 1 ·10−9

Appendix C: Detailed Description of the ray tracing approach

The ray tracing approach uses the following steps to determine the minimum distance between a possible
location of excitation and every sensor on the disc:

• Determine a direct connection between sensor and source: if an intersection with any hole exists, go to
step 2. Otherwise, stop the algorithm at this point. The RT approach is equivalent to the DRA in this case.

• Determine the tangent points between source and every hole.
• Starting from the tangent points, the rays are bent around the hole. Every 360

nsubrays
degree, a new subray starts

in the direction of the sensor. If the subray reaches the sensor position, the length of this ray is saved.
• Compare the length of all direct rays and subrays that connect the position of excitation and the sensor and
determine the shortest one.

Figure16 visualises the described procedure: the blue rays start from the source point in every direction and
end when a hole is hit. Tangent rays (darkgreen) are determined between the source and every hole. The red
rays highlight the bending around the holes. Light green rays start from different points at the circumference
of the holes, and are orientated towards the sensor. The pink rays visualise the shortest distance between the
source and sensor.

Appendix D: Determination of the wave propagation speed

A single estimation for the wave propagation speed can be determined by the ratio of the difference of traveled
distances and travel times between two sensors i and j

cest,i j = diRT,m − d j
RT,m

τ iRT,m − τ
j
RT,m

(D4)

For all points of excitation p = 1...nMeasure, the wave propagation speed can be determined by averaging over
all estimations cest,i j :

cest = 1

nMeasure

nMeasure∑

m=1

npairs

nsens∑

i=1

i∑

j=1

cest,i j (D5)

The parameter npairs simply defines the number of pairs defined by 2
n2sens−nsens

. The estimation cest represents

an approximation for the wave propagation speed. The time of excitation is not required in that approach. A
mean value of 5391 m

s is determined from this approach. Figure17 shows the distribution of determined wave
propagation speeds together with their mean value. The very low and very high values that are determined in
some of the evaluations are caused by errors in the ATP.
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Fig. 16 Visualisation of the ray tracing approach of wave propagation within the disc

Fig. 17 Distribution of the determined wave propagation speed from the experiments. The red, vertical line highlights the mean
value of 5391 m

s
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