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Abstract
For the development of high power density gearboxes the knowledge of the gear mesh behavior is important. Especially,
the tooth deflection influences flank load distribution and is the basis for the design of flank modifications. Analytical
and numerical approaches are suitable to evaluate the behavior. Since numerical methods are complex, elaborate and
time-consuming, fast and accurate analytical methods are still important and are worth to be further developed and
assessed.
An analytical method for calculating tooth deformation for gears goes back to Weber and Banaschek from 1953. In the
initial work the final equations are given without many intermediate steps in the plane strain assumption for materials with
Poisson’s ratio ν= 0.3. This paper derives the tooth deflection equations in a more detailed and general manner for any
linear material. The final equations are valid for the plane stress and plane strain state in one new closed representation and
are therefore suitable for an efficient implementation. While the plane strain state is typical for gears, the plane stress state
is significant for a thin slice model or special gearings. The presented method captures the shear influence with a more
detailed calculation of the shear correction factor.
A calculation study validates the results from the derived analytical tooth deflection calculation method with a plane Finite
Element Model. In the study the point of application of force and the gear body are varied to cover the influence of different
variants (size and mesh position). Finally limits of the analytical modeling and the validation are discussed.

Schnelle Methode zur Berechnung der Zahnverformung und ihre Validierung

Zusammenfassung
Für die Entwicklung von Getrieben mit hoher Leistungsdichte ist die Kenntnis des Eingriffsverhaltens entscheidend.
Insbesondere die Zahnverformung beeinflusst die Lastverteilung im Eingriff und ist die Grundlage für die Auslegung von
Flankenkorrekturen. Zur Berechnung der Lastverteilung eignen sich analytische und numerische Ansätze. Numerische
Methoden sind oftmals komplex, aufwändig und rechenintensiv. Schnelle und genaue analytische Methoden sind daher
nach wie vor wertvoll und ihre Weiterentwicklung wertvoll und lohnenswert.
Eine analytische Methode zur Berechnung der Zahnverformung geht auf Weber und Banaschek aus dem Jahr 1953
zurück. Von Ihnen werden die endgültigen Gleichungen ohne viele Zwischenschritte im ebenen Dehnungszustand für
Materialien mit einer Poissonzahl von ν= 0,3 angegeben. In der vorliegenden Arbeit werden die Gleichungen für die
Zahnverformung in einer detaillierteren und allgemeineren Weise für beliebige lineare Materialien hergeleitet. Die finalen
Gleichungen gelten für den ebenen Spannungs- und den ebenen Dehnungszustand in einer neuen geschlossenen Darstellung
und sind daher für eine effiziente Implementierung geeignet. Der ebene Dehnungszustand ist für Zahnräder typisch. Für ein
Scheibchenmodell oder für Sonderverzahnungen ist der ebene Spannungszustand von Bedeutung. Die vorgestellte Methode
erfasst den Schubeinfluss durch eine detailliertere Berechnung des Schubkorrekturfaktors.
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In einer Berechnungsstudie werden die Ergebnisse der analytischen Methode zur Berechnung der Zahnverformung mit
einem ebenen Finite-Elemente Modell verglichen und validiert. In der Studie werden der Kraftangriffspunkt und der
Zahnradkörper variiert, um den Einfluss verschiedener Varianten (Größe und Eingriffsposition) zu erfassen. Abschließend
werden Grenzen der analytischen Modellierung und die Validierung diskutiert.

1 Introduction

Gears are the most commonly used machine elements
for transmitting of power. Due to the growing need for
lightweight, efficient and noise-optimized transmissions,
gears are the subject of constant development and improve-
ment. Teeth deflection between two gears in contact with
each other is one essential influence variable in the load
capacity calculation [1] and the evaluation of the NVH be-
havior [2]. The load divided by the tooth deflection defines
the linear tooth stiffness, which is the reciprocal value of
the tooth compliance. Among the deflection of other gear-
box elements (e.g., bearings, shafts, gearbox housing), the
tooth deflection defines the contact pattern and therefore
the load distribution between two meshing gears. In an it-
erative process, the load pattern can be used to define flank
modifications in order to improve the mesh behavior. In
this paper, tooth deflection is defined as the deformation of
the tooth and the subsequent gear body. Furthermore, tooth
deflection means the macroscopic deformation of the tooth
itself. The method in this paper allows to add any contact
deformation calculation method of the mating gears and
is therefore suitable for the implementation of a modular
method. Approaches for the microscopic deformation of
two contacting bodies can be found for example in the
rolling bearing analysis.

Analytical and numerical methods can be used to cal-
culate tooth deflection. Numerical methods, like the finite
element (FE) or boundary element (BE) method, can cover
a variety of influences (temperature dependence, nonlin-
ear material behavior, complex geometries ...) but are com-
plex, elaborate and time consuming. In contrast to analyt-
ical methods, a lot of effort has to be expended to create,
validate and evaluate the model. Bong [3] and Neupert [4,
5] describe a method for calculating the tooth deflection
with a 3D FE model under single-point loading. The tooth
contact is determined by a geometric relation of the unde-
formed gears and therefore an input value. They investigate
point loading on FE nodes and develop a method to han-
dle the singular effects. Schäfer [6, 7] improves the method
for gearings with flank modifications. Vijayakar und Houser
[8–10] propose a coupled model for analyzing gears in con-
tact. Contact stress and deformation can be calculated by
combining a 3D FE model and the Boussinesq surface in-
tegral [11]. Their main focus is to efficiently formulate and
solve the 3D contact problem. Similar to the model by Vi-
jayakar und Houser, Guingand [12] describes the deflec-

tion calculation of complex tooth geometries by implement-
ing a coupled FE-Boussinesq model. Vedmar [13] develops
a 3D FE tooth deflection calculation method based on the
superposition principle. The first model calculates the tooth
surface contact deformation. A point force is applied to one
single tooth on the second model. Subtracting of both parts
yields the tooth deflection. Based on the results of a cal-
culation study, Vedmar defines approximative equations for
the tooth deflection of gears with common characteristic
parameters. Similar to Vedmar, Chang [14] and Feng [15]
propose a tooth deflection calculation method based on the
superposition of two partial 3D FE models. Their work
differs from Vedmar in the sub-modeling and the contact
deformation calculation. Beinstingel [16, 17] proposes an
isogeometric FE model based on Non-Uniform Rational
B-Splines (NURBS) to calculate the tooth deflection. The
model shows a good agreement compared to established
gear calculation software.

Hybrid methods combine analytical and numerical ap-
proaches to calculate the tooth deflection efficiently. In
these models usually the total macroscopic tooth defor-
mation is calculated using a numerical method, while the
microscopic (contact-) deformation is treated analytically
[18, 19]. Most of the numerical approaches presented can
be used in a hybrid model. Further hybrid models can be
found in the literature. Hong [20] calculates the tooth de-
flection with the Raleigh-Ritz plate approach by Yau [21]
and the gear body deflection following the dimensionless
formulas derived by Stegemiller [22] from FE calculations.
In Hong’s approach the contact deflection is calculated with
the Boussinesq surface integral [11]. Rincon [23] and Igle-
sias [24] describe a two-step FE-based method for calcu-
lating global deflection and calculate local deflection using
the contact model of Weber and Banaschek [25].

Analytical methods for calculating tooth deflection are
not as universal as numerical models. Since the analytical
methods are fast and their accuracy does not depend on
a specific discretization, they are still important and worth
being further developed and assessed. In 1892, Lewis in-
vestigated the gear teeth strength using a basic beam model
[26]. In 1953, Weber and Banaschek (W/B) [25] calculated
the tooth deflection of a plane gear section (transverse sec-
tion) based on a substitute beam model for the tooth and
a substitute half-plane model for the gear body. In their
work, the final equations are given without many interme-
diate steps in the plane strain assumption for materials with
Poisson’s ratio � = 0.3. Based on the calculation frame-
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work established by W/B, Schmidt [27] extends the plane
approach in the facewidth direction for spur and helical
gears. This is an important extension because the deflec-
tion changes over the facewidth depending on the point of
load application (cross influence). Therefore, Schmidt cal-
ibrates a substitute model of a finite cantilever plate using
the tooth deflection postulated by W/B. Schmidt’s model
is widely used in gear contact and NVH research [28–31].
Using an alternative plate approach, Conry [32, 33] also
makes the extension to a finite gear. Another possible way
to the extend W/B method is to use the thin slice model.
The gear is divided into multiple parallel arranged uncou-
pled slices. For helical gears, the cuts for the slices are
made in normal sections. Therefore, Lutz [34] formulates
the W/B tooth substitute model in the plane stress state for
worm gears. The substitute model for the gear body re-
mains unaffected. While the plane strain state is used for
continuums with one dimension significantly larger than the
others (conventional gear model), the plane stress state is
suitable for flat continuums (thin slice gear model). In addi-
tion, Lutz converts the equations for other materials rather
than steel. An improvement in the thin slice model is to
couple the single slices. Based on FE calculations, Kunert
[35, 36] defines a coupling function for the deflection of
an infinite tooth under single-point loading for cylindrical
gears. Spura [37, 38] describes a method for the tooth de-
flection calculation of gear couplings based on the W/B
framework and the coupling function from Kunert. Börner
[39] determines the coupling function based on FE results
and measurements for cylindrical gears. Schaefer [40] de-
rives the coupling function for bevel gear teeth from FE
results. Wu [41] calculates the tooth deflection of skew
conical involute gears using a beam model and the cou-
pling function derived by Linke [42]. Linke derives an FE
based coupling function in the tooth width direction, so
the model could also be considered as a kind of hybrid
model. The commercial gear calculation software KISSsoft
[43] uses an empirical coupling function, which is validated
with FE calculations. Single-slice tooth deflection in KISS-
soft is based on the W/B formulation of Petersen [44]. The
presented analytical methods have in common that the W/B
calculation framework is stand-alone integrated and could
easily be exchanged. The W/B method even found its way
into international standardization. The equation for tooth
stiffness in the ISO 6336 [45] and DIN 3990 [46] is based
on a series expansion by Schäfer [47], conducted on the re-
sults of calculations using the W/B framework. According
to Schäfer [47], the deviation between the series expansion
and the mechanical solution is less than 8% [48]. Benkler
[49] has developed an analytical tooth deflection method
for gear couplings. For the tooth deflection, Benkler solves
the differential equation of a bending beam resting on an
elastic foundation. The deflection of the gear body itself

is adapted from W/B. Furthermore, Benkler calculates the
ring gear deflection with a beam model resting on simple
hard support bearings at the ends. In contrast to the beam
approaches, Kunze [50] superposes different load cases of
the planar disk theory to a total solution for the tooth deflec-
tion of gear couplings. Due to the available mechanical so-
lutions of a disc, the tooth geometry has to be approximated
with a wedge. Theory knowledge of advanced mechanics
is necessary to solve the governing elastostatic equations of
a disc.

The previous section gives an insight into different com-
mon ways of tooth deflection calculation. It is presumptuous
that the paper raises completeness over the whole research
in the last decades. Therefore, a comprehensive review on
analytical, hybrid and numerical methods is given by Mara-
fona et al. in [19]. Natali et al. give a review specially on
FE methods for the tooth deflection calculation in [18].

This paper builds on and extends the work of W/B. In
the their work, W/B developed the method for the standard
basic rack profile [51] and gave the solution for the integrals
with graphical nomograms. The approach is valid for steel
gears in the plane strain stress state.

In this paper the equations are derived in a closed de-
scription for the plane stress and plane strain assumption for
any gear tooth geometry and linear material. This makes
the equations efficient for implementation in a computer-
ized application and flexible for different gear types. As the
teeth are modeled with stub beams, the shear influence on
the total deformation increases. This is taken into account
with a more detailed calculation of the shear correction
factor in this work. Furthermore, the approach is validated
with a calculation study. In contrast to validation calcula-
tions carried out in most of the literature, the study varies
the gear dimensions and point of application force and does
not only calculate single mesh configurations.

2 Analytical tooth deflection calculation
method

The principle idea for calculating the tooth deflection was
published by Weber and Banaschek in 1953 [25]. The
method divides the tooth deflection in a bending and a tilt-
ing part. The separate parts can be calculated analytically
using two substitute models. The tooth-bending mechanism
and substitute model is shown in Fig. 1. The mesh force
P at a contact point generates the bending deflection wB

around the tooth root. α is the pressure angle at the contact
point. Fig. 1b shows the corresponding mechanical model.
The tooth gets replaced with a bending beam/truss model.
The beam/truss extends from the tooth root radius s rf to
the height yP where the normal of the contact force crosses
the tooth center (line of action). In the ISO 6336 tooth
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Fig. 1 Tooth bending. a Tooth
bending around the tooth root,
b Substitute beam/truss model

a b

root load capacity calculation [52], for example, the tooth
is delimited for calculation at the 30° tangent to the gear
body. This paper aims to find a general approach which
is validated with a FE model. With the definition starting
from the dedendum circle, the method is suitable also for
special gears and tooth root profiles beside the trochoid root
profile. The tooth flank profile can be determined from the
standard ISO 21771 [53] or DIN 3960 [54] for an invo-
lute gear, while the trochoid tooth root profile calculation
method is, among others, specified in [55]. Tooth flank and
tooth root form the contour x(y) for the bending beam. The
method is not limited to involute gears and can be used
for any tooth profile. Since the involute gearing is the in-
dustry benchmark for cylindrical gears, the paper uses it as
calculation example.

The mesh force P divides into a normal and transverse
component:

N = P sin .˛/ ; (1)

Q = P cos .˛/ : (2)

The transverse force induces a moment:

MB = P cos .˛/
�
yp − y

�
: (3)

To solve the beam model for the elastic deformation wB,
the deformation work ˘wB

equals the strain energy ΠBB

[56]. The strain energy ΠBB consists of a normal (ΠN) , shear
(ΠQ) and bending part (ΠB):

…wB
=
1

2
PwB = …N +…Q +…B = …BB : (4)

Calculationof the truss strainenergy…N : The strain energy
ΠN of the tooth simplified as a truss gets induced by the
normal force N. The stress along the tooth height is

�y =
N

A
=
P sin .˛/

2x .y/ b
(5)

and depends on the tooth contour x(y) and the gear
facewidth b. To calculate the strain energy, the stress-

strain relation is necessary. The described gear model sim-
plifies the 3D volumetric stress-strain state with a 2D plane
assumption. Therefore, the plane strain or the plane stress
dimension reduction method is suitable. In Fig. 1b, the
xy-plane is the reduction plane. For the plane strain as-
sumption, the strain εz outside the reduction plane and all
z-transverse strains are zero. In contrast, the stress σz and
the z-transverse stresses are zero for the plane stress as-
sumption. For a linear, isotropic assumption (Hooke’s law),
usually the modulus of elasticity E and Poisson’s ration ν
are the descriptive material constants. With the use of the
shear modulus

G =
E

2 .1 + �/
(6)

and the constant κ, the plane stress and plane strain state
can be expressed in one closed formulae framework [57]:

� =
�
3 − 4�; Plane Strain
3−�
1+�
; Plane Stress

: (7)

Since the cross section stress σx is zero for a truss, the
stress strain relation simplifies to:

"y =
1

8G

2

4.� + 1/ �y + .� + 1/ �x„ƒ‚…
=0

3

5 =
.� + 1/ �y

8G
: (8)

With the normal force and the stress-strain relation, the
strain energy is:

˘N =
Z yp

0

1

2
N"Y dy

=
P 2 sin .˛/2 .� + 1/ .1 + �/

8Eb

Z yp

0

1

2x .y/
dy:

(9)

In the previous equation the shear modulus was replaced
by the elastic modulus since this is more known and a tan-
gible material parameter.
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Calculation of the shear strain energy ΠQ: The shear strain
energy of a beam with the parameters introduced in this
paper is:

˘Q =
Z yp

0

1

2

Q2

�GA
dy =

P 2 cos .˛/2

2�Gb

Z yp

0

1

2x .y/
dy: (10)

Weber and Banaschek set � = 5=6 [25]. In his work,
Cowper derives a more detailed calculation for the shear
correction factor dependent on the Poisson’s ratio [58].
Adapted to the stress-strain relations used in this paper:

� =
40

45 + �
(11)

For � = 0.3, χ computes to 0.8497 for the plane stress
and 0.8547 for the plane strain assumption.

Calculationof thebendingstrainenergyΠB: The calculation
of the internal strain energy is based on the bending beam
theory, which is described in detail in the standard literature
[59, 60]. The static beam assumption for the stress-strain
relations used in this paper is:

�x =
G

� − 1

�
.3 − �/ "y + .� + 1/ "x

�
= 0. (12)

Beam theories assume that the stress σx transverse to the
tooth height compared to the stress σy is small and can be
ignored. Equation 12 solved for the strain εx gives the cor-
relation to εy in the plane stress/plane strain representation.
With the previous result and the definition of the shear mod-
ulus from Eq. 6, the stress along the beam (tooth height)
is:

�y =
G

� − 1

�
.� + 1/ "y + .3 − �/ "x

�

=
8G

� + 1
"y =

4E

.� + 1/ .1 + �/
"y :

(13)

The second beam assumption is that cross sections re-
main plane after the deformation. Under load, the rotation
ψ of a cross section is linear over the tooth thickness and
therefore the displacement is [59]:

u =  x (14)

The kinematic equation between the strain and displace-
ment is (.:::/0 = d .:::/ =dy):

"y =
@u

@y
=  0x (15)

With σy from Eq. 13, the cutting torque [59] at a specific
tooth height evaluates to:

MB =
Z
�yxdA =

4EI

.� + 1/ .1 + �/
 0 (16)

I in Eq. 16 is the second moment of inertia for a rectan-
gle. Due to the varying thickness along the tooth height, I
also varies:

I =
.2x .y//3b

12
: (17)

The bending moment from Eqs. 3 and 16 solved for  0
leads to the internal bending strain energy ΠB in terms of
the parameters defined in this paper:

˘B =
Z yp

0

1

2
MB 

0dy

=
3 .� + 1/ .1 + �/

2Eb

Z yp

0

MB
2

.2x .y//3
dy

=
3P 2 cos .˛/2 .� + 1/ .1 + �/

2Eb

Z yp

0

�
yp − y

�2

.2x .y//3
dy:

The summation of the strain energies gives the bending
deflection wB due to the mesh force P:

wB = 2
…N +…Q +…B

P
(19)

The second part of the tooth deflection in the presented
theory is the tooth tilting [25]. Fig. 2a shows the defor-
mation schematically. The mesh force P at a contact point
generates the tilting deflection wT around the tooth root. The
tooth remains rigid, only the gear body deforms [25]. The
mechanic substitute model is shown in Fig. 2b. A half space
(y < 0/ gets loaded with an external constant shear τQ and
normal σN line load. These parts represent the normal and
transverse part of the mesh force from Eqs. 1 and 2.

The tilting moment

MT = P cos .˛/ yp (20)

induced by the transverse force Q is represented by the
linear line load σB in Fig. 2b. Based on the definition of these
simple line loads, it is assumed that the error introduced
herein is small due to the integration in calculating the
strain energies [25]. The integration balances areas where
the simple line load underestimates the actual load against
areas where the assumption overestimates the actual load
[25]. Furthermore, the place where the stresses act is in
some distance to the external loading P, which leads to the
conclusion that the type of loading exerts minimal influence
on the detailed characteristic of the line load (Saint-Venant
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Fig. 2 Tooth tilting. a Tooth
tilting, b Substitute half space
model

a b

principle). The load length s is the tooth root thickness at
the root radius rf (see Fig. 1). The approach for calculating
the tilting deflection wT is the same as for the bending de-
flection. The deformation work of the external load ˘wT

equates the strain energy from the line loads:

˘wT
=
1

2
PwT = c11MT

2+2c12MTQ+c22Q
2+c33N

2: (21)

The factors c are calculated using the complex half-plane
approach.

Calculation of c11: The part of the strain energy induced by
the external moment MT gets covered by the linear line
load σB in Fig. 2b. The deflection is calculated with the
complex airy stress function ϕ. The airy stress function ϕ
is a harmonic function for solving boundary value problems
[61]. With a defined or derived airy stress function, the 2D
stresses are [62]:

�x =
@�

@y
+ y

@2�

@2y
; :::�y =

@�

@y
− y

@2�

@2y
(22)

In the absence of body forces, the airy stress function
satisfies the static equilibrium. The stress strain relation for
the closed plane stress/plane strain state in y-direction is
[57]:

"y =
1

8G

�
.� − 3/ �x + .� + 1/ �y

�
=
@v

@y
: (23)

Equation 23 also contains the kinematic relation. Inser-
tion of Eq. 22 and integration for y leads the vertical de-
flection of the load line ‘s’ in Fig. 2b. G can be replaced
with Eq. 6:

vyR =
1 + �

E

�
� + 1

2
� − y

@�

@y

�
(24)

Equation 24 still contains the airy stress function ϕ and
its derivative. For determining ϕ the line load

�B .u/ =
12MT

s3b
(25)

is assumed [25]. u is the coordinate along the load line.
With the general formula [62]

@�

@y
=
i

�

Z a2

a1

�B .u/

u − z
du: (26)

the derivative of the airy stress function ϕ is:

@�

@y
= −

12MT

s3�b
Re

�
−izln

�
z − s

2

z + s
2

�
− is

	

„ ƒ‚ …
Ref���g

(27)

Herein z = x + iy is the complex number in cartesian
representation. Fig. 3 shows the real part Ref� � �g of Eq. 27
schematically. Ref� � �g equal to πx within the load line and
is zero outside. This leads to the internal stresses caused by
the load line in Eq. 25 [25].

Integration of Eq. 27 yields the airy stress function

� = −
12MT

s3�b
Re

�
1

2

�
z2 −

s

2

2
�
ln
�
z + s

2

z − s
2

�
−
zs

2

	
: (28)

for the given loading. With the previous result from Eq. 24

vyR = −
.1 + �/ .� + 1/

E

3MT

s3�b

�
"�
x2 −

s

2

2
�
ln

 ˇ̌
s
2 + x

ˇ̌

ˇ̌
s
2 − x

ˇ̌

!

−
xs

2

# (29)

is the deflection of the half plane at y = 0. To calculate the
strain energy, Eq. 22 gives the internal stress σyR at the half
plane border (y = 0). The integration along the load line
yields the stress energy:

c11MT
2 = −

1

2

Z s
2

− s
2

�yRvyRbdx: (30)

Coefficient comparison results in the factor:

c11 =
9

4

.� + 1/ .1 + �/

s2bE�
(31)
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Fig. 3 Real part of the potential function derivative in Eq. 27

Calculation of c12: The previous factor c11 covers the work
done by the moment when the load line moves in the nega-
tive y-direction (see Fig. 2b). Additionally, with the moment
the load line moves in x-direction. This causes work by the
transverse force Q, which is covered by the factor c12 in
Eq. 21 [25]. The strain in x-direction is [57]:

"x =
1

8G

�
.� + 1/ �x + .� − 3/ �y

�
=
@u

@x
: (32)

The kinematic relation between εx and the displacement
u in x-direction is included in Eq. 32. With Eq. 22, it is
evident that �yR = �xR at y = 0. σxR is known from the
previous c11 calculation. Insertion in Eq. 32 and integration
yields:

uxR =
3 .� − 1/ .1 + �/

E

MT

s3b



x2 −

� s
2

�2

: (33)

The work performed by the shear line load 	Q = Q= .sb/
then is:

c12MTQ = −
1

2

Z s
2

− s
2

	QuyRbdx: (34)

Which can be rearranged for the coefficient:

c12 =
.� − 1/ .1 + �/

4Ebs
: (35)

Calculationof c22: For the work performed by the transverse
force Q, the shear line load 	Q = Q= .sb/ in Fig. 2b gets
applied to the half plane [25]. For a half plane load with an
shear line load the stresses are [63]:

�x = −2
@�

@y
−y

@2�

@x@y
; �y = y

@2�

@x@y
; 	xy = −

@�

@y
−
@2�

@2y
(36)

Herein ϕ is again a complex airy stress function. τQ in
Eq. 26 instead of σB yields the derivative of ϕ:

@�

@y
=
Q

sb�
Re

�
i ln
�
z − s

2

z + s
2

�	
(37)

Fig. 4 Boundary condition for determining the deflection due to the
external shear load τQ

Integration gives:

� =
Q

sb�
Re

n�
z −

s

2

�
ln
�
z −

s

2

�
−
�
z +

s

2

�
ln
�
z +

s

2

�o
:

(38)

With the kinematic relation from Eq. 32 and the stresses
from Eq. 36, integration for x results in the displacement of
the load line:

uxR =
.� + 1/ .1 + �/Q

sbE�h�
x +

s

2

�
ln
ˇ̌
ˇx +

s

2

ˇ̌
ˇ −
�
x −

s

2

�
ln
ˇ̌
ˇx −

s

2

ˇ̌
ˇ
i (39)

at the boundary y = 0 of the half plane. With the use of
the complete half plane determining the strain energy, the
displacements would be infinite [25]. Therefore, the half
plane has to be clamped at a reasonable distance [25]. This
boundary condition is depicted with crosses in Fig. 4. The
half plane gets fixed at the horizontal distance ‘a’ from the
middle of the tooth at x = 0.

A point jxj = a > s=2 outside the load line moves by:

uaR =
.� + 1/ .1 + �/Q

sbE�h�
a +

s

2

�
ln
�
a +

s

2

�
−
�
a −

s

2

�
ln
�
a −

s

2

�i
:

(40)

The described boundary condition yields a movement of
uQ = uaR −uxR at the boundary of the load line. The stress
energy for the shear load case is:

c22Q
2 = −

1

2

Z s
2

− s
2

uQ	Qbdx (41)
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a b

Fig. 5 Finite element tooth deflection calculation model. a BC’s and deformation result determination, b Finite element meshing

This, upon integration and coefficient comparison, leads
to the factor

c22
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s
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(42)

dependent on the ratio a=s. The ratio puts the boundary
distance in proportion to the tooth ground thickness. For
the final determination of c22, the mean value for a=s = 2
and a=s = 3 is proposed, which corresponds to the second-
nearest tooth [25]:

c22 =
c22 .2/ + c22 .3/

2
(43)

Calculation of c33: The factor c33 covers the stress energy
induced by the normal part of the mesh force with σN in
Fig. 2b. In the calculation of c22, the half plane has to be
fixed to avoid infinite displacements. The same problem
is encountered when calculating c33. Therefore, Weber and
Banaschek propose estimating the factor with the ratio of
the strain energy ΠN and ΠQ as based on the determination
of the tooth bending [25]:

˘N

˘Q

=
c33N

2

c22Q2
(44)

The assumption is that the strain energies between the
tooth bending and gear body deflection behave similarly
[25]. With these comparative assumption, the factor c33 cal-
culates to:

c33 =
� .� + 1/

8
c22 (45)

With the calculation of the c-factors, the tooth tilting
deformation wT follows from Eq. 19:

wT = 2
c11MT

2 + 2c12MTQ + c22Q2 + c33N 2

P
: (46)

The total analytical tooth deformation wA is the sum of
the tooth tilting part wT and tooth bending part wB from
Eq. 19. This approach allows to add a third part based on
any contact stiffness formulation to determine the overall
tooth deformation.

3 Finite element tooth-deflection
calculation model

In this section, a linear finite element (FE) model is de-
scribed in theory with the external loads and boundary con-
ditions for the comparative calculations. Ansys mechanical
APDL R1 [64] is used for the model creation and solution.
Fig. 5a shows the structure and the boundary conditions
of the gear segment model. As with the analytical theory,
the FE model is also plane (2D). The involute tooth ge-
ometry is taken from the previous section. The tooth, for
which the deformation is calculated, lies symmetrically to
the y-axis. To cover the stiffening effect of the teeth right
and left to the loaded tooth, two extra teeth are modeled
on each side. This coincides with the presented analyti-
cal theory. The gear body segment extends from the tooth
ground to the gear center as shown in Fig. 5a. The geome-
try gets meshed with PLANE183 Elements from the Ansys
library [64], which have quadratic shape functions. Fig. 5b
shows the convergent mesh exemplary. The main and rele-
vant parts, where the loading applies and the deformation is
measured, are mapped meshed with eight-node quadrilater-
als. Some transition zones are meshed with 6-node triangles
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a b

Fig. 6 Finite element convergence analysis with the linear and contact model. a 15 teeth, b 100 teeth

to make the mesh transition between the complex geometry
elements. The external point force P is applied at a radius r
normal to the involute flank profile between the dedendum
form circle rFf and the addendum circle ra. Fig. 5a shows
symbolically the Dirichlet boundary conditions applied to
the sides of the gear body. All degrees of freedom are fixed
at these nodes.

With the analytical model, the tooth deflection is cal-
culated in the direction of the external load, which is the
direction of the line of action. Similarly, wFe is the tooth
deflection from the FE calculation as shown in Fig. 5a. The
deformation wFe of the FE calculation is determined at the
node Nw, which is located at the point yp of the analytical
model (see Fig. 1b). wFe is divided by the external force P,
which yields the influence coefficient (IC):

qFE =
wFE

P
: (47)

The teeth number significantly influences the dimensions
of the gear. Hence, the teeth number is varied from 15 to
100 in the following calculation study. Table 1 contains the
gear parameters used for the analysis. The extremal teeth
values 15 and 100 were used for the convergence analysis
of the FE model. However, the FE model is built with five
teeth for every analysis step as shown in Fig. 5. Addition-
ally, the loading with a single point force is investigated
to exclude negative effects on the calculated displacement.
Therefore, a nonlinear FE contact model, similar to the de-
scribed one from Fig. 5a, is used. In contrast to the point
loading, the load is applied on a rigid cylinder that contacts
the gear tooth at the force application point. The radius of
the cylinder corresponds to the curvature radius of an equal

Table 1 Characteristic gear parameters used for the comparative calculations. Names according DIN 3960 [54]

Normal mod-
ule mn [mm]

Profile shift coeffi-
cient x [–]

Normal pressure
angle αn [°]

Addendum factor h�

a [–] Dedendum factor h�

f
[–] Teeth number

range z [–]

1 0.3 20 1.0 1.25 [15, ... 100]

mating gear at the contact point. For both models, the load
respectively the contacting cylinder is applied at the mean
radius between the addendum circle and dedendum form
circle. Fig. 6 shows the results from the convergence anal-
ysis, in which the default edge length of the elements was
incrementally reduced from 0.5mm to 0.02mm. In Fig. 6a,
the model with 15 teeth is shown, while Fig. 6b shows the
model with 100 teeth. The line with the circle markers is the
deflection for the single point loading over different mesh
sizes. The line with the asterisk markers is the deflection
for the contact model. It is obvious that both models con-
verge for decreasing mesh size. In the convergent area from
mesh size 0.06mm to 0.02mm the maximum relative error
between the force and contact model is 0.06% for both 15
and 100 teeth. For the comparative calculations in the next
chapter, a mesh size of 0.06mm and the linear FE model is
used (black-filled circle marker in Fig. 6).

4 Comparative calculations

In this section, the results from the presented analytical
tooth deflection calculation method are compared to the FE
Model. Table 1 shows the basic gear parameters used for
the analysis.

To investigate the influence of the gear size, the teeth
number is varied incrementally from 15 to 100. The teeth
number is increased by one in each calculation. Fig. 7a
shows the gear transverse section for the smallest (15 teeth)
and largest (100 teeth) size variant. Furthermore, the influ-
ence of the point of application force is investigated. Eleven
force positions along the tooth profile direction are exam-
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a b

Fig. 7 Variation in the calculation study. a Smallest and largest size (teeth number), b Points of application force

ined at each model. The positions are equally spaced be-
tween the dedendum form circle rFf and addendum circle
ra with 5% indent of the involute tooth depth at each limit-
ing radius as shown in Fig. 7b. Eleven radii at 86 different
models (teeth numbers) lead to 946 single FE and analytical
calculations.

The influence coefficient for the analytical calculation
follows from the exchange of the deflection w in Eq. 47. The
relative deviation between the FE and analytical influence
coefficient in percent is:

4 =
qA − qFE

qFE

� 100. (48)

a b

Fig. 8 Deviations between the finite element model and the presented analytical method. a All deviations sorted as Histogram (sum equals to 946),
b Boxplot analysis for the different sizes at the eleven discrete radii (horizontal axis)

Fig. 8 shows the 946 deviations from the calculation
study between the analytical and FE calculation. In Fig. 8a,
the deviations are grouped in bins, sorted and displayed as
a histogram. The vertical axis in Fig. 8a gives the quantity
in each bin. The horizontal axis in Fig. 8a shows the devi-
ation in percent from Eq. 48. Two extreme deviation bins
are obvious. One bin with 79 single deviations around 2%
and another bin with 81 around 9.2%. The overall mini-
mum deviation is –11.42%, the overall maximum deviation
is 10.05%. Fig. 8b shows the deviations over the involute
tooth depth evaluated and sorted for all size variants. Each
Boxplot in Fig. 8b represents one point of application force
and contains the deviations from the 86 size variants. 5%
on the horizontal axis in Fig. 8b corresponds to the force
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vector P1 in Fig. 7b. The remaining points are sorted in
ascending order along the tooth height till the force vector
P11 at 95% of the involute tooth depth. The boxplot whiskers
extend to the minimum/maximum of each data set. The
solid horizontal line in the boxes represents the median.
The line plot with black-filled circle markers in Fig. 8b
shows the mean values. Since the deviations are negative
up to 32% involute tooth depth, the analytical deflection is
lower than the FE deflection. From 41% to 68% involute
tooth depth, the interquartile range of each box includes
only positive deviations. Hence, more than 50% of the FE
deflections are lower than the analytical deflections in this
range. From 68% involute tooth depth, all deviations are
positive and therefore the FE deflection always lower than
the analytical deflection. From 14% involute tooth depth,
the boxplot analysis shows a clear and steady progression
of the deviation.

Below 14% involute tooth depth, the deviations do not
follow the trend in Fig. 8b. The absolute mean deviation be-
tween the FE model and the analytical deviation is lower at
5% involute tooth depth. The difference between the mean
values at 5% and 14% involute tooth depth is 2.2%. The
analytical calculation method projects the force vector onto
the middle plane of the tooth (distance yp in Fig. 1b and 2b).
For the point of application force at 5% involute tooth depth
(P1 in Fig. 7b) and the size variants with z � 49 the projec-
tion extends into the gear body. This is shown schematically
in Fig. 9a. The distance yp is negative and the force vector
extends below the root radius rf. Fig. 9b shows the value of
yp for the different size variants. yp is negative from z � 49.
For configurations with this behavior the analytical model
assumes that the tooth bending wB deflection is zero. The
tooth tilting deflection wT from Eq. 46 calculates with the
negative value yp. The discontinuous trend in Fig. 8b be-
comes clear when looking at the deviation for different size
variants.

Fig. 10 shows the results for four single size variants.
Subplot Fig. 10a contains the results for 15 teeth, Fig. 10b
for 49 teeth, Fig. 10c for 60 teeth and Fig. 10d for 100

a b

Fig. 9 Projection of the point of application force onto the middle plane of the tooth. a Projected point for application force near the tooth root,
b Value of yp over the teeth number

teeth. As in Fig. 8b, the horizontal axes of the subplots in-
dicates the involute tooth depth. The vertical axis on the
left side of each subplot specify the influence coefficients
with the triangle markers for the FE and the circle mark-
ers for the analytical calculation. The vertical axis on the
right side of each subplot specify the deviation between
both methods, which is noted herein with asterisk markers.
For the size variant with z = 49, yp is –1.28 μm and the
deviation progression in Fig. 10b is steady. With z = 60,
yp becomes –56.43 μm. For this size variant the deviation
progression in Fig. 10c shows a clear discontinuity. For
the largest size variant with z = 100, yp is –159.05μm and
therefore Fig. 10d shows a significant discontinuity. The
discontinuity correlates with the value of yp.

Fig. 10 shows that the analytical and FE influence coef-
ficients curves have a similar shape. The influence coeffi-
cient/deflection increases in the tooth height direction and,
as seen in the boxplot analysis, the deviation changes from
negative to positive. Additionally, the spread between the
minimum and maximum deviation becomes larger over the
size variants. The spread increase from 15 teeth to 49 teeth
is considerably larger than the spread increase from 60 teeth
to 100 teeth.

5 Discussion of the validation

The comparison between the analytical and FE deforma-
tion calculation from the previous section shows a good
correlation. The expectation that the tooth deflection in-
creases from the tooth root to the tooth tip is confirmed.
Both calculation methods show the same trend and the re-
sult graphs are similar in shape. From the point of view
of the authors, the spread in the deviation from –11.42%
to 10.05% is acceptable, especially when keeping in mind,
that even the standards ISO 6336 [45] and DIN 3990 [46]
accept a deviation of 8% in their series development of the
tooth deflection calculation [48].
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a b

c d

Fig. 10 Deviation between the analytical and FE tooth deflection calculation for different size variants. a 15 teeth, b 49 teeth, c 60 teeth, d 100
teeth

From the results in Fig. 8b, it is obvious that the devi-
ation between the analytical and FE model changes from
negative to positive over the tooth height. In the meshing of
two gears, the teeth flanks come in contact with each other
in opposite directions. This means that the tooth tip con-
tacts the mating gear in the tooth root area. The over- and
underdetermination of the tooth deflection is thus at least
partially canceled out. The authors understand that this is
an engineering point of view. But this allows the assump-
tion that the total deformation in the teeth meshing tends to
be better estimated and errors do not accumulate.

Fig. 10a–d shows that the minimum and maximum devi-
ation increases with an increasing teeth number. Since the
change in the deviation becomes smaller with an increas-
ing teeth number, it can be assumed that the minimum and
maximum deviation do not increase considerably further for

teeth number z > 100. The deviations show an asymptotic
behavior.

The deviation graphs in Fig. 8b and 10c, d shows a dis-
continuity between 5% and 23% involute tooth depth, which
is explained with the projection of the point of application
force into the gear body. For 5% involute tooth depth, the
deviation between the analytical and FE model is better
than for 14%. A point of application force near the tooth
root (e.g., 14% involute tooth depth) violates the validity
of the analytical substitute models. The length yp of the
beam model is extremely low. Beams are long prismatic
structures where one dimension is recently larger than the
others [60]. Furthermore, the simplified external loads on
the half plane model in Fig. 2b are based on the assump-
tion that the point of application force is sufficiently distant
(Saint-Venant principle). Strictly speaking, both assump-
tions are not fulfilled near the tooth root. For example, yp
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is 38.54 μm for z = 100 at 14% involute tooth depth. For
the deflection calculation at 5% involute tooth depth and
z � 49, the beam deflection is zero and the value of yp is
used with the negative sign for the half plane deflection.
Based on the results in Fig. 10b–d, this assumption seems
to be justified since the deviation is better at a 5% involute
tooth depth.

Gearings with a normal module of 1mm are subject of
the comparative calculation. The research by Braykoff [65]
concludes that the meshing stiffness is independent of the
size and depends on the material characteristics and the
geometry itself. This leads to the conclusion that the results
presented in this paper are transferable to gearings with
other normal modules.

Further studies on the experimental and simulative vali-
dation of the analytical tooth deflection calculation method
can be found in the literature. Winter and Podlesnik [66–68]
perform tooth deformation measurements on gears in a pul-
sator test rig. The measured tooth deflection of gears with
a solid body is in good agreement with the calculation re-
sults from the W/B method [25]. Winter and Podlesnik sug-
gest a correction factor to compensate for the decreasing
tooth stiffness for wheel bodies with webs and/or thin rims.

The load distribution in a gear stage is directly related
to the tooth deflection. Daffner [69, 70] measures the load
distribution of gears with different body geometries and
compares it with the results from the gear calculation soft-
ware RIKOR [71]. RIKOR calculates the tooth deflection
according to the W/B approach [72]. While the experimen-
tal and simulative line load shows a good agreement for the
solid gear body, significant large deviations are observable
for gear bodies with (asymmetrical) webs. Based on FE cal-
culations, Daffner [69] proposes a correction function for
gear geometries with asymmetrical webs.

Geiser and Schinagl [73] measure the tooth deflection
in a pulsator test rig. To determine the deformation of the
pulsator clamping, a cylinder with a gear equivalent radius
of curvature is also measured. The deformation calculation
of a cylinder is validated. This allows the deformation of
pulsator clamping to separate from the deformation of the
test specimen. In addition to the experiments, Geiser and
Schinagl calculate the tooth deflection with the analytical
W/B and FE the method. Depending on the applied load,
the deviation between the calculated and measured values
varies from 6% to 11%, where the measured deformations
are consistently larger than the calculated ones.

6 Conclusion

In this paper, an analytical method for the tooth deflection
calculation has been presented. The mathematical frame-
work is based on the work by Weber and Banaschek [25]

and was derived with the common constitutive equations
for the plane stress and plane strain state. The presented
description simplifies the implementation for applications
where both states are of interest. Materials other than steel
can be specified. Furthermore, the influence of the boundary
condition for the half plane in the tooth tilting calculation
can be investigated with the derived general formula of the
factor c22 in Eq. 43. This is especially helpful in applica-
tions with alternative gear body geometries (e.g., for face
gears). The shear influence is considered more precisely by
a detailed calculation of the shear correction factor. In con-
trast to numerical approaches, the analytical method is fast
and free of discretization errors. For the simulative valida-
tion, a linear FE model for the tooth deflection calculation
is introduced. In a convergence analysis, the model shows
its validity and equality with a contact model.

The simulative validation in this paper supplemented by
investigations from the literature shows that the analytical
method is a good starting point for calculating gear tooth
deflection with a standard gear body geometry. Further in-
vestigations could focus on complex gear body geometries.
It is assumed that the half plane approach is insufficient for
gears with thin rims (e.g., planetary gears). Depending on
the design of the gear body, the stiffness itself can vary.
For gear designs where the body is wider than the tooth
face width, an additional supporting effect can be expected.
This cannot be captured by the current half plane model.
In particular, gears with a low number of teeth (pinions)
are often manufactured directly onto the shaft. In this case,
the transverse sections at the tooth face sides are directly
connected to the shaft. The beam substitute model cannot
capture this additional supporting effect. It can be seen that
the analytical tooth stiffness calculation is far from being

Table 2 Nomenclature

P Mesh force N Normal force

Q Transverse force ˛ Pressure angle

MB Bending moment yp Point of application
force

wB Tooth bending deflec-
tion

b Gear face width

x .y/ Tooth contour E Modulus of elasticity

� Poisson’s ration G Shear modulus

� Plane stress/strain
constant

I Geometrical moment
of inertia

wT Tooth tilting deflection MT Tilting Moment

� Complex airy stress
function

s Tooth thickness at the
root radius

a Distance for the
boundary condition

wA Analytical tooth de-
flection

wFE Numerical tooth de-
flection

qFE Tooth compliance

4 Deviation
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fully explored. The authors hope that the paper is a good
starting point for further research.

7 Nomenclature

The nomenclature is shown in Table 2
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