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Abstract
3D topology optimization using a density approach with penalization usually produces truss-like, open-walled structures. 
The coarser the mesh, the smaller the volume fraction, and the faster the penalization is increased, the more pronounced this 
effect tends to be. However, closed-walled designs are often more efficient and have other beneficial properties. For instance, 
closed walls can contribute to achieving self-supporting designs for additive manufacturing that potentially require fewer 
sacrificial support structures than truss-like designs. This paper presents a two-step optimization procedure for generating 
closed-walled designs using coarse meshes. The first step takes the usual Eulerian approach of performing a SIMP-based 
topology optimization on a fixed mesh. To keep thin geometrical features, like walls with a thickness below element size, 
penalization is switched off deliberately where the formation of such features is detected. Adopting a Lagrangian description, 
intermediate densities still present in the optimized design are subsequently eliminated in a second step by shrinking each 
element according to its density. By analogy with volumetric thermal contraction, this is accomplished by solving a fictitious 
thermo-elastic problem where the temperature has been replaced by a density expression. The outcome is a morphed mesh 
with a somewhat smoothed surface and a volume close to the specified material volume limit. This body-fitted representa-
tion of the design considerably simplifies the final conversion into a manufacturable CAD-type geometry. The two-step 
optimization procedure is applied to a cantilever, a torsion rod, and a disk reinforcement benchmark problem. Optimized 
designs are closed-walled and show very good agreement to those found for much finer meshes. Problem-specific stiffness 
improvements over truss-like designs between 6% and almost 30% were achieved and confirmed the findings previously 
reported by other authors.
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1  Introduction

Under simplifying assumptions, almost any complex light-
weight structure can be decomposed into idealized struc-
tural elements which greatly facilitate both analysis and 
design. Line elements like rods are used to resist uniaxial 
stress whereas surface elements like plates can resist biaxial 
stress. Volume elements are suitable for triaxial stress. Their 

usage is usually limited to join line and surface elements as 
well as to carry applied concentrated loads, but they may 
also be required due to local design domain restrictions and 
multiple load cases.

A prototypical example may be given by a thin-walled 
beam of isotropic material. It consists of upper and lower 
horizontal flanges subjected to tension and compression and 
a single web in between which, in an idealized setting, car-
ries the external shear loads only. The flanges are realized by 
rods effective in carrying axial loads, but there are two pos-
sible variants for the web: it can be either a diagonal network 
of line elements or a surface element. The former variant 
resists external shear loads like a truss consisting of straight 
members oriented along the principal directions. These 
members undergo mainly axial deformation. The number 
of web openings may be large, depending on the granularity 
of the truss. By contrast, the latter variant is essentially the 
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closed surface web of a usual I-beam resisting the external 
shear force by simple shear deformation.

The above observations may be generalized to other mac-
roscopic structures as well. Adopting the terminology by 
Sigmund et al. (2016), open-walled refers to a structure with 
line elements, thus constituting a truss. By closed-walled we 
mean a structure which partly consists of surface elements 
under biaxial stress.

Topology optimization for three-dimensional structural 
problems is often associated with open-walled structures 
and they are sometimes even perceived as more efficient 
than their closed-walled counterparts. In fact, however, 
open-walled designs are clearly non-optimal solutions to the 
common small deformation minimum compliance problem. 
Inherently mesh-dependent topology optimization schemes 
like SIMP often fail to predict designs exhibiting closed 
walls and converge to open-walled truss-like designs instead. 
As it has been shown by Sigmund (1999) in the context of 
bone microstructure, the character of the optimized topol-
ogy is significantly affected by the length scale imposed by 
either filtering or the mesh resolution itself, whichever is 
greater. A smaller minimum length scale allows to repre-
sent finer details driving the solution more towards closed-
walled designs. Increasing the material volume fraction limit 
can have a similar effect but obviously leads to a different 
physical optimization problem as well. As truss-like designs 
may be local minima (Sigmund 1999), using an appropriate 
continuation method can also be helpful to favor efficient 
closed-walled designs.

The added value of closed walls may not be limited to a 
potentially superior structural efficiency. In several applica-
tions, they also serve some secondary purpose. For instance, 
the closed surfaces of a gear housing act as a mechanical 
support structure while containing the lubricant and pro-
viding protection against dust. Furthermore, they serve as a 
safety guard to cover rotating equipment, but also provide a 
mechanical barrier against any other environmental impacts 
like minor pressure loads, splash water, vapor, radiation, 
or sparks as well as insulation against heat, cold, airborne 
sound, and fire.

In some cases, reducing the number of holes of a design 
can lower its manufacturing effort significantly. This is par-
ticularly true for sheet-metal forming processes such as deep 
drawing and again motivates designs with closed surfaces 
(Dienemann et al. 2017). More recently, reducing sacrificial 
support structures in additive manufacturing has emerged as 
an interesting new application for closed-walled designs. A 
well-chosen part orientation provided, closed-walled designs 
are sometimes largely self-supporting and, thus, require less 
post-processing effort than similar truss designs of the same 
weight. This situation is illustrated in Fig. 1 showing two 
different variants of a topology optimized lifting beam. The 

optimization problem is essentially a three-dimensional 
version of the popular MBB-beam benchmark problem 
(Rozvany 1998). The part orientation with respect to the 
build platform of the laser additive manufacturing machine 
was chosen with the aim of minimizing support area for 
the truss design and was adopted also for the closed-walled 
variant for easier comparison. It is recognizable that the 
necessary amount of sacrificial support structures is much 
lower for the closed-walled variant leading to a better cost 
effectiveness of the finished part. Moreover, support removal 
will probably be more difficult for the open-walled design 
due to its higher geometrical complexity. It should be noted 
that manufacturing is usually feasible if the overhang angle 
of a down-skin is kept slightly above the critical angle, but 
surface quality is likely to be poor, nonetheless.

Different approaches can be taken to resolve the difficul-
ties of density-based topology optimization related to closed 
surfaces. Ensuring an adequate mesh resolution is the most 
straightforward approach to recover optimized designs which 
are closed-walled on a macroscopic scale, see the systematic 
study conducted by Sigmund et al. (2016). In their work on 
topology optimization of an entire wing’s inner structure, 
Aage et al. (2017) found that discrete, closed-walled spars, 
ribs and a variable thickness skin evolved to form a load-
carrying structure with high torsional and bending stiffness, 
a so-called wing box. In contrast, in the more lightly loaded 

Fig. 1   Metal additive manufacturing of a lifting beam using laser 
powder bed fusion: the truss-like design (right) is the result of a clas-
sical SIMP-based topology optimization, whereas the closed-walled 
design (left) has been found using the selective penalization approach 
presented in this paper. Both variants have the same part weight. A 
critical overhang angle of 40◦ was assumed to determine the neces-
sary amount of support structures shown in blue. (Color figure online)
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areas fore and aft of the wing box open-walled structures 
in the form of a thin truss infill are still dominant provid-
ing shear stiffness to the outer aerodynamic shell, which 
was prescribed during the optimization. Similar results were 
reported by Liu et al. (2019) and Villanueva and Maute 
(2014).

The downside of capturing thin walls by global mesh 
refinement is that the required number of design variables 
grows tremendously fast, especially for problems with low 
volume fractions. Hence, many of these attempts fall into the 
category of being large scale in nature. From an industrial 
perspective, where the goal often is to get a first conceptual 
design within a reasonably short period of time, the compu-
tational cost of this approach is often prohibitively high. The 
drawbacks of global mesh refinement can be partly circum-
vented by adaptive re-meshing of the non-void regions, see, 
e.g., the work by Zhou et al. (2022) on thin-walled designs.

Another path is to work with an alternative design 
description. The resulting topology can be a subset of an 
initially populated closed-walled grid structure found by 
sizing or removal of walls, or it is created by shaping and 
connecting only a few geometric base features more freely 
to form a global structure. The former is essentially a ground 
structure approach and has been used among others for 
topology design of extrusion profiles for vehicular crash-
worthiness (Duddeck et al. 2016). An approach of the latter 
type based on moving morphable components (MMC) has 
been applied to cross section design for thin-walled beams 
by Guo et al. (2021), again in an essentially two-dimensional 
setting. Another recent MMC-based paper by Jiang et al. 
(2022) investigates the optimization of thin-walled ribs that 
stiffen a given planar or curved base shell. A number of 
assumptions are made on the admissible designs including a 
constant height of the ribs and their orientation being always 
perpendicular to the base shell. A reduction to an essentially 
planar optimization problem is accomplished by an appro-
priate mapping from the 3D space to a 2D parameter space. 
Among other examples, the authors demonstrate an applica-
tion to the core design of sandwich panels. For two different 
loading conditions, tailored cellular structures made up of 
closed vertical walls were found.

In general, explicit schemes like the MMC (Guo et al. 
2014) have a number of properties which are particularly 
useful for closed-walled designs. These include, first and 
foremost, a much greater shape control allowing for opti-
mizing the placement, orientation, wall thickness or cur-
vature of closed-walled features directly. Moreover, the 
numbers of design variables and degrees of freedom are 
much lower compared to density-based topology optimiza-
tion which usually requires very fine meshes (Jiang et al. 
2023). Nevertheless, the achievable geometrical complex-
ity of the final design is limited by the number and the 

initial geometry of the components and the ability of the 
optimization framework to deform and rearrange these 
building blocks to form a more complex structure (Li 
et al. 2023). A limited geometrical complexity may even 
be favorable for conventional manufacturing. However, 
optimality of closed-walled designs can, with some excep-
tions, only be achieved with varying thickness. Moreover, 
closed-walled designs are not necessarily entirely thin-
walled, but may also exhibit fairly compact members. An 
efficient explicit topology optimization scheme that is able 
to represent such a range of structural details, that can be 
applied to true 3D optimization problems without simpli-
fying assumptions and which does not require any previ-
ous knowledge to choose a reasonable set of components 
still appears to be missing.

A combination of a large scale solid-element-based 
approach with shell elements as an alternative design 
description has been proposed by Träff et al. (2021). Another 
promising approach which has the potential to generate effi-
cient closed-walled designs is the so-called de-homogeni-
zation concept, see for instance the work by Groen et al. 
(2020) and Groen et al. (2021). The key idea is to perform a 
multi-scale homogenization-based topology optimization on 
a coarse grid assuming microstructural material. A single-
scale interpretation on a much finer mesh is obtained by 
a projection method in a subsequent post-processing step.

Nevertheless, probably the most common way to address 
the issue of open-walled designs still is a load-carrying truss 
structure where the openings between the outmost members 
are closed with flat plates or curved shells in a post-process-
ing step to achieve a closed surface design. The truss is opti-
mized to satisfy stiffness requirements while the sheets are 
added manually by the designer using a reasonably small, 
uniform thickness. Although this approach most likely leads 
to the least optimal results, it is based on state-of-the-art 
software and does not require particularly fine meshes. As 
computational time is low but weight reductions can still 
be considerable compared to conventional designs, this 
approach is often taken in industrial practice, see, e.g., the 
case study on the AM redesign of a gear housing by Barreiro 
et al. (2019).

This paper presents a low-cost two-step optimization pro-
cedure with the aim of obtaining efficient, closed-walled and 
discrete 0–1 designs of isotropic material in 3D without the 
need for fine meshes. In the first step, a SIMP-based topol-
ogy optimization is performed. However, penalization is 
switched off locally where potential thin features consisting 
of only a single layer of elements start to evolve during the 
optimization. A simple and inexpensive method is used to 
detect these regions at the beginning of every design itera-
tion. As penalization is still applied elsewhere, large spa-
tially extended and voluminous regions with intermediate 
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densities are effectively suppressed. Switching the penali-
zation is realized by replacing the exponent of the power 
law, which is a single number for the classical SIMP, by a 
bi-valued scalar field.

Customization of the penalization exponent in general 
is an established concept in density-based topology opti-
mization. Continuation methods are frequently used to 
achieve a slow transition from a convex to a non-convex 
optimization problem by gradually increasing the penali-
zation exponent (Allaire and Kohn 1993, Allaire and 
Francfort 1993). A combination of a continuation method 
on the penalization exponent with mesh adaptivity has 
been presented by Gupta et al. (2016). In their work on 
topology optimization with constant wall thickness and 
deep drawing constraints, Dienemann et al. (2017) used an 
unpenalized solution as an initial guess for a subsequent 
optimization with penalization to avoid convergence to 
poor designs. A more specific penalization exponent may 
also be chosen to represent a material that can be inter-
preted in physical terms (Bendsøe and Sigmund 1999). 
Application to multi-material topology optimization using 
a piecewise-defined SIMP interpolation scheme has been 
demonstrated by Zuo and Saitou (2017). The above-men-
tioned examples have in common that the penalization 
exponent is still homogeneous with respect to the design 
domain.

Unlike classical SIMP with homogeneous penalization, 
the selective penalization approach presented here leads to 
designs that are not yet fully discrete. Instead, the results are 
partly true 0–1 designs but may also exhibit regions with 
intermediate densities representing thin features that can-
not be approximated economically by a single closed layer 
of solid elements. The usefulness of such a design is that a 
meaningful interpretation of the intermediate densities in 
the thin regions can be gained from looking upon them as a 
variable thickness of a shell-like feature. This perception is 
inspired by the 2.5D design problem of variable thickness 
sheets (Rossow and Taylor 1973) and in some sense may be 
seen as an embedding of the latter into the 3D space. The 
resizing of the wall thicknesses is done in a post-processing 
step.

For this purpose, a subdomain is extracted from the entire 
design domain based on a threshold criterion on the density 
field from the topology optimization with selective penaliza-
tion. This body-fitted domain is further processed to remove 
remaining intermediate densities by a shrinking deformation 
where the local volumetric contraction is proportional to the 
density. As usual, deformation is formulated with respect to 
a Lagrangian frame of reference. We assume a linear elastic, 
isotropic material with a Poisson’s ratio close to the incom-
pressibility limit. Moreover, we assume small deformations 
and a superposition of inelastic, prescribed shrinkage strains 
and elastic strains. Note that in the post-treatment of the 

de-homogenization concept (Pantz and Trabelsi 2008) multi-
scale information on the layer normals and layer widths of 
the composite can be used to reconstruct the final design. 
By contrast, in the isotropic case discussed here, there is no 
information available other than the scalar density.

The shrinking contraction itself, as well as the elastic 
response of the material, is modeled as purely isotropic. This 
implies that we do not explicitly specify the out-of-plane direc-
tion of shell-like features along which we want the shrinking 
to occur. Instead, we connect every point of the subdomain 
to an elastic foundation. As it will be shown later, this leads 
to the desired effect of sizing of the local wall thickness pro-
portional to its density value. A beneficial side-effect is the 
smoothing of the shape of the deformed body. The outcome is 
a morphed mesh serving as a body-fitted representation of an 
optimized, entirely solid design with a material volume close 
to the specified limit. The post-processing step is completed 
by manual or semi-automatic conversion of the morphed mesh 
into a manufacturable CAD-type geometry.

The rest of the paper is organized as follows: Sect. 2 covers 
the topology optimization step of the proposed procedure. We 
present the selective penalization scheme, explain the way we 
detect potentially thin features and provide the discretized form 
of the optimization problem. We introduce the post-process-
ing step in the following Sect. 3, discuss its goal, and explain 
in detail the mechanical modeling of the shrinking process. 
The entire procedure is summarized in a flow chart given in 
Sect. 4. Three example problems were solved to benchmark 
the optimization procedure. A discussion of the numerical 
results and a comparison with both analytical and numerical 
solutions reported in the literature are provided in Sect. 5. A 
brief summary and comments on future work can be found in 
the last Sect. 6.

2 � Topology optimization with selective 
penalization

2.1 � Material interpolation scheme

We propose an extension of the original SIMP interpolation 
scheme (Bendsøe 1989) allowing to locally switch between a 
material with ( p > 1 ) or without penalization ( p = 1 ). This 
selective penalization behavior is achieved by redefining the 
penalty exponent of the power law as a spatially varying, bi-
valued field

Here g(x) denotes a scalar measure which, if exceeding some 
critical value gc , shall be seen as an indicator of a thin feature 
and causes the penalization to be switched off. In the remain-
ing part of the design domain, the penalization exponent 

(1)p(x) =

{
1 if g(x) > gc,

p̂ else.
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takes the value p̂ which is either kept constant throughout 
the design optimization or it is gradually increased from 
1 to a certain p̂max using a continuation method. With this 
modification, the stiffness properties of the material at some 
point x become a function of the density and the penalty 
exponent field:

where C0 denotes the linear elastic, isotropic stiffness ten-
sor of the solid material. In our implementation, the penalty 
exponent field is re-evaluated and adjusted at the beginning 
of each design iteration.

The purpose and also the physical interpretation of the 
fictitious material defined by Eq. (2) is twofold. In the penal-
ized case, it is used as a tool to steer the design toward almost 
discrete solutions. To this end, values of p̂ ≥ 3 are deemed 
necessary by experience (Bendsøe and Sigmund 2004) and 
will also be used in this work. Thus, it is not regarded as a 
material in the narrower sense although for such large values 
of the penalization exponent an isotropic composite with the 
same constitutive properties could in fact be realized. Such a 
3D material is not available for the unpenalized case as a linear 
interpolation of the stiffness tensor between void and solid 
material, also referred to as Voigt upper bound, will violate 
the Hashin-Shtrikman upper bound for isotropic composites 
(Bendsøe and Sigmund 1999). Instead, to justify the use of a 
linear interpolation scheme, we adopt the physical interpre-
tation of an intermediate density as a sizing parameter of a 
variable-thickness-sheet-like feature.

2.2 � Thin feature detection

The identification of thin features from the current density field 
plays a central role in the proposed optimization procedure as 
it directly controls the selective penalization behavior of the 
penalty exponent in Eq. (1). Hence, choosing a suitable meas-
ure g(x) together with a threshold gc is essential. The main 
challenge is that the method has to prove useful not only for 
largely discrete designs with sharp transitions between mate-
rial and void, but should also behave reasonably well for blurry 
designs from early iterations or as a result of checkerboard 
control or mesh-independency filtering. The formulation used 
in this work is based on a comparison of the density at some 
fixed point x to the average density of all neighboring points x̃ 
found within a maximum distance rmin from that point. Hence, 
the measure is obtained by applying a linear filter to the den-
sity field as follows:

(2)C(x) = �(x)p(x)C0,

(3)g(x) =
𝜌(x) ∫

Ω
Hx(x̃) dṼ

∫
Ω
Hx(x̃)𝜌(x̃) dṼ

,

where Ω denotes the entire design domain and Hx(x̃) is a 
uniform kernel function with finite support defined as:

For a point x on a thin-walled feature, the ratio g(x) will 
usually be greater than one, provided rmin is large enough 
with respect to the local wall thickness to capture points with 
lower density along one or both sides of the wall-like feature. 
In contrast, the ratio will be close to one if the density is 
almost homogeneous within the neighborhood, irrespective 
of whether it belongs to a large void region, a thick solid 
member or an intermediate density region, e.g., due to a 
homogeneous distribution of material being used as a start-
ing guess. Ratios significantly smaller than one will occur in 
transition zones where x itself has low density but is located 
close to a feature with higher densities.

The working principle of the proposed thin feature detec-
tion is illustrated for a fixed density field in Fig. 2. Com-
paring the cross sectional plots of g(x) and �(x) confirms, 
that the closed-walled web of the cantilever beam is indeed 
correctly recognized as a thin feature, whereas, in contrast, 
in the center of the more compact, filled cross sections of 
upper and lower flanges, the measure stays below the criti-
cal value, as expected. Moreover, the regions where g > gc 
holds, are not fragmented, which is key to achieving a firm 
connection of thin features with intermediate density, like 
the web, to solid features, such as the flanges. If this were 
not the case, the desired closed-walled features would likely 
break up during optimization and the design would converge 
to a truss-like structure instead.

From the above considerations, one can derive bounds 
on the threshold for thin feature detection gc in Eq. (1). As a 
necessary requirement, gc > 1 needs to be satisfied to penal-
ize void regions with constant density � = �min , which cover 
most of Ω in a typical setting, see for instance Fig. 2. How-
ever, choosing a value larger but still almost equal to one 
has the disadvantages of being too conservative in the sense 
that too many regions are erroneously considered as thin 
features. For instance, the flanges in Fig. 2 would remain 
unpenalized also in their centers if only a single neighboring 
element with lower density existed. On the contrary, if gc is 
chosen too large, some thin features are no longer detected 
with the transition zones between thin and thick regions 
being particularly affected. Although keeping these gaps 
filled with material is necessary to preserve a closed-walled 
structure, this can be too costly due to the reactivated penali-
zation. Thus, the optimizer will introduce holes which initi-
ate a transformation away from a closed-walled and toward 
an open-walled structure, as explained earlier.

From Fig. 2, one might even try to establish a use-
ful upper bound on gc based on the argument, that the 

(4)Hx(x̃) =

�
1 for ‖x̃ − x‖ ≤ rmin,

0 else.
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thin-walled web shall still be unpenalized, which is true as 
long as gc < 1.35 . However, insights from such a simplified 
sensitivity analysis have very little practical importance, 
since demonstrating that a certain threshold is compatible 
with a given final solution does not necessarily imply that 
starting from an initial guess the iterative optimization 
procedure will actually converge to that desired solution. 
Instead we found a practically useful threshold of 1.05 
from numerical experiments where we tested different 
optimization problems with varying material volume frac-
tion limits.

One may note that not only thin walls are detected. In 
fact, the entire contour line of the beam cross section in 
Fig. 2, or more generally the boundary of its 3D topol-
ogy, satisfies the proposed threshold criterion. If the con-
tours are drawn by elements of a coarse FE-mesh, like the 
bicolored plot on the right in Fig. 2, the thin web can be 
seen as just a special case where both right and left con-
tour lines of the section have become locally congruent.

The false detection of thin features, other than the 
desired closed walls, could also include bars or even iso-
lated particles. However, we found that these potential 
issues apparently have no visible adverse effect on the 
optimization results in practice. This conclusion is also 
supported by the numerical results presented in Sect. 5 and 
may be due to two reasons: First, even if the formation of 
certain undesired thin features with intermediate density 
is not penalized, such a formation will not necessarily hap-
pen, though. For instance, the optimizer will still prefer a 
more efficient, closed wall over a planar truss consisting 
of thin bars. The same argument applies to the boundary 

of thick features. As it can be seen from Fig. 2, intermedi-
ate densities are not penalized in the outer region of the 
flanges, but in this section, the optimized design exhibits 
a sharp 0–1 transition nonetheless. The second reason is, 
that any remaining intermediate density will still be post-
processed in the subsequent mesh morphing step. Fortu-
nately, this works equally well also for such false features, 
which rather resemble a thin coating to an otherwise thick 
feature.

2.3 � Optimization problem and finite element 
discretization

The selective penalization approach is applied within the 
classical setting of a minimum compliance design of a 
structure subject to a constraint on the available material 
volume, see the textbook by Bendsøe and Sigmund (2004) 
for a detailed derivation of the continuous problem state-
ment. We follow the common solution approach based on a 
geometrically linear finite element method with first order 
elements for the displacements u(x) and a discontinuous, 
element-wise constant interpolation of the density �(x) , the 
feature detection measure g(x) and the penalization exponent 
p(x) . For the purpose of determining the support of the ker-
nel function given by Eq. (4) that is associated with a certain 
element, we follow the convention that any neighboring ele-
ment is fully taken into account if the distance between their 
centers is smaller than the specified filter radius rmin . For a 
design domain Ω discretized by N elements, the optimization 
problem takes the form

0.5

ρmin

1.0
ρ(x)

1.0

0.002

2.0
g(x)

gc

0.002

2.0
g(x)

2rmin

Fig. 2   Extraction of thin features from the density field of the canti-
lever beam studied in Sect. 5.1: optimized topology of the cantilever 
beam and positioning of the slice plane (left), corresponding density 
field �(x) (middle left), feature detection measure g(x) with continu-
ous (middle right) and bi-valued color scale (right). To compute g(x) , 

a filter radius rmin equal to 1.2 times the element size was used, as 
indicated by the yellow circle. The sensitivity filtering applied 
throughout the optimization and using the same filter radius, was 
switched off before final convergence. The threshold for thin feature 
detection gc was set to 1.05. (Color figure online)
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where K is the global stiffness matrix, d is the nodal dis-
placement vector, f  is the nodal force vector, � is the 
vector of element densities, Vmax is the material volume 
limit and v is the vector of element volumes satisfying ∑N

e=1
ve = Vol(Ω) . The compliance computes as l = fTd . 

The global stiffness matrix is assembled from element-wise 
contributions as follows:

where ke denotes the element stiffness matrix of the e-th 
element assuming solid material. The element penalty 
exponents p will be updated at the beginning of every itera-
tion. Nevertheless, they shall be treated as fixed parameters 
rather than physical variables which makes the derivation 
of the sensitivities of the objective function as easy as for 
the classical SIMP. Using the adjoint method results in the 
expression:

3 � Mesh morphing

A typical outcome of the topology optimization step with 
selective penalization is a closed-walled design, which, to 
a varying degree, exhibits flat or curved shell-like regions 
with intermediate densities. While this is an expected and 
even desired behavior, additional post-processing is required 
to finally get a useful and manufacturable 0–1 design. As a 
first step, a roughly body-fitted, undeformed representation 
of the design B0 is determined as the subset of the design 
domain Ω which has a density above a specified threshold 
�

B
 . To provide a reasonable approximation of the anticipated 

final topology, a comparatively low threshold is chosen such 
that void regions are removed but thin-walled features are 
still safely captured.

The goal of the post-processing procedure is to transform 
the design B0 into a deformed configuration B such that the 
local change in volume leads to an overall deformed vol-
ume Vol(B) equal to the target material volume Vmax . The 
modeling is similar to a thermo-elasticity problem, with 
the exception that the driving force for the inelastic strains 
is not a temperature deviation from a certain reference 

(5)

min
�

l

s.t.: Kd = f ,

�min ≤ �e ≤ 1, e = 1,… ,N,

vT� ≤ Vmax,

(6)K(�, p) =

Ne∑

e=1

�pe
e
ke,

(7)
�l

��e
= −pe�

pe−1
e

dTked.

temperature. Instead, the shrinkage strains are governed by 
the density deviation from the solid limit ( � = 1 ) as follows:

where 1 denotes the second-order identity tensor. The local 
change in volume induced by the isotropic shrinking is pro-
portional to the density, as it can be confirmed by comput-
ing the Jacobian determinant det(�s + 1) = � . The body has 
isotropic, linear elastic material properties with Young’s 
modulus of the solid material E0 , Poisson’s ratio �s and pro-
portional stiffness, which corresponds to the classical SIMP 
with p = 1 . For the reason explained below, we support the 
entire body on an elastic foundation, which is stress-free in 
the undeformed configuration B0 . Hence, the elastic foun-
dation exerts a force to every point on B that brings it back 
toward its reference position on B0 . This is realized by add-
ing a body force per unit material volume of the form

where k is the elastic foundation stiffness and the negative 
sign accounts for the nature of a restoring force. Introducing 
the set of kinematically admissible displacements U and the 
virtual displacements w , the principle of virtual work for the 
shrinkage problem can be written as

with the bilinear form

and the load linear form

Equation (10) can optionally be supplemented by Dirichlet 
boundary conditions, for instance to avoid deformation of 
supports, interfaces, or surfaces subject to external loads. 
The shrinkage problem is solved by the same finite element 
method as used before during the topology optimization 
step. The discretized form of Eq. (10) is given by the linear 
system

where the stiffness matrix Ks and the nodal force vector f s 
follow from the discretization of the bilinear form (11) and 
linear form (12), respectively. The solution to the shrink-
age problem is given by a solid design which occupies the 
shrunk configuration B . The result will be exported as a 
morphed surface mesh realized by a movement of the mesh 
vertices equal to the nodal displacements found from Eq. 

(8)�s = ( 3
√
� − 1)1,

(9)b = −k�u,

(10)a(u,w) = l(w), ∀w ∈ U,

(11)a(u,w) = ∫
B0

�(u) ∶ C ∶ �(w) dV + ∫
B0

k�uw dV

(12)l(w) = ∫
B0

( 3
√
� − 1)1 ∶ C ∶ �(w) dV .

(13)Ksd = f s,
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(13). The morphed mesh later serves as a reference shape 
and guides the rebuilding of a smooth CAD geometry.

The effect of the elastic foundation is a mechanical 
resistance to any deformation or motion. Here we take 
advantage of the fact, that the influence on the global defor-
mation is sensitive to the shape of the structure itself. More 
specifically, a structural feature whose thickness is very 
small when compared with other dimensions, like plates 
or shells, will shrink primarily in thickness-direction. 
This is even more pronounced for almost incompressible 
materials, where the volumetric change due to the inelastic 
shrinkage strains will lead to a thickness reduction by the 
same factor. This behavior is visualized in Fig. 3 for a sim-
ple wall structure with a density field decreasing linearly in 
vertical direction. In the case of a vanishing elastic founda-
tion stiffness, the measured wall thickness in the deformed 
configuration is very close to the cubic root of the density 
which suggests isotropic shrinking. In contrast, in the case 
of a properly chosen elastic foundation stiffness, the defor-
mation occurs mainly in the out-of-plane direction of the 
wall whereas the formerly large in-plane-deformations are 
minimized. Thus, a resizing of the wall thickness propor-
tional to the density is achieved whereas the overall shape 
is largely retained.

It needs to be considered that for a constant k, the influ-
ence of the elastic foundation grows with the square of the 
size of the design B0 . For instance, to ensure that solutions 
to the shrinkage problem in Fig. 3 will still be compara-
ble if the discretized wall structure is scaled equally in all 
three dimensions by a certain factor, the elastic foundation 
stiffness k needs to be scaled inversely proportional to the 
square of that factor. Nevertheless, this does not answer 

the question how the elastic foundation stiffness k can be 
determined for an entirely new problem. One possibility is 
to choose k proportional to the reciprocal of the squared 
element size h. This is motivated by the fact that shrink-
ing deformation does only affect intermediate density ele-
ments, which typically occur in the form of walls or shells 
consisting of a few layers of elements at the most. Thus, 
one may use the element size h to characterize those fea-
tures of the design. For the three numerical examples pre-
sented in Sect. 5, reasonable values for k could be found in 
the range of 1∕h2 to 10∕h2.

One may argue that the arising deformations will obvi-
ously not be small, which raises the question whether the use 
of a linear strain tensor � and superposition of the inelastic 
and elastic strain contributions are actually too severe sim-
plifications. However, recall that the shrinking deformation 
is used only as a tool for post-processing which is merely 
inspired by a physical process. Thus, the quality of the mor-
phed mesh should rather be evaluated based on how well 
it supports an either manual or automatic derivation of a 
manufacturable CAD geometry and how accurately the lat-
ter resembles the original optimization results in terms of 
global shape, material volume and mechanical performance. 
Also, switching to a geometrically non-linear framework 
may lead to further complications. While the significantly 
increased computational effort will still be small compared 
to the topology optimization step, convergence issues due 
to nearly incompressible material properties and undesired 
deformation phenomena like buckling become even more 
of a concern.
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Fig. 3   Shrinking deformation procedure applied to a wall clamped at 
its bottom face: undeformed configuration with intermediate densities 
(left), deformed configurations without elastic foundation (middle) 
and with an elastic foundation stiffness k = 10 (right). The material 
volumes of the three configurations are almost identical with a differ-

ence less than 1%. The gray color of the two deformed walls indicates 
solid material and the hidden blocks in the top-left part have been cut 
off for better visualization. We have chosen a nearly incompressible 
material ( � = 0.47 , E

0
= 1 ) to ensure that the elastic part of the defor-

mation is isochoric. (Color figure online)
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4 � Two‑step optimization procedure

A flowchart of the entire two-step optimization procedure is 
shown in Fig. 4. After initialization, a topology optimiza-
tion is performed, this step is made up of the green and blue 
iteration loops. During the green iteration loop, the selective 
penalization scheme is applied and checkerboard control is 
established by the common sensitivity filtering techniques 
(Bendsøe and Sigmund 2004). We use the same filter radius 
rmin for the kernel functions of the sensitivity filtering and 
feature detection. Optionally, a continuation scheme can be 
used to gradually increase penalization. The green loop is 
repeated until the relative objective change becomes smaller 
than a given tolerance 𝜖 and, if applicable, the continuation 
scheme has finished. Afterward, the algorithm proceeds with 
the blue iteration loop while the penalty exponents p are 
frozen and the sensitivity filtering as well as the selective 
penalization update scheme are deactivated. The reason for 
deactivating the sensitivity filtering is the removal of the 
blurry transition zones at the boundaries caused by the filter. 
If the design has already converged sufficiently close to a 
(local) optimum we found that switching off the filter can be 
done safely leading to crisp boundaries without causing the 
structure to break up. For thin and closed-walled structures 
the additional reduction of compliance is considerable and 
amounts to roughly 10% for the numerical examples pre-
sented in Sect. 5. Thus, without deactivation of the filtering 
in the blue iteration loop a fair comparison of the topology 
optimization results with analytical solutions or values found 
from analysis of smooth CAD geometries is hardly possible.

The stopping criterion is based on the relative objective 
change as well, but the tolerance � can be chosen smaller 
compared to the green loop. The topology optimization step 
is followed by a post-processing step which is indicated by 
the red flowline. The post-processing comprises three tasks: 
Extraction of the subdomain B0 , computation of the mor-
phed mesh B by solving the shrinkage problem and finally 
the derivation of a CAD-type geometry.

For all numerical examples discussed in this paper, we 
used the software Inspire by Altair Engineering Inc. to wrap 
the morphed mesh with smooth free-form surfaces repre-
sented by non-uniform rational basis splines. Based on the 
morphed mesh B the tool generated a reasonable initial 
CAD geometry almost automatically. Manual fine tuning 
of the surfaces was necessary to a limited extend to achieve 
a global volume within a few percent of the specified limit 
as well as to correct some surfaces that were not properly 
aligned with the morphed mesh.
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Initialization
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pie = p̂i = 1

Solve equilibrium equations
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Fig. 4   Flowchart of the two-step optimization procedure



	 J. Rieser, M. Zimmermann 

1 3

158  Page 10 of 20

5 � Numerical examples

In the following Sects. 5.1, 5.2, and 5.3, the two-step opti-
mization procedure is applied to three different 3D optimal 
design problems.

In general, efficiency improvements gained through tran-
sition from truss to closed-walled structures are greater in 
the case of shear or torsional loads as compared to pure 
bending or uniaxial tension. Two such examples, which will 
serve as benchmark problems for our two-step optimiza-
tion procedure, are a torsion rod and the web of an I-beam 
section. Several numerical and analytical solutions to both 
problems as well as an in-depth discussion in the context of 
closed-walled designs can be found in Sigmund et al. (2016).

To compute the design updates, we use the method of 
moving asymptotes (MMA) by Svanberg (1987) with 
������� = 0.1 , ������� = 1.1 and default parameters oth-
erwise. The major part of the finite element analysis is car-
ried out using the FEniCS library (Alnæs et al. 2015) and 
its successor FEniCSx. We use a progressive continuation 
method on the penalization parameter p̂ . Before computing 
the shrunk configuration B as part of the post-processing 
step, we fix any node which either belongs to a solid ele-
ment, a loaded face or a support. Apart from problem-spe-
cific geometries, boundary conditions and loads, we use the 
same set of parameters for all three benchmark problems, see 
Table 1. One may note that the density threshold for mesh 
morphing �

B
= 0.05 is one order of magnitude smaller than 

the value 0.5, which is a commonly used cutoff in a classical 
post-treatment strategy.

5.1 � Cantilever beam

The first numerical example is a standard cantilever beam 
optimization problem. The problem set-up is visualized in 

Fig. 5 and the corresponding values of the parameters can 
be read from Table 2. To establish a baseline result, we first 
solved the topology optimization problem using a classi-
cal SIMP-based approach. This can be achieved within the 
procedure of Fig. 4, e.g., by setting the feature detection 
measure g equal to the zero vector. The result is, not unex-
pectedly, an open-walled truss-like structure and shown in 
Fig. 6a. The design is discrete and intermediate densities are 
practically non-existent.

The same topology optimization problem was solved 
again, now using the selective penalization approach. The 
optimized design is depicted in Fig. 6b and displays some 
notable characteristics. Most obviously, the cantilever 
beam exhibits a closed-walled web consisting of a single 
layer of non-void elements that is surrounded by curved, 
solid flanges. The density of these elements varies along 
the height of the beam, which, as shown in the following, 

Table 1   Parameters and material properties for the three numerical 
examples in Sects. 5.1, 5.2, and 5.3

Parameter Symbol Value

Young’s modulus of solid material E0 1
Poisson’s ratio � 0.3
Minimum density �min 10−3

Filter radius rmin 1.2h
Maximum penalization exponent p̂max 4
Threshold for thin feature detection gc 1.05
Tolerance of loop with sensitivity filter 𝜖 10−5

Tolerance of loop w/o sensitivity filter � 10−7

Density threshold for mesh morphing �
B

0.05
Elastic foundation stiffness k 4∕h2

Poisson’s ratio for mesh morphing �s 0.47

x

y

z

A

B

H 0.2H

0.2B

F

Ω

Fig. 5   Problem set-up of the cantilever beam example: the box-
shaped design domain Ω has a fixed support at x = 0 . A uniformly 
distributed shear load with a resultant force F acts on the dashed rec-
tangular face at x = A

Table 2   Cantilever beam example: problem-specific parameters, 
dimensions, and loads

Parameter Symbol Value

Design domain length A 2
Design domain depth B 1/4
Design domain height H 1
Force resultant F 1
Material volume fraction limit Vmax∕Vol(Ω) 0.1
Element size h 1/48
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corresponds to an optimized and non-uniform web thick-
ness. While the truss design exhibits a right-angled triangu-
lar opening between the pinned supports, this area is filled 
in with a thin sheet connecting the web to the supported 

back side in the case of the closed-walled design. The entire 
surface of the closed-walled design is more than 40% larger 
compared to the truss design.

0.5

0.05

1.0
ρ(x)

(a) (b)

(d)(c)

t2t2

t1

t3

t4

(f)(e)

Fig. 6   Optimization results for the cantilever beam example: topology 
obtained using classical SIMP a, topology obtained using selective 
penalization before b and after mesh morphing c, rebuilt CAD geom-

etry d, selected cross sections of the morphed mesh e and cross sec-
tions of the rebuilt CAD geometry with black contour lines approxi-
mating the morphed mesh drawn in magenta f 
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The result from the topology optimization step with 
selective penalization was further altered to give physical 
meaning to intermediate densities. Nodes lying on the sup-
ported back side of the design domain ( x = 0 ) or on the 
loaded rectangular face at x = A were fixed during this post-
processing step. The outcome is the body-fitted, morphed 
mesh shown in Fig. 6c. There is no visible deformation or 
motion of the solid elements along the flanges and also the 
overall shape remains largely unchanged. However, the web 
consisting of a single layer of intermediate density elements 
has been transformed into a variable-thickness-sheet-like 
feature. This is illustrated in Fig. 6e in more detail. There 
is a smooth transition from the thin web, with an effective 
web thickness smaller than the element size, to the much 
thicker flanges. The four measured wall thicknesses of the 
morphed mesh are compared to the product of the density 
and the undeformed element size �h , which in a way can be 
seen as the target value. Table 3 reveals that the agreement 
is in fact quite close for the two greater wall thicknesses t2 
and t3 , whereas the deviations are larger for the two smaller 
wall thicknesses t1 and t4.

Finally, the morphed mesh was reverse engineered into 
a solid CAD model based on smooth free-form surfaces, 
see Fig. 6d. The overall goal was to create a geometry of 
the same volume which is smooth but still gives a reason-
able approximation to the original shape including all rel-
evant details. As it can be seen from Fig. 6f, this task may 
be achieved by simple surface fitting if the morphed mesh 

is sufficiently smooth due to the shrinking of low density 
regions. Thus, redesigning the already near-net shaped web 
is fairly straightforward whereas the rough surfaces of the 
flanges need some more interpretation.

Table 4 lists the material volume and the compliance 
for the different results. For the sake of completeness, we 
included the corresponding values for the planar Michell 
frame solution, being aware that the essentially 2.5D Michell 
solution has a pinned support, a point load and zero Pois-
son’s ratio, which deviates from the assumptions made in 
this work. We do not provide compliance values for two 
intermediate results, namely the undeformed mesh B0 and 
the morphed mesh B . In the former case, the only differ-
ence to the classical SIMP result is a 1% loss of material 
volume due to the removal of low density and, in this par-
ticular example almost exclusively, void (� = �min) elements 
whose contribution to stiffness is negligible. In the latter 
case, obtaining a useful estimate of the compliance is not 
straightforward because of the strong distortions of the mor-
phed mesh which make a direct reanalysis impracticable. 
Since the morphed mesh itself is too coarse to be used for 
re-meshing and a smooth, geometrical representation of the 
domain B is not available before the final CAD geometry has 
been created, we skip the computation of the compliance at 
this point.

Comparing the normalized compliances reveals that the 
selective penalization result is approximately 10% more 
efficient than the classical SIMP design and still about 5% 
more efficient than the Michell frame solution. These rela-
tive improvements are largely comparable to those achieved 
through conventional mesh refinement by Sigmund et al. 
(2016). Transformation of the selective penalization result 
into a solid CAD geometry comes along with an additional 
reduction of the normalized compliance by more than 1% . 
This further improvement can be attributed to the smooth-
ing of the surfaces. Moreover, it indicates that the use of 
proportional stiffness in unpenalized regions, which is a key 
ingredient of the proposed selective penalization approach, 
seems to give a reasonable and not too optimistic estimation 
of the stiffness of such wall-like, thin features.

Table 3   Cantilever beam example: density compared to wall thick-
ness of the morphed mesh at the four different positions shown in 
Fig. 6e

Longitudinal 
position x/A

Wall thickness t Density � Density times 
element size 
�h

0.2 t1 = 0.0091 0.485 0.0101
0.4 t2 = 0.0164 0.770 0.0160
0.6 t3 = 0.0118 0.571 0.0119
0.8 t4 = 0.0074 0.4324 0.0090

Table 4   Cantilever beam 
example: Material volumes and 
compliance results

Tables of normalized compliance values for various Michell frames, including the value listed above, can 
be found in Graczykowski and Lewiński (2010)

Fig. 6 Material volume fraction 
f = ∫ �dV∕Vol(Ω)

Compliance l Normalized 
compliance 
Φ = lfBA∕H

Classical SIMP (a) 0.1 1057.36 52.87 (100%)
Michell frame solution – 0.1 – 49.35 (93%)
Selective penalization (b) 0.1 942.45 47.12 (89%)
Undeformed mesh B0 – 0.0991 – –
Morphed mesh B (c) 0.0988 – –
CAD geometry (d) 0.0976 951.60 46.43 (88%)
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The material volume of the rebuilt CAD geometry 
matches the target value Vmax within a reasonable tolerance. 
As the reverse engineering is an at least partly manual task, 
this difference can obviously be further cut down to arbi-
trarily small values. Nevertheless, the quality of the global 
correlation between the CAD geometry and the optimization 
result always remains somewhat subjective.

Note that the normalized compliance of our classical 
SIMP solution is 0.8% below the value found by Sigmund 
et al. (2016). The reason for this marginal difference is that 
we do not impose mirror symmetry about the center plane 
defined by z = B∕2 . Dropping the symmetry requirement 
allows for a slightly more economical material placement 
since the thicknesses of wall-like features parallel to the 
symmetry plane no longer need to be an even multiple of 
the element size h. However, due to the particular spatial 
discretization with an even number of elements in z-direc-
tion, a web centered at z = B∕2 with a thickness equal to 
the element size h cannot be realized. This explains why the 
selective penalization approach does not lead to a cantilever 
beam with a perfectly flat web, see the longitudinal section 
in Fig. 6e resembling more a gentle wavy line.

The evolution of the compliance and the material vol-
ume during the topology optimization step can be studied 
in Fig. 7. The stepwise nature of the compliance graph is 
caused by the continuation scheme and the deactivation 
of the sensitivity filtering at iteration i = 553 . Apart from 

that, one observes a stable and reasonably fast convergence. 
Some minor fluctuations appear between i = 100 and i = 200 
which correlate with similar variations of the material vol-
ume. Except for the first two iterations, the material volume 
does not fall below 98% of its target value Vmax . We draw the 
conclusion that the overall convergence history is not con-
siderably worse than that of a classical SIMP optimization. 
Nor did we notice that the selective penalization approach 
distinctly increases the known tendency of too aggressive 
penalization schemes to promote convergence towards bad 
local minima.

Nevertheless, we observed small oscillations of the objec-
tive which still remained after the final design had clearly 
been reached. This is mainly due to the selective penaliza-
tion scheme and, to a much lesser degree, due to the sensitiv-
ity filtering. This is actually not surprising, since updating 
the penalization exponents p happens abruptly and changes 
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Fig. 7   Cantilever beam example: evolution of the normalized compli-
ance and material volume during topology optimization. The stop-
ping criteria of the design iteration loops with and without sensitivity 
filtering are met after 553 and 618 iterations, respectively. The penali-
zation exponent is progressively increased from 1 to p̂max
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Fig. 8   Problem set-up of the torsion rod example: the cylindrical 
design domain Ω has a fixed support at z = 0 and is connected to the 
yellow-colored, solid annulus at z = L . The annulus is almost rigid 
and subject to a torsional moment T. (Color figure online)

Table 5   Torsion rod example: problem-specific parameters, dimen-
sions, material properties and loads

Parameter Symbol Value

Design domain length L 3
Design domain radius R 0.5
Inner radius of annulus Ra 0.45
Young’s modulus of annulus Ea 103

Torque T 1
Material volume fraction limit Vmax∕Vol(Ω) 0.136
Element size h 0.05
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the optimization problem to be solved. Potential variations 
of p are not captured by the sensitivities, cf. Sect. 2.3, mak-
ing it difficult for the MMA to construct an accurate convex 
approximation. That is why we work with an only moderate 
tolerance 𝜖 within the green loop, see Fig. 4. Since filter-
ing is switched off and the penalization exponent field is 
fixed within the blue loop, the corresponding tolerance � has 
been chosen two orders of magnitude smaller, but could be 
reduced even further.

5.2 � Torsion rod

In the second example we study the optimization of a struc-
ture within a cylindrical design domain for a single torsional 
load case. The problem set-up is shown in Fig. 8 and the 
corresponding values can be found in Table 5. The solid 
annulus is assigned a large Young’s modulus Ea to mimic a 
rigid body which is connected to but not part of the design 
domain Ω . The design domain is discretized with 1.7 ⋅ 104 
linear hexahedron elements.

The optimized designs are portrayed in Fig. 9. The results 
confirm expectations that the available material needs to be 
placed as far from the axis of the cylinder as possible in 
order to maximize torsional stiffness. The classical SIMP 
solution (Fig. 9a) is an open-walled tube consisting of heli-
cally coiled strips with a winding angle of ±45◦ . By con-
trast, the selective penalization result (Fig. 9b) is a closed-
walled tube made up of a single layer of elements with a 
constant, intermediate density. As highlighted in Fig. 9c, 
application of the post-processing gives a solid wall thick-
ness t1 = 0.0358 which is very close to the target value 
�h = 0.0355.

The material volumes and the compliances are summa-
rized in Table 6. The analytical solution of a thin-walled 
circular tube has the lowest compliance, which is given by 
the approximation

where t = R(1 −
√

1 −
Vmax

Vol(Ω)
) is the wall thickness and 

Rm = R − t∕2 is the mean radius. The largest compliance 
belongs to the Michell frame solution emphasizing the infe-
riority of Michell-like truss microstructures toward closed 
shell designs under simple shear. The classical SIMP design 
resembles a macroscopic Michell-like frame structure with 
members oriented along the principal directions. These 
members, in turn, are thin shell-like strips effective in resist-
ing shear. Consequently, the compliance is smaller compared 
to the Michell frame solution though still significantly larger 
compared to the thin-walled circular tube. Application of the 
selective penalization approach reduces the compliance by 
roughly 30% compared to the classical SIMP design. 

(14)l =
T2L(1 + �)
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Fig. 9   Optimization results for the torsion rod example: topology 
obtained using classical SIMP a, topology obtained using selective 
penalization before b and after mesh morphing c, rebuilt CAD geom-
etry d. The optimized closed-walled design consists of a single layer 
of elements
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Interestingly, the same value has been found before by Sig-
mund et al. (2016) performing a SIMP-based topology opti-
mization but with a hundred times more cubic elements.

As discussed earlier, the selective penalization result con-
sists of a single layer of elements with intermediate density. 
This constitutes a mean radius of R − h∕2 , which is 1.5% 
below the mean radius of the solid analytical solution which 
has the same outer diameter R but a smaller wall thickness. 
Moreover, one finds from Eq. (14) that the compliance is 
inversely proportional to the product EtR3

m
 , thus it is rather 

sensitive to such variations of the mean radius. Other less 

relevant contributing factors are the unwanted amount of 
material remaining in the inner of the tube due to the non-
zero lower bound �min as well as the slightly lower material 
volume, due to the inexact discretization of the cylindrical 
design domain.

Finally, one observes a good agreement of the CAD 
geometry and the selective penalization result with an 
only 0.7% lower material volume accompanied by a small 
increase in compliance of 1.1% . Note that due to the elastic 
foundation, reduction of the wall thickness by shrinking is 
symmetric with respect to the mid-surface defined by the 
element centers. Thus, the mean radius will remain largely 
unchanged after mesh morphing and no further improve-
ment of the compliance is achieved by the CAD design, 
as opposed to the cantilever beam example in the previous 
Sect. 5.1.

The design iteration history is depicted in Fig. 10 indicat-
ing a fast and smooth convergence behavior. A sudden drop 
of the material volume can be seen at i = 233 which is due to 
the deactivation of the sensitivity filtering. The target value 
Vmax is recovered already in the next iteration.

5.3 � Disk reinforcement

In a third example we address a solid disk loaded in normal 
direction at its center. We seek an optimized reinforcement 
design within a cylindrical design domain underneath the 
disk. The problem set-up is given in Fig. 11 and the cor-
responding parameters can be found in Table 7. The aim 

Table 6   Torsion rod example: material volume ∫ �dV  and compli-
ance results

The compliance value for the Michell frame solution has been taken 
from Sigmund et al. (2016)

Fig. 9 Material volume Compliance

Michell frame solution – 0.3204 483 (106%)
Classical SIMP (a) 0.3196 457.1 (100%)
Analytical solution – 0.3204 313.8 (69%)
Selective penalization (b) 0.3196 326.2 (71%)
Undeformed mesh B0 – 0.3178 –
Morphed mesh B (c) 0.3219 –
CAD geometry (d) 0.3175 329.8 (72%)
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Fig. 10   Torsion rod example: evolution of the normalized compliance 
and material volume during topology optimization. The stopping cri-
teria of the design iteration loops with and without sensitivity filter-
ing are met after 233 and 279 iterations, respectively. The penaliza-
tion exponent is progressively increased from 1 to p̂max
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Fig. 11   Problem set-up of the disk reinforcement example: the cylin-
drical design domain Ω is connected to the yellow-colored, solid disk 
which is fixed along its upper edge. A uniformly distributed normal 
load with a resultant force F acts on the dashed circular face on the 
upper side of the disk. (Color figure online)
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of this numerical example is twofold: On the one hand, the 
selective penalization approach shall be tested under varying 
material volume fraction limits. On the other hand, it shall 
serve as a benchmark problem to demonstrate the ability of 
the selective penalization approach to also generate more 
complex designs like closed cellular structures with multiple 
thin walls.

In Fig. 12, the optimized topology for a material volume 
fraction limit of 0.2 is shown from the outside. The disk is 
supported by a bowl-shaped closed shell which is flattened 
at the bottom due to the finite height of the cylindrical design 
domain. The internal features are made visible in Fig. 13b 
and comprise essentially two types of structural elements: 
First, an arrangement of twenty closed-walled ribs radiating 

from the center. The ribs carry the shear loads and connect 
the bowl-shaped shell to the disk, which are subjection to 
tension and compression, respectively. Second, a solid cylin-
drical region below the loaded face at the center which intro-
duces the external loads into the ribs. The results obtained 
using selective penalization in Fig. 13b make extensive use 
of intermediate densities to represent the ribs. Even the four 
crossed ribs which are slightly more pronounced, most prob-
ably because they are aligned with the Cartesian grid, have 
a density clearly below one. This explains why the inner 
structure of the design obtained for the same optimization 
problem using classical SIMP, which is shown in Fig. 13a, 
is no longer entirely closed-walled. Instead, it has four solid 
crossed ribs dividing the structure into four segments and 
each segment is stiffened by two additional compact diago-
nal bars. The result of the mesh morphing is visualized in 
Fig. 13c and the rebuilt CAD geometry is shown in Fig. 13d 
and e.

A quantitative evaluation of the four designs can be 
carried out with the values provided in Table 8. For a fair 
comparison, we computed the scaled compliance l ∫ �dV  
as suggested by Sigmund (2022), since the material vol-
ume is not exactly conserved during the post-processing of 
the two-step optimization procedure. Note that the mate-
rial volume fraction limit refers exclusively to the design 
domain whereas the material volumes listed in Table 8 
include both the reinforcement structure within the design 
domain as well as the solid disk itself. Three conclusions 
can be drawn: First, although the designs obtained using 
classical SIMP and selective penalization both feature a 
closed bowl-shaped shell, the latter still has a 6% smaller 
scaled compliance due to its more efficient cellular core 
design made of thin closed-walled ribs. Second, the mesh 
morphing step yields a deformed mesh volume with a sat-
isfactory deviation of about 4% from the material volume 
of the undeformed mesh. However, the agreement is not 
as close as for the two less complex numerical examples 
presented in the preceding Sects. 5.1 and 5.2. Third, the 
efficiency of the CAD geometry expressed by its scaled 
compliance matches the efficiency predicted by the topol-
ogy optimization with selective penalization.

To further investigate the behavior of the selective 
penalization approach, we solved the disk reinforcement 
problem for a series of different material volume fraction 
limits and again contrasted the results with SIMP-based 
designs, see Fig. 14. It can be seen that as the volume 
fraction decreases, the disk reinforcement changes into an 
open-walled truss for the SIMP case. This is in contrast to 
the designs obtained using selective penalization which 
do not lose their closed-walled topology even though 
the number of ribs becomes smaller. Thus, increasing or 

0.50.05 1.0
ρ(x)

Fig. 12   Disk reinforcement example: outer view of the optimized 
design for a material volume fraction limit of 0.2 obtained from the 
selective penalization approach prior to mesh morphing

Table 7   Disk reinforcement example: problem-specific parameters, 
dimensions and loads

Parameter Symbol Value

Design domain diameter D 1
Design domain height H 0.2
Diameter of loaded face d 0.1
Force resultant F 1
Element size h 1/85

Table 8   Disk reinforcement example: material volume ∫ �dV  and 
scaled compliance l ∫ �dV  for a material volume fraction limit of 0.2

Fig 13 Material volume Scaled compliance

Classical SIMP (a) 0.0407 1.90 (100%)
Selective penalization (b) 0.0407 1.78 (94%)
Undeformed mesh B0 – 0.0405 –
Morphed mesh B (c) 0.0424 –
CAD geometry (d) 0.0428 1.79 (94%)
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decreasing the volume fraction mainly leads to a resizing 
of the wall thicknesses.

The corresponding material volumes and scaled com-
pliances are provided in Table 9. Pairwise comparison for 
every material volume fraction limit confirms, that the 
efficiency improvements gained through the use of the 
selective penalization approach are indeed most signifi-
cant in the low volume regime and amount to almost 30% 
for f = 0.05.

One might assume that the scaled compliance of the 
designs obtained using selective penalization should be 
more or less constant as suggested by the invariance of the 
closed-walled topology shown in Fig. 9. However, this is 
not the case due to the prescribed solid disk. The smaller 
the material volume fraction limit, the larger is the relative 

share of the material volume spent on the disk. This leads 
to a structural response being increasingly dominated by 
the disk subject to bending which is clearly non-optimal. 
As stated earlier, note that the material volume fraction 
limit is defined with respect to the design domain only 
while the material volume also covers the disk.

6 � Conclusion

Closed-walled designs can be more efficient, multifunctional 
and even easier to manufacture, but fairly fine meshes are 
usually required to obtain them from density-based topology 
optimization with penalization. This paper introduced a two-
step optimization procedure which makes the generation of 

0.5
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1.0
ρ(x)

(a) (b)

(d)(c)

(e)

Fig. 13   Optimization results for the disk reinforcement example with 
a material volume fraction limit of 0.2: topology obtained using clas-
sical SIMP a, topology obtained using selective penalization before 
b  and after mesh morphing c, normal view d  and half section view 

e  of the rebuilt CAD geometry. To reveal the inner structure of 
the designs, the figure shows section cuts using a clipping plane at 
z∕H = 0.95 to hide the solid disk
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3D closed-walled designs feasible on coarse meshes and in 
particular for small material volume fractions. In a first step, 
a topology optimization is performed where the penalization 
of an intermediate element density hinges on the morphol-
ogy in a neighborhood of the element. Elements belong-
ing to thin features, like planar sheets or curved shells, are 
assigned proportional stiffness, whereas a sufficiently large 
penalization exponent is still applied everywhere else. The 
topology optimization result will be a combination of thick 
solid features and thin-walled intermediate density features 
typically consisting of a single layer of elements. In a second 
post-processing step, this intermediate result is transformed 
into a purely solid design. Taking a Lagrangian approach, 
we shrink each element volume to its material volume. This 
is achieved by solving a modified linear elasticity problem 

with imposed inelastic shrinkage strains. The resulting mor-
phed mesh serves as a reference shape for the creation of a 
CAD-type geometry, which is the final result of the two-step 
optimization procedure.

We have tested the procedure on three compliance 
minimization benchmark problems, a cantilever beam, a 
torsion rod and a disk reinforcement structure. In the can-
tilever beam example, the thin-walled intermediate density 
region was limited to the web, whereas the flanges were 
still solid. Compared against truss-like designs, we found 
stiffness improvements of about 10% . A closed-walled 
design was also obtained for the torsion rod example, con-
sisting entirely of a thin-walled intermediate density shell 
and leading to a reduction in compliance of almost 30% . 
Values found for the geometrically more complex results 

(a)

(b) (d)

(c)

(f)

(e) (g)

(h)
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0.05
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Fig. 14   Optimization results for the disk reinforcement exam-
ple: comparison of the optimized topologies obtained using either 
the classical SIMP method (top row) or the selective penalization 
approach prior to mesh morphing (bottom row). The columns corre-

spond to four different volume fractions f = 0.05 , f = 0.1 , f = 0.15 
and f = 0.2 (from left to right). To reveal the inner structure of 
the designs, the figure shows section cuts using a clipping plane at 
z∕H = 0.95 to hide the solid disk

Table 9   Disk reinforcement 
example: compliance results 
for different material volume 
fraction limits using the 
classical SIMP method and the 
selective penalization approach

Fig. 14 Material volume 
fraction limit

Material volume Scaled compliance

Classical SIMP (a) 0.05 0.0171 3.63 (100%)
Selective penalization (b) 0.05 0.0171 2.57 (71%)
Classical SIMP (c) 0.1 0.0249 2.42 (100%)
Selective penalization (d) 0.1 0.0249 1.95 (80%)
Classical SIMP (e) 0.15 0.0328 2.08 (100%)
Selective penalization (f) 0.15 0.0328 1.80 (87%)
Classical SIMP (g) 0.2 0.0407 1.90 (100%)
Selective penalization (h) 0.2 0.0407 1.78 (94%)
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of the disk reinforcement example were in the same range 
as well. Moreover, it could be shown that the topologies 
of the closed-walled designs obtained from the selective 
penalization approach are not sensitive to variations of 
the material volume fraction limit. As shown in the lit-
erature, similar efficiency improvements could have been 
achieved by mesh refinement. However, at least halving 
the element size would be necessary in the cantilever beam 
example leading to higher computational cost. For all three 
examples, smooth CAD geometries were created through 
reverse engineering of the morphed meshes. Compliances 
found by finite element analysis showed a close agreement 
to the values predicted by the topology optimization.

The promising results motivate a number of new direc-
tions for future work. In view of the fact that closed-walled 
designs exhibit larger surfaces compared to their truss-
like counterparts, it should be investigated how this affects 
manufacturability of real structures. For instance, from 
an additive manufacturing perspective, the orientation of 
large, wall-like features with respect to the build direction 
is of crucial importance. With the aim of reducing, though 
not eliminating, sacrificial support structures, it might be 
beneficial to locally revert back to a truss-like morphol-
ogy where the slope of an overhang is below some critical 
angle.

Given that usually closed-walled designs are also thin-
walled, they are likely more susceptible to buckling. Though 
this is an aspect of thin-walled structures in general and not 
specifically related to the design method used, it would cer-
tainly be interesting to see if and how this issue could be 
addressed within the proposed optimization procedure, e.g., 
by penalization of the proportional stiffness of thin features 
to account for the cost of additional stiffeners.

Another worthwhile topic to explore is the applicability 
of the procedure to more challenging problems with other 
objectives, more constraints, and complex shaped design 
domains including several fixed solid regions.
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