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Abstract
Current challenges for today’s industry are an increase in gear ratio in one stage, an increase in load capacity as well as an
increase in efficiency compared to standard gears. The standard tooth profile for cylindrical gears is an involute. This tooth
profile has certain limits for external gearings regarding its geometry, e.g., undercutting and a small radius of curvature
near the base circle. Special gearings overcome these limits and offer an enormous potential in gear design through their
adapted profile geometries. New manufacturing possibilities for gears, such as additive manufacturing or 5-axis milling,
mean that special gears can also be produced economically.
In comparison to involute gears the description of non-involute gears is often not standardized and parameters describing
the geometry are not commonly defined. Thus, it is not possible to adequately determine the corresponding properties. One
of these special tooth profiles is the eccentric cycloid gearing (EC gearing), in which a circular profile rolls with a profile
of a trochoid equidistant. This flank geometry can provide advantages over the standard involute in certain applications.
This study introduces a geometric description of the EC gearing, which is based on a defined set of parameters. Besides
the geometrical parameters, parameters describing the characteristics of the gearing are proposed in accordance with the
description of involute gears. This parametric description of the EC gearing enables an analytical determination of the
flank, the contact geometry and load-free characteristics. With the parametric description shown and the variation of the
geometry possible with it, gearings suitable for practical applications can be generated.

ParameterbasierteDefinition von Exzenter-Zykloiden-Verzahnungen

Zusammenfassung
Für die heutige Industrie ist das Offenlegen von Potenzial hinsichtlich einer höheren Übersetzung in einer Stufe, einer
Erhöhung der Tragfähigkeit sowie einer Wirkungsgradsteigerung im Vergleich zu Standardverzahnungen wichtig. Evol-
ventenverzahnungen stellen die aktuell bedeutendste Verzahnungsart für Stirnräder im Maschinenbau dar. Durch dieses
Verzahnungsprofil bestehen bei Außenverzahnungen aber auch gewisse Probleme wie die Mindestzähnezahl zur Vermei-
dung von Unterschnitt und die kleinen Krümmungsradien in der Nähe des Grundkreises. Sonderverzahnungen können durch
ihre angepassten Profilgeometrien diese Potenziale heben. Durch die neuen Herstellmöglichkeiten von Zahnrädern, wie
beispielsweise additive Fertigung oder 5-Achs-Fräsen, können auch Sonderverzahnungen wirtschaftlich erzeugt werden.
Im Gegensatz zur Evolventenverzahnung ist die Beschreibung von Sonderverzahnungen oftmals nicht standardisiert und
die notwendigen Parameter zur Beschreibung der Geometrie sind nicht einheitlich definiert. Dadurch ist es nicht möglich,
die entsprechenden Verzahnungsparameter geeignet zu bestimmen. Eine diese Sonderverzahnungen ist die Exzenter-Zy-
kloiden-Verzahnung (EZ-Verzahnung), bei welcher ein Kreisprofil mit einem Profil einer Trochoidenäquidistante abwälzt.
Durch diese Flankengeometrie können Vorteile gegenüber der standardmäßigen Evolvente in bestimmten Anwendungsfäl-
len entstehen.
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Diese Veröffentlichung führt die geometrische Beschreibung der EZ-Verzahnung anhand eines definierten Parametersatzes
ein. Neben den geometrischen Parametern werden auch Kennwerte zur Beschreibung der Verzahnungscharakteristiken ein-
geführt, welche sich an der Beschreibung der Evolventenverzahnung orientieren. Dadurch diese parametrische Beschreibung
der EZ-Verzahnung ist es möglich, die Flanken- und Kontaktgeometrie sowie die lastfreien Charakteristiken analytisch zu
bestimmen. Mit der aufgezeigten parametrischen Beschreibung und der damit möglichen Variation der Geometrie können
in der Praxis anwendungsgerechte Verzahnungen erzeugt werden.

1 Introduction

The most commonly used tooth profile of cylindrical gears
in industrial engineering is the involute. The involute gear-
ing has certain limits for external cylindrical gears, such as
a low minimum number of teeth and high contact pressure
near the base circle. Special gearings can avoid these disad-
vantages by an adjusted geometry and achieve an improve-
ment of the gear characteristics for certain applications.
Modern manufacturing capabilities also allow the advan-
tages of special gears to be implemented economically and
precisely. These processes include 5-axis milling [1] and
additive manufacturing [2].

The eccentric cycloid gearing (EC gearing) is a special
gearing which uses an eccentric circular arc profile on one
gear. This allows extremely low numbers of teeth to be
achieved down to the single-tooth pinion, see Fig. 1a. The
mating gear has an equidistant of a roulette as the flank
profile according to the law of gearing. Due to the circular
arc profile, the shape of the roulette is a cycloidal curve. The
cycloidal curve is also called a trochoid [3]. Figure 1a shows
a closed form of the cycloidal curve which represents the
flanks of the gear for the meshing with a single-toothed
pinion.

Based on the descriptions of the geometry, a general
definition of EC gearing can be given. The EC gearing
is defined by the meshing of a gear with a circular arc
profile with a gear with a tooth profile of an equidistant
of a trochoid. For external cylindrical gears, this definition
is applied to the transverse section. The following study
refers only to this type of gears. The gear with the circular
arc profile is called an arc gear, the gear with the profile of
an equidistant of a trochoid a cycloid gear.

With this definition, the different number of teeth of the
arc gear z1 can be chosen. Figure 1b shows an arc gear with
z1= 2, Fig. 1c a gearing with z1= 12. The number of teeth
of the mating cycloid gear is z2= 6 for Fig. 1a and b and
z2= 15 for Fig. 1c.

Figure 1 shows the different geometries possible for an
EC gearing with the same center distance a. For the possi-
bility of comparing the EC gearing with the established
involute gearing, a detailed description of the geometry
is necessary. This allows the characteristics of comparable
gears with different profiles to be examined and evaluated.

2 State of the art

A gearing consisting of a gear with circular arc profile and
a gear with the tooth profile of an equidistant of a trochoid
is already described in early gear design literature. Authors
of standard literature such as Niemann and Winter [4] and
Linke et al. [5] describe the basic principle of this gearing
under the name cylindrical lantern gear. The exact geometry
and gear characteristics are not described in detail. Another
type of gearing similar to the EC gearing is the Grisson
gearing [6]. In this case, an extremely low number of teeth
of the cycloid gear is usually selected with a higher number
of teeth of the arc gear. In this case, as well, only the struc-
ture is described in the literature without a detailed analysis
of the geometry.

One of the first descriptions of the geometry of a gearing
with the name EC gearing is given by Stanovskoy et al.
[7]. Here, the structure of an EC gearing with a single-
toothed arc gear is described. Contact patterns of this EC
gearing with a single-toothed pinion and deviations of the
center distance are shown by Kazakyavichyus et al. [8].
Li et al. [9] describe the details of the geometry of an
EC gearing with a single-toothed arc gear and analyze the
undercutting conditions. Li et al. [9] study the tooth contact
in terms of the radius of curvature, the contact lines, and
the surface of action. They also present results of a loaded
tooth contact analysis performed with the finite element
method. Batsch et al. [10] apply flank modifications to the
EC gearing and determine the ease-off and transmission
errors. They also provide comparisons to involute gearing
and Wildhaber-Novikov gearing. Stanovskoy et al. describe
in different patents [11–14] the structure of the EC gearing
in different designs and applications. A detailed analysis of
the geometry is not performed.

The additive manufacturing of a multiple-toothed EC
gearing together with a basic description of the geometry
is shown by Batsch [15]. Bubenchikov et al. [16] describe
a profile cutter for the manufacturing of an EC gearing.
Shcherbakov et al. [17] use envelopes for the manufactur-
ing of the EC gearing with a milling process. A possible
application for EC gearing is shown by Dubov et al. [18]
in the transmission of a geokhod for boring.

For the description of the geometry of the EC gearing,
many different methods can be used. The method by Johann
and Scheurle [19] can be used in particular to determine the
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a b c

Fig. 1 Different EC gearings with the same center distance (a : z1= 1, z2= 6. b : z1= 2, z2= 6; c : z1= 12, z2= 15)

geometry of special gearings. Based on the given geometry
of a gear, the geometry of the mating gear is determined
with the aid of differential equations derived from the law
of gearing. Zimmer et al. [20] show the application of this
method to the geometry of an EC gearing with the known
geometry of a single-tooth arc gear. An independent de-
scription of the two gears is not possible with the method
by Johann and Scheurle [19]. Another method of describ-
ing the trochoid and its equidistant is shown by Lehmann
[21]. The analytical derivation of the curve geometry al-
lows an independent description of the two meshing flanks.
Lehmann [21] does not show the complete geometry of
a gear, but limits to the curves.

Overall, the literature shows that a complete descrip-
tion of all partial geometries of an arbitrary EC gearing is
currently not available. Therefore, this study presents a pa-
rameter-based description of the EC gearing, which can be
used for further analyses. The developed geometry is used
to determine various load-free characteristics.

3 Analytical description of the geometry

For an analytical description of the EC gearing, the indi-
vidual parts of the geometry must be considered. The first
step is to determine the flank geometry of the arc gear. This
is represented by a circular arc profile. According to Fig. 2
the vector �!pPA from the center of the arc gear O1 to the
point on the circular arc profile PA can be calculated using
the position of the center of the arc profile OA. Therefore,

e

rA

x

y

φA

θA

OA

O1

PA

Fig. 2 Structure of the circular arc profile of the arc gear

it results using the eccentricity e of the circular arc profile
to the gear origin and its arc radius rA:

�!pPA =
�

xPA
yPA

�

= e �
�

cos .‚A/

sin .‚A/

�
− rA �

�
cos .‚A + ®A/

sin .‚A + ®A/

� (1)

xPA is the x-component, yPA the y-component of the vector�!pPA. θA is the angle of arc position, φA the angle of arc
profile. With Eq. 1, the transverse section of the single-
tooth arc gear from Fig. 1a is completely described.
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Fig. 3 Structure of the arc gear with multiple circular arcs

For multi-tooth gears, the description must be extended.
Figure 3 shows the transverse section of an arc gear with
three teeth. The right and left flanks of one tooth in this case
are described by the same circle. This represents a special
case, which is used as a starting point for further consider-
ations. The teeth are connected by a circular fillet, which is
common for optimizing the load capacity of gears [22] and
has advantages over trochoidal fillets especially for small
numbers of teeth [23]. The transition between the circular
arc of the flank and the fillet profile is tangential and is de-
fined by the starting angle of the arc profile φA,s, see Fig. 3.
The arc profile is limited towards the tooth tip by the end-
ing angle of the arc profile φA,e. The tip radius ra1 can be
calculated with:

ra1 = e − rA � cos �
®A;e

�
(2)

The reference diameter d1 of the arc gear is defined by
the reference radius r1. The reference radius r1 is identical
to the eccentricity e:

d1 = 2 � r1 = 2 � e (3)

All centers of the arc profiles of one arc gear must be
on the reference circle to fulfil the law of gearing. This
ensures a uniform transmission ratio. The module is a com-
mon reference parameter for involute gears, which is also
implemented as a reference parameter for the EC gearing.

The module m is defined in accordance with the transverse
module from ISO 21771 [24]:

m =
d1
z1

=
2 � e
z1

(4)

With the same underlying circle for both flanks, the ra-
dius of the arc profile determines the tooth thickness. A ra-
dius rA,equal can be determined with the law of cosines where
the tooth thickness is equal to the space width. This radius
rA,equal is adjusted by the factor rA* to the intended arc radius
rA:

rA = rA
� � rA;equal = rE

� � e �
s
2 − 2 � cos

�
 

2 � z1
�

(5)

With this definition of the arc radius factor, its influence
on the geometry can be determined. The factor must be
greater than zero. An upper limit depends on the remain-
ing geometry parameters. With a factor rA*= 1.0 the tooth
thickness at the reference circle is equal to the space width.

The assumption made above that the two flanks of one
tooth are described by the same circle is generalized in
the following. The two flanks are thus described indepen-
dently of each other. Figure 4 shows an arc gear, where
each flank is described by its own circular arc profile. The
condition remains that the center of each profile must be
located on the reference circle. In the following, symmetri-

rA

x

y

r1=e

rAφs1
OA,l

O1

OA,r
OF1

π/z1

qF1

rF1

Fig. 4 Structure of the arc gear with varying circular arc profiles
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cal gear teeth are required, so the radius of each arc profile
must be identical. The angle between the flank centers OA,l

and OA,r is called tooth thickness angle φs1 and is composed
of two separate influences:

®s1 = ®rA + ®j1 (6)

φrA is the angle between the arc profiles without backlash
and φj1 is the backlash angle. With the separation of these
two angles, the backlash angle can be applied to the arc gear
alone. The definition of the backlash angle φj1 is according
to ISO 21771 [24]. φrA describes the angle between the arc
profiles of the left and the right flank of one tooth which is
needed to adjust a certain tooth thickness without backlash.
The tooth thickness on the reference circle can be adjusted
with the factor st*. The following equation results from the
law of cosines:

®rA = 2 � arccos
�
2 � e2 − rA2

2 � e2
�
− st

� �  

z1
(7)

According to this definition, the tooth thickness factor
is in the range of 0 to 2. The influence on the geometry
can be shown by means of individual extreme cases for
backlash-free gearings (φj1= 0): In case of st*= 0, the tooth
thickness at the reference circle is zero. The space width
at the reference circle, on the other hand, becomes zero for
the boundary case of st*= 2. For st*= 1, the tooth thickness
is equal to the space width at the reference circle. Thus,
the factor enables an adjustment of the gearing according
to a complementary gearing [5, 25]. If the tooth thickness
factor fits the following equation, the centers of the flanks
are identical (φrA= 0):

st
� =

2 � z1
 

� arccos
�
2 � e2 − rA2

2 � e2
�

(8)

The tooth root is designed as a circular fillet as described
above. With the description of the flank geometry shown,
the distance qF1 of the center of the circular fillet profile
OF1 to the gear center O1 can be calculated using the law of
sines:

qF1 = e � sin
�
®A;s

�
sin

�
  �

�
z1−1
z1

�
− ®A;s −

®rA
2

� (9)
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Fig. 5 Structure of the cycloid gear based on the meshing with the arc
profile

The determined distance qF1 can be used to calculate
the fillet radius rF1 of a tangential circle using the law of
cosines:

rF1 =

s
e2 + qF12 − 2 � e � qF1 � cos

�
 

z1
+

®rA

2

�
− rA (10)

With the description of the fillet geometry, the root di-
ameter df1 as well as the root radius rf1 can be determined
as follows:

df1 = 2 � rf1 = 2 � .qF1 − rF1/ (11)

The geometry of the arc gear is thus described com-
pletely in terms of parameters. According to the method
of Lehmann [21], the geometry of the circular arc profile
of the arc gear is used to generate the flank geometry of
the cycloid gear. Figure 5 shows the flank contact in de-
tail. The transmission ratio i is crucial for the meshing of
the two gears of the EC gearing. This is determined by the
number of teeth [4]:

i =
z2
z1

(12)
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The geometry of a cycloidal curve is strongly determined
by the trochoid ratio λ, which is defined with the pitch
radius of the arc gear rw1 according to [26]:

œ =
e

rw1
(13)

The trochoid ratio determines whether the resulting tro-
choid is a normal (λ= 1), shortened (λ< 1), or elongated
(λ> 1) cycloid. For the EC gearing, usually only the tro-
choid with λ< 1 is used.

The pitch radius of the cycloid gear rw2 can be determined
with the transmission ratio i:

rw2 = i � rw1 (14)

This results in the calculation of the pitch radius of the
arc gear rw1 with the center distance a:

rw1 =
a

1 + i
(15)

The center distance a can therefore be determined as
follows:

a = rw1 + rw2 = e � 1 + i

œ
(16)

For the design of EC gearings, the specification of the
center distance a and the trochoid ratio λ is more conve-
nient. Therefore, the module m can be determined as fol-
lows:

m = 2 � a � œ

z1 + z2
(17)

The generation of the cycloidal curve is initiated by the
angle of revolution ζ, see Fig. 5. This angle describes the
revolution of the arc profile around the center O2 of the
stationary cycloid gear. According to the rolling condition,
a rotation of the circular arc profile around the center O1

results. The rotation angle κ can thus be determined from
the transmission ratio i according to:

› = i � — (18)

The point vector ��!pOA is determined by vector addition:

��!pOA =
�

xOA
yOA

�

= a �
�

− sin .—/

cos .—/

�
− e �

�
− sin .— + ›/

cos .— + ›/

� (19)

x
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r1rw1 O1

O2

rf2

C

Fig. 6 Structure of the cycloid gear meshing with an arc gear with
varying arc profiles

xOA is the x-component, yOA the y-component of the vector��!pOA. The point OA moves on a trochoid. The point PC

moves on an equidistant curve to this trochoid. The point
vector �!pPC is determined by vector addition with the vector���!
OAPC which is normal to the trochoid and points in the
direction of the pitch point C:

�!pPC =
�

xPC
yPC

�
= ��!pOA +

���!
OAPC

= a �
�

− sin .—/

cos .—/

�
− e �

�
− sin .— + ›/

cos .— + ›/

�

− rA �
�

− sin .— − Ÿ/

cos .— − Ÿ/

�
(20)

xPC is the x-component, yPC the y-component of the vector�!pPC. The contact angle ξ describes the rotation of the nor-
mal vector around the pitch point C and can be calculated
using trigonometry:

Ÿ = arctan

�
e � sin .›/

rw1 − e � cos .›/

�

= arctan

�
œ � sin .›/

1 − œ � cos .›/

� (21)

Due to the alignment of the vector
���!
OAPC in the direction

of the pitch point C, the law of gearing is always fulfilled.
Figure 6 shows the structure of the cycloid gear with dif-

ferent circular arc profiles for the individual flanks of the arc
gear. Here, two different trochoid equidistants are formed,
representing the two flanks. The backlash angle is not con-
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Table 1 Set of parameters to describe the EC gearing

Designation Symbol

Number of teeth of arc gear z1

Number of teeth of cycloid gear z2
Center distance a

Helix angle of arc gear β1
Facewidth b

Trochoid ratio λ
Starting angle of arc profile φA,s

Ending angle of arc profile φA,e

Arc radius factor rA*

Tooth thickness factor St*

Tip clearance factor c*

Backlash angle of arc gear φj1

sidered here for the two generating circular arc profiles.
This means that the resulting EC gearing has backlash. The
complete cycloid gear can be generated from the two curves
of the trochoid equidistants. The necessary boundaries for
this can be derived from the arc gear.

The reference diameter of the cycloid gear d2 can be
calculated with the module m:

d2 = m � z2 (22)

The limitation of the flank curves is determined by the
tip clearance c of the gearing. The tip clearance c is defined
by a tip clearance factor c* and the module m:

c = c� � m (23)

For involute gears, the tip clearance factor is usually
c*= 0.25 [5]. Thus, the root diameter df2 can be calculated
as follows:

df2 = 2 �
�
a −

da1
2

− c
�

(24)

Using this root diameter, a tangential circle with radius
rF2 can be fitted to the two trochoid equidistants. The tip
diameter da2 is calculated analogous to the root diameter
df2:

da2 = 2 �
�
a −

df1
2

− c

�
(25)

The geometry of the cycloid gear in the transverse sec-
tion is therefore completely defined. In order to generate
helical EC gearing the helix angle β is introduced. Accord-
ing to Linke et al. [5], the helix angle of the cycloid gear β2
is the negative value of the helix angle of the arc gear β1:

“2 = −“1 (26)

x

y

rw2

rw1O1

O2

C

A

E

ω1

ω2

A'

E'

ra1

ra2

Fig. 7 Details of the meshing between the arc gear and the cycloid gear

This equation can be applied to all cylindrical gears.
According to ISO 21771 [24], the overlap angle φβ defines
the relative angle of the two faces of a gear. The angle φβ1
of the arc gear is given by the facewidth b:

®“1 = 2 � b � tan .“1/

d1
(27)

The convention here is that a positive helix angle for
external gears results in a positive overlap angle about the
z-axis [4, 5]. A positive helix angle thus leads to right-
handed gear teeth for external gears. It follows thus for the
angle φβ2 of the cycloid gear:

®“2 = 2 � b � tan .“2/

d2
= −2 � b � tan .“1/

d2
= −

®“1

i
(28)

Now the complete geometry of the three-dimensional
EC gearing is defined. All necessary parameters for the EC
gearing can be summarized in Table 1.

The parameters from this table can be used to create
arbitrary EC gearings.

4 Meshing of the EC gearing

The details of the tooth contact of the EC gearing with the
corresponding path of contact are shown in Fig. 7. The ro-
tation direction of the gears is represented by the angular
velocities ω1 and ω2. The black line around the pitch point
C shows the path of contact when the arc gear is driving.
Point A shows the start of the meshing, point E the end
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Table 2 Exemplary set of parameters of the EC gearing for following
calculations

Parameter Symbol Numerical
value

Unit

Number of teeth of arc gear z1 3 –

Number of teeth of cycloid
gear

z2 6 –

Center distance a 100 mm

Helix angle of arc gear β1 25 °

Facewidth b 80 mm

Trochoid ratio λ 0.97 –

Starting angle of arc profile φA,s 60 °

Ending angle of arc profile φA,e 170 °

Arc radius factor rA* 1.0 –

Tooth thickness factor St* 1.0 –

Tip clearance factor c* 0.1 –

Backlash angle of arc gear φj1 1.0 °

of the meshing. The dotted line represents the path of ac-
tion and thus the maximum possible path of contact. The
limitation occurs at the respective tip circles. The grey line
around the pitch point C shows the path of contact when
the cycloid gear is driving. The path of contact is mirrored
to the case of the driving arc gear. The two paths of action
together give the shape of a distorted lemniscate, which is
typical for any EC gearing.

The mathematical description of the path of action is
similar to the description of the trochoid equidistant and is
achieved by vector addition. In contrast to Eq. 20, the angle
ζ is neglected. It follows for the point vector ��!ppoa from the
center of the cycloid gear O2 to the path of action:

��!ppoa =
�

xpoa
ypoa

�
=a �

�
0
1

�
− e �

�
− sin .›/

cos .›/

�

− rA �
�

− sin .−Ÿ/

cos .−Ÿ/

� (29)

a b c d

Fig. 8 Sequence of meshing of the exemplary EC gearing

Fig. 9 Sequence of the line of contact on the arc gear flank (view on
the flank surface)

Fig. 10 Sequence of the line of contact on the cycloid gear flank (view
on the flank surface)

xpoa is the x-component, ypoa the y-component of the vector��!ppoa. The path of action can also be referenced to the center
of the arc gear O1 shifting it by the center distance a.

For further analyses, an exemplary EC gearing is chosen.
The parameters of this gearing can be seen in Table 2.

The geometry generated with this can be used to repre-
sent the meshing of the EC gearing. Figure 8 shows four
different meshing positions with the arc gear driving and
rotating counterclockwise. Figure 8a shows the beginning
of the meshing, Fig. 8d shows the end.

Especially noticeable in Fig. 8 is the strongly curved path
of contact at the end of the meshing. The reason for this is
the osculation of the two tooth flanks in this area.

The two-dimensional calculation of the path of contact
can also be used for the three-dimensional determination
of the line of contact. Thereby, a width-variable angle ζ(z)
must be used for the calculation of the angles κ and ξ. The
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Fig. 11 Transverse pressure angle over the path of contact of the ex-
emplary EC gearing

angle ζ(z) depends on the facewidth coordinate z and is
determined analogous to Eq. 28:

— .z/ = —s + z � 2 � tan .“/

i � d2 (30)

ζs represents the starting angle of the gear face. The contact
lines thus determined depend on the meshing position and
can be projected onto the flanks of the arc gear and cycloid
gear. Figure 9 shows the sequence of the line of contact
projected onto the flank of the arc gear with the configura-
tion of Fig. 8. The strong curvature of the path of contact at
the end of the meshing results in the curvature of the line
of contact at the tooth tip.

Figure 10 shows the sequence of the line of contact pro-
jected onto the flank of the cycloid gear with the configura-
tion of Fig. 8. Here, the curvature of the contact line at the
tooth root is a result of the curvature of the path of contact
at the end of meshing.

5 Determination of load-free characteristics

The calculated geometry of the EC gearing can be used to
determine certain characteristics. In this study, only load-
free characteristics, which are determined on conjugate and
non-deformed flanks are considered. The most important
characteristics are the contact conditions, represented by
pressure angle, sliding and radius of curvature.

5.1 Pressure angle

The transverse pressure angle αt describes the angle of the
normal vector on the flanks in relation to the common tan-
gent of the pitch circles, see Fig. 5. The transverse pressure
angle can be calculated with:

’t =
 

2
− Ÿ (31)

The pressure angle describes the direction of the con-
tact force in the overall transmission. A changing value
therefore leads to changing reaction forces in the gear com-
ponents, e.g., in the bearings. A large pressure angle also
results in the radial forces from the tooth contact becoming
exceptionally large.

Figure 11 shows the transverse pressure angle for the
EC gearing with the configuration of Fig. 8. A minimum
pressure angle is shown in the area of the meshing position
of Fig. 8c. The maximum pressure angle is at the end of
the meshing.

5.2 Sliding factor

The sliding velocity vg of the gearing can be calculated
with the velocities of each flank at the contact point. The
velocities of the flank can be determined using the angular
velocities. Here, a three-dimensional view is necessary. The
vector of angular velocity of the arc gear �!̈

1 with the
angular velocity ω1 is defined as follows:

�!̈
1 =

0
@ 0

0
¨1

1
A (32)

Analogous to this, the vector of angular velocity of the
cycloid gear �!̈

2 considering the transmission ratio i:

�!̈
2 =

0
@ 0

0
−¨1

i

1
A (33)

These vectors can be used to determine the velocity of
the flanks. For the velocity Ev1 of points on the flank of the
arc gear, the path of action must be referenced to the center
of the arc gear. It follows:

Ev1 =

0
@ v1;x

v1;y
v1;z

1
A = �!̈

1 �
0
@�!ppoa −

0
@ 0

a
0

1
A

1
A

=

0
@ 0

0
¨1

1
A �

0
@−e �

0
@ − sin .›/

cos .›/
0

1
A − rA �

0
@ − sin .−Ÿ/

cos .−Ÿ/
0

1
A

1
A

(34)
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v1,x is the x-component, v1,y the y-component and v1,z the
z-component of the vector Ev1. Analogous for the mating
gear, the velocity Ev2 of points on the flank of the cycloid
gear is:

Ev2 =
0
@ v2;x

v2;y
v2;z

1
A = �!̈

2 � ��!ppoa

=

0
@ 0

0
−¨1

i

1
A �

0
@a �

0
@ 0

1
0

1
A − e �

0
@ − sin .›/

cos .›/

0

1
A

− rA �
0
@ − sin .−Ÿ/

cos .−Ÿ/

0

1
A

1
A

(35)

v2,x is the x-component, v2,y the y-component and v2,z the
z-component of the vector Ev2.

The circumferential velocity vt is the Euclidian norm of
the vector �!vC, which is the velocity of the pitch point C.
This results in the following for vt:

vt =
ˇ̌̌�!vC

ˇ̌̌
=

ˇ̌̌�!̈
1 � ��!

O1C
ˇ̌̌
=

ˇ̌̌
ˇ̌̌
0
@ 0

0
¨1

1
A �

0
@−

0
rw1
0

1
A

ˇ̌̌
ˇ̌̌

= ¨1 � rw1
(36)

The velocity v1/2,t in the direction of the common tangent
of the flanks is a part of the velocity calculated in Eq. 34
and 35. The common tangent can be determined using the
transverse pressure angle αt.

In the case of a driving arc gear, the tangential velocity
v1/2,t is given by:

v1=2;t =

*
��!v1=2;

0
@ sin .’t/

cos .’t/

0

1
A

+

= v1=2;x � sin .’t/ + v1=2;y � cos .’t/

(37)

The velocity in the direction of the common normal is
zero according to the law of gearing [19]. The sliding ve-
locity vg can be determined from the difference between
the tangential velocity of the driving (vdriving,t) and driven
(vdriven,t) gear:

vg = vdriving;t − vdriven;t (38)

In the case of a driving arc gear:

vg =
�
v1;x − v2;x

� � sin .’t/ +
�
v1;y − v2;y

� � cos .’t/ (39)

Fig. 12 Sliding factor over the path of contact of the exemplary EC
gearing

With these calculated velocities, the sliding factor Kg can
be determined:

Kg =
vg
vt

(40)

The sliding factor Kg is thus a dimensionless quantity for
assessing the sliding velocity vg of a gearing. The sliding
factor can be used to evaluate the gearing in terms of heating
and scuffing [5]. Figure 12 shows the sliding factor for the
EC gearing with the configuration of Fig. 8. A correlation
between the curvatures of the path of action and the course
of the sliding factor can be seen.

5.3 Radius of curvature

The radius of curvature is needed to calculate the flank
pressure according to the theory of Hertz. It is defined that
a positive radius corresponds to a convex flank and a neg-
ative radius to a concave flank. The EC gearing is defined
in the transverse section, the radii of curvature are also de-
termined in the transverse section. The radius of curvature
of the arc gear %1,t is specified with the radius of the arc
profile rA:

%1;t = rA (41)

The radius of curvature of the cycloid gear %2,t can be
calculated as the radius of curvature of a plane curve. This
curve is the trochoid equidistant of the cycloid gear. The
derivative of the trochoid equidistant with respect to the
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Fig. 13 Transverse radius of curvature of both gears over the path of
contact of the exemplary EC gearing

angle ζ can be simplified with the derivative of the trochoid
with respect to the angle ζ. Some transformations result in
the following equation:

%2;t =

��
@xPC
@—

�2
+

�
@yPC
@—

�2
� 3

2

@xPC
@—

� @2yPC
@—2

− @2xPC
@—2

� @yPC
@—

=

��
@xOA
@—

�2
+

�
@yOA
@—

�2
� 3

2

@xOA
@—

� @2yOA
@—2

− @2xOA
@—2

� @yOA
@—

− rA

= a �
�
1 + œ2 − 2 � œ � cos .›/

� 3
2

1 + œ2 � .1 + i/ − œ � .2 + i/ � cos .›/
− rA

(42)

Figure 13 shows the radii of curvature for the EC gear-
ing with the configuration of Fig. 8. It can be seen that
the curvature of the arc gear is uniform. The curvature of
the cycloid gear, on the other hand, shows strong variations
over the meshing. At the beginning of the meshing the flank
is convex, at the end it is concave. Near the meshing po-
sition c, the radius of curvature becomes infinite, so there
is an inflection point of the flank geometry. This inflec-
tion point is an asymptote of Eq. 42. The position of this
asymptote can be calculated with:

— =
1

i
� arccos

�
1 + œ2 � .1 + i/

œ � .2 + i/

�
(43)

Fig. 14 Transverse equivalent radius of curvature over the path of con-
tact of the exemplary EC gearing

The equivalent radius of curvature %e,t evaluates the con-
tact condition for a calculation with respect to the theory of
Hertz. The equivalent radius of curvature can be calculated
with:

%e;t =
%1;t � %2;t

%1;t + %2;t
(44)

Figure 14 shows the equivalent radius of curvature for
the EC gearing with the configuration of Fig. 8. The ordi-
nate of the graph shown in Fig. 14 is a logarithmic scale.
It can be seen that a minimum of the equivalent radius of
curvature exists, which is not directly recognizable from
Fig. 13. At the end of the meshing, a large equivalent ra-
dius of curvature is evident, which can be attributed to the
osculation of the flanks.

6 Conclusion

A detailed description of the geometry of the special gear-
ings is necessary to determine and classify its characteris-
tics. This allows potentials to be identified in comparison
to the established involute gearing. This paper shows a pa-
rameter-based definition of the geometry of the EC gearing.
The parameters are used for the complete description of the
gear geometry and the determination of various character-
istics derived from it. Options for setting a clearance for
practice-relevant gearings are included.

The developed flank geometry is used to determine the
meshing conditions. The sequence of the meshing in the
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Table 3 Nomenclature

Symbols

A Starting point of mesh-
ing

a Center distance b Facewidth

C Pitch point c Tip clearance c* Tip clearance factor

d Reference diameter Da Tip diameter Df Root diameter

E End point of meshing e Eccentricity i Transmission ratio

Kg Sliding factor m Module O Center

P Point Ep Point vector qF Root center distance

r Reference radius rA Arc radius rA* Arc radius factor

Ra Tip radius rF Circular fillet radius Rf Root radius

Rw Pitch radius St* Tooth thickness factor Ev Velocity

Vg Sliding velocity Vt Circumferential velocity x X-coordinate

y Y-coordinate z Number of teeth, z-coordinate αt Transverse pressure
angle

β Helix angle ζ Angle of revolution θA Angle of arc position

κ Angle of rotation λ Trochoid ratio ξ Contact angle

%t Transverse radius of
curvature

%e,t Transverse equivalent radius of
curvature

φA Angle of arc profile

φj Backlash angle φrA Angle between arc profiles φs Tooth thickness angle

φβ Overlap angle ω Angular velocity Ë Angular velocity
vector

Indices

1 Arc gear 2 Cycloid gear A Arc profile

C Cycloid profile F1 Fillet of arc gear F2 Fillet of cycloid gear

e Ending point l Left flank OA Center of arc profile

PA Point of arc profile PC Point of cycloid profile Poa Path of action

r Right flank s Starting point x X-coordinate

y Y-coordinate z Z-coordinate

transverse section and on the flank surface is shown. The
shape of the path of action and the lines of contact are
discussed. Various load-free characteristic values are deter-
mined based on an exemplary EC gearing. The specifics of
the pressure angle, sliding factor, and radii of curvature are
discussed.

Further work will focus on the determination of load-de-
pendent characteristics. The deformation of the gearing can
be considered using analytical approaches [27]. For exam-
ple, the elastic consideration of the gearing can allow load-
related transmission errors to be determined [28]. Compa-
rable geometries from practice can be used to assess the
applicability of the EC gearing. Other types of gears, such
as the worm gear [29], can be used here as well.

7 Nomenclature

The nomenclature is shown in Table 3.
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