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Abstract
Self-driving and multimedia systems have common implications: increased demand 
on network bandwidth and computation nodes. To cope with the current and future 
challenges, intra-vehicular networks (IVNs) change their layout. They are built around 
powerful central nodes connected to the rest of the vehicle via Ethernet. The usage of 
Ethernet presents a challenge, as it by design lacks support for deterministic behavior, 
which is crucial for real-time systems. Therefore, the IEEE Time-Sensitive Network-
ing (TSN) task group offers standards introducing low-latency and deterministic com-
munication into Ethernet based networks allowing coexistence of best-effort and real-
time traffic. To understand the coexistence challenges, these new networked systems 
need to be thoroughly evaluated with IVN requirements in mind. To assess various 
topologies, configurations, and data traffic types in IVN setups, we introduce Environ-
ment for Generic In-vehicular Networking Experiments—EnGINE. It allows, among 
many others, repeatable, reproducible, and replicable TSN experiments with high 
precision and flexibility. EnGINE is based on commercial off-the-shelf hardware and 
uses the flexible Ansible framework for experiment orchestration. This allows us to 
configure various topologies emulating realistic behavior of IVNs or other time sensi-
tive systems used, e.g., in industrial automation. Obtaining such realism is challenging 
using simulations. Based on available related work, we further address the challenges 
found in those networks, especially IVNs. We derive TSN domain framework require-
ments, provide details on design decisions for the EnGINE, and present results to show 
its capabilities. The results present relevant network metrics based on collected data. A 
key focus is on the experiment campaigns realism achieved by real IVNs’ data footage 
and the OS optimizations to offer real-time behavior. We believe that EnGINE pro-
vides the ideal environment for TSN experiments from different domains.
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1  Introduction

Autonomous driving, new connectivity services, over-the-air upgrades, shared 
mobility: These are just a few recent trends in the automotive industry. A common 
factor enabling these technologies is a secure, fast, and reliable intra-vehicular net-
work (IVN). Indeed, we are now seeing more and more Ethernet-based solutions 
aiming to fulfill these requirements. Although, by design, Ethernet does not offer 
deterministic behavior, the Time-Sensitive Networking (TSN) family of standards 
provides real-time guarantees to Ethernet.1

Performance and capabilities of TSN have been a research subject in recent 
years, mostly conducted in simulation environments. Simulations have multiple 
advantages, such as a fast development cycle, ease to reproduce and configure, and 
high flexibility. However, they often show far from realistic traffic behavior as real 
deployments artifacts are omitted, e.g., clock deviation. This poses a challenge, 
as real-world deployments present such artifacts and it is important to account for 
them during the system design. Therefore, we introduce a solution that combines 
simulations’ advantages while deployed on a physical topology containing machines 
emulating zonal gateways (ZGWs) [1] and vehicle control computers (VCCs) [2]. 
The ZGWs are used as interconnections among different subnetworks and technolo-
gies within the IVN, whereas VCCs can be considered as highly connected, higher 
performance computation nodes. This solution aims to evaluate new generations 
of IVNs. We want to study the impact of growing data volume on application and 
network performance, and determine suitable network component distribution and 
interconnections in an automated manner. Besides, we want to keep visibility on 
corner cases.

This paper builds on top of already published results introducing the EnGINE 
framework (Environment for Generic In-vehicular Network Experiments) and 
extends it by new insights [3]. Namely, we provide new insights regarding integra-
tion and configuration of network setup with respect to Linux networking stack and 
traffic forwarding, overview of used tools, optimizations of operating system (OS), 
and showcase a complex use-case deployed using the framework. The framework 
offers various configurations for queuing disciplines and TSN capable commercial 
off-the-shelf (COTS) network interface cards (NICs). In EnGINE we initially focus 
on IEEE 802.1Qav [4], IEEE 802.1Qbv [5], and IEEE 802.1AS [6] standards with 
potential for extension and also inclusion of higher-layer TSN capabilities.

To manage the infrastructure, we use an orchestration tool built on Ansible.2 It 
brings flexibility to network and data sources configuration. Moreover, we monitor 
and record events for further evaluation or traffic re-play in the network to identify 
architecture limits. The experiments run without human interaction, can be repro-
duced, and are easily configured. As reliability is another essential characteristic of 
the automotive networks, with EnGINE, we can inject various malfunctions to test 
packet loss and link failures.

1  https://​www.​ieee8​02.​org/1/​pages/​tsn.​html, Accessed 07 Jan 22.
2  https://​www.​ansib​le.​com, Accessed 25 Nov 21.

https://www.ieee802.org/1/pages/tsn.html
https://www.ansible.com
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The assessed metrics and data traffic patterns follow the recommendations pre-
sented by the AVNU Alliance for the individual stream reservation (SR) classes. 
AVNU Alliance aims to create an ecosystem servicing the precise timing and low 
latency requirements for automotive and other diverse applications using open 
standards. It introduces SR classes and their prioritization [7]. The used TSN stand-
ards follow the recommendation of IEEE P802.1DG TSN Profile for Automotive 
In-Vehicle Ethernet Communications [8].

This paper presents our approach to building a configurable and flexible infra-
structure fulfilling the unique IVN needs. We define requirements for an IVN test-
bed and describe the means to achieve them, including the toolchain to execute net-
work experiments. Furthermore, we present our main tools and software (SW) for 
conducting various network experiments to achieve deterministic behavior using 
Ethernet. Lastly, we introduce use-cases that can be tested, show EnGINE sample 
configuration, and the exemplary results the framework makes.

The paper follows a standard structure where in Sect. 2 we provide information 
on related work in the domain and give an overview of relevant TSN standards. The 
section is followed by Sect.  3 in which we derive the requirements placed on the 
EnGINE. Defined requirements are taken into account for design, details of which 
we introduce in Sect. 4. To showcase the EnGINE capabilities, we present a sample 
use-case with configuration and results in Sect. 5. Since during the use of EnGINE 
we also identified a few limitations, we describe them in Sect. 6. Finally, we sum-
marize and provide insights for future work in Sect. 7.

2 � Background and Related Work

As introduced in [1, 9], future IVNs have to deal with larger transferred data vol-
ume due to focus on advanced driver-assistance systems (ADAS) and multi-media 
functions in the vehicles. An example of the throughput required for these systems 
is shown in [10]. Manufacturers cope with those challenges by shifting to Ethernet, 
which is inexpensive and well understood from classical IT and telecommunication 
systems. This brings an advantage during development, as classical applications can 
be easily ported to the intra-vehicle domain. Unfortunately, by design, Ethernet is 
not suitable for vehicles as IVNs have strong requirements for real-time performance 
and guarantees. Therefore, two prominent solutions, IEEE Audio-Video Bridging 
[11], now known as the TSN working group, and TTEthernet [12], are proposed 
introducing deterministic behavior to Ethernet.

In recent years, we have seen various activities in this domain focused on the 
evaluation of individual standards on commodity or proprietary hardware (HW) 
[13, 14], modeling of TSN standards [15–17], and simulations [18–21]. Unfortu-
nately, many publications evaluating performance on physical devices rely on cus-
tom HW [13] or use simple setups containing only a few nodes [14]. On the other 
hand, simulations introduce setups with a large number of nodes and data flows, as 
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shown in [21], which uses Real-Time at Work (RTaW) Pegase commercial solution3. 
Similarly, the open-source simulator OMNeT++ [22] is used in other works [18, 
19] where two significant plugins offering TSN are considered, Core4Inet [23] and 
NeSTiNg [24].

Finally, we start to see a paradigm shift in IVNs where configuration and logic 
decisions are no longer handled on individual nodes but rely on a central controller 
leading towards Software-Defined Networks [25–28]. The central controller can be 
essential for real-time reconfiguration of the network, offering higher system reli-
ability. To satisfy real-time guarantees, the system has to reconfigure and setup com-
munication in less than 100 ms or even 50 ms, which might not be possible with 
traditional link-layer protocols [29, 30].

2.1 � Networking Stack

The Linux networking stack used within the EnGINE framework is presented 
in Fig.  1, showing how individual traffic originating from user space applications 
reaches NIC’s interface. The operation starts in user space, where an application cre-
ates data to be sent out on the network. This payload is passed to the kernel space 
using a system call. At that point, a socket buffer (SKB) storing the data and addi-
tional metadata of a given packet is created. This structure then passes through trans-
port, network, and link layers, at which relevant headers are added for used proto-
cols, such as UDP, IPv4, and MAC. Of note, the TSN standards relevant within the 
publication’s scope are implemented on link-layer as part of the queuing disciplines 
(qdiscs). Qdiscs are implemented using parent-child hierarchy, where parent qdisc 
can have several child qdiscs configured under it. This allows to combine various 
types of qdiscs. Before a packet reaches the qdiscs, its priority is determined based 

Transport
Layer

Network
Layer

Link
Layer

Physical
Layer

Tx

App 1

App 2

App N

Kernel Space

IPv4 802.1Qxx
802.1AS Ethernet

Queueing
Discipline

Prio
0

Prio
1

Prio
15

Driver Queue
(Ring buffer)

SKB SKB

UDP, TCP

SKB

User Space

NIC

Fig. 1   Simplified overview of the Linux Networking Stack

3  https://​www.​realt​imeat​work.​com/​rtaw-​pegase/, Accessed 06 Jan 22).

https://www.realtimeatwork.com/rtaw-pegase/
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on the information stored in the SKB. These priorities are mapped to individual traf-
fic classes (TCs), which are mapped to interface queues on a given port. The qdisc 
determines when the packet is forwarded to the driver queue, also known as a ring 
buffer. Packets are then read by the NIC and stored in the HW queue before they are 
processed and dequeued on the wire.

Qdiscs and TSN Standards are used to achieve the desired latency and jitter 
within EnGINE. Linux implements several synchronous TSN standards as a part of 
the qdiscs. We focus on IEEE 802.1Qav and IEEE 802.1Qbv standards as consid-
ered in the IEEE P802.1DG TSN Profile for Automotive In-Vehicle Ethernet Com-
munications [8]. IEEE 802.1Qbv is enabled by the Precision Time Protocol (PTP). 
In the following, we give an overview of these standards and introduce their basic 
functionality.

IEEE 802.1Qbv [5] Traffic Scheduling. IEEE 802.1Qbv is also known as Time-
Aware Shaper (TAS), or Time Aware Priority Shaper (TAPRIO) qdisc in Linux, and 
“Enhancements for scheduled traffic” as a part of the IEEE 802.1Q-2018 [31] stand-
ard. It provides support for synchronized scheduling of multiple TCs on a single 
interface. The traffic flows are controlled by gates that operate according to a cycle 
determined by the system configuration. This allows various TCs to have a dedicated 
transmission window within a cycle of configurable length. During this window, the 
gate of the given class is open. Packets can be sent only when a corresponding gate 
is open and enough time for the transmission remains until gate closes. This opera-
tion results in TCs that are fully separated in the time-domain and have pre-defined 
transmission window opportunities.

In Linux TAPRIO qdisc, the TCs are mapped to HW queues and their respec-
tive transmission windows using their assigned priorities. TAPRIO is enabled by the 
Earliest TxTime First (ETF) qdisc4 configured for each HW queue of the NIC. ETF 
enables the application to control the transmission time of its packets. Therefore, it 
is sometimes also referred to as a “LaunchTime” feature. The packets are sorted by 
their pre-defined transmission time within each queue and are kept in the queue by 
the qdisc until this deadline arrives. Some NICs, including the Intel I210 used exten-
sively in EnGINE, also support the “LaunchTime” feature, which, when enabled, 
allows the frame to be transmitted, controlled by the NICs HW, at the specified time.

IEEE 802.1Qav [4] Traffic Scheduling. It is a a part of the IEEE 802.1Q-2018 
[31] standard known as the “Credit-based shaper” (CBS) algorithm that is used to 
allocate bandwidth to SR classes. The algorithm protects the allocation for each SR 
class using a scheduling system based on credits, where start of a transmission is 
allowed only when the collected credit is ≥ 0 . A class accumulates tokens at a rate 
specified by the idleSlope parameter, while frames are being queued in the corre-
sponding queue. When there are no more frames waiting in a SR class queue and its 
credit was > 0 , its available credit is set to 0.

Within Linux, CBS is usually combined with Multiqueue Priority Qdisc (MQPRIO).5 
The discipline enables mapping of SR classes, defined by their assigned priorities, into 

4  http://​man7.​org/​linux/​man-​pages/​man8/​tc-​etf.8.​html, Accessed 22 Jan 22.
5  http://​man7.​org/​linux/​man-​pages/​man8/​tc-​mqprio.​8.​html, Accessed 22 Jan 22.

http://man7.org/linux/man-pages/man8/tc-etf.8.html
http://man7.org/linux/man-pages/man8/tc-mqprio.8.html
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HW queues of the NIC. The pre-defined classes are then associated with CBS config-
ured per HW queue as MQPRIO’s child qdiscs.

IEEE 1588 [32] standard introduces PTP for precise time synchronization in any 
networked system. Clocks are synchronized via PTP instances which are running 
on each participating device. The devices are organized in a master-slave hierarchy. 
A slave synchronizes its clock with a master by exchanging messages over the net-
work. At the top of this hierarchy sits a grandmaster (GM) clock, which determines 
the reference time for the whole system.

There are five types of PTP devices: Ordinary Clock, Boundary Clock, End-
to-end Transparent Clock, Peer-to-peer Transparent Clock, and PTP Management 
Node. The ordinary clock contains only one PTP port and thus can only be a grand-
master or a slave PTP instance. The Boundary clock contains multiple PTP ports 
each behaving as ports in the ordinary clock. It can become the grandmaster, but 
does forward any PTP messages. In contrast to the Ordinary and Boundary clocks, 
the End-to-end and Peer-to-peer Transparent Clocks do not synchronize the clock of 
the machine they operate on. These devices only measure the correction that needs 
to be applied to each PTP packet and forward all PTP packets. Ordinary and trans-
parent clocks may be combined. The PTP Management Node serves as a human 
management interface, has several PTP connections and may be combined with any 
other PTP device type.

IEEE 802.1AS [6] standard uses methods defined in IEEE 1588 and applies 
these to the concept of Time-Sensitive Networking in the form of a generic Preci-
sion Time Protocol (gPTP). Its main difference to PTP is that the messages are only 
exchanged at layer 2 (using IEEE 802.1 MAC).

Only two types of PTP devices exist in gPTP: PTP End Instances and PTP Relay 
Instances. The end instance corresponds to a PTP ordinary clock, whereas the relay 
instance is equivalent to a transparent clock. In gPTP, the packets are exchanged 
only between PTP instances, that is non-PTP devices cannot be used to forward PTP 
packets. Furthermore, all devices in gPTP must use a clock with the same frequency.

All standards mentioned above are considered in the IEEE P802.1DG TSN Pro-
file for Automotive In-Vehicle Ethernet Communications [8].

3 � Analysis

Independent reproduction and verification of results is non-trivial. Even though 
ACM Policy considers reproducibility as a three-stage process [33], its adoption 
is still in the early stages. Reproducible research in the domain of computer net-
working has been a continuous activity [34–37]. Thus, we decide to continue this 
approach when building EnGINE. As currently there is no easy way to verify results 
within the scope of IVN, we define EnGINE with a focus on IVN. Nevertheless, the 
functionality can easily be extended for any real-time sensitive domains.

To realize this approach and achieve desired flexibility of EnGINE, we identify a 
set of requirements R, which the framework should fulfill in order to handle various 
experiments relevant in the IVN, and by extension also TSN domains:
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R
1
 Repeatability – experiments can be easily repeated using the same setup 

within the same organization [33]
R

2
 Reproducibility – experiments can be easily reproduced by original organiza-

tion and external parties using the same setup [33]
R

3
 Replicability – experiments can be easily reproduced by original organization 

and external parties using different setups with same capabilities [33]
R

4
 Configurability – choice of experiments and their parameters can be easily 

configured and deployed
R

5
 Autonomy – experiments run without human interaction

R
6
 Interpretability – generated artifacts can be analyzed and explained

R
7
 Realism – works with real-world traffic patterns and provides results compa-

rable to real-world deployments
R

8
 Scalability – the network can handle large amount of traffic and various num-

ber of nodes
R

9
 Reliability – the system can handle HW/SW malfunctions

R
10

 Diversity – the framework can handle a variety of input data formats, deploy-
ment scenarios, and areas of application
R

11
 Affordability/Accessibility – the framework does not rely on proprietary 

solutions which might be less accessible to other organizations
R

12
 Openness – the framework and its underlying infrastructure are built using 

open-source and easily accessible solutions
R

13
 Updateability/Upgradeability – the components of the infrastructure can be 

easily updated or upgraded to satisfy new requirements

Requirements R
1
–R

3
 cover the focus on TSN and IVN infrastructure. The aim is 

to provide an environment that is transparent and it, as well as the conducted experi-
ments, can be reproduced by all parties [33]. R

4
–R

6
 are relevant from the usabil-

ity and experiment preparation perspectives. These cover experiment configuration, 
description, and autonomous execution, as well as the interpretation of the collected 
artifacts, such as packet captures or logs.

Based on the overview of IVNs, we derive requirements R
7
–R

10
 . R

7
 focuses on 

realistic representation of data traffic patterns present in IVNs and other real-time 
applications due to the large scale of available data sources. Traffic patterns directly 
affect the network performance and are crucial for the proper configuration of TSN. 
In [10], we can see an overview of such traffic streams and various data sources 
which motivates R

10
 . Besides, in IVNs or other time critical use-cases we see the 

usage of real-time OS offering deterministic behavior to applications execution. 
Therefore, we are interested in ways to offer real-time behavior with Linux. Further-
more, considering R

10
 , the framework should not only be limited to IVNs but also 

be extensible towards industrial automation as well as other use-cases with real-time 
requirements. Similarly, R

8
 aims to cover the use-cases based on the type of vehicle 

and manufacturer. The IVN joins several ZGWs, gateway controllers, and VCCs that 
are interconnected in various topologies. Also, the number of sensors varies, result-
ing in a wide range of data traffic volumes. The complexity of deployments also 
applies to other real-time environments. Besides, with the management host is the 
overhead on individual nodes during the experiment is minimal which contributes 
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to its scalability. With R
9
 , the framework shall offer capabilities to emulate malfunc-

tions on various levels in the infrastructure in order to deliver low failure rates.
R

11
–R

13
 address the fact, that a lot of research is done on proprietary solutions. 

That makes it challenging for other teams to work with and achieve ACM policy 
recommendations [33]. Similarly, proprietary solutions make upgrades to the latest 
technologies financially demanding.

We also identified additional requirements, which were not selected as the pri-
mary focus. Current IVNs and industrial automation systems are heterogeneous as 
they contain various network technologies, such as CAN, LIN, MOST, FlexRay, and 
Ethernet [1, 9]. We did not consider other technologies and focus purely on Ether-
net, which is a backbone of modern IVN and TSN environments. Other solutions 
might be present in other parts of the network. These solutions may be intercon-
nected via a gateway, which can translate to Ethernet [26].

Focusing on IVNs, we analyze available HW and SW components, manage-
ment tools, and network control mechanisms considering the defined requirements. 
Details on the developed infrastructure and its design are provided in the following 
section.

4 � Design

The primary goal of EnGINE is to provide an all-in-one solution for reproducible 
IVN experiments. Based on the analysis performed in Sect. 3, the final implementa-
tion of the architecture has to fulfill the set of requirements R.

As shown in Fig.  2, an experiment within the EnGINE framework consists of 
three elements: the input, which defines the traffic type and scenario under which 
the network is tested; the System Under Test (SUT), including all networked infra-
structure used in an experiment. The network structure can be configured for differ-
ent topologies using various network protocols and scheduling strategies. Finally, 
the experiments result in an output which may be physical actuation or creation of 
artifacts recorded within the SUT.

4.1 � Architecture

We base EnGINE on COTS HW. It comprises twelve ZGWs and three VCCs. The 
HW configuration of each type is shown in Table 1. Using this approach, we satisfy 
requirements R

11
 and R

12
 and to an extent also the R

3
 , as other teams can replicate 

similar scenarios using easily accessible solutions.
We select Intel® I210, I350, and I225 NICs for their HW support of various TSN 

standards, as shown in Table 1. Nevertheless, even if a NIC does not support TSN 
standards we can use SW support of qdiscs. To cope with the always increasing 
throughput requirement, we also use Intel® X552, which is a 10GbE NIC and sup-
ports IEEE 802.1AS, but no additional TSN standards. The NIC can still be used to 
evaluate the impact of purely SW based TSN hop with remaining hops supporting at 
least some TSN standards in HW. For some experiments where high clock precision 
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is needed we are using Cisco Nexus GM SmartNIC supporting 10GbE and IEEE 
802.1AS standard. The NIC, supports GPS clock synchronization and can serve as a 
GM in the network.

The VCCs and ZGWs are interconnected using the network adapters mentioned 
in Table 1. The network is structured in a way that allows for the testing of various 
in-vehicular system configurations. This enables the infrastructure to support vari-
ous network complexities that can be found in different vehicle classes. As an exam-
ple, we are able to configure networks using three, four, or six machines placed in a 
ring structure as presented in Fig. 3a–c respectively. With each node being equiva-
lent to a ZGW, these correspond to networks found in low-, mid-, and high-end vehi-
cles [1], fulfilling R

8
.

Shown configurations can be considered a part of the same vehicle platform as 
well. This configuration flexibility and additional availability of higher-bandwidth 
2.5 Gbit/s and 10 Gbit/s connections satisfies requirement R

8
 . Besides, the AVNU 

alliance recommends for stream reservation classes and their corresponding metrics 
various topologies containing up to 7 hops [7], which are also possible within the 
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Fig. 2   Overview of experiment components

Table 1   Hardware used for VCCs and ZGWs with details of supported TSN standards by NICs

aIEEE 802.1Qav, Qbv, AS
bIEEE 802.1AS

High-Performance VCC Low-Performance ZGW

CPU 4C/8T Intel Xeon D-1518 4C/8T Intel Xeon E3-1265L V2
RAM 128 GB of DDR4 Memory 16 GB of DDR3 Memory

6 × 1 GbE Intel I210a 4 × 1 GbE Intel I210a

NIC 4 × 1 GbE Intel I350b 1 × 2.5 GbE Intel I225a

2 × 10 GbE Intel X552b 2 × 10 GbE Cisco Nexus GMb
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infrastructure. To minimize the overhead on the individual nodes during the experi-
ment run, the management hosts prepares the complete environment before the 
experiment starts.

Furthermore, EnGINE supports external traffic generators as well as sinks, cur-
rently demonstrated by the inclusion of a Livoxtech LIDAR Mid40 as a data source 
within the network topology [38]. Nevertheless, it is not practical even though it is 
possible to include more physical data sources. Therefore, we analyze options for 
using synthetic data that correspond to real-world traffic patterns that could be gen-
erated using traffic generators. Alternatively, packet captures can be generated from 
real-world sensor data that are then replayed in the network [10, 39]. Having both 
functionalities enables testing of real-world data sources transmitting data at scale 
over adjustable network topologies aiding in fulfillment of R

7
.

4.2 � Configuration and Management

To manage and configure the infrastructure, we build a custom tool using Ansible, 
an open-source configuration management software. Ansible is an idempotent and 
descriptive language based on YAML and Jinja templates. It uses playbooks written 
in YAML files to express configurations and mapping of hosts to a set of roles. The 
management node runs individual playbooks, connects over Secure Shell (SSH) to 
experiment nodes, and executes individual playbook tasks. Figure 4 shows a typical 
communication, where 1  the management host remotely executes commands on 
a node. Then 2  the node runs this code and 3  interacts with other nodes. After-
wards, the nodes 4  store the collected artifacts on the management host, which 5  
processes the collected artifacts.

Each experiment campaign is divided into four phases: install, setup, scenario, 
and process as shown in Fig.  5a. In the install phase, the nodes required for the 
campaign are allocated and booted with the OS of preference. For this step, we uti-
lize the plain orchestration service (pos) [37].

Once the nodes are booted, the execution continues with setup. During this 
phase, the required prerequisites and packages are installed or copied from the man-
agement host. With all dependencies prepared, the nodes are ready to host individ-
ual experiment runs. In case a new version of a dependency package is released, 
the changes will be automatically applied on the test system to satisfy R

13
 as the 

dependencies are downloaded anew after each boot. To ensure better repeatability 

(a) (b) (c)

Fig. 3   Sample configurations for various IVN complexities. Highlighted links used in respective configu-
ration
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live images (run only in RAM) are used which ensure all residual states are erased 
once system is rebooted.

In the third phase, scenario, the individual experiments are conducted. Each 
experiment has to go through seven steps as described in Fig. 5b. First, the network 
topology is configured. The configuration is defined using a path between source 
and sink with individual hops and links along the way. Example topologies can be 
seen in Fig. 3. The paths are placed on the network using Open vSwitch (OvS) [40] 
and the priority of individual traffic is determined by the priority tag in the VLAN 
header. Each hop is set to forward the data towards its destination. Similarly, the 
ports can be configured with a traffic shaper of preference using Linux queuing dis-
ciplines configuration tool called traffic control (tc). Currently the IEEE 802.1Qav 
and IEEE 802.1Qbv standards are supported. The framework could utilize other traf-
fic shapers, e.g., Asynchronous Traffic Shaping, requiring their availability in Linux. 
To note, we have granular control over the configuration of the ports and can config-
ure each individually. Besides, each NIC port has own physical HW clock, which is 
reflected in the PTP configuration using linuxptp.

Next, so-called stacks are instantiated on each node. A stack defines applications 
used during the individual experiment, such as traffic generator, packet captures, 
and others. To introduce dynamic behavior to the experiment, in step three, we may 
define additional actions. These can include, for example, switching off a link or 
introducing an additional traffic path and thus satisfy requirement R

9
 . Besides, this 

opens opportunities for a new set of use-cases focusing on evaluating the transition 
period between different states, such as network reconfiguration, application refresh, 
and others. To mention, the values we collect are limited only to the Linux-based 
OS, but the model describing the events can be used on different systems.

Finally, the experiment is started and then stopped after a configured timeout. 
During execution, there is no further interaction with the management host. The only 

Fig. 4   Experiment workflow (cf. Gallenmüller et al. [34])

Management Host

Node 1 Node 15...

3

1 44

22
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Fig. 5   Experiment campaign overview
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overhead that could affect the performance are regular status checks if the applica-
tions finished. Of note, these checks are performed outside of the isolated resources 
used for the experiment and do not impact the results in any way. After each exper-
iment, the generated artifacts are processed on the individual node, collected and 
uploaded to the management host, and then cleaned up from the network nodes. To 
decrease the experiment execution time, the nodes do not have to be restarted and go 
through install and setup before the following experiment is executed.

Finally, after all experiments are successfully finished, the post-processing phase 
starts. Post-processing can be done either on individual or several experiments at 
once to collect different insights and understand the results better.

With the described approach, we are able to fulfill all goals set for EnGINE. We 
enforce a fixed configuration structure, which enables easy repetition of scenarios, 
thus satisfy requirements R

1
 and R

2
 . Similarly, we have broad options of configu-

ration of various network topologies and TSN parameters, applications stacks, and 
actions to evaluate the TSN behavior satisfying requirement R

4
 . Besides, the indi-

vidual scenarios, once properly configured, can run fully autonomously and at the 
end generate figures which provide insights into the experiment results satisfying 
both requirements R

5
 and R

6
.

The remaining requirements focus on specifics of IVNs and traffic present in 
them. To satisfy requirements R

7
 and R

10
 we use freely available datasets used for 

autonomous driving applications [10, 39] or synthetic data corresponding to traffic 
patterns [29, 41]. With this approach, we can emulate various traffic patterns pre-
sent in vehicular networks and correspond to data sources available in the market. 
The corresponding traffic patterns can also be generated using traffic generators such 
as Iperf3, send_udp, or MoonGen [42]. The precision of generated traffic would 
be limited by the CPU processing and the Linux scheduler. Therefore, we mitigate 
these limitations using CPU isolation and affinity to approximate the real-time OS 
behavior. The data generated can be stored in the form of a packet capture using 
tcpdump for evaluation or even future replay. Since the used NICs support the IEEE 
802.1AS standard, we can achieve high accuracy and precision of packet timestamps 
using HW timestamping.

4.3 � Software Stacks

The execution of various experiments requires the use of numerous, open-source, 
tools. The applications are chosen to support the experiments, the configuration 
of the test environment, the framework itself, result capture, and result evaluation. 
As long as the applications can run in Linux environment, the EnGINE is generic 
enough to integrate easily new tools, applications, and middleware solutions that 
could extend the framework capabilities. Especially interesting would be middle-
ware solutions present in the automotive domain, e.g., AUTOSAR. In the following, 
we introduce the most notable tools already integrated to the framework.

Generation of Data in EnGINE relies on various traffic generators to support a 
wide range of experiments. A specific generator is chosen depending on a given sce-
nario and its specific requirements.
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Iperf36 is a network performance measurement tool that is generally used to 
assess the network throughput. By default, it sends as many packets as possible 
between a server and a client instance to fully saturate the link. This application is 
used in the infrastructure to create a source and sink for network traffic. The packet 
size and a fixed throughput rate can be configured by command line parameters to 
generate different network patterns. The output log is used to detect any network 
limitations, e.g., throughput boundaries defined by TSN.

send_udp is a custom application inspired by the udp_tai.c application in 
TxTools.7 This custom application allows low-level packet manipulation. It 
uses the socket APIs’ sendmsg, recvmsg, and several socket flags, for instance,  
SOF_TIMESTAMPING_TX_HARDWARE, wrapped in C code to send and receive 
custom packets. Additionally, the packet metadata can be accessed and modified, 
thus, directly setting the packet priority in the send application and also defining a 
send timestamp in the future when the packet should be put on the wire by the NIC. 
The process of creating custom packets has a performance drawback. It is not possible 
to create as fast and as many packets as with Iperf3. However, with this application it 
is possible to utilize the Intel® LaunchTime feature present in Linux Kernel as ETF.

MoonGen is a high-performance, open-source SW packet generator based on the 
high-speed packet processing framework DPDK8. Using a single core with pack-
ets generated by user-defined Lua scripts, MoonGen can generate minimum sized 
packet at 10 Gbit/s (14.88 Mpps). MoonGen supports HW-assisted timestamping 
of packets and achieves precision in the order of sub-microseconds. This requires 
HW support by NICs using registers and timestamps required for the precision time 
protocol (PTP) [42].

Naturally, EnGINE is not limited to the above-mentioned traffic generators. Any 
traffic generation application can be considered and admitted to the network as a 
stack. The framework is also capable of accepting traffic from external data traffic 
sources, e.g., LIDAR [38].

TSN Configuration and Networking Tools are key parts of the EnGINE used 
for evaluation of various topologies and network configuration, so we introduce the 
most important ones.

tc9 is a built-in Linux traffic control application we use to modify packet process-
ing and queuing on the OS level. By changing the queueing disciplines and config-
uring various parameters we are able to control the packet transmission operation. 
On this level the time-sensitive networking behavior is applied to individual packet 
streams based on the priority value of the packets.

OvS is used on the infrastructure to separate the physical and logical network in 
order to test various topologies without manual intervention [40]. We use OvS to 
define flows as a way to individually route traffic over selected network nodes. An 
alternative method would have been to configure custom routes with the built-in 

6  https://​iperf.​fr/, Accessed 28 Jan 22.
7  https://​gist.​github.​com/​jeez/​bd3af​eff08​1ba64​a6950​08dd8​21586​6f, Accessed 28 Jan 22.
8  https://​dpdk.​org, Accessed 17 Jan 22.
9  https://​man7.​org/​linux/​man-​pages/​man8/​tc.8.​html, Accessed 28 Jan 22.

https://iperf.fr/
https://gist.github.com/jeez/bd3afeff081ba64a695008dd8215866f
https://dpdk.org
https://man7.org/linux/man-pages/man8/tc.8.html
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Linux tools on every node of the network. We decided that beyond a certain num-
ber of traffic flows this approach becomes unfeasible and hard to manage. The OvS 
application is also collecting internal statistics about the packets passing through it 
which is another probe to extract data and get insights into the network state.

linuxptp10 implements PTP according to the IEEE 1588 standard. It is one of the 
most prominent implementations for high precision time synchronization on Linux. 
linuxptp provides three tools. The ptp4l which is a daemon responsible for synchro-
nization of the NIC HW clock within the gPTP domain. The phc2sys, being a dae-
mon which synchronizes any two clocks within a system. Finally, the pmc, which 
is a utility enabling run-time configuration of ptp4l daemon. The framework uses 
linuxptp to synchronize HW clocks of the NICs.

cgroups11 are a feature in Linux which allows for grouping of processes and con-
trol of resources each grouping can use. They are built into the kernel and can be 
controlled via “cgroupfs”, a pseudo-filesystem. cgroups may also be organized in a 
hierarchical manner. In this work, we utilize this feature to assign flows of various 
applications into desired priorities. These priorities are used by the networking stack 
to determine which queue (and queuing discipline) the packets of a flow should be 
directed towards.

Data Capture & Visualization Tools are introduced next.
tcpdump12 application is a well-known packet sniffer used to capture network 

packets. In the framework, it is used to collect incoming and outgoing network traf-
fic and store it in a packet capture used for further analysis. The NICs available 
in the testbed support HW timestamping increasing the accuracy of the collected 
packet timestamps.

scapy13 and PyPacker14 (Python libraries) are used in a custom application to ana-
lyze the packets captured with tcpdump. Both scapy and PyPacker read each packet 
from the input file and extract certain information from the payload. PyPacker offers 
faster processing which is crucial for post-processing of large packet captures. Both 
tools are used for initial processing of packet captures before they are visualized for 
example with GnuPlot or matplotlib. As scapy is also capable of generating packet 
traces, it is a candidate for use as a traffic generator in the future extensions of the 
framework.

4.4 � EnGINE Networking Stack

In Fig.  6 we see how packets generated in user space (e.g., LIDAR/RADAR or 
iperf3/send_udp) are passed through a firewall defined by cgroups towards a virtual 
interface. First, packet priorities are stored in the SKB. Then, a port on which an 
application runs on the transport layer is chosen. Furthermore, the source IP address 

12  https://​www.​tcpdu​mp.​org/, Accessed 22 Dec 21.
13  https://​github.​com/​secdev/​scapy, Accessed 28 Jan 22.
14  https://​gitlab.​com/​mike01/​pypac​ker/, Accessed 28 Jan 22.

10  http://​linux​ptp.​sourc​eforge.​net/, Accessed 28 Jan 22.
11  https://​man7.​org/​linux/​man-​pages/​man7/​cgrou​ps.7.​html, Accessed 28 Jan 22.

https://www.tcpdump.org/
https://github.com/secdev/scapy
https://gitlab.com/mike01/pypacker/
http://linuxptp.sourceforge.net/
https://man7.org/linux/man-pages/man7/cgroups.7.html
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of a corresponding virtual interface flowX is used to create a socket <IP>:<PORT> 
pairing. Finally, each virtual flowX interface is connected to OvS where packets are 
forwarded to a single virtual interface (vethX) of a corresponding physical port.

The above information is used on the link layer to decide the flow path and the 
applicable TSN configuration. The source IP address specifies through which virtual 
interface flowX the application packets will go and therefore which flow path is fol-
lowed. The packet’s priority is determined by SKB priority information, which maps 
it to a stream and, therefore, TSN configuration. At the vethX VLAN headers are 
attached to the packets with the packet priority value being mapped to the VLAN 
Priority Code Point (PCP) header field before entering the Linux interface stack. 
This VLAN field determines with which priority the packet should be handled as it 
passes through the network and therefore which HW queue of the Intel® I210, I350, 
I225, or X552 NIC is used. Finally, OvS decides on which physical interface the 
packet is sent out.

To ensure clock synchronization, we use PTP implemented by linuxptp, which 
relies on ptp4l daemon that runs in the user space, but the clock synchronization 
messages exchanged among nodes in the system work on the link layer. To note, 
they could also rely on UDP with IPv4 or IPv6, but we rely on the link layer.

To forward the packets towards their destination using link-layer functionality, on 
each hop in the network we use OvS. Each node in the given experiment runs its 
own OvS session without using a central controller. Finally, packets can be captured 
on hops or the sink using tcpdump or, if interested in other metrics, we can use a 
suitable tool.

4.5 � Operating System Optimizations

To achieve the best possible performance of EnGINE, we employ several techniques 
that allow us to minimize the impact of the OS on the experiments [36]. Those 

Fig. 6   Overview of EnGINE Application and Networking Stack



	 Journal of Network and Systems Management (2022) 30: 74

1 3

74  Page 16 of 31

optimizations include the use of a low-latency Ubuntu kernel, CPU isolation, CPU 
affinity, and using the CPU in “performance” energy management mode. With those 
settings, we aim to minimize any delay and jitter introduced by the OS, making the 
system better represent applications running on real ZGWs and VCCs, thus aiding in 
fulfillment of R

7
.

Low-latency Ubuntu Kernel adds several OS features allowing for reduction of 
the delay and jitter introduced by the process scheduling of the system [43]. Com-
pared to a generic one, this kernel version considers interrupt requests (IRQ) from 
HW devices as threads. The threaded IRQs allow for manual configuration of the 
HW interrupt’s priority. This setting is essential for the Intel® I210 and I225 NIC 
operation in EnGINE as it enables selection of real-time (RT) priority for IRQs 
coming from each of the four HW NIC queues. Another feature of the low-latency 
kernel is the introduction of preemption points, where the CPU scheduler actively 
looks for the higher priority threads that should be executed before other, longer 
tasks. The preemption also may involve interrupting execution of other threads to 
run higher priority tasks. In EnGINE, we use Ubuntu 20.04 LTS with GNU/Linux 
5.4.0-90-lowlatency kernel. NIC IRQs are configured for RT priority. The priority 
configuration is done using chrt15 tool which enables changes of thread properties.

CPU Affinity describes the ability to assign a thread to a specified CPU core [44]. 
There are two types of affinity, so called “soft” and “hard”. The soft CPU affinity is 
the type usually employed by the CPU scheduler where it tries to keep the thread on 
the same core during run-time. There are no guarantees that the thread will not be 
moved to another CPU core. Hard affinity guarantees a thread’s explicit binding to 
a CPU core, strictly respected by the CPU scheduler. In EnGINE we extensively use 
hard affinity to manually distribute threads and IRQs across the logical CPU cores 
that are necessary to keep low delay within the system. Considered functions we 
bind to specified cores include NIC IRQs and traffic generation applications such 
as iperf3 or send_udp. Manual thread to CPU assignment is configured using the  
taskset16 utility which enables CPU affinity management.

CPU Isolation of specified cores prevents the system scheduler from placing any 
user and OS tasks on the defined CPU core [45]. It allows us to manually prepare 
a number of cores where no other threads, except manually pre-defined ones using 
CPU affinity, are placed. In EnGINE this isolation prevents unwanted influence from 
other tasks that are not relevant to an experiment. The CPU cores are isolated using 
the isolcpus17 system boot parameter.

CPU Configuration and Power Management options are further used to opti-
mize the system for low-delay and low-jitter operation. We investigate settings that 
limit the CPU task execution overhead and prevent the system from going into low-
power modes. Therefore, we include three configuration options that can be used to 
disable Simultaneous Multi-Threading (SMT), disable Automatic Overclocking, and 

15  https://​man7.​org/​linux/​man-​pages/​man1/​chrt.1.​html, Accessed 21 Jan 22.
16  https://​man7.​org/​linux/​man-​pages/​man1/​tasks​et.1.​html, Accessed 21 Feb 22.
17  https://​www.​linux​topia.​org/​online_​books/​linux_​kernel/​kernel_​confi​gurat​ion/​re46.​html, Accessed 21 
Jan 22.

https://man7.org/linux/man-pages/man1/chrt.1.html
https://man7.org/linux/man-pages/man1/taskset.1.html
https://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/re46.html


1 3

Journal of Network and Systems Management (2022) 30: 74	 Page 17 of 31  74

set the CPU Dynamic Voltage and Frequency Scaling (DVFS) governor to “perfor-
mance” mode.

SMT [46] is a technology enabling simultaneous execution of two tasks on a sin-
gle physical CPU core. This parallelism is achieved by duplicating the architectural 
state for the CPU core. The core appears as two separate ones for the OS despite 
sharing the same compute HW. SMT is aimed at improving the general perfor-
mance of the system by more efficiently utilizing each physical CPU core. While the 
technology might have a negative impact on certain system and application perfor-
mance, during testing we observed a decrease in performance with SMT disabled. 
Therefore, we use EnGINE with SMT enabled.

Automatic Overclocking, e.g., Intel’s Turbo Boost [47], is a feature that dynami-
cally increases the CPU clock frequency under high load in order to improve per-
formance. The introduced variation of CPU clock frequency has the potential of 
increasing system jitter, however, in testing we have not observed such influence. 
Furthermore, the technology’s sequential execution performance improvement 
positively affects the functionality of applications run during experiments. Thus, 
EnGINE usually operates with the feature enabled.

Linux allows selection of the CPU DVFS algorithms using CPUFreq governors 
[48]. The governors either set the CPU frequency to a pre-defined value, or allow 
the system to set the frequency dynamically according to current needs or load. 
Since we are using an Intel® processor, our governor selection is limited to two 
modes, namely “powersave” and “performance”.18 These modes either will or will 
not consider energy saving features of the CPU respectively. The power optimiza-
tions include aggressively lowering the CPU frequency when no load is present or 
putting the CPU into sleep states. In EnGINE we utilize the performance governor, 
limiting the changes in CPU frequency and thus minimizing OS induced jitter in our 
experiments.

5 � Capabilities

EnGINE supports experiments ranging from small deployments of just two nodes 
and a single traffic flow, up to scenarios including thirteen nodes and numerous 
flows. Such flexibility and scalability allow us to evaluate various topologies cor-
responding to use-cases we can encounter in IVNs. In this section, we introduce a 
selected scenario to show and verify the configuration and capabilities of our frame-
work. We demonstrate complete EnGINE functionality in a network of intercon-
nected VCCs and ZGWs as shown in Fig. 7. The mid-end vehicle topology high-
lighted on Fig. 7 is used as a base for our use-case. The use-case we cover in detail 
comprises three flows, each with a path over a single, two, or three hops respec-
tively. Depending on the stack configuration, different nodes act as a source or sink. 
To investigate this scenario, we define an experiment campaign using a combina-
tion of five individual YAML files (00-nodes, 01-network, 02-stacks , 03-actions, 

18  https://​www.​kernel.​org/​doc/​html/​v4.​19/​admin-​guide/​pm/​intel_​pstate.​html, Accessed 28 Feb 22.

https://www.kernel.org/doc/html/v4.19/admin-guide/pm/intel_pstate.html
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and 04-experiments). Impact of individual steps on the experiment campaign is 
presented in Fig. 8. The configuration is described in Sect. 5.1 and its outcome in 
Sect. 5.2.

Fig. 7   EnGINE network overview

(c)(b)(a)

Fig. 8   Overview of individual configuration steps impact on the experiment setup
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With EnGINE we can emulate real deployed IVN topologies. Such deployments 
can be identified from available related work and be ported to EnGINE for further 
investigation. The infrastructure can host more than seven hops between source and 
sink, supporting numerous flows, various traffic patterns generated live or replayed 
from recorded packet captures, and network topologies matching real-world scenar-
ios. Such complex flow configuration would be reflected in the YAML files, as mul-
tiple combinations of traffic patterns and corresponding configurations of TAPRIO 
and CBS on the hops are needed. Moreover, we can focus on reliability, identify-
ing how the system behaves in case of malfunctions, such as delay or link failures. 
Here, 03-actions.yml plays a key role in introducing pre-defined malfunctions into 
the system.
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5.1 � Configuration and Experiment Flow

To configure the selected use-case, we need to prepare the five YAML configura-
tion files. During the preparation process we need to consider the desired outcome. 
In the following we describe the configuration files in more detail and reflect how 
they impact the experiment campaign phases. We start with 00-nodes.yml, Listing 
1, where we define the nodes and their mappings used during the whole experi-
ment campaign. Here, we also specify parameters that determine how the nodes are 
booted. Among others, these parameters indicate whether a low latency kernel is 
used or how many CPU cores are isolated from the Linux scheduler, shown in lines 
2 and 3 respectively.

Figure 8a highlights the subset of the used infrastructure onto which we map the use-
case’s experiment campaign configuration. The nodes defined in Listing 1 are used in 
the install phase to boot them with a predefined OS. The remaining nodes can be used 
for other experiment campaigns in parallel.

Before proceeding to setup, we need to specify network flows and TSN configu-
ration in 01-network.yml, Listing 2. We identified a configuration abstraction to have 
sufficient control over Linux ETF, TAPRIO, CBS, and MQPRIO qdiscs setup as 
well as individual HW queues of the NIC with corresponding traffic class priorities. 
Similarly, we can define on which nodes, or nodes’ specific ports, a given TSN con-
figuration is applied. Here, we also decide if and how many CPU cores are dedicated 
to NIC IRQs and whether those interrupts are set to use real-time priority.

The use-case configuration shown in Listing 2 consists of two parts, a network 
description starting in line 2 and a TSN configurations beginning on line 21. We 
configure two networks that encompass the same topology as in Fig.  8a. Each 
includes flows as outlined in Fig. 8b. The networks differ in their TSN configuration, 
i.e., net-1 uses TAS and net-2 uses CBS as queuing disciplines.

Of note is that we can configure TSN on the whole nodes as shown in line 5 or on 
individual interfaces of nodes as presented in line 14. The TSN configs tsn-1 (line 
22) and tsn-2 (line 35) represent the configuration parameters of TAPRIO and 
CBS qdiscs respectively. For TAPRIO, we set a schedule specifying how long gates 
for each corresponding queue are open (lines 28-30). We configure the queues using 
ETF for queues 1 and 2 (lines 32, 33) and a best effort FIFO queue on queue 3 (line 
34). ETF queues use priorities 3 and 2 respectively with the remaining priorities 
being assigned to the best effort queue. The fourth, remaining, HW queue is unused.

In tsn-2, similarly to tsn-1, we configure 3 queues (lines 39-41) for priorities 
3 and 2 respectively using CBS set for 100 Mbit/s PHY layer throughput. The third 
queue (line 42) is configured for best effort traffic on all other priorities. Again, the 
fourth queue remains unused.

In the setup phase, PTP is also configured on all interfaces specified in the cor-
responding configuration file. After roughly 180 s (depending on HW performance), 
the nodes are ready to start with preparation of individual applications. This period 
is on purpose longer so the system stabilizes before starting with the experiment 
execution.

Next is the scenario phase where all experiments defined in a campaign are exe-
cuted. We define the applications used in an experiment in 02-stacks.yml, Listing 3. 



1 3

Journal of Network and Systems Management (2022) 30: 74	 Page 21 of 31  74

Dependencies between applications, e.g., server-client, are incorporated by starting 
applications in sequence according to a specified level. The lower level indicates the 
earlier start of the application. The configuration parameters reflect the arguments 
with which the applications can be started. For the stacks in the presented use-case we 
are using three applications—iperf, tcpdump, and queue_monitor. Here, we 
can specify how much data is transmitted over the network. As an example for iperf 
(line 10) we specified packet payload size of 1180 B and limit of the traffic to 
99.4 Mbit/s. This corresponds to 100 Mbit/s on the wire (including PHY layer head-
ers) with packet spacing of 100 μ s. Traffic volume also determines the run-time of the 
experiment or by the number of packets we want to send. We can select on which node 
individual application starts as shown in Fig. 8c, i.e., for stack-2 this is shown on 
lines 17, 19, 22, and 27. Finally, to know where data shall be sent, we specify the flow 
number, which corresponds to the flow number in 01-network.yml and is internally 
matched to a physical port of a respective node.

To collect data artifacts, we use in this case tcpdump and queue_monitor. For 
tcpdump the parameter size refers to how many bytes should be stored for each 
packet in the packet capture. Similarly, to limit the size of packet captures, we can select 
the filter option. For the queue_monitor we specify which queue types are of 
interest and on which interface they should be monitored.

Individual applications can terminate either after a timeout or upon completion. 
All applications must terminate gracefully to complete an experiment successfully. 
For completeness, 03-actions.yml serves for definition of actions in the system, i.e., 
network interrupts but is not part of the given use-case.

The main logic is contained in 04-experiments.yml, Listing 4. It references the 
information from the other YAML files to describe individual experiments. All 
entries are executed in sequential order. Before a new experiment starts, the old net-
work configuration is flushed and previous processes killed to avoid disruptions of 
the next experiment run.
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Listing 4 shows four configured experiments, the results of which are displayed 
in Sect. 5.2. We match each network with each stack to showcase two experiments 
focusing on EnGINE operation using the TAPRIO qdisc (Lines 3 and 4), and further 
two experiments focusing on the CBS qdisc (Lines 5 and 6).

After an experiment campaign is successfully completed, the process phase 
starts. The duration of this phase can take seconds in case of a low transferred traf-
fic volume during an experiment or minutes/hours if large data sets need to be pro-
cessed. We ensure the precision of collected data by using the NICs’ HW times-
tamping capabilities.

5.2 � Results

In this section, we showcase the evaluation capabilities of EnGINE. To show these 
features, we present the results of the use-case defined in Sect. 5.1. The presented 
figures constitute a subset of the evaluation materials that can be obtained using the 
framework. We include the results of the complex experiments defined in Listing 
4 (lines 4 and 6) using stack-2 - Complex traffic scenario, Listing 3 
(lines 14-34) and net-1 for TAS and net-2 CBS qdisc configuration. The gener-
ated traffic, topology, data flows, and collected artifacts are the same for both experi-
ments. Finally, we present results of delay, jitter, and queue levels in the form of 
Empirical Cumulative Distribution Function (ECDF) and time series.

Delay is computed as Delayx = Rx − Tx where Rx is receive time, Tx sending time 
and x a packet index. These variables are available from packet capture on sender 
and receiver. We can use timestamps from two different machines to get an accurate 
value due to the clocks being synchronized with PTP. Packets on the receiver are 
timestamped using HW timestamp, which offers high precision. Besides, to corre-
late the packets on source and sink we can use the sequence number stored in the 
payload by iperf3. Jitter which is calculated as Jitterx = (Rx − Rx−1) − (Tx − Tx−1) 
and indicates how much the end-to-end delay changed between two consecutive 
packets. Flow 1, 2, and 3 correspond to 1 hop, 2 hops, and 3 hops in the network 
respectively. The ECDF plots contain information from the approximately 100,000 
packets collected over the 10 s of experiment duration. For better readability, the 
time series only shows delay for the first 50 ms of the experiment.



	 Journal of Network and Systems Management (2022) 30: 74

1 3

74  Page 24 of 31

Figure 9 shows the measured end-to-end delay in the form of a ECDF and time 
series for six flows—3 TAS and 3 CBS. As expected, in Fig. 9a we see that a smaller 
number of hops results in lower delay. Overall, TAS using the ETF in deadline mode 
performs better than CBS because CBS has to wait until enough credit is built up to 
transmit the next packet on each hop. Such behavior is visible in Fig. 9b, where we 
see periodic increase and decrease of delay. On the other hand, for TAS, we see a 
saw tooth pattern caused by opening and closing the individual gates.

Figure 10 visualizes the end-to-end delay jitter observed in the experiments as an 
ECDF. Following the delay results of TAS, the delay difference between consecutive 
packets can be considerable. Figure 10a shows that for more than 30% of packets the 
jitter is larger than 100 μ s. For CBS, we achieve low jitter except for a few outliers. 
The fluctuation of jitter is well visible in Fig. 10b.

Finally, Fig. 11 shows an ECDF of the queue levels, measured using our custom-
built tool relying on tc, which listens on ZGW2 interface 1 and monitors queues 

(b)(a)

Fig. 9   End-to-end delay measured for selected use-case

(a) (b)

Fig. 10   End-to-end delay jitter measured for selected use-case
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of Flows 2 and 3. For the CBS, we see how the queues are more filled than TAS, 
which is possibly caused by waiting for enough credit to build. This is in some form 
periodic as shown in Fig. 11b. We also observe that CBS Flow 3 has a lower queue 
level compared to Flow 2, due to higher priority of Flow 3. Unfortunately, the tool’s 
resolution is not high enough to catch all queue level increases/decreases. The moni-
toring utility only provides a periodic snapshot of the queue level every few milisec-
onds, where TAS cycle time is 1 ms.

6 � Limitations

Even though we developed EnGINE with IVNs in mind, we identified few short-
comings of our approach. Our framework focuses purely on Ethernet-based solu-
tions with the support of different bandwidths by NICs. However, networks in cur-
rent vehicles are heterogeneous and support numerous bus technologies such as 
CAN, LIN, and FlexRay. Nevertheless, we see a shift towards the zonal architecture 
in vehicles, which EnGINE enables to evaluate. All data connected to the backbone 
relies on gateways that can translate from various bus systems to Ethernet. With 
technologies such as 10Base-T1S, Ethernet might become the dominant technology 
in other parts of IVNs. Similarly, we do not use specific automotive SW and HW but 
rather a Linux distribution and COTS HW due to R

2
 and R

11
–R

13
 , which would be 

hard to fulfill with custom solutions. Besides, Linux with the proper configuration 
we use in our approach provides deterministic behavior and fulfills metrics defined 
in AVNU SR classes.

Furthermore, even though we improve the performance of Linux using various 
OS optimization techniques, it is still not the same as using a real-time OS used 
in VCCs and ECUs inside of vehicles or other scenarios. This affects mainly the 
applications running on them. Nevertheless, this challenge can be partially elimi-
nated by understanding which delay is caused by Linux. This knowledge can then 

(a) (b)

Fig. 11   Queue length measured on ZGW2 interface 1 for queues of Flows 2 and 3
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be interpolated to the overall system performance and especially used to offer deter-
ministic behavior for the applications. Using this approach, we can identify the 
worst-case scenario and expect that the overhead will be eliminated using more cus-
tom solutions. The used OS optimization helps us achieve deterministic behavior, 
which is crucial to the worst-case analysis.

While using tools available in Linux and building new applications, we identi-
fied new challenges regarding their performance and possible resolution, e.g., queue 
monitoring tool. Linux offers a large spectrum of built-in tools which provide the 
data we need but cannot operate in microsecond or even nanosecond order of preci-
sion. A possible solution is to make a custom application using the available kernel 
APIs or even rely on extended Berkeley Packet Filter (eBPF), which can run in ker-
nel space and causes less system overhead.

Finally, there are many TSN standards that our infrastructure does not offer. 
Some are not yet available in Linux or are not integrated into the infrastructure, e.g., 
Audio Video Transport Protocol [7] or IEEE 802.1AS-Rev [6]. In case they are not 
integrated to Linux, it might be more challenging as the open-source community 
might choose a different focus instead of implementing a specific standard or you 
can implement own kernel module implementing a given standard. However, once 
available, they are easy to integrate into our infrastructure. Not every standard is of 
relevance in the scope of IVNs.

7 � Conclusion and Future Work

We provide detailed description of EnGINE, a solution to repeatable, reproducible, 
and replicable TSN experiments with a focus on intra-vehicular networks by using 
COTS HW and open-source solutions. It supports various TSN standards as recom-
mended by IEEE P.802.1DG TSN Profile [8]. Nevertheless, the usage is not limited 
to that and can used to evaluation to other TSN application domains. The framework 
comes with some challenges stemming from the use of open-source solutions dur-
ing its development. Linux kernel and SW artifacts come with inherited complex-
ity which we overcome in the implementation phase to ensure deterministic perfor-
mance. However, we are still able to fulfill most of the requirements we identify in 
the design phase. Furthermore, we show how EnGINE can be used to perform IVN 
and TSN experiments based on an experimental use-case with detailed configuration 
of individual steps. We present a subset of achievable results and the inherent limita-
tions of the framework.

We aim to integrate various realistic data sources into the infrastructure in the 
future exploring the options of new physical artifacts, but also using synthetic data 
with realistic data patterns. With this we can strengthen the realism aspect with a 
focus on the traffic patterns present in intra-vehicular networks. Next, even though 
we introduce a set of supported TSN standards, we want to extend the number 
of supported synchronous and asynchronous standards, e.g., IEEE 802.1Qbr and 
IEEE 802.1Qcr. We also want to extend our experiments and include link failures 
to investigate system reconfiguration times for which are purposefully designed 
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actions. Furthermore, the current focus is mostly on layer two functionality. In the 
following, we want to evaluate mechanisms on layers three and above to see how 
they affect performance and can be combined with deterministic guarantees pro-
vided by layer two. Finally, since EnGINE is still evolving, we aim to perform an 
in-depth evaluation of the framework and compare them possibly to simulation-
based approaches and identify the differences while working on the items men-
tioned above.
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