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Abstract
We study the loss landscape of training problems for deep artificial neural networks
with a one-dimensional real output whose activation functions contain an affine seg-
ment and whose hidden layers have width at least two. It is shown that such problems
possess a continuum of spurious (i.e., not globally optimal) local minima for all tar-
get functions that are not affine. In contrast to previous works, our analysis covers all
sampling and parameterization regimes, general differentiable loss functions, arbitrary
continuous nonpolynomial activation functions, and both the finite- and infinite-
dimensional setting. It is further shown that the appearance of the spurious local
minima in the considered training problems is a direct consequence of the universal
approximation theorem and that the underlying mechanisms also cause, e.g., L p-best
approximation problems to be ill-posed in the sense of Hadamard for all networks that
do not have a dense image. The latter result also holds without the assumption of local
affine linearity and without any conditions on the hidden layers.
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1 Introduction

Due to its importance for the understanding of the behavior, performance, and lim-
itations of machine learning algorithms, the study of the loss landscape of training
problems for artificial neural networks has received considerable attention in the last
years. Compare, for instance, with the early works [4, 7, 56] on this topic, with the
contributions on stationary points and plateau phenomena in [1, 10, 15, 18, 52], with
the results on suboptimal local minima and valleys in [3, 11, 20, 25, 37, 41, 49, 54],
and with the overview articles [6, 46, 47]. For fully connected feedforward neural
networks involving activation functions with an affine segment, much of the research
on landscape properties was initially motivated by the observation of Kawaguchi [30]
that networks with linear activation functions give rise to learning problems that do
not possess spurious (i.e., not globally optimal) local minima and thus behave—at
least as far as the notion of local optimality is concerned—like convex problems. For
related work on this topic and generalizations of the results of [30], see also [21, 31,
45, 54, 55]. Based on the findings of [30], it was conjectured that “nice” landscape
properties or even the complete absence of spurious local minima can also be estab-
lished for nonlinear activation functions in many situations and that this behavior is
one of the main reasons for the performance that machine learning algorithms achieve
in practice, cf. [21, 45, 53]. It was quickly realized, however, that, in the nonlinear
case, the situation is more complicated and that examples of training problems with
spurious local minima can readily be constructed even when only “mild” nonlineari-
ties are present or the activation functions are piecewise affine. Data sets illustrating
this for certain activation functions can be found, for example, in [43, 48, 54]. On the
analytical level, one of the first general negative results on the landscape properties
of training problems for neural networks was proven by Yun et al. in [54, Theorem
1]. They showed that spurious local minima are indeed always present when a finite-
dimensional squared loss training problem for a one-hidden-layer neural network with
a one-dimensional real output, a hidden layer of width at least two, and a leaky ReLU-
type activation function is considered and the training data cannot be precisely fit with
an affine function. This existence result was later also generalized in [25, Theorem
1] and [34, Theorem 1] to finite-dimensional training problems with arbitrary loss for
deep networks with piecewise affine activation functions, in [20, Corollary 1] to finite-
dimensional squared loss problems for deep networks with locally affine activations
under the assumption of realizability, and in [11, Corollary 47] to finite-dimensional
squared loss problems for deep networks involving many commonly used activation
functions. For contributions on spuriousminima in the absence of local affine linearity,
see [11, 20, 41, 48, 54].

The purpose of the present paper is to prove that the results of [54] on the existence
of spurious local minima in training problems for neural networks with piecewise
affine activation functions are also true in a far more general setting and that the
various assumptions on the activations, the loss function, the network architecture,
and the realizability of the data in [11, 20, 25, 54] can be significantly relaxed. More
precisely, we show that [54, Theorem 1] can be straightforwardly extended to networks
of arbitrary depth, to arbitrary continuous nonpolynomial activation functions with an
affine segment, to all (sensible) loss functions, and to infinite dimensions.Wemoreover
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establish that there is a whole continuum of spurious local minima in the situation of
[54, Theorem 1] whose Hausdorff dimension can be estimated from below. For the
main results of our analysis, we refer the reader to Theorems 3.1 and 3.2. Note that
these theorems in particular imply that the observations made in [25, 34, 54] are not
a consequence of the piecewise affine linearity of the activation functions considered
in these papers but of general effects that apply to all nonpolynomial continuous
activation functions with an affine segment (SQNL, PLU, ReLU, leaky/parametric
ReLU, ISRLU, ELU, etc.), that network training without spurious local minima is
impossible (except for the pathological situation of affine linear training data) when
the simple affine structure of [30] is kept locally but a global nonlinearity is introduced
to enhance the approximation capabilities of the network, and that there always exist
choices of hyperparameters such that gradient-based solution algorithms terminate
with a suboptimal point when applied to training problems of the considered type.

Wewould like to point out that establishing the existence of local minima in training
problems for neural networks whose activation functions possess an affine segment is
not the main difficulty in the context of Theorems 3.1 and 3.2. To see that such minima
are present, it suffices to exploit that neural networks with locally affine activations
can emulate linear neural networks, see Lemmas 4.4 and 4.5, and this construction has
already been used in various papers on the landscape properties of training problems,
e.g., [11, 20, 24, 25, 54]. What is typically considered difficult in the literature is
proving that the local minima obtained from the affine linear segments of the activa-
tion functions are indeed always spurious—independently of the precise form of the
activations, the loss function, the training data, and the network architecture. Com-
pare, for instance, with the comments in [54, Section 2.2], [11, Section 2.1], and [25,
Section 3.3] on this topic. In existing works on the loss surface of neural networks, the
problem of rigorously proving the spuriousness of local minima is usually addressed
bymanually constructing network parameters that yield smaller values of the loss func-
tion, cf. the proofs of [54, Theorem 1], [34, Theorem 1], and [25, Theorem 1]. Such
constructions “by hand” are naturally only possible when simple activation functions
and network architectures are considered and not suitable to obtain general results.
One of the main points that we would like to communicate with this paper is that the
spuriousness of the local minima in [54, Theorem 1], [25, Theorem 1], [11, Corol-
lary 47], [34, Theorem 1], and [20, Corollary 1] and also our more general Theorems
3.1 and 3.2 is, in fact, a straightforward consequence of the universal approximation
theorem in the arbitrary width formulation as proven by Cybenko, Hornik, and Pinkus
in [17, 26, 42], or, more precisely, the fact that the universal approximation theorem
implies that the image of a neural network with a fixed architecture does not possess
any supporting half-spaces in function space; see Theorem 4.2. By exploiting this
observation, we can easily overcome the assumption of [25, 34, 54] that the activation
functions are piecewise affine linear, the restriction to the one-hidden-layer case in
[54], the restriction to the squared loss function in [11, 20, 54], and the assumption
of realizability in [20] and are moreover able to extend the results of these papers to
infinite dimensions.

Due to their connection to the universal approximation theorem, the proofs of
Theorems 3.1 and 3.2 also highlight the direct relationship that exists between the
approximation capabilities of neural networks and the optimization landscape and
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well-posedness properties of the training problems that have to be solved in order
to determine a neural network best approximation. For further results on this topic,
we refer to [14] and [42, Section 6], where it is discussed that every approximation
instrument that asymptotically achieves a certain rate of convergence for the approx-
imation error in terms of its number of degrees of freedom necessarily gives rise to
numerical algorithms that are unstable. In a spirit similar to that of [14], we show
in Sect. 5 that the nonexistence of supporting half-spaces exploited in the proofs of
Theorems 3.1 and 3.2 also immediately implies that best approximation problems for
neural networks posed in strictly convex Banach spaces with strictly convex duals
are always ill-posed in the sense of Hadamard when the considered network does not
have a dense image. Note that this result holds regardless of whether the activation
functions possess an affine segment or not and without any assumptions on the widths
of the hidden layers. We remark that, for one-hidden-layer networks, the corollaries
in Sect. 5 have essentially already been proven in [28, 29], see also [40]. Our analysis
extends the considerations of [28, 29] to arbitrary depths.

We conclude this introduction with an overview of the content and the structure of
the remainder of the paper:

Section 2 is concerned with preliminaries. Here, we introduce the notation, the
functional analytic setting, and the standing assumptions that we use in this work. In
Sect. 3, we present our main results on the existence of spurious local minima, see
Theorems 3.1 and 3.2. This section also discusses the scope and possible extensions
of our analysis and demonstrates that Theorems 3.1 and 3.2 cover the squared loss
problem studied in [54, Theorem 1] as a special case. Section4 contains the proofs of
Theorems 3.1 and 3.2. In this section, we establish that the universal approximation
theorem indeed implies that the image of a neural network in function space does not
possess any supporting half-spaces and show that this property allows us to prove the
spuriousness of local minima in a natural way. In Sect. 5, we discuss further implica-
tions of the geometric properties of the images of neural networks exploited in Sect. 4.
This section contains the already mentioned results on the Hadamard ill-posedness of
neural network best approximation problems posed in strictly convex Banach spaces
with strictly convex duals. Note that tangible examples of such spaces are L p-spaces
with 1 < p < ∞, see Corollary 5.3. The paper concludes with additional comments
on the results derived in Sects. 3, 4 and 5 and remarks on open problems.

2 Notation, Preliminaries, and Basic Assumptions

Throughout this work, K ⊂ R
d , d ∈ N, denotes a nonempty compact subset of the

Euclidean space R
d . We endow K with the subspace topology τK induced by the

standard topology on (Rd , | · |), where | · | denotes the Euclidean norm, and denote the
associated Borel sigma-algebra on K with B(K ). The space of continuous functions
v : K → R equipped with the maximum norm ‖v‖C(K ) := max{|v(x)| : x ∈ K } is
denoted byC(K ). As usual,we identify the topological dual spaceC(K )∗ of (C(K ), ‖·
‖C(K )) with the space M(K ) of signed Radon measures on (K ,B(K )) endowed
with the total variation norm ‖ · ‖M(K ), see [23, Corollary 7.18]. The corresponding
dual pairing is denoted by 〈·, ·〉C(K ) : M(K ) × C(K ) → R. For the closed cone of
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nonnegative measures in M(K ), we use the notation M+(K ). The standard, real
Lebesgue spaces associated with a measure space (K ,B(K ), μ), μ ∈ M+(K ), are
denoted by L p

μ(K ), 1 ≤ p ≤ ∞, and equipped with the usual norms ‖ · ‖L p
μ(K ), see [5,

Section 5.5]. For the open ball of radius r > 0 in a normed space (Z , ‖ · ‖Z ) centered
at a point z ∈ Z , we use the symbol BZ

r (z), and for the topological closure of a set
E ⊂ Z , the symbol clZ (E).

The neural networks that we study in this paper are standard fully connected feed-
forward neural networks with a d-dimensional real input and a one-dimensional real
output (with d being the dimension of the Euclidean space R

d ⊃ K ). We denote the
number of hidden layers of a network with L ∈ N and the widths of the hidden layers
with wi ∈ N, i = 1, . . . , L . For the ease of notation, we also introduce the definitions
w0 := d and wL+1 := 1 for the in- and output layer. The weights and biases are
denoted by Ai ∈ R

wi×wi−1 and bi ∈ R
wi , i = 1, . . . , L +1, respectively, and the acti-

vation functions of the layers by σi : R → R, i = 1, . . . , L . Here and in what follows,
all vectors of real numbers are considered as column vectors. We will always assume
that the functions σi are continuous, i.e., σi ∈ C(R) for all i = 1, . . . , L . To describe
the action of the network layers, we define ϕ

Ai ,bi
i : R

wi−1 → R
wi , i = 1, . . . , L + 1,

to be the functions

ϕ
Ai ,bi
i (z) := σi (Ai z + bi ) , ∀i = 1, . . . , L, ϕ

AL+1,bL+1
L+1 (z) := AL+1z + bL+1,

with σi acting componentwise on the entries of Ai z+bi ∈ R
wi . Overall, this notation

allows us to denote a feedforward neural network in the following way:

ψ(α, ·) : R
d → R, ψ(α, x) :=

(
ϕ
AL+1,bL+1
L+1 ◦ · · · ◦ ϕ

A1,b1
1

)
(x). (2.1)

Here, we have introduced the variable α := {(Ai , bi )}L+1
i=1 as an abbreviation for the

collection of all network parameters and the symbol “◦” to denote a composition. For
the set of all possible α, i.e., the parameter space of a network, we write

D :=
{
α = {(Ai , bi )}L+1

i=1

∣∣∣ Ai ∈ R
wi×wi−1 , bi ∈ R

wi , ∀i = 1, . . . , L + 1
}

.

We equip the parameter space D with the Euclidean norm | · | of the space R
m ,

m := wL+1(wL+1)+· · ·+w1(w0+1), that D can be transformed into by rearranging
the entries of α. Note that this implies that m = dim(D) holds, where dim(·) denotes
the dimension of a vector space in the sense of linear algebra. Due to the continuity of
the activation functions σi , the map ψ : D×R

d → R in (2.1) gives rise to an operator
from D into the space C(K ). We denote this operator by �, i.e.,

� : D → C(K ), �(α) := ψ(α, ·) : K → R. (2.2)

Using the function �, we can formulate the training problems that we are interested
in as follows:

Minimize L(�(α), yT ) w.r.t. α ∈ D. (P)
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Here, L : C(K ) × C(K ) → R denotes the loss function and yT ∈ C(K ) the target
function. We call L Gâteaux differentiable in its first argument at (v, yT ) ∈ C(K ) ×
C(K ) if the limit

∂1L(v, yT ; h) := lim
s→0+

L(v + sh, yT ) − L(v, yT )

s
∈ R

exists for all h ∈ C(K ) and if themap ∂1L(v, yT ; ·) : C(K ) → R, h �→ ∂1L(v, yT ; h),
is linear and continuous, i.e., an element of the topological dual space ofC(K ). In this
case, ∂1L(v, yT ) := ∂1L(v, yT ; ·) ∈ M(K ) is called the partial Gâteaux derivative of
L at (v, yT ) w.r.t. the first argument, cf. [8, Section 2.2.1]. As usual, a local minimum
of (P) is a point ᾱ ∈ D that satisfies

L(�(α), yT ) ≥ L(�(ᾱ), yT ), ∀α ∈ BD
r (ᾱ),

for some r > 0. If r can be chosen as +∞, then we call ᾱ a global minimum of (P).
For a local minimum that is not a global minimum, we use the term spurious local
minimum. We would like to point out that we will not discuss the existence of global
minima of (P) in this paper. In fact, it is easy to construct examples in which (P) does
not admit any global solutions, cf. [40]. We will focus entirely on the existence of
spurious local minima that may prevent optimization algorithms from producing a
minimizing sequence for (P), i.e., a sequence {αk}∞k=1 ⊂ D satisfying

lim
k→∞L(�(αk), yT ) = inf

α∈DL(�(α), yT ).

For later use, we recall that the Hausdorff dimension dimH(E) of a set E ⊂ R
m is

defined by

dimH(E) := inf
{
s ∈ [0,∞)

∣∣ Hs(E) = 0
}
,

where Hs(E) denotes the s-dimensional Hausdorff outer measure

Hs(E) := lim
ε→0+

(
inf

{ ∞∑
l=1

diam(El)
s
∣∣∣∣ E ⊂

∞⋃
l=1

El , diam(El) < ε

})
. (2.3)

Here, diam(·) denotes the diameter of a set and the infimum on the right-hand side of
(2.3) is taken over the set of covers {El}∞l=1; see [19, Sections 3.5, 3.5.1c]. Note that the
Hausdorff dimensionof a subspace is identical to the “usual” dimensionof the subspace
in the sense of linear algebra. In particular, we have dim(D) = dimH(D) = m.

3 Main Results on the Existence of Spurious Local Minima

With the notation in place, we are in the position to formulate our main results on the
existence of spurious local minima in training problems for neural networks whose
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activation functions possess an affine segment. To be precise, we state our main obser-
vation in the form of two theorems—one for activation functions with a nonconstant
affine segment and one for activation functions with a constant segment.

Theorem 3.1 (Case I: activation functions with a nonconstant affine segment) Let
K ⊂ R

d , d ∈ N, be a nonempty compact set and let ψ : D × R
d → R be a neural

network with depth L ∈ N, widths wi ∈ N, i = 0, . . . , L + 1, and nonpolynomial
continuous activation functions σi : R → R, i = 1, . . . , L, as in (2.1). Assume that:

(i) wi ≥ 2 holds for all i = 1, . . . , L.
(ii) σi is affine and nonconstant on an open interval Ii �= ∅ for all i = 1, . . . , L.
(iii) yT ∈ C(K ) is nonaffine, i.e., �(a, c) ∈ R

d × R : yT (x) = a�x + c, ∀x ∈ K.
(iv) L : C(K ) × C(K ) → R is Gâteaux differentiable in its first argument with a

nonzero partial derivative at all points (v, yT ) ∈ C(K ) × C(K ) with v �= yT .
(v) L and yT are such that there exists a global solution (ā, c̄) of the problem

Minimize L(za,c, yT ) w.r.t. (a, c) ∈ R
d × R s.t. za,c(x) = a�x + c.

Then there exists a set E ⊂ D of Hausdorff dimension dimH(E) ≥ m − d − 1 such
that all elements of E are spurious local minima of the training problem

Minimize L(�(α), yT ) w.r.t. α ∈ D (P)

and such that it holds

L(�(α), yT ) = min
(a,c)∈Rd×R

L(za,c, yT ), ∀α ∈ E .

Theorem 3.2 (Case II: activation functions with a constant segment) Suppose that
K ⊂ R

d , d ∈ N, is a nonempty compact set and let ψ : D × R
d → R be a neural

network with depth L ∈ N, widths wi ∈ N, i = 0, . . . , L + 1, and nonpolynomial
continuous activation functions σi : R → R, i = 1, . . . , L, as in (2.1). Assume that:

(i) σ j is constant on an open interval I j �= ∅ for some j ∈ {1, . . . , L}.
(ii) yT ∈ C(K ) is nonconstant, i.e., �c ∈ R : yT (x) = c, ∀x ∈ K.
(iii) L : C(K ) × C(K ) → R is Gâteaux differentiable in its first argument with a

nonzero partial derivative at all points (v, yT ) ∈ C(K ) × C(K ) with v �= yT .
(iv) L and yT are such that there exists a global solution c̄ of the problem

Minimize L(zc, yT ) w.r.t. c ∈ R s.t. zc(x) = c.

Then there exists a set E ⊂ D of Hausdorff dimension dimH(E) ≥ m − 1 such that
all elements of E are spurious local minima of the training problem

Minimize L(�(α), yT ) w.r.t. α ∈ D (P)

and such that it holds

L(�(α), yT ) = min
c∈R L(zc, yT ), ∀α ∈ E .
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The proofs of Theorems 3.1 and 3.2 rely on geometric properties of the image�(D)

of the function� : D → C(K ) in (2.2) and are carried out in Sect. 4, see Theorem 4.2
and Lemmas 4.4 to 4.7. Before we discuss them in detail, we give some remarks on
the applicability and scope of Theorems 3.1 and 3.2.

First of all, wewould like to point out that—as far as continuous activation functions
with an affine segment are concerned—the assumptions on the maps σi in Theorems
3.1 and 3.2 are optimal. The only continuous σi that are locally affine and not covered
by Theorems 3.1 and 3.2 are globally affine functions and for those it has been proven
in [30] that spurious local minima do not exist so that relaxing the assumptions on
σi in Theorems 3.1 and 3.2 in this direction is provably impossible. Compare also
with [21, 31, 45, 54, 55] in this context. Note that Theorem 3.1 covers in particular
neural networks that involve an arbitrary mixture of PLU-, ISRLU-, ELU-, ReLU-,
and leaky/parametric ReLU-activations and that Theorem 3.2 applies, for instance, to
neural networks with a ReLU- or an SQNL-layer; see [38] and [11, Corollary 40] for
the definitions of these functions. Because of this, the assertions of Theorems 3.1 and
3.2 hold in many situations arising in practice.

Second,we remark that Theorems 3.1 and 3.2 can be rather easily extended to neural
networks with a vectorial output. For such networks, the assumptions on the widths
wi in point (i) of Theorem 3.1 have to be adapted depending on the in- and output
dimension, but the basic ideas of the proofs remain the same, cf. the analysis of [25]
and the proof of [11, Corollary 47]. In particular, the arguments that we use in Sect. 4
to establish that the local minima in E are indeed spurious carry over immediately.
Similarly, it is also possible to extend the ideas presented in this paper to residual
neural networks. To do so, one can exploit that networks with skip connections can
emulate classical multilayer perceptron architectures of the type (2.1) on the training
set K by saturation, cf. [11, proof of Corollary 52], and that skip connections do not
impair the ability of a network with locally affine activation functions to emulate an
affine linear mapping, cf. the proofs of Lemmas 4.4 and 4.5. We omit discussing these
generalizations in detail here to simplify the presentation.

Regarding the assumptions onL, it should be noted that the conditions in points (iv)
and (v) of Theorem 3.1 and points (iii) and (iv) of Theorem 3.2 are not very restrictive.
The assumption that the partial Gâteaux derivative ∂1L(v, yT ) is nonzero for v �= yT
simply expresses that the map L(·, yT ) : C(K ) → R should not have any stationary
points away from yT . This is a reasonable thing to assume since the purpose of the loss
function is tomeasure the deviation from yT so that stationary points away from yT are
not sensible. In particular, this assumption is automatically satisfied if L has the form
L(v, yT ) = F(v − yT ) with a convex function F : C(K ) → [0,∞) that is Gâteaux
differentiable inC(K )\{0} and satisfiesF(v) = 0 iff v = 0. Similarly, the assumptions
on the existence of the minimizers (ā, c̄) and c̄ in Theorems 3.1 and 3.2 simply express
that there should exist an affine linear/constant best approximation for yT w.r.t. the
notion of approximation quality encoded inL. This condition is, for instance, satisfied
when restrictions of the map L(·, yT ) : C(K ) → R to finite-dimensional subspaces
of C(K ) are radially unbounded and lower semicontinuous. A prototypical class of
functions L that satisfy all of the above conditions are tracking-type functionals in
reflexive Lebesgue spaces as the following lemma shows.
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Lemma 3.3 Let K ⊂ R
d be nonempty and compact, let μ ∈ M+(K ) be a measure

whose support is equal to K , and let 1 < p < ∞ be given. Define

L : C(K ) × C(K ) → [0,∞), L(v, yT ) :=
∫

K
|v − yT |p dμ. (3.1)

Then the function L satisfies the assumptions (iv) and (v) of Theorem 3.1 and the
assumptions (iii) and (iv) of Theorem 3.2 for all yT ∈ C(K ).

Proof From the dominated convergence theorem [5, Theorem 3.3.2], it follows that
L : C(K ) × C(K ) → [0,∞) is Gâteaux differentiable everywhere with

〈∂1L(v, yT ), z〉C(K ) =
∫

K
p sgn(v − yT )|v − yT |p−1zdμ, ∀v, yT , z ∈ C(K ).

(3.2)
Since C(K ) is dense in Lq

μ(K ) for all 1 ≤ q < ∞ by [23, Proposition 7.9], (3.2)
yields

∂1L(v, yT ) = 0 ∈ M(K ) ⇐⇒
∫

K
p|v − yT |p−1 dμ = 0. (3.3)

Due to the continuity of the function |v − yT |p−1 and since the assumptions on μ

imply that μ(O) > 0 holds for all O ∈ τK \{∅}, the right-hand side of (3.3) can
only be true if v − yT is the zero function in C(K ), i.e., if v = yT . This shows that L
indeed satisfies condition (iv) in Theorem 3.1 and condition (iii) in Theorem 3.2 for all
yT ∈ C(K ). To see thatL also satisfies assumption (v) of Theorem 3.1 and assumption
(iv) of Theorem 3.2, it suffices to note that ‖ · ‖L p

μ(K ) defines a norm on C(K ) due to
the assumptions on μ. This implies that restrictions of the map L(·, yT ) : C(K ) → R

to finite-dimensional subspaces of C(K ) are continuous and radially unbounded for
all arbitrary but fixed yT ∈ C(K ) and that the theorem of Weierstrass can be used to
establish the existence of theminimizers (ā, c̄) and c̄ in points (v) and (iv) of Theorems
3.1 and 3.2, respectively. ��

Note that, in the case μ = 1
n

∑n
k=1 δxk , K = {x1, . . . , xn} ⊂ R

d , d ∈ N, n ∈ N,
i.e., in the situation where μ is the normalized sum of n Dirac measures supported at
points xk ∈ R

d , k = 1, . . . , n, a problem (P) with a loss function of the form (3.1) can
be recast as

Minimize
1

n

n∑
k=1

|ψ(α, xk) − yT (xk)|p w.r.t. α ∈ D. (3.4)

In particular, for p = 2, one recovers a classical squared loss problem with a finite
number of data samples. This shows that our results indeed extend [54, Theorem 1],
where the assertion of Theorem 3.1 was proven for finite-dimensional squared loss
training problems for one-hidden-layer neural networks with activation functions of
parameterized ReLU-type. Compare also with [11, 20, 25, 34] in this context. Another
natural choice for μ in (3.1) is the restriction of the Lebesgue measure to the Borel
sigma-algebra of the closure K of a nonempty bounded open set � ⊂ R

d . For this
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choice, (P) becomes a standard L p-tracking-type problem as often considered in the
field of optimal control, cf. [12] and the references therein. A further interesting exam-
ple is the case K = clRd ({xk}∞k=1) andμ =∑∞

k=1 ckδxk involving a bounded sequence
of points {xk}∞k=1 ⊂ R

d and weights {ck}∞k=1 ⊂ (0,∞) with
∑∞

k=1 ck < ∞. Such
a measure μ gives rise to a training problem in an intermediate regime between the
finite and continuous sampling case.

We remark that, for problems of the type (3.4) with p = 2, it can be shown that
the spurious local minima in Theorems 3.1 and 3.2 can be arbitrarily bad in the sense
that they may yield loss values that are arbitrarily far away from the optimal one
and may give rise to realization vectors {ψ(α, xk)}nk=1 that are arbitrarily far away in
relative and absolute terms from every optimal realization vector of the network. For a
precise statement of these results for finite-dimensional squared loss problems and the
definitions of the related concepts, we refer the reader to [11, Corollary 47, Definition
3, and Estimates (39), (40)]. Similarly, it can also be proven that the appearance of
spurious local minima in problems of the type (3.4) can, in general, not be avoided by
adding a regularization term to the loss function that penalizes the size of the parameters
in α, see [11, Corollary 51]. We remark that the proofs used to establish these results
in [11] all make use of compactness arguments and homogeneity properties of L
and thus do not carry over to the general infinite-dimensional setting considered in
Theorems 3.1 and 3.2, cf. the derivation of [11, Lemma 10].

As a final remark, we would like to point out that, in the degenerate case n = 1, the
training problem (3.4) does not possess any spurious local minima (as one may easily
check by varying the bias bL+1 on the last layer of ψ). This effect does not contradict
our results since, for n = 1, the set K is a singleton, every yT ∈ C(K ) ∼= R can be
precisely fit with a constant function, and condition (iii) in Theorem 3.1 and condition
(ii) in Theorem 3.2 are always violated. Note that this highlights that the assumptions
of Theorems 3.1 and 3.2 are sharp.

4 Nonexistence of Supporting Half-Spaces and Proofs of Main Results

In this section, we prove Theorems 3.1 and 3.2. The point of departure for our analysis
is the following theorem of Pinkus.

Theorem 4.1 [42, Theorem 3.1] Let d ∈ N. Let σ : R → R be a nonpolynomial
continuous function. Consider the linear hull

V := span
{
x �→ σ(a�x + c)

∣∣ a ∈ R
d , c ∈ R

}
⊂ C(Rd). (4.1)

Then the set V is dense in C(Rd) in the topology of uniform convergence on compacta.

Note that, as V contains precisely those functions that can be represented by one-
hidden-layer neural networks of the type (2.1) with σ1 = σ , the last theorem is
nothing else than the universal approximation theorem in the arbitrary width case, cf.
[17, 26]. In other words, Theorem 4.1 simply expresses that, for every nonpolynomial
σ ∈ C(R), every nonempty compact set K ⊂ R

d , every yT ∈ C(K ), and every
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ε > 0, there exists a width w̃1 ∈ N such that a neural network ψ with the architecture
in (2.1), depth L = 1, widthw1 ≥ w̃1, and activation function σ is able to approximate
yT in (C(K ), ‖ · ‖C(K )) up to the error ε. In what follows, we will not explore what
Theorem 4.1 implies for the approximation capabilities of neural networks when the
widths go to infinity but rather which consequences the density of the space V in (4.1)
has for a given neural network with a fixed architecture. More precisely, we will use
Theorem 4.1 to prove that the image �(D) ⊂ C(K ) of the function � : D → C(K )

in (2.2) does not admit any supporting half-spaces when a neural network ψ with
nonpolynomial continuous activations σi and arbitrary fixed dimensions L, wi ∈ N is
considered.

Theorem 4.2 (Nonexistence of supporting half-spaces) Let K ⊂ R
d , d ∈ N, be a

nonempty compact set and let ψ : D × R
d → R be a neural network with depth

L ∈ N, widths wi ∈ N, i = 0, . . . , L + 1, and continuous nonpolynomial activation
functions σi : R → R, i = 1, . . . , L, as in (2.1). Denote with � : D → C(K ) the
function in (2.2). Then a measure μ ∈ M(K ) and a constant c ∈ R satisfy

〈μ, z〉C(K ) ≤ c, ∀z ∈ �(D), (4.2)

if and only if μ = 0 and c ≥ 0.

Proof The implication “⇐” is trivial. To prove “⇒”, we assume that c ∈ R and
μ ∈ M(K ) satisfying (4.2) are given. From the definition of �, we obtain that
β�(α) ∈ �(D) holds for all β ∈ R and all α ∈ D. If we exploit this property in (4.2),
then we obtain that c and μ have to satisfy c ≥ 0 and

〈μ, z〉C(K ) = 0, ∀z ∈ �(D). (4.3)

It remains to prove that μ vanishes. To this end, we first reduce the situation to the
case w1 = · · · = wL = 1. Consider a parameter α̃ ∈ D whose weights and biases
have the form

Ã1 :=
(

a�
1

0(w1−1)×d

)
, Ãi :=

(
ai 01×(wi−1−1)
0(wi−1)×wi−1

)
, i = 2, . . . , L + 1,

b̃i :=
(

ci
0wi−1

)
, i = 1, . . . , L + 1,

(4.4)

for some arbitrary but fixed a1 ∈ R
d , ai ∈ R, i = 2, . . . , L + 1, and ci ∈ R,

i = 1, . . . , L + 1, where 0p×q ∈ R
p×q and 0p ∈ R

p denote the zero matrix and zero
vector in R

p×q and R
p, p, q ∈ N, respectively, with the convention that these zero

entries are ignored in the case p = 0 or q = 0. For such a parameter α̃, we obtain
from (2.1) that

ψ(α̃, x) = (θaL+1,cL+1
L+1 ◦ · · · ◦ θ

a1,c1
1

)
(x) , ∀x ∈ R

d ,
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holds with the functions θ
a1,c1
1 : R

d → R, θai ,cii : R → R, i = 2, . . . , L + 1, given by

θ
a1,c1
1 (z) := σ1

(
a�
1 z + c1

)
, θ

ai ,ci
i (z) := σi (ai z + ci ) , ∀i = 2, . . . , L,

θ
aL+1,cL+1
L+1 (z) := aL+1z + cL+1.

In combination with (4.3) and the definition of �, this yields that

〈
μ, θ

aL+1,cL+1
L+1 ◦ · · · ◦ θ

a1,c1
1

〉
C(K )

=
∫

K

(
θ
aL+1,cL+1
L+1 ◦ · · · ◦ θ

a1,c1
1

)
(x) dμ(x) = 0

(4.5)
holds for all ai , ci , i = 1, . . . , L + 1. Next, we use Theorem 4.1 to reduce the number
of layers in (4.5). Suppose that L > 1 holds and let ai , ci , i ∈ {1, . . . , L + 1}\{L},
be arbitrary but fixed parameters. From the compactness of K and the continuity of
the function K � x �→ (

θ
aL−1,cL−1
L−1 ◦ · · · ◦ θ

a1,c1
1

)
(x) ∈ R, we obtain that the image

F := (θaL−1,cL−1
L−1 ◦ · · · ◦ θ

a1,c1
1

)
(K ) ⊂ R is compact, and fromTheorem4.1, it follows

that there exist numbers nl ∈ N and βk,l , γk,l , λk,l ∈ R, k = 1, . . . , nl , l ∈ N, such
that the sequence of continuous functions

ζl : F → R, z �→
nl∑
k=1

λk,lσL(βk,l z + γk,l),

converges uniformly on F to the identity map for l → ∞. Since (4.5) holds for all
choices of parameters, we further know that

∫

K
aL+1λk,lσL

(
βk,l

(
θ
aL−1,cL−1
L−1 ◦ · · · ◦ θ

a1,c1
1

)
(x) + γk,l

)+ 1

nl
cL+1 dμ(x) = 0

holds for all k = 1, . . . , nl and all l ∈ N. Due to the linearity of the integral, we can
add all of the above equations to obtain that

∫

K
aL+1ζl

[(
θ
aL−1,cL−1
L−1 ◦ · · · ◦ θ

a1,c1
1

)
(x)
]+ cL+1 dμ(x) = 0, ∀l ∈ N,

holds and, after passing to the limit l → ∞ by means of the dominated convergence
theorem, that

∫

K
aL+1

(
θ
aL−1,cL−1
L−1 ◦ · · · ◦ θ

a1,c1
1

)
(x) + cL+1 dμ(x) = 0.

Since ai , ci , i ∈ {1, . . . , L + 1}\{L}, were arbitrary, this is precisely (4.5) with the
L-th layer removed. By proceeding iteratively along the above lines, it follows that μ
satisfies ∫

K
aL+1σ1(a

�
1 x + c1) + cL+1 dμ(x) = 0
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for all aL+1, cL+1, c1 ∈ R and all a1 ∈ R
d . Again by the density in (4.1) and the

linearity of the integral, this identity can only be true if 〈μ, z〉C(K ) = 0 holds for all
z ∈ C(K ). Thus, μ = 0 and the proof is complete. ��
Remark 4.3 • Theorem 4.2 is, in fact, equivalent to Theorem 4.1. Indeed, the impli-

cation “Theorem 4.1 ⇒ Theorem 4.2” has been proven above. To see that
Theorem 4.2 implies Theorem 4.1, one can argue by contradiction. If the space V
in (4.1) is not dense inC(Rd) in the topology of uniform convergence on compacta,
then there exist a nonempty compact set K ⊂ R

d and a nonzero μ ∈ M(K ) such
that 〈μ, v〉C(K ) = 0 holds for all v ∈ V , cf. the proof of [42, Proposition 3.10].
Since Theorem 4.2 applies to networks with L = 1 and w1 = 1, the variational
identity 〈μ, v〉C(K ) = 0 for all v ∈ V can only be true ifμ = 0. Hence, one arrives
at a contradiction and the density in Theorem 4.1 follows. Compare also with the
classical proofs of the universal approximation theorem in [17] and [26] in this
context which prove results similar to Theorem 4.2 as an intermediate step. In
combination with the comments after Theorem 4.1, this shows that the arguments
that we use in the following to establish the existence of spurious local minima
in training problems of the form (P) are indeed closely related to the universal
approximation property.

• It is easy to check that the nonexistence of supporting half-spaces in Theorem 4.2
implies that, for every finite training set K = {x1, . . . , xn} and every network ψ

with associated function � : D → C(K ) ∼= R
n satisfying the assumptions of

Theorem 4.2, we have

sup
yT ∈Rn : |yT |=1

inf
y∈�(D)

|y − yT |2 < 1. (4.6)

This shows that Theorem 4.2 implies the “improved expressiveness”-condition in
[11, Assumption 6-II)] and may be used to establish an alternative proof of [11,
Theorem 39, Corollary 40]. We remark that, for infinite K , a condition analogous
to (4.6) cannot be expected to hold for a neural network. In our analysis, Theorem
4.2 serves as a substitute for (4.6) that remains true in the infinite-dimensional
setting and for arbitrary loss functions.

We are now in the position to prove Theorems 3.1 and 3.2.We begin by constructing
the sets of local minima E ⊂ D that appear in these theorems. As before, we distin-
guish between activation functions with a nonconstant affine segment and activation
functions with a constant segment.

Lemma 4.4 Consider a nonempty compact set K ⊂ R
d and a neural networkψ : D×

R
d → R with depth L ∈ N, widths wi ∈ N, and continuous activation functions σi

as in (2.1). Suppose that L : C(K ) ×C(K ) → R and yT ∈ C(K ) are given such that
L, yT , and the functions σi satisfy the conditions (ii) and (v) in Theorem 3.1. Then
there exists a set E ⊂ D of Hausdorff dimension dimH(E) ≥ m − d − 1 such that all
elements of E are local minima of (P) and such that

L(�(α), yT ) = min
(a,c)∈Rd×R

L(za,c, yT ) (4.7)
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holds for all α ∈ E, where za,c is defined by za,c(x) := a�x + c for all x ∈ R
d .

Proof Due to (ii), we can find numbers ci ∈ R, εi > 0, βi ∈ R\{0}, and γi ∈ R such
that σi (s) = βi s + γi holds for all s ∈ Ii = (ci − εi , ci + εi ) and all i = 1, . . . , L ,
and from (v), we obtain that there exist ā ∈ R

d and c̄ ∈ R satisfying

L(za,c, yT ) ≥ L(zā,c̄, yT ), ∀(a, c) ∈ R
d × R.

Consider now the parameter ᾱ = {( Āi , b̄i )}L+1
i=1 ∈ D whose weights and biases are

given by

Ā1 := ε1

2maxu∈K |ā�u| + 1

(
ā�

0(w1−1)×w0

)
∈ R

w1×w0 ,

b̄1 := c11w1 ∈ R
w1 ,

Āi := εi

βi−1εi−1

(
1 01×(wi−1−1)
0(wi−1)×wi−1

)
∈ R

wi×wi−1 , i = 2, . . . , L,

b̄i := ci1wi − (ci−1βi−1 + γi−1) Āi1wi−1 ∈ R
wi , i = 2, . . . , L,

ĀL+1 := 2maxu∈K |ā�u| + 1

βLεL

(
1 01×(wL−1)

) ∈ R
wL+1×wL ,

b̄L+1 := c̄ − (cLβL + γL) ĀL+11wL ∈ R
wL+1 ,

(4.8)

where the symbols 0p×q ∈ R
p×q and 0p ∈ R

p again denote zero matrices and zero
vectors, respectively, with the same conventions as before and where 1p ∈ R

p denotes
a vector whose entries are all one. Then it is easy to check by induction that, for all
x ∈ K , we have

Ā1x + b̄1 = ε1

2maxu∈K |ā�u| + 1

(
ā�x
0w1−1

)
+ c11w1 ∈ (c1 − ε1, c1 + ε1)

w1 ,

Āi

(
ϕ
Āi−1,b̄i−1
i−1 ◦ · · · ◦ ϕ

Ā1,b̄1
1 (x)

)
+ b̄i = εi

2maxu∈K |ā�u| + 1

(
ā�x
0wi−1

)
+ ci1wi

∈ (ci − εi , ci + εi )
wi , ∀i = 2, . . . , L,

(4.9)
and

ψ(ᾱ, x) =
(
ϕ
ĀL+1,b̄L+1
L+1 ◦ · · · ◦ ϕ

Ā1,b̄1
1

)
(x) = ā�x + c̄.

The parameter ᾱ thus satisfies �(ᾱ) = zā,c̄ ∈ C(K ). Because of the compactness
of K , the openness of the sets (ci − εi , ci + εi )

wi , i = 1, . . . , L , the affine-linearity
of σi on (ci − εi , ci + εi ), and the continuity of the functions D × R

d � (α, x) �→
A1x +b1 ∈ R

w1 and D×R
d � (α, x) �→ Ai (ϕ

Ai−1,bi−1
i−1 ◦ · · · ◦ϕ

A1,b1
1 (x))+bi ∈ R

wi ,
i = 2, . . . , L , it follows that there exists r > 0 such that all of the inclusions in
(4.9) remain valid for x ∈ K and α ∈ BD

r (ᾱ) and such that �(α) ∈ C(K ) is affine
(i.e., of the form za,c) for all α ∈ BD

r (ᾱ). As zā,c̄ is the global solution of the best
approximation problem in (v), this shows that ᾱ is a local minimum of (P) that satisfies
(4.7).
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To show that there aremany such localminima,we require some additional notation.
Henceforth, with a1, . . . , aw1 ∈ R

d we denote the row vectors in the weight matrix A1
and with e1, . . . , ew1 ∈ R

w1 the standard basis vectors of R
w1 . We further introduce

the abbreviation α′ for the collection of all parameters of ψ that belong to the degrees
of freedom AL+1, . . . , A2, bL , . . . , b1, and a2, . . . , aw1 . The space of all such α′ is
denoted by D′. Note that this space has dimension dim(D′) = m−d−1 > 0.We again
endow D′ with the Euclidean norm of the space R

m−d−1 that D′ can be transformed
into by reordering the entries in α′. As before, in what follows, a bar indicates that we
refer to the parameter ᾱ ∈ D constructed in (4.8), i.e., āk refers to the k-th row of Ā1,
ᾱ′ ∈ D′ refers to ( ĀL+1, . . . , Ā2, b̄L , . . . , b̄1, ā2, . . . , āw1), etc.

To construct a set E ⊂ D as in the assertion of the lemma, we first note that
the local affine linearity of σi , the definition of ᾱ, our choice of r > 0, and the
architecture of ψ imply that there exists a continuous function � : D′ → R which
satisfies �(ᾱ′) + b̄L+1 = c̄ and

ψ(α, x) =
(

L∏
i=1

βi

)
(AL+1AL . . . A1) x + �(α′) + bL+1 (4.10)

for all x ∈ K and all α = {(Ai , bi )}L+1
i=1 ∈ BD

r (ᾱ), cf. (4.9). Define

� : D′ → R
d , �(α′) :=

(
L∏

i=1

βi

)
⎡
⎢⎢⎢⎣(AL+1AL . . . A2)

⎛
⎜⎜⎜⎝

0
a�
2
...

a�
w1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

�

,

and

� : D′ → R, �(α′) :=
(

L∏
i=1

βi

)
(AL+1AL . . . A2) e1.

Then (4.10) can be recast as

ψ(α, x) = �(α′)�x+�(α′)a�
1 x+�(α′)+bL+1, ∀x ∈ K , ∀α ∈ BD

r (ᾱ). (4.11)

Note that, again by the construction of ᾱ in (4.8), we have �(ᾱ′) = 0, �(ᾱ′) �= 0, and
�(ᾱ′)ā1 = ā. In particular, due to the continuity of � : D′ → R, we can find r ′ > 0
such that �(α′) �= 0 holds for all α′ ∈ BD′

r ′ (ᾱ′). This allows us to define

g1 : BD′
r ′ (ᾱ′) → R

d , g1(α
′) := �(ᾱ′)

�(α′)
ā1 − �(α′)

�(α′)
,

and

g2 : BD′
r ′ (ᾱ′) → R, g2(α

′) := c̄ − �(α′).
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By construction, these functions g1 and g2 are continuous and satisfy g1(ᾱ′) = ā1,
g2(ᾱ′) = b̄L+1, and

�(α′)�x + �(α′)g1(α′)�x + �(α′) + g2(α
′) = ā�x + c̄ (4.12)

for all α′ ∈ BD′
r ′ (ᾱ′) and all x ∈ R

d . Again due to the continuity, this implies that,
after possibly making r ′ smaller, we have

E :=
{
α ∈ D

∣∣∣ α′ ∈ BD′
r ′ (ᾱ′), a1 = g1(α

′), bL+1 = g2(α
′)
}

⊂ BD
r (ᾱ).

For all elements α̃ of the resulting set E , it now follows from (4.11) and (4.12) that

ψ(α̃, x) = �(α̃′)�x + �(α̃′)ã�
1 x + �(α̃′) + b̃L+1

= �(α̃′)�x + �(α̃′)g1(α̃′)�x + �(α̃′) + g2(α̃
′) = ā�x + c̄, ∀x ∈ K .

Thus, �(α̃) = zā,c̄ and, due to the definitions of r , ā, and c̄,

L(�(α̃), yT ) = L(zā,c̄, yT ) = min
(a,c)∈Rd×R

L(za,c, yT ) = min
α∈BD

r (ᾱ)
L(�(α), yT )

for all α̃ ∈ E ⊂ BD
r (ᾱ). This shows that all elements of E are local minima of (P)

that satisfy (4.7). Since E is, modulo reordering of the entries in α, nothing else than
the graph of a function defined on an open subset of R

m−d−1 with values in R
d+1, the

fact that the Hausdorff dimension of E in D is at leastm − d − 1 immediately follows
from the choice of the norm on D and classical results, see [19, Corollary 8.2c]. ��
Lemma 4.5 Consider a nonempty compact set K ⊂ R

d and a neural networkψ : D×
R
d → R with depth L ∈ N, widths wi ∈ N, and continuous activation functions σi as

in (2.1). Suppose that L : C(K ) ×C(K ) → R and yT ∈ C(K ) are given such that L,
yT , and the functions σi satisfy the conditions (i) and (iv) in Theorem 3.2. Then there
exists a set E ⊂ D of Hausdorff dimension dimH(E) ≥ m − 1 such that all elements
of E are local minima of (P) and such that

L(�(α), yT ) = min
c∈R L(zc, yT ) (4.13)

holds for all α ∈ E, where zc is defined by zc(x) := c for all x ∈ R
d .

Proof The proof of Lemma 4.5 is analogous to that of Lemma 4.4 but simpler: From
(i), we obtain that there exist an index j ∈ {1, . . . , L} and numbers c j ∈ R, ε j > 0,
and γ j ∈ R such that σ j (s) = γ j holds for all s ∈ I j = (c j − ε j , c j + ε j ), and from
(iv), it follows that we can find a number c̄ ∈ R satisfying L(zc, yT ) ≥ L(zc̄, yT ) for
all c ∈ R. Define ᾱ = {( Āi , b̄i )}L+1

i=1 to be the element of D whose weights and biases
are given by

Āi := 0 ∈ R
wi×wi−1 , ∀i ∈ {1, . . . , L + 1}, b̄i := 0 ∈ R

wi , ∀i ∈ {1, . . . , L}\{ j},
b̄ j := c j1w j ∈ R

w j , and b̄L+1 := c̄ ∈ R
wL+1 ,
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where 1p ∈ R
p, p ∈ N, again denotes the vector whose entries are all one. For this ᾱ,

it clearly holds �(ᾱ) = zc̄ ∈ C(K ) and

Ā j

(
ϕ
Ā j−1,b̄ j−1
j−1 ◦ · · · ◦ ϕ

Ā1,b̄1
1 (x)

)
+ b̄ j = c j1w j ∈ (c j − ε j , c j + ε j

)w j

for all x ∈ K . Let us denote the collection of all parameters of ψ belonging to the
degrees of freedom AL+1, . . . , A1 and bL , . . . , b1 with α′ and the space of all such α′
with D′ (again endowed with the Euclidean norm of the associated space R

m−1 analo-
gously to the proof of Lemma 4.4). Then the compactness of K , the openness of I j , the
fact that σ j is constant on I j , the definition of ᾱ, the architecture ofψ , and the continu-
ity of the function D × R

d � (α, x) �→ A j (ϕ
A j−1,b j−1
j−1 ◦ · · · ◦ ϕ

A1,b1
1 (x)) + b j ∈ R

w j

imply that there exist r > 0 and a continuous � : D′ → R such that �(ᾱ′) = 0 holds
and

ψ(α, x) = �(α′) + bL+1, ∀x ∈ K , ∀α ∈ BD
r (ᾱ). (4.14)

Define g : D′ → R, g(α′) := c̄−�(α′). Then g is continuous, it holds g(ᾱ′) = b̄L+1,
and we can find a number r ′ > 0 such that

E :=
{
α ∈ D

∣∣∣ α′ ∈ BD′
r ′ (ᾱ′), bL+1 = g(α′)

}
⊂ BD

r (ᾱ).

For all α̃ ∈ E , it now follows from (4.14) and the definition of g that

ψ(α̃, x) = �(α̃′) + b̃L+1 = �(α̃′) + g(α̃′) = c̄, ∀x ∈ K .

Due to the properties of c̄ and the definition of r , this yields

L(�(α̃), yT ) = L(zc̄, yT ) = min
c∈R L(zc, yT ) = min

α∈BD
r (ᾱ)

L(�(α), yT )

for all α̃ ∈ E ⊂ BD
r (ᾱ). Thus, all elements of E are local minima of (P) satisfying

(4.13). That E has Hausdorff dimension at least dim(D) − 1 follows completely
analogously to the proof of Lemma 4.4. ��

Asalreadymentioned in the introduction, the approach thatwehaveused inLemmas
4.4 and 4.5 to construct the local minima in E is not new. The idea to choose biases and
weights such that the network inputs only come into contact with the affine linear parts
of the activation functions σi can also be found in various other contributions, e.g., [11,
20, 24, 25, 54]. The main challenge in the context of Theorems 3.1 and 3.2 is proving
that the local minima in Lemmas 4.4 and 4.5 are indeed spurious for generic yT and
arbitrary σi , L , wi , and L. The following two lemmas show that this spuriousness can
be established without lengthy computations and manual constructions by means of
Theorem 4.2.

Lemma 4.6 Suppose that K , ψ , wi , L, σi , yT , and L satisfy the assumptions of The-
orem 3.1 and let za,c ∈ C(K ) be defined as in Lemma 4.4. Then it holds

inf
α∈DL(�(α), yT ) < min

(a,c)∈Rd×R

L(za,c, yT ). (4.15)
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Proof We argue by contradiction. Suppose that the assumptions of Theorem 3.1 are
satisfied and that (4.15) is false. Then it holds

L(�(α), yT ) ≥ min
(a,c)∈Rd×R

L(za,c, yT ) = L(zā,c̄, yT ), ∀α ∈ D, (4.16)

where (ā, c̄) ∈ R
d×R is theminimizer fromassumption (v) ofTheorem3.1.To see that

this inequality cannot be true,we consider network parametersα = {(Ai , bi )}L+1
i=1 ∈ D

of the form

A1 :=
(
Ā1

Ã1

)
∈ R

w1×w0 ,

Ai :=
(

Āi 01×(wi−1−1)

0(wi−1)×1 Ãi

)
∈ R

wi×wi−1 , i = 2, . . . , L,

AL+1 := ( ĀL+1 ÃL+1) ∈ R
wL+1×wL ,

bi :=
(
b̄i
b̃i

)
∈ R

wi , i = 1, . . . , L, bL+1 := b̄L+1 + b̃L+1 ∈ R

(4.17)

with arbitrary but fixed Ā1 ∈ R
1×d , Āi ∈ R, i = 2, . . . , L+1, b̄i ∈ R, i = 1, . . . , L+

1, Ã1 ∈ R
(w1−1)×d , Ãi ∈ R

(wi−1)×(wi−1−1), i = 2, . . . , L , ÃL+1 ∈ R
1×(wL−1),

b̃i ∈ R
wi−1, i = 1, . . . , L , and b̃L+1 ∈ R. Here, 0p×q ∈ R

p×q again denotes a zero
matrix. Note that such a structure of the network parameters is possible due to the
assumption wi ≥ 2, i = 1, . . . , L , in (i). Using (2.1), it is easy to check that every
α of the type (4.17) satisfies ψ(α, x) = ψ̄(ᾱ, x) + ψ̃(α̃, x) for all x ∈ R

d , where
ψ̄ is a neural network as in (2.1) with depth L̄ = L , widths w̄i = 1, i = 1, . . . , L ,
activation functions σi , and network parameter ᾱ = {( Āi , b̄i )}L+1

i=1 and where ψ̃ is a
neural network as in (2.1) with depth L̃ = L , widths w̃i = wi − 1, i = 1, . . . , L ,
activation functions σi , and network parameter α̃ = {( Ãi , b̃i )}L+1

i=1 . In combination
with (4.16), this implies

L(�̄(ᾱ) + �̃(α̃), yT ) ≥ L(zā,c̄, yT ), ∀ᾱ ∈ D̄, ∀α̃ ∈ D̃. (4.18)

Here, we have used the symbols D̄ and D̃ to denote the parameter spaces of ψ̄ and ψ̃ ,
respectively, and the symbols �̄ and �̃ to denote the functions into C(K ) associated
with ψ̄ and ψ̃ defined in (2.2). Note that, by exactly the same arguments as in the
proof of Lemma 4.4, we obtain that there exists ᾱ ∈ D̄ with �̄(ᾱ) = zā,c̄. Due to
(4.18) and the fact that ÃL+1 and b̃L+1 can be rescaled at will, this yields

L(zā,c̄ + s�̃(α̃), yT ) ≥ L(zā,c̄, yT ), ∀α̃ ∈ D̃, ∀s ∈ (0,∞). (4.19)

Since zā,c̄ �= yT holds by (iii) and sinceL is Gâteaux differentiable in its first argument
with a nonzero derivative ∂1L(v, yT ) at all points (v, yT ) ∈ C(K ) ×C(K ) satisfying
v �= yT by (iv), we can rearrange (4.19), divide by s > 0, and pass to the limit s → 0+
(for an arbitrary but fixed α̃ ∈ D̃) to obtain

123



Constructive Approximation (2024) 60:197–224 215

〈
∂1L(zā,c̄, yT ), �̃(α̃)

〉
C(K )

≥ 0, ∀α̃ ∈ D̃, (4.20)

with a measure ∂1L(zā,c̄, yT ) ∈ M(K )\{0}. From Theorem 4.2, we know that (4.20)
can only be true if ∂1L(zā,c̄, yT ) = 0 holds. Thus, we arrive at a contradiction, (4.16)
cannot be correct, and the proof is complete. ��
Lemma 4.7 Suppose that K , ψ , wi , L, σi , yT , and L satisfy the assumptions of The-
orem 3.2 and let zc ∈ C(K ) be defined as in Lemma 4.5. Then it holds

inf
α∈DL(�(α), yT ) < min

c∈R L(zc, yT ). (4.21)

Proof The proof of Lemma 4.7 is analogous to that of Lemma 4.6 but simpler. Suppose
that (4.21) is false and that the assumptions of Theorem 3.2 are satisfied. Then it holds

L(�(α), yT ) ≥ min
c∈R L(zc, yT ) = L(zc̄, yT ), ∀α ∈ D, (4.22)

where c̄ ∈ R denotes the minimizer from point (iv) of Theorem 3.2. By exploiting
that the parameter α = {(Ai , bi )}L+1

i=1 ∈ D is arbitrary, by shifting the bias bL+1 by c̄,
and by subsequently scaling AL+1 and bL+1 in (4.22), we obtain that

L(zc̄ + s�(α), yT ) ≥ L(zc̄, yT ), ∀α ∈ D, ∀s ∈ (0,∞). (4.23)

In combination with assumptions (ii) and (iii) of Theorem 3.2, (4.23) yields—
completely analogously to (4.20)—that there exists a measure ∂1L(zc̄, yT ) ∈
M(K )\{0} satisfying

〈∂1L(zc̄, yT ),�(α)〉C(K ) ≥ 0, ∀α ∈ D.

By invoking Theorem 4.2, we now again arrive at a contradiction. Thus, (4.22) cannot
be true and the assertion of the lemma follows. ��

To establish Theorems 3.1 and 3.2, it suffices to combine Lemmas 4.4 and 4.6 and
Lemmas 4.5 and 4.7, respectively. This completes the proof of our main results on the
existence of spurious local minima in training problems of the type (P).

Remark 4.8 • As it is irrelevant for our analysis whether the function α �→
L(�(α), yT ) appearing in (P) is used to train a network or to validate the gener-
alization properties of a trained network, Theorems 3.1 and 3.2 also establish the
existence of spurious local minima for the generalization error.

• We expect that it is possible to extend Theorems 3.1 and 3.2 to training problems
defined on the whole of R

d provided the activation functions σi and the loss
function L are sufficiently well-behaved. We omit a detailed discussion of this
extension here since it requires nontrivial modifications of the functional analytic
setting and leave this topic for future research.
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• The distinction between the “nonconstant affine segment”-case and the “constant
segment”-case in Theorems 3.1 and 3.2 and Lemmas 4.4 to 4.7 is necessary. This
can be seen, e.g., in the formulas in (4.8) which degenerate when one of the slopes
βi is equal to zero.

• If a network of the type (2.1) with an additional activation function σL+1 acting on
the last layer is considered, then one can simply include σL+1 into the loss function
by defining L̃(v, yT ) := L(σL+1 ◦ v, yT ). Along these lines, our results can be
applied to networks with a nonaffine last layer as well (provided the function L̃
still satisfies the assumptions of Theorems 3.1 and 3.2).

5 Further Consequences of the Nonexistence of Supporting
Half-Spaces

The aim of this section is to point out some further consequences of Theorem 4.2. Our
main focus will be on the implications that this theorem has for the well-posedness
properties of best approximation problems for neural networks in function space. We
begin by noting that the nonexistence of supporting half-spaces for the image �(D)

in (4.2) implies that the closure of �(D) can only be convex if it is equal to the whole
of C(K ). More precisely, we have the following result:

Corollary 5.1 Let K ⊂ R
d , d ∈ N, be a nonempty and compact set and let ψ : D ×

R
d → R be a neural network as in (2.1) with depth L ∈ N, widths wi ∈ N, and

continuous nonpolynomial activation functions σi . Suppose that (Z , ‖ · ‖Z ) is a real
normed space and that ι : C(K ) → Z is a linear and continuous map with a dense
image. Then the set clZ (ι(�(D))) is either nonconvex or equal to Z.

Proof Assume that clZ (ι(�(D))) is convex and that clZ (ι(�(D))) �= Z . Then there
exists z ∈ Z\ clZ (ι(�(D))) and it follows from the separation theorem for convex
sets in normed spaces [22, Corollary I−1.2] that we can find ν ∈ Z∗\{0} and c ∈ R

such that
〈ν, ι(�(α))〉Z = 〈ι∗(ν),�(α)

〉
C(K )

≤ c, ∀α ∈ D. (5.1)

Here, Z∗ denotes the topological dual of Z , 〈·, ·〉Z : Z∗ × Z → R denotes the dual
pairing in Z , and ι∗ : Z∗ → C(K )∗ = M(K ) denotes the adjoint of ι as defined in
[13, Section 9]. Due to Theorem 4.2, (5.1) is only possible if ι∗(ν) = 0, i.e., if

〈
ι∗(ν), v

〉
C(K )

= 〈ν, ι(v)〉Z = 0, ∀v ∈ C(K ).

As ι(C(K )) is dense in Z , this yields ν = 0 which is a contradiction. Thus, the set
clZ (ι(�(D))) is either nonconvex or equal to Z and the proof is complete. ��

We remark that, for activation functions possessing a point of differentiability with
a nonzero derivative, a version of Corollary 5.1 has already been proven in [40,
Lemma C.9]. By using Theorem 4.2 and the separation theorem, we can avoid the
assumption that such a point of differentiability exists and obtain Corollary 5.1 for
all nonpolynomial continuous activations σi . In combination with classical results on
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the properties of Chebychev sets, see [50], the nonconvexity of the set clZ (ι(�(D)))

in Corollary 5.1 immediately implies that the problem of determining a best approxi-
mating element for a given u ∈ Z from the set clZ (ι(�(D))) of all elements of Z that
can be approximated by points of the form ι(�(α)) is always ill-posed in the sense
of Hadamard if Z is a strictly convex Banach space with a strictly convex dual and
ι(�(D)) is not dense.

Corollary 5.2 Let K , ψ , L, wi , σi , (Z , ‖ · ‖Z ), and ι be as in Corollary 5.1. Assume
additionally that (Z , ‖ · ‖Z ) is a Banach space and that (Z , ‖ · ‖Z ) and its topological
dual (Z∗, ‖ · ‖Z∗) are strictly convex. Define � to be the best approximation map
associated with the set clZ (ι(�(D))), i.e., the set-valued projection operator

� : Z ⇒ Z , u �→ argminz∈clZ (ι(�(D))) ‖u − z‖Z . (5.2)

Then exactly one of the following is true:

(i) clZ (ι(�(D))) is equal to Z and � is the identity map.
(ii) There does not exist a function π : Z → Z such that π(z) ∈ �(z) holds for all

z ∈ Z and such that π is continuous in an open neighborhood of the origin.

Proof This immediately follows from Corollary 5.1, [28, Theorem 3.5], and the fact
that the set clZ (ι(�(D))) is a cone. ��

Note that there are two possible reasons for the nonexistence of a selection π with
the properties in point (ii) of Corollary 5.2. The first one is that there exists an element
u ∈ Z for which the set�(u) is empty, i.e., for which the best approximation problem
associated with the right-hand side of (5.2) does not possess a solution. The second
one is that �(u) �= ∅ holds for all u ∈ Z but that every selection π taken from � is
discontinuous at some point u, i.e., that there exists an element u ∈ Z for which the
solution set of the best approximation problem associated with the right-hand side of
(5.2) is unstable w.r.t. small perturbations of the problem data. In both of these cases,
one of the conditions forHadamardwell-posedness is violated, see [27, Section 2.1], so
that Corollary 5.2 indeed implies that the problem of determining best approximations
is ill-posed when clZ (ι(�(D))) �= Z holds.

To make Corollary 5.2 more tangible, we state its consequences for best approxi-
mation problems posed in reflexive Lebesgue spaces, cf. Lemma 3.3. Such problems
arise when Z is equal to L p

μ(K ) for some μ ∈ M+(K ) and p ∈ (1,∞) and when
ι : C(K ) → L p

μ(K ) is the inclusion map. In the statement of the next corollary, we
drop the inclusion map ι in the notation for the sake of readability.

Corollary 5.3 Suppose that K ⊂ R
d , d ∈ N, is a nonempty compact set and that ψ

is a neural network as in (2.1) with depth L ∈ N, widths wi ∈ N, and continuous
nonpolynomial activation functions σi . Assume that μ ∈ M+(K ) and p ∈ (1,∞)

are given and that the image �(D) of the map � : D → C(K ) in (2.2) is not dense
in L p

μ(K ). Then there does not exist a function π : L p
μ(K ) → L p

μ(K ) such that

π(u) ∈ argminz∈cl
L
p
μ(K )

(�(D)) ‖u − z‖L p
μ(K ) , ∀u ∈ L p

μ(K ), (5.3)

holds and such that π is continuous in an open neighborhood of the origin.
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Proof From [36, Example 1.10.2, Theorem 5.2.11], it follows that L p
μ(K ) is uniformly

convex with a uniformly convex dual, and from [23, Proposition 7.9], we obtain that
the inclusion map ι : C(K ) → L p

μ(K ) is linear and continuous with a dense image.
The claim thus immediately follows from Corollary 5.2. ��

As already mentioned in Sect. 1, for neural networks with a single hidden layer, a
variant of Corollary 5.3 has also been proven in [28, Section 4]. For related results,
see also [29, 40]. We obtain the discontinuity of L p

μ(K )-best approximation operators
for networks of arbitrary depth here as a consequence of Theorem 4.2 and thus, at
the end of the day, as a corollary of the universal approximation theorem. This again
highlights the connections that exist between the approximation capabilities of neural
networks and the landscape/well-posedness properties of the optimization problems
that have to be solved in order to determine neural network best approximations.

We remark that, to get an intuition for the geometric properties of the image�(D) ⊂
C(K ) that are responsible for the effects in Theorem 3.1, Theorem 3.2, and Corollary
5.3, one can indeed plot this set in simple situations. Consider, for example, the case
d = 1, K = {−1, 0, 2}, μ = δ−1 + δ0 + δ2, L = 1, w1 = 1, and p = 2, where
δx again denotes a Dirac measure supported at x ∈ R. For these K and μ, we have
C(K ) ∼= L2

μ(K ) ∼= R
3 and the image �(D) ⊂ C(K ) of the map � in (2.2) can be

identified with a subset of R
3, namely,

�(D) =
{
z ∈ R

3
∣∣∣ z = (ψ(α,−1), ψ(α, 0), ψ(α, 2)

)�for some α ∈ D
}

.

Further, the best approximation problem associated with the right-hand side of (5.3)
simply becomes the problem of determining the set-valued Euclidean projection of a
point u ∈ R

3 onto clR3(�(D)), i.e.,

Minimize |u − z| w.r.t. z ∈ clR3(�(D)). (5.4)

This makes it possible to visualize the image �(D) and to interpret the L2
μ(K )-

best approximation operator associated with ψ geometrically. The sets �(D) that are
obtained in the above situation for the ReLU-activation σrelu(s) := max(0, s) and the
SQNL-activation

σsqnl(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if s ≤ −2

s + s2/4 if − 2 < s ≤ 0

s − s2/4 if 0 < s ≤ 2

1 if s > 2

can be seen in Fig. 1. Note that, since both of these functions are monotonically
increasing, the assumption L = w1 = 1 and the architecture in (2.1) imply that
(0, 1, 0)� /∈ clR3(�(D)) holds. This shows that, for both the ReLU- and the SQNL-
activation, the resulting network falls under the scope of Corollary 5.3. Since σrelu and
σsqnl possess constant segments, the training problems

Minimize |u − �(α)| w.r.t. α ∈ D (5.5)
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Fig. 1 Scatter plot of the image �(D) of the function � : D → C(K ) ∼= L2μ(K ) ∼= R
3 in the case d = 1,

K = {−1, 0, 2}, μ = δ−1 + δ0 + δ2, L = 1, and w1 = 1 for the ReLU- and the SQNL-activation function.
For the weights A1, A2 ∈ R, we used samples from the interval [−10, 10], and for the biases b1, b2 ∈ R,
from the interval [−5, 5]. Solving the problems (5.4) or (5.5) for a given u corresponds to calculating the
set-valued Euclidean projection of u onto these sets

associated with these activation functions are moreover covered by Theorem 3.2, cf.
Lemma 3.3. As Fig. 1 shows, the sets �(D) obtained for σrelu and σsqnl along the
above lines are highly nonconvex and locally resemble two-dimensional subspaces of
R
3 at many points. Because of these properties, it is only natural that the resulting

L2
μ(K )-best approximation operators, i.e., theEuclidean projections onto clR3(�(D)),

possess discontinuities and give rise to training problems that contain various spurious
local minima. We remark that the examples in Fig. 1 improve a construction in [11,
Section 4], where a similar visualization for a more academic network was considered.
We are able to overcome the restrictions of [11] here due to Theorems 4.1 and 4.2. Note
that depicting the image�(D) of a neural network along the lines of Fig. 1 only works
well for very small architectures. Larger networks are too expressive to be properly
visualized in three dimensions.

We would like to point out that the “space-filling” cases clZ (ι(�(D))) = Z and
clL p

μ(K )(�(D)) = L p
μ(K ) in Corollaries 5.1 to 5.3 are not as pathological as one

might think at first glance. In fact, in many applications, neural networks are trained
in an “overparameterized” regime in which the number of degrees of freedom in ψ

exceeds the number of training samples by far and in which ψ is able to fit arbitrary
training data with zero error, see [2, 9, 15, 33, 39, 44]. In the situation of Lemma 3.3,
this means that a measure μ of the form μ = 1

n

∑n
k=1 δxk supported on a finite set

K = {x1, . . . , xn} ⊂ R
d , n ∈ N, is considered which satisfies n � m = dim(D).

The absence of the ill-posedness effects in Corollary 5.3 is a possible explanation for
the observation that overparameterized neural networks are far easier to train than
their non-overparameterized counterparts, cf. [2, 33, 39, 44]. We remark that, for
overparameterized finite-dimensional training problems, numerically determining a
minimizer is also simplified by the fact that, in the casem = dim(D) � n, the Jacobian
of the map D � α �→ �(α) ∈ C(K ) ∼= R

n typically has full rank on a large subset
of the parameter space D, cf. [32, 37]. Note that, for infinite K , there is no analogue
to this effect since the Gâteaux derivative of the map D � α �→ �(α) ∈ C(K ) can
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never be surjective ifC(K ) is infinite-dimensional. Theorems 3.1 and 3.2 further show
that the Jacobian of the mapping D � α �→ �(α) ∈ C(K ) ∼= R

n can indeed only
be expected to have full rank on a large set (e.g., a.e.) when an overparameterized
finite-dimensional training problem is considered, but not everywhere.

Even though there is no sensible notion of “overparameterization” in the infinite-
dimensional setting, it is still possible for a neural network to satisfy the conditions
clZ (ι(�(D))) = Z and clL p

μ(K )(�(D)) = L p
μ(K ) in Corollaries 5.1 to 5.3 for a

non-finite training set K . In fact, in the case d = 1, it can be shown that the set of
activation functions that give rise to a “space-filling” network is dense in C(R) in the
topology of uniform convergence on compacta. There thus indeed exist many choices
of activation functionsσ : R → R forwhich the density conditions clZ (ι(�(D))) = Z
and clL p

μ(K )(�(D)) = L p
μ(K ) in Corollaries 5.1 to 5.3 hold for arbitrary spaces Z

and arbitrary measures μ. To be more precise, we have:

Lemma 5.4 Consider a nonempty compact set K ⊂ R and a neural network ψ as in
(2.1) with depth L ∈ N, widths wi ∈ N, and d = 1. Suppose that σi = σ holds for all
i = 1, . . . , L with a function σ ∈ C(R). Then, for all ε > 0 and all nonempty open
intervals I ⊂ R, there exists a function σ̃ ∈ C(R) such that σ ≡ σ̃ holds in R\I ,
such that |σ(s) − σ̃ (s)| < ε holds for all s ∈ R, and such that the neural network ψ̃

obtained by replacing σ with σ̃ in ψ satisfies clC(K )(�̃(D)) = C(K ).

Proof The lemma is an easy consequence of the separability of (C(K ), ‖ · ‖C(K )), cf.
[35]. Since we can replace K by a closed bounded interval that contains K to prove
the claim, since we can rescale and translate the argument x of ψ by means of A1
and b1, and since we can again consider parameters of the form (4.4), we may assume
w.l.o.g. that K = [0, 1] holds and that all layers of ψ have width one. Suppose that a
number ε > 0 and a nonempty open interval I are given. Using the continuity of σ ,
it is easy to check that there exists a function σ̄ ∈ C(R) that satisfies σ ≡ σ̄ in R\I ,
|σ(s) − σ̄ (s)| < ε/2 for all s ∈ R, and σ̄ = const in (a, a + η) for some a ∈ R and
η > 0 with (a, a + η) ⊂ I . Let {pk}∞k=1 ⊂ C([0, 1]) denote the countable collection
of all polynomials on [0, 1] that have rational coefficients and that are not identical
zero, starting with p1(x) = x , and let φ : R → R be the unique element of C(R) with
the following properties:

(i) φ ≡ 0 in R\(a, a + η),
(ii) φ is affine on [a + η(1 − 2−2k+1), a + η(1 − 2−2k)] for all k ∈ N,
(iii) φ(a + η(1 − 2−2k+2) + η2−2k+1x) = pk(x)ε/(2k‖pk‖C([0,1])) for all x ∈ [0, 1]

and all k ∈ N.

We define σ̃ := σ̄ + φ. Note that, for this choice of σ̃ , we clearly have σ̃ ∈ C(R),
σ ≡ σ̃ in R\I , and |σ(s) − σ̃ (s)| < ε for all s ∈ R. It remains to show that the neural
network ψ̃ associated with σ̃ satisfies clC([0,1])(�̃(D)) = C([0, 1]). To prove this, we
observe that, due to the choice of p1 and the properties of σ̄ and φ, we have

2

ε
σ̃

(
a + 1

2
ηx

)
− 2

ε
σ̄ (a) = p1(x) = x, ∀x ∈ [0, 1]. (5.6)
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This equation allows us to turn the functions ϕ
Ai ,bi
i : R → R, i = 1, . . . , L − 1,

into identity maps on [0, 1] by choosing the weights and biases appropriately and to
consider w.l.o.g. the case L = 1, cf. the proof of Theorem 4.2. For this one-hidden-
layer case, we obtain analogously to (5.6) that

2k‖pk‖C([0,1])
ε

σ̃
(
a + η(1 − 2−2k+2) + η2−2k+1x

)
− 2k‖pk‖C([0,1])

ε
σ̄ (a) = pk(x)

holds for all x ∈ [0, 1] and all k ∈ N. For every k ∈ N, there thus exists a parameter
αk ∈ D satisfying �̃(αk) = pk ∈ C([0, 1]). Since {pk}∞k=1 is dense in C([0, 1])
by the Weierstrass approximation theorem, the identity clC([0,1])(�̃(D)) = C([0, 1])
now follows immediately. This completes the proof. ��

Under suitable assumptions on the depth and the widths of ψ , Lemma 5.4 can also
be extended to the case d > 1, cf. [35, Theorem 4]. For some criteria ensuring that the
image of � is not dense, see [40, Appendix C3]. We conclude this paper with some
additional remarks on Theorems 3.1 and 3.2 and Corollaries 5.2 and 5.3:

Remark 5.5 • As the proofs of Theorems 3.1 and 3.2 are constructive, they can be
used to calculate explicit examples of spurious local minima for training problems
of the type (P). To do so in the situation of Theorem 3.1, for example, one just has
to calculate the slope ā ∈ R

d and the offset c̄ ∈ R of the affine linear best approxi-
mation of the target function yT ∈ C(K )w.r.t.L and then plug the resulting values
into the formulas in (4.8). The resulting network parameter ᾱ = {( Āi , b̄i )}L+1

i=1 ∈ D
then yields an element of the set E of spurious local minima of (P) in Theorem 3.1
as desired. We remark that, along these lines, one can also easily construct “bad”
choices of starting values for gradient-based training algorithms that cause the
training process to terminate with a suboptimal point (as any reasonable gradient-
based algorithm stalls when initialized directly in or near a local minimum). We
omit including a numerical test of this type here since such experiments have
been conducted in various previous works. We exemplarily mention the numerical
investigations in [24, Section 2], in which a deep multilayer perceptron model
is trained on CIFAR-10 by means of the logistic loss and in which the authors
provoke gradient-based algorithms to fail by choosing an initialization near a spu-
rious minimum of the type discussed above (albeit without the knowledge that this
local minimum is indeed always spurious); the numerical experiments in [43] on
the appearance, impact, and role of spurious minima in ReLU-networks; and the
numerical tests in [48, Sections 3, 4], which are concerned with training problems
for shallow networks on the XOR dataset.

• In contrast to the proofs of Theorems 3.1 and 3.2, the proofs of Corollaries 5.2 and
5.3 are not constructive. This significantly complicates finding explicit examples
of points u ∈ L p

μ(K ) at which the function π in Corollary 5.3 is necessarily
discontinuous and at which the ill-posedness effects documented in Corollaries 5.2
and 5.3 become apparent—in particular as these points u can be expected to occupy
a comparatively small set, cf. [51]. At least to our best knowledge, the construction
of explicit data sets and test configurations which provably illustrate the effects in
Corollaries 5.2 and 5.3 has not been accomplished so far in the literature (although
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numerical experiments on instability effects are rather common, cf. [16]). We
remark that, in [11], it has been shown that training data vectors, which give
rise to ill-posedness effects, can be calculated for finite-dimensional squared loss
training problems by solving a certain max-min-optimization problem, see [11,
Lemma 12 and proof of Theorem 15]. This implicit characterization might provide
a way for determining “worst case”-training data sets for problems of the type (P).
We leave this topic for future research.
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