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Abstract
This study investigates a re-entry scenario of an Apollo-like space capsule with Direct Numerical Simulations (DNS). The 
simulation includes the chemical equilibrium gas model. Cross-flow-like vortices are induced through random distributed 
roughness patches on the capsule surface. Two different machine learning methods are used to predict the maximum vorticity 
magnitude downstream of a pseudo-random roughness patch, the wall-normal location of the vortex core and spanwise and 
wall-normal gradient maxima of u. A large DNS database is formed for training and testing of the neural networks. In order 
to understand the influence of the vorticity magnitude on the transition process, local one-dimensional inviscid (LODI) rela-
tions are used to describe perturbations at the inflow. The disturbance evolution in the streamwise direction is analysed with 
a two-dimensional Fourier transformation in time and space. We show how the vorticity magnitudes of the cross-flow-like 
vortices, spanwise and wall-normal derivatives of the streamwise velocity influence the transition location.

Keywords  Roughness · Hypersonic flow · Hypersonic boundary layer · Laminar-turbulent transition · Machine Learning

1  Introduction

A Thermal Protection System (TPS) of a space capsule is 
able to withstand extreme thermal stresses which occur due 
to air friction of the high-speed vehicle in a re-entry sce-
nario. A proper understanding of the re-entry boundary-layer 
dynamics on these blunt bodies is a mission critical aspect 
in order to improve the safety of space missions. The heat-
transfer rate can increase by one order of magnitude in case 
laminar to turbulent transition of the boundary layer occurs 
[1]. However, a precise prediction of the laminar-turbulent 
transition is yet not possible and the physical mechanism 

is not fully understood in present literature. It is necessary 
to provide a base for future transition criteria by gaining a 
deeper understanding of the physical mechanism to provide 
a more reliable and safe spacecraft as well as to reduce cost 
and weight.

Laminar-turbulent transition on a space capsule has been 
observed despite the stabilizing effect of the highly acceler-
ated flow over the capsule surface. Additionally, Hein et al. 
[2] observed small N-factors which can not trigger transi-
tion. This suggests roughness-induced transition as a pos-
sible underlying physical mechanism. Experimental stud-
ies on capsule geometries and the mission critical status of 
laminar-turbulent transition have been summarized by Sch-
neider [3]. The study suggests further transition research. 
Furthermore, the investigation of roughness-induced tran-
sition relied heavily on experimental investigations due to 
the lack of computational resources in the past. A summary 
of blunt bodies with roughness experiments was described 
by Schneider [4]. Both isolated and distributed roughness 
patches are found to be the dominating cause for laminar-
turbulent transition on a capsule geometry.

The influence of surface roughness on turbulent flow 
is summarized by Kadivar et al. [5]. The study provides 
various roughness parameters to classify roughness statisti-
cally and provides insights on the influence of roughness in 
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various ranges of flow regimes. Kadivar et al. point out that 
the sand-grain roughness height can not describe the rough-
ness effects on the turbulent flow in many cases.

In terms of roughness-induced hypersonic transitional 
flows, two different kind of roughness types are investigated 
in numerical studies: An isolated and a distributed rough-
ness patch. For different isolated roughness elements, Sev-
eral DNS were investigated by Van den Eynde et al. [6]. A 
Mach 6 flow over a flat plate with a roughness element was 
computed. The study took several different factors of the 
roughness element into account, e.g. the shape and the plan-
form of the roughness. Disturbance levels of the freestream 
were also considered. It was noted that the transition process 
was not exclusively influenced by the frontal, but also by the 
aft section of the isolated roughness element. The detached 
shear layer at the ramped-down aft section of the roughness 
element was spread out and reduced in strength and led to a 
lower instability growth rate.

Di Giovanni and Stemmer [7] studied distributed rough-
ness elements in a re-entry scenario of an Apollo-like 
space capsule. In the wake of the roughness, unsteady dis-
turbances were amplified in cross-flow-type vortices. The 
highest amplification was observed in the vortices created 
by the highest skewed roughness peaks. The focus of the 
study was on the disturbance amplification for different 
chemical models (chemical equilibrium, chemical/thermal 
non-equilibrium). A destabilizing effect of the chemical non-
equilibrium occurred in the proposed set-up.

A roughness with a sinusoidal and triangular base func-
tion with the same maximum roughness height were com-
pared by Ulrich and Stemmer [8]. This setup was chosen 
to better understand the role of the roughness geometry of 
distributed patches in terms of their vorticity generation. For 
patches with a triangular base function, stronger streamwise 
vorticity was observed in the wake compared to sinusoidal 
ones. The growth of unsteady disturbances is analysed with 
a 2D Fourier transformation for both roughness types. The 
breakdown of the cross-flow-like vortex is observed for both 
sinusoidal and triangular roughness patches. For the trian-
gular patch, transition is occurring further upstream, due to 
earlier disturbance amplification in the stronger wall-normal 
and spanwise gradients of the streamwise velocity.

The complexity of (possible) industry relevant rough sur-
faces on transitional flows is addressed by Thakkar et al. [9] 
in a study containing 17 rough surface samples. Different 
roughness effects were observed although all samples were 
scaled to the same roughness height (k=�/6) which once 
more underlines the necessity to consider the roughness 
topology and not only its maximum height. The authors pre-
sent a method to compute ΔU+ and the peak turbulent kinetic 
energy from surface parameters. Further, key surface param-
eters for the ΔU+ calculation are identified, such as surface 
skewness and rms roughness height amongst others. The 

study focuses on the transitionally rough regime, but could 
be extended to fully rough regimes with significantly more 
data. Thakkar et al. show the feasibility to predict roughness 
effects with surface characteristics with a fitting method.

Brunton et al. [10] give an overview of the usage of 
machine learning (ML) methods in the field of computa-
tional fluid mechanics and emphasize its potential. Specifi-
cally on the influence of a rough distributed surface topol-
ogy on turbulent flow, Jouybari et al. [11] introduce a Deep 
Neural Network (DNN) and Gaussian Process Regression 
(GPR) to predict the Nikuradse equivalent sand-grain height 
ks. The ML-based method performed significantly better 
compared to conventional polynomial models. An average 
prediction error of less then 10% was achieved for a data-
base with different roughness types. Jouybari et al. hope to 
predict physics-related flow quantities, e.g., flow separation 
locations, with their approach in the future.

Lee et al. [12] use transfer learning to reduce the size of 
the high-fidelity training data set. The study uses a two-step 
approach to develop a machine learning-driven framework 
to compute the drag over a roughness patch. In the first step, 
the neural networks were informed with ’approximate’ 
knowledge based on empirical relations. With this informa-
tion, the networks were fine tuned in the second step based 
on DNS data. The proposed configuration showed that drag 
prediction benefited significantly from the usage of transfer 
learning. The authors acknowledge that an increase of the 
training database size is necessary to also cover roughness 
where empirical relations are not investigated.

Distributed roughnesses are technically more relevant as 
they come closer to model an ablative surface of a space 
capsule. Since random distributed roughnesses have a limit-
less amount of possible parameters, we made the following 
considerations: The effect of roughness on laminar-turbulent 
transition can be roughly characterized by the roughness 
Reynolds number Rekk . For a large roughness heights in 
the order of the boundary layer thickness, transition is trig-
gered immediately downstream of the roughness element 
( Rekk >450). The effects of very small roughness heights 
are damped downstream in the accelerated flow of the cap-
sule surface where the flow remains laminar. This Reynolds 
number is evaluated with flow parameters in the smooth wall 
flow regime at the roughness peak height. All investigated 
roughness patches in the database have a roughness Reyn-
olds number of Rekk = 180 corresponding to a maximum 
roughness height of hmax=4.3 mm or 18% of the boundary 
layer thickness. The roughness peak height was chosen as 
it does not trigger transition immediately. The roughness 
has the potential to generate a cross-flow-like vortex in the 
wake of the roughness patch eventually leading to laminar 
transition. The size of the individual roughness elements 
within the patch is representative for an ablative wake and is 
a technical representative roughness of reduced complexity 
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as was already shown in detail by Di Giovanni and Stemmer 
[13]. In Ulrich and Stemmer [8], it could be shown that the 
dominant cross-flow-like vortex is formed by a peak and an 
adjacent valley and the chosen configuration would deliver 
destabilizing vortices. Larger or smaller wavelengths deliv-
erer smaller vortex magnitudes less relevant for transition. 
These roughness wavelengths were omitted to simplify the 
model. The chosen configuration represents a low-order 
model of a pseudo-random ablative heat-shield surface.

The present study investigates the influence of different 
streamwise vorticity magnitudes and other flow parameters 
on the laminar transition process. It compares two different 
data-driven machine learning methods (Deep Neural Net-
works and Convolutional Neural Networks (CNN)) for the 
prediction of the streamwise vorticity magnitude as well as 
maxima of velocity gradients and the vortex core position. 
For training, validation and testing of the networks, a large 
DNS database is formed with 9180 simulations of a reduced 
domain containing a random distributed roughness patch. In 
the second part of the study the unsteady downstream dis-
turbance evolution is investigated for the different vorticity 
magnitudes with a 2D Fourier transformation.

2 � Governing equations

The investigation uses the unsteady three-dimensional 
compressible Navier–Stokes equations to perform Direct 
Numerical Simulations

with the density � and the velocity component ui in the Ein-
stein summation notation. Further, we use the following 
momentum equations

with the spatial coordinates xi and the time t. The stress ten-
sor �ij is computed with the dynamic viscosity � as

The energy equation is defined the following way,

For the chemical modelling, Park’s two temperature model 
[14] is used. It uses five different species (N2, O2, NO, N, 
O). In this model, the equilibrium constants for the chemical 
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equations are obtained by polynomials. Additionally, the sin-
gle-species viscosity is computed by Blottner’s formula [15]. 
Hirschfelder et al. [16] describe the single-species thermal 
conductivity. All single-species thermodynamic properties 
are combined with Wilke’s mixing rule [17].

3 � Numerical set‑up

A semi-commercial f inite volume solver called 
Navier–Stokes Multi-Block Solver (NSMB) is used in this 
investigation. It utilizes the Message-Passing-Interface 
(MPI) to work in parallel by communicating data between 
different blocks. The computations were performed on the 
SuperMUC HPC System at the high performance computing 
facility of the Leibniz Rechenzentrum (LRZ) in Garching b. 
Munich. It was used and validated in previous hypersonic 
studies, e.g., [13].

The DNS performed in this study is done in three steps. 
At first, a two-dimensional axisymmetric simulation for the 
entire capsule is computed which provides the necessary 
inflow conditions for the three-dimensional simulations. 
This preliminary simulation is conducted on an axisym-
metric two-dimensional grid (see Fig. 1a). Once the condi-
tions behind the bow shock close to the capsule surface are 
known, a 3D simulation is performed on a restricted domain. 
In this second domain (Fig. 1b), a three-dimensional steady 
simulation is performed based on the conditions com-
puted in the 2D simulation. For the unsteady calculations, 
the restricted 3D domain is further reduced and only the 
wake flow of the roughness (marked in blue in Fig. 1b) is 
observed. Previous investigations [18] have shown that the 
main interaction between the disturbances and the vortical 
structures triggering instabilities leading to transition hap-
pen in the wake flow of the roughness and not through the 
interaction of unsteady disturbances with the roughness 
itself. The third 3D domain is used for the AI database (red 
in Fig. 1b) only and it consists of the immediate vicinity of 
the roughness patch exclusively, see Fig. 2. This reduction 
was necessary to be able to simulate a wide range of random 
roughness patches and focus on the vorticity production by 
the roughness patch. This study only shows results from the 
AI domain (red in Fig. 1b) and the domain for unsteady 
simulations (blue in Fig. 1b).

The 2D simulation is performed on a grid with about 
80,000 grid points. The bow shock, which forms in front of 
the capsule’s heat shield, is captured by an upstream splitting 
method (AUSM+) upwind scheme of first order accuracy. 
An implicit Euler time integration method is used to perform 
the study simulation. The restricted 3D domain has a size of 
51.2 Million grid points and its grid convergence has been 
verified in previous studies [7, 13] using the results from 
the 2D simulations as boundary conditions. A fourth-order 
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accurate central scheme is chosen for the spatial discretiza-
tion. A hybrid explicit Runge–Kutta Method is applied in the 
unsteady case. This domain is used for unsteady simulations 
to investigate the influence of the cross-flow-like vortex on 
the onset of transition in the flow.

The AI domain (Fig. 2) is 17 cm wide in the spanwise 
direction and has a streamwise extension of 28 cm. Also 
the maximum domain height is reduced to 6.6 cm com-
pared to the restricted domain in Fig. 1b. The grid reso-
lution is reduced to i=85 (streamwise direction), j=69 
(wall-normal direction) k=200 (spanwise direction) points. 
The resolution of the domain with a total number of grid 
points of 1,173,000 was compared to the fine resolution 
of the restricted domain. The AI domain is used to per-
form a DNS to extract flow parameters from the wake. 
The main focus was to extract flow parameters which 

best characterizes the strength of cross-flow-like vortex 
in the wake. We used the maximum of the streamwise 
vorticity, the maximum of �u∕�y and �u∕�z in the wake as 
well as the wall-normal distance of the vortex core (see 
Sect. 6.2.2). Further investigations had shown that other 
parameters which might have an influence on the wake had 
no influence on the outcome of the Neural Network analy-
sis. The flow parameters extracted from the DNS describe 
how the cross-flow-like vortex is disturbing the flow com-
pared to a smooth surface. The maximum of streamwise 
vorticity downstream of the roughness patch, the vortex 
core position and streamwise and spanwise gradients of 
the streamwise velocity were not significantly affected by 
the chosen grid resolution for the reduced domain com-
pared to the higher resolution of the restricted domain. The 
number of grid points in the wall-normal and spanwise 
direction was chosen to fully resolve the boundary-layer 
and the cross-flow-like vortex. The maximum stream-
wise vorticity, wall-normal and spanwise gradients of the 
streamwise velocity at the outflow of the AI domain were 
all below a five per cent error margin from the DNS result 
of the restricted domain for the tested grids. The grid for 
the AI database provides sufficient accuracy to compute 
reasonable DNS-based training data.

4 � Roughness generation

The roughness generation process used in this study was 
introduced by Di Giovanni and Stemmer [13]. It produces 
a pseudo-random distributed roughness pattern which 
is composed of several sinusoidal waves with different 
amplitudes and phases. The roughness height h relative to 
the wall surface is defined by

Fig. 1   Sketch of the full (a), restricted and reduced restricted (b) domain

Fig. 2   Reduced domain for the ML training and test database



975Unsteady evolution of distributed roughness‑induced vortices under re‑entry conditions﻿	

1 3

The function g(x) provides a smooth transition from the 
smooth wall to the roughness patch. The spanwise exten-
sion of the domain defines the fundamental wavelength �0 . 
At the roughness location, the fundamental wavelength is �0
=170 mm. Each roughness is made of nine amplitude and 
nine phase values. The amplitudes Aq,r and phases �q,r are 
defined randomly and are uniformly distributed. The ampli-
tudes are randomly chosen from 0 to 1, but amplitudes Aq,r 
are set to zero for q2 + r2 > 32 + 1 . This ensures that �0 is 
the maximum wavelength in all directions. Also the phase 
values are uniformly distributed, but range from 0 to 2� . An 
overview of the average value and the standard deviation of 
all amplitudes within the database can be seen in Table 4.

A sample of such a uniform distribution is given in 
Fig. 3 for the phase �11 . A similar uniform distribution 
can be found for the other amplitude and phase values.

The random numbers were generated with the For-
tran RANDOM_NUMBER command. According to the 
GNU Compiler Handbook, this generator has a period of 
2256 − 1 , which is more than sufficient (Table 1).

Eq. 5 is used to generate a database of DNS with ran-
dom distributed roughness patches. Every patch within the 
database has the same maximum height hmax=4.3 mm for 
better comparison.

(5)

h(x, z) = hmax ⋅ g(x)

3
∑

q,r=1

Aq,r sin

(

2�q

�0
x +

2�r

�0
z + �q,r

)

.

4.1 � Perturbation generation

The steady cross-flow-like vortices in the wake of the rough-
ness patch are perturbed with high-frequency perturbations 
in order to trigger transition. These waves are introduced at 
the inflow of the reduced domain. In order to model these 
perturbations, some assumptions are made: The perturbation 
amplitude is smaller by orders of magnitude compared to 
the base flow variables. The ratio between the disturbance 
pressure and the steady flow pressure is pdiss∕p0 = 1 ⋅ 10−6 at 
the boundary-layer thickness. The properties are modelled as 
local one-dimensional inviscid (LODI) relations. The physi-
cal properties of the flow are locally constant for a certain 
height and are not changed by the small perturbations, but 
are changing in the wall-normal direction within the bound-
ary layer of the base flow. This investigation is using a pres-
sure, temperature, streamwise velocity u and density wave. 
The v- and w-velocity components are not included.

These considerations lead to the following wall-normal 
pressure function for a given time t at the wall-normal dis-
tance y

The disturbance frequency is fdiss = 8.3 kHz. This frequency 
showed disturbance growth in the wake for similar rough-
ness configurations at a Mach 20 re-entry scenario in pre-
vious studies [8]. The wall-normal and spanwise gradients 
of the streamwise velocity of the cross-flow-type vortex 
are shear flow regions where unsteady perturbations are 

(6)p�(y, t) = e−(y∕�)pdiss cos(2�fdisst).

Fig. 3   Histogram of all random �
11

 phases inside the database

Table 1   Average and standard deviation of Aq,r and ϕq,r

Ai,j Average [–] Standard deviation [–]

A1,1 0.209 0.122
A1,1 0.208 0.118
A1,1 0.205 0.115
A1,1 0.207 0.118
A1,1 0.208 0.120
A1,1 0 0
A1,1 0.205 0.115
A1,1 0 0
A1,1 0 0
�1,1 3.138 1.813
�1,1 3.146 1.819
�1,1 3.151 1.809
�1,1 3.151 1.818
�1,1 3.155 1.818
�1,1 3.159 1.816
�1,1 3.154 1.810
�1,1 3.121 1.805
�1,1 3.131 1.818
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amplified. This amplification happens for a broad band of 
frequencies in the kHz regime. We used these perturbation 
frequencies in a previous publication and know from stabil-
ity calculations that a 8.3 kHz perturbation will be amplified 
(see [8]). For higher frequencies (16–50 kHz), Di Giovanni 
and Stemmer [7] observe a similar behaviour in the temporal 
Fourier modes of the streamwise velocity as for a 8.3 kHz 
disturbance. However, different N-factors are observed. We 
therefore can expect, that we will observe a similar down-
stream behaviour in the transition mechanism but the onset 
of transition position may vary. In order to assure compara-
bility with previously generated results (as mentioned) we 
retained the 8.3 kHz which is known to be unstable for these 
scenarios.

The pressure disturbance is damped outside the bound-
ary layer with e−(y∕�) . Following the LODI procedure 
described in [19], the velocity perturbation is computed 
according to

and the temperature disturbance as

with the variables �0(y) , c0(y) , T0(y) and R0(y) from the 
steady flow. Finally, the equation of state delivers the den-
sity perturbation,

(7)u�(y, t) =
1

�0(y)c0(y)
p�(y, t),

(8)T �(y, t) =
T0(y)

�0(y)c0(y)
2

(

c0(y)
2

R0(y)T0(y)
− 1

)

p�(y, t),

Fig. 4   Wall-normal distribution of �′ , p′ , T ′ and u′
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The maximum of the disturbance variables is very small 
compared to the original steady value, see Table 2 and there-
fore the effect on the physical and chemical properties is 
negligible.

The envelope function of the four disturbances can be 
found in Fig. 4. At the inflow, the disturbance variables are 
added to the static steady inflow variables.

5 � Machine learning methods

In order to predict the maximum streamwise vorticity down-
stream of the roughness patch, two different machine learn-
ing methods are tested: A Deep Neural Network and Con-
volutional Neural Network. The DNN is using geometric 
parameters derived from the roughness surface as input, the 
CNN directly obtains images of the roughness surface as 
an input. Both networks are predicting a single value as the 
output, e.g. the maximum streamwise vorticity downstream 
the roughness patch and are trained, tested and validated 
with simulations from the DNS database.

For the prediction of a single value output from multiple 
input parameter, both ML setups use feed-forward neural 
networks. The networks in this study consist of an input 
layer, three hidden layers and a single output neuron. All 
neurons of one layer are connected with the next layer, but 
there is no connexion within a layer itself. Each neuron out-
put is weighted and summed up in the input of a neuron 
in the next layer. The activation function in each neuron 
computes the output which is fed to the next layer. Using 
the notation from [20], the input vectors x1j to xDj with D 
being the number of input values and j a specific neuron, are 
weighted with the synaptic weights w1j to wDj . The output o 
of a single neuron j can be calculated as

The network is trained by solving an optimization prob-
lem such that the defined error function is minimized. In 
this study, we optimized for mean squared error which 

(9)��(y, t) =
p�(y, t)

R0(y)T
�(y, t)

.

(10)oj = f

(

D
∑

i=1

wijxij

)

.

counterbalances outliers of bad prediction values stronger 
than the absolute percentage error. Additionally, the CNN 
network uses a set of convolutional layers to extract a set of 
parameters for the adjacent feed-forward network. It filters 
geometric significant features for the flow-parameter pre-
diction as these networks were designed for image pattern 
recognition. A recent and detailed overview over this method 
can be found in [21].

All networks have a single variable output, whilst the 
input data is linked to the 9180 Simulations over the cor-
responding roughness patch. For example, common rough-
ness-defining statistical parameters such as the RMS value 
of the roughness height are used as input. We made sure 
that no data calculated by the DNS is used as an input 
parameter. If flow parameters from the DNS are used as an 
input, we could not use the ML approach to bypass a costly 
DNS. The DNS data is presented to the Networks as the 
output training variable. However, we observed a signifi-
cant prediction improvement of the maximum streamwise 
vorticity once we also provide the wall-normal distance 
of the vortex core as an input parameter. A stronger vor-
tex is often further away from the surface. However, this 
information had to be retrieved from the DNS data. The 
results from the DNS are only presented to the network 
via training data. Since we train our network for a single 
flow parameter in a slice downstream of the roughness 
patch, only a single flow parameter is extracted from the 
3D DNS.

5.1 � Deep neural network setup

The Deep Neural Network is using a selection of geo-
metric parameters to compute the maximum vorticity at 
x=0.27 m downstream of the roughness patch. At first, 
the streamwise position of the highest peak Posmax,i and 
the lowest peak Posmin,i as well as the spanwise coordi-
nates ( Posmax,j,Posmin,k) are included, because the vortex 
is generally formed downstream the highest peak and its 
adjacent valley. An initial study has shown that this factor 
has a significant influence on the prediction capability of 
the DNN.

Further, we used statistical functions to compute a 
single input parameter from a field of geometric values. 
A height value points in the wall-normal direction (j), 
whilst the roughness patch extends in the streamwise (i) 
and spanwise (k) direction. The geometric features for pre-
diction were the roughness height h(i, k), the streamwise 
derivative of the roughness heights

(11)
�h(i, k)

�i
,

Table 2   Maxima and minima of disturbance amplitudes

Variable Maximum Minimum

p′ 1.27 ⋅ 10−6 Pa 0.285 ⋅ 10−6 Pa
�′ 5.96 ⋅ 10−2 [kg/m3] 0 [kg/m3]
T ′

3.92 ⋅ 10−3 [K] 0 [K]
u′ 4.62 ⋅ 10−3[m/s] 0 [m/s]
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and the spanwise derivative,

Feeding curvature values, such as the mean or Gaussian cur-
vature did not significantly improve the prediction and hence 
were omitted from the database.

Then, we computed the geometric average for the rough-
ness height havg

with the number of points Ni , Nk in the streamwise and span-
wise directions, respectively.

The root-mean square (RMS) of the height is calculated 
as

The skewness of the height values is defined as

The statistical functions used in Eqs. 13, 14 and 15 are 
applied to the spatial derivatives (Eq. 11,12) accordingly. 
The random roughness patches have an average skewness 
of 0.0187 with a standard deviation of 0.0162. The small-
est skewness is −0.24 and the biggest skewness is 0.0598. 
For the flatness, a mean value of 2.560 is measured with a 
standard deviation of 0.312. A minimal flatness of 1.543 and 
maximum of 3.376 is computed.

Further, we derive the streamwise inclination angle from 
the skewness value of the streamwise derivative

(12)
�h(i, k)

�k
.

(13)havg =
1

Ni ⋅ Nk

∑

i,k

h(i, k),

(14)hrms =

√

1

Ni ⋅ Nk

∑

i,k

(

h(i, k) − havg
)2
.

(15)Sk(h) =
1

h3
rms

(

1

Ni ⋅ Nk

∑

i,k

(

h(i, k) − havg
)3

)

.

and in the spanwise direction accordingly

For the training step, the data is split into training data (80%) 
and test data (20%). In both datasets, the input parameters 
are normalized before they are introduced to the network. 
The DNN is a multilayer perceptron (MLP) with three hid-
den layers. In total, there are 17 input parameters. In this 
study, we used a DNN with 320 neurons in the first, 760 
neurons in the second and 960 neurons in the third hid-
den layer. These dimension were determined by a hyper-
parameter study and this setup proved to deliver best results 
compared to other combinations investigated. Every layer 
is fully connected to the previous layer. This means that the 
output of each neuron is used as input for each neuron in 
the next layer (see Fig. 5). The data is fed forward through 
the network by the Exponential Linear Unit activation func-
tion. Finally, the maximum streamwise vorticity is derived 
at the output layer as a single variable output. The structure 
of this network is visualized in Fig. 5 and a sample of input 
parameters is shown in Fig. 6.

5.2 � Convolutional Network Setup

For the CNN, no input parameters are mathematically 
derived from the roughness patch. An image of the patch 
with the normalized roughness height as grey-scale values is 
used as an input for this network. No further pre-processing 
of the data is necessary. The image has a resolution of 16× 16 
pixels. A sample input image can be seen in Fig. 7 marked as 
input image. In this image, the height values are normalized 
from -1 (white) to 1 (black).

(16)Ii = tan−1
(

1

2
⋅ Sk

(

�h(i, k)

�i

))

,

(17)Ik = tan−1
(

1

2
⋅ Sk

(

�h(i, k)

�k

))

.

Fig. 5   Network graph of the 
used DNN
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The network contains three convolutional layers with a 
filter (kernel) size of 3 × 3. The feature extraction from the 
roughness image is performed in the convolutional layer. 
The rectified linear activation function (ReLU) is used. After 
each convolutional layer, a max-pooling layer of the size 
2 × 2 is added and the data is fed through a dropout layer. The 
max-pooling layer reduces the in-plane dimensionality of the 
detected features by selecting only the maximum values of a 
feature within a group [22]. At the end of the convolutional 
layer, the data is flattened into a 1D array with 1152 param-
eters. This array is now the input for a DNN with three hid-
den layers. The first has a 500 and the second and third layer 
200 neurons each. The final output is also a single variable 
output. In total, the CNN has over 770,021 trainable features.

5.3 � AI training and test database

Both ML methods were trained with a database of of 9180 
simulations with random roughness patches. The networks 

were initially trained to predict the maximum streamwise 
vorticity in a y-z-slice at x=0.27 m at the outflow of the 
domain. An overview of the vorticity distribution produced 
by random roughness patches with a peak to boundary layer 
thickness ratio of 18% can be seen in Fig. 8. Most vorticity 
values are around 100,000 1/s. Other flow parameters of 
interest were also saved for possible prediction outputs such 
as the wall-normal distance of the vortex core of the cross-
flow-like vortex, the maximum streamwise derivatives in 
wall-normal and spanwise direction. All parameters were 
calculated in a y-z-slice at x=0.27 m like the maximum 
streamwise vorticity. Depending on the ML method, the 
input parameters consist of a set of roughness parameters 
or the images of the roughness patch described in sects. 5.1 
and 5.2.

During the training phase of the network, the training data 
(80% of the data set) was split once more in 80% actual train-
ing data and 20% validation data. The prediction capability 
of the networks is tested in every epoch with the validation 

Fig. 6   Sample of input parameters
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data. Is the mean squared error not improved 10 times in 
a row, the training is stopped. This prevents to overfit the 
network by training too many epochs. After every epoch, a 
new set of validation data is chosen from the training data. 
This way, the whole training data is covered during the train-
ing of the networks. The test data is measuring the networks 
prediction performance, for example by computing the aver-
age of the relative error of the prediction. During the train-
ing process, the network is not exposed to the test data in 
anyway.

6 � Results

This study investigates a Mach 20 re-entry flow of an 
Apollo-like capsule at a flight altitude of about 57.5 km. 
The freestream conditions p∞=29.9 Pa, T∞=253.3 K, Twall
=1800 K and Re∞=1.97 ⋅ 106 m −1 are taken from an Apollo 
trajectory. The main focus of this study is to investigate the 
influence of distributed roughness patches on the disturbance 
evolution. Further, the prediction capability of the stream-
wise vorticity by machine learning methods is discussed.

Cross-flow-like vortices are observed in the steady wake 
flow of a distributed roughness patch. Figure 9 shows a 

Fig. 7   Structure of CNN

Fig. 8   Histogram of maximum streamwise vorticity values in the AI 
database

Fig. 9   Detail restricted with random roughness and sample stream-
lines with temperaturecontour at x = 0.27 m
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sample streamline through the vortex core with the strong-
est streamwise vorticity. The flow is passing over the dis-
tributed roughness patch. A temperature contour of a cross 
section (x=0.27 m) in the wake is also displayed in Fig. 9. 
The strongest vortex generally emerges downstream of the 
highest peak within the patch. This elevation in the patches 
forces fluid in the wall-normal direction. A vortical motion 
is induced in combination with the adjacent valley which 
are not aligned in the main flow direction. It is observed 
that the vortex is damped along the streamwise direction due 
to the strong acceleration of the flow (not shown). Further, 
the cross-flow-like vortex transports low-temperature fluid 
towards higher regions of the boundary layer.

In the next sections, the capability of machine learn-
ing methods to predict the maximum streamwise vorticity 
observed in the y-z-slice at x=0.27 m (see Fig. 9) is dis-
cussed. Further, unsteady simulations investigate the dis-
turbance development in the wake of the a small, medium 
and strong vortices in the wake to show their transitional 
potential.

6.1 � Vorticity Prediction by the DNN and the CNN

The CNN is predicting the vorticity with a mean error of 
13.29% with a standard deviation of � = 11.70% compared 
to the 17.36% ( � = 16.91% ) of the DNN.

The DNN can predict 95.4% of the test simulations within 
a deviation of [ −4.4 ⋅104 ; 4.4⋅ 104 ] [1/s]. This confidence 
interval is marked by the green line in Fig. 10. This mar-
gin corresponds to two times the standard deviation of the 

absolute error. Further, the DNN methods compute 40% of 
the test sets with an error below 10%. For only 4% of the 
values, the DNN prediction amounts to more than twice as 
much as the DNS vorticity value.

On the other side, the CNN is computing half of the vor-
ticity value with an error below 10% and 90% of the data 
below 25%. Except for one simulation in Fig. 10, all DNN 
predictions (blue) are in the confidence interval of the DNN 
marked in green. The confidence interval ( 2 × � ) of the CNN 
prediction is marked as blue lines in Fig. 10. It can clearly 
be seen that the CNN is predicting the maximum streamwise 
vorticity within a confidence interval which is almost twice 
as narrow compared to the prediction of the DNN. The error 
of the CNN is also smaller depending on the actual vorticity 
values. The DNN is weaker in predicting the correct value 
for very low or very small vorticity values because there are 
few examples within the database. A summary of the differ-
ent error quantities for both ML methods is summarized in 
Table 3. The standard error is computed as

with the standard deviation � and the sample size of our test 
database n.

The standard error of the linear regression of predicted 
and computed values in Fig. 10 for the CNN is 12,546.24 
[1/s] and 18,765.52 [1/s] for the DNN.

(18)𝜎x =
𝜎
√

n
,

Fig. 10   Comparison between predicted an simulated data for DNN 
(red) and CNN (blue)

Fig. 11   Prediction error for different input tile sizes

Table 3   Prediction errors for the DNN and CNN

Error type DNN CNN

Average error [%] 17.4 13.3
Max. error [%] 152.3 90.2
standard deviation � [%] 16.91 11.70
[%] 0.69 0.48
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A study with an increased input image resolution (32× 32 
and 64×64) did not show improvements in the prediction 
capability. In Fig. 11, the average prediction error of the 
CNN is plotted for databases with different sized input 
images. The performance slightly drops for larger tiles. 
The relevant features for the prediction can be extracted 
from the input image with a resolution of 16×16. All nota-
ble roughness features, such as the maximum height in the 
patch, are sufficiently resolved. Hence, for patches composed 
with more sinusoidal waves, per fundamental wavelength, a 
higher resolution might be necessary. The input tiles with a 
higher resolution (32× 32 and 64×64) contain more informa-
tion about the roughness patch due to the higher resolution. 
The CNN cannot use this increase in information to outper-
form the smallest tile-set database. This indicates that the 
higher resolution is containing features that obfuscate the 
CNN (noise) and lead to less accurate prediction.

The CNN network is also able to be trained to predict dif-
ferent flow parameters with a comparable prediction error. 
We have tested the network on the wall-normal distance of 
the vortex core, the maximum derivative of u in the spanwise 
and wall-normal direction. Both networks can be trained to 
predict different flow parameters, but only one at once. We 
observed that training the network to predict two or multiple 
flow parameters with the same network is not as effective as 
creating specialized networks for each parameter due to the 
relatively low number of training data. An overview over 
the relative prediction error for the CNN is given in Table4.

The DNN reveals influential parameters for the predic-
tion process with a parameter study. This allows physical 
insight to a certain extent. An initial parameter study [23] 
showed that the vortex formation is mostly influenced by 
the surface gradients of the roughness patch and the loca-
tion of the highest peak and lowest valley within the patch. 
On the other hand, the CNN performs better in the vorticity 
prediction, but remains a black box. With the help of a sali-
ency map, we were able to confirm that the CNN is using 
the region of the highest peak and adjacent valley as the key 
feature for the prediction of the streamwise vorticity. This 
peak region is also the origin of the strongest cross-flow-like 
vortex, like Fig. 9.

In Ulrich and Stemmer [8], we compared surfaces syn-
thesized from sinusoidal waves with a patch synthesized 
from triangular waves but with the same amplitude and 
phase values. We tested our ML methods with 50 three-
wave patches with a triangular base function and 50 patches 
with five waves instead of three wavenumbers present. Pre-
dicting a different surface challenged the network and the 
error of the CNN increased for the test cases from an aver-
age error of 11.2% to 26.5% for the triangular three-wave 
patch and 28.2% for the sinusoidal five-wave patch. This was 
expected as we trained the network with patches with only 
three sinusoidal waves present. The cross-flow-like vortex 

is formed by a single dominant peak and an adjacent valley. 
A change in the base function introduces a different slope 
of the surface and in a five-wave patch more peaks and val-
leys are present. This leads to the formation of a different 
magnitude of the cross-flow-like vortex which the network 
is not trained for.

We are confident that given a wider training database the 
network will be able to adapt. In the current stage, the net-
work can not predict arbitrary roughnesses as accurate. As 
ablation is involved, the shapes are expected to be rather 
non-edgy than really rough and we therefore believe to have 
chosen a suitable roughness model for the investigation of 
the generation of cross-flow-type vortices through a large 
number of distributed roughness patches. This study tries 
to explore the potential for the methodology as a whole. We 
hope to have shown that it is feasible. The next step to fully 
random surfaces would enlarge the potential of the method, 
but on the other hand, the generation of unstable vortical 
structures downstream of the patch might be not as success-
ful as with the current patches. This then can shed more light 
on the general transition scenario in these highly accelerated 
boundary-layer flows.

6.1.1 � Autoencoder

The computational effort to obtain input data for the CNN is 
negligible compared to the output training data. Computer-
generated images of random roughness patches can be used 

Fig. 12   Structure of autoencoder

Table 4   Relative prediction 
error for different output 
parameters

Parameter Relative 
error [%]

�x 13.3
yvortex 11.3
�u∕�y 13.6
�u∕�z 13.8
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as input data, whilst the output data is computed via a DNS 
on an HPC system. Hence, we used an autoencoder in a 
prepossessing step to pre-train the network with a large set 
of input roughness images of over 100,000 images.

The encoder part of the autoencoder transforms this set 
of input data into a latent space representation. An informa-
tion bottleneck is created in the middle of the network. The 
decoder part is using this reduced information of the input 
image to recreate the original input image. Since the input 
and output are the same in the training process of the autoen-
coder, no DNS data is required to train the autoencoder. An 
overview of this set-up can be found in Fig. 12.

In a second step, the encoder part of the autoencoder 
replaces the set of convolutional layers that compute the 
input array for the forward feeding network in the CNN setup 
(see Fig. 7). The encoder part is only fine tuned in the train-
ing process. The effect of the inclusion of the autoencoder 
can be seen in Fig. 13. For smaller training databases, a 
pretrained encoder is better in order to predict the maximum 
streamwise vorticity since it has already learned to compute 
a representative latent space representation of the incom-
ing images. This reduced representation is enough to fully 
reconstruct the input image but it was not fully optimized 
for the task of the output computation. For larger datasets 
(4000 and above), the autoencoder slightly reduces the pre-
diction capability. The encoder part is trained to deconstruct 
the input images into an abstract space, which is sufficient 
to fully reconstruct the input image. This abstract layer can 
also be used as input to compute the streamwise derivatives. 
However, for larger sets, it is slightly more efficient to fully 
train the convolutional layers without the initial encoder 
weights. The CNN training process is optimized to extract 
features from the input images into the abstract layer, which 
are relevant features for the output prediction. However, the 
autoencoder includes all information about the patch in the 

abstract layer which might also include irrelevant parameters 
for the output prediction.

In summary, the use of the autoencoder for different train-
ing sizes confirms that it is useful for smaller training data-
bases. This makes it also an interesting method for studies 
with only a small set of DNS. It also confirms that our data-
base is sufficient in size. The prediction error is converging 
and does not improve significantly with larger data sets for 
both configurations.

6.2 � Unsteady simulations

This investigation is divided in two major parts. At first, 
we investigate in detail how machine learning methods 
can be utilized to predict flow parameters which charac-
terize the flow regime in the wake of the random rough-
ness patch (Sects. 6–6.1). The domain for the AI database 
ends shortly downstream of the roughness patch to keep 
the domain size as small as possible. Our AI is capable to 
predict flow parameters that describe the strongest vortex 
in the wake. It is meant as a tool to test a large number 
of roughnesses and select roughness patches which gener-
ate a strong vortex. These patches can then be studied by a 
detailed DNS or manufactured in a 3D printer for an experi-
ment. The future user then saves the computational effort 
of a full DNS which could reveal that the patch simulated 
does not provide a strong and destabilizing cross-flow-like 
vortex. We tried to identify a worst-case scenario for the 
instability and subsequent laminar-turbulent transition from 
the current patch setup in a reduced parameter space. In this 
section (6.2), we want to provide further information about 
the effect such a cross-flow-like vortex has in an unsteady 
flow regime. Further, we take a more detailed look at the 
effect such a unsteady cross-flow-like vortex has on the onset 
of transition. This section analyses the effect of different 
streamwise vorticity magnitudes induced by five different 
roughness patches on the streamwise development (accord-
ing to Eq. 20) of the unsteady disturbances. The streamwise 
velocity component is Fourier transformed in space and time 
and the amplitude development is described in this investiga-
tion in Sect. 6.2.1.

The maximum streamwise vorticity �x for five differ-
ent random roughness patches is provided in Table 5. The 
patches are chosen from the ML database and represent the 
lower third, the average and the upper third of the produced 
vorticity values within the database.

The introduction of unsteady disturbances at the inflow 
of the domain is destabilizing the steady cross-flow-like vor-
tex. The disturbances are amplified in the regions with large 
spanwise and wall-normal gradients in the shear flow of the 
vortex. An iso-contour of the Q-criterion Q = 5.5 ⋅ 107 shows 
the development of the steady (a) and unsteady (b) vortex 
downstream of the wake for patch 2. The highly accelerated 

Fig. 13   Prediction error of the CNN and CNN with an autoencoder 
for different trainingdatabase sizes
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flow favours stabilization and damping of the steady cross-
flow-type vortex. The perturbation induces finger-like struc-
tures starting at x=0.16 m in Fig. 14b. Further downstream, 
horseshoe vortices are observed. A similar observation is 
made for the other roughness configurations and a similar 
configuration by Di Giovanni and Stemmer [13].

6.2.1 � Development of spatial and temporal Fouriermodes

The unsteady results are analysed with a spatio-temporal 
Fourier transformation of the streamwise velocity. The spa-
tio-temporal Fourier transformation of a generic flow vari-
able q(x, y, z, t) is defined as

where J is indicating the number of samples in spanwise 
direction and L is referring to the number of time steps. The 
multiples of the fundamental frequency are indicated by m 
and the multiples of the spanwise wave length by index n.

The local maximum in the wall-normal direction (y) 
describes the amplitude of the mode (m, n) for a given loca-
tion in x. The amplitude Aq

m,n is given by

The Fourier amplitudes û are normalized with the boundary-
layer edge velocity uedge=1600 m/s at the inflow. In Fig. 15, 
the logarithmic value of this normalized Fourier amplitudes 
are plotted. At first, we study the downstream development 
of the perturbation frequency f1=8.3 kHz and wavenumber 
n=1 in Fig. 15a. The amplitudes are damped until x=0.14 m 
for patch 2 and x=0.2 m for patch 1 and 5, patch 3 is damped 

(19)Qm,n(x, y) =

J−1
∑

j=0

L−1
∑

l=0

q(x, y, zj, tl)e
−i2�(nj∕J+ml∕L),

(20)Aq
m,n

(x) = max
y≥0

∣ Qm,n(x, y) ∣ .

Fig. 14   Isosurface contour of Q-crtierium Q = 5.5 ⋅ 107 of the steady 
(a) and unsteady (b) cross-flow vortex

Fig. 15   Normalized maximum amplitudes for temporal and spatial Fouriermodes for f= f
1
 , n=1 for patch 1-5 (left) and for different frequencies 

and wavenumbers for patch 5 (right)

Table 5   Streamwise vorticity 
magnitudes of random 
roughness patches

Patch number �x

1 172,797 [1/s]
2 188,991 [1/s]
3 190,827 [1/s]
4 213,554 [1/s]
5 229,972 [1/s]
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until x=0.3m. Further downstream, the Fourier amplitudes 
rise exponentially. The magnitude of streamwise vorticity 
does not correlate with the location of the sudden exponen-
tial rise. For example, for patch 1, the Fourier mode starts 
to rise exponentially at x=0.26 m. Patch 3 starts to increase 
at 0.4 m. The first appearance of the finger-like structures 
corresponds to the sudden rise in the Fourier amplitudes and 
is taken as a reference location for the onset of transition in 
this study.

The influence of different wavenumbers and frequencies 
is presented in Fig. 15b for patch 5, but a similar develop-
ment is also observed for patch 1 to 4. In the plot, the higher 
harmonics ( f2, f3 ) of the perturbation frequency f1 also have 
a reduced amplitude compared to f1 . For even higher har-
monics (not shown), the amplitude is reduced further but 
behaves similarly. Upstream of the transition region the 
wavenumber n=3 is larger than the rest of the amplitudes 
for all frequencies. The spanwise wavenumber n=3 corre-
sponds to the wavelength of the cross-flow-type vortex. The 
amplitudes saturate soon after the exponential rise at similar 
levels for all patches.

6.2.2 � Influence of y‑ and z‑instability‑mode

The streamwise vorticity is not the only parameter driving 
the transition mechanism in the wake of a streamwise rough-
ness patch. For isolated roughness elements, Van den Eynde 
and Sandham [6] observed a larger disturbance growth rate 
through a stronger liftup effect caused by streamwise vor-
ticity. For cross-flow vortices in low speed flows, various 
authors [24–26] observed the presence of a y- and z-mode 
instabilities. The wall-normal gradient of the streamwise 
velocity are the origin of the y-mode and the spanwise gra-
dient of the z-mode. Damping is observed in Fig. 16 for 
the streamwise vorticity and spatial derivatives of u. Also 

�u∕�y and �u∕�z in the streamwise direction are damped but 
remain present through-out the length of the domain. This 
underlines that the behaviour of the flow is not only driven 
by the streamwise vorticity but also other flow parameters 
in the wake should be taken into consideration.

The cross section in Fig. 17 is located at x=0.35 m. The 
mode sits on top of the cross-flow-like vortex which can not 
be seen here. The kidney shaped form of the y-mode in color 
is aligned with the distribution of �u∕�y of the steady base 
flow. This is displayed in Fig. 17 by a contour plot for the 
amplitude of the Fourier-transformed streamwise velocity at 
the perturbation frequency. The �u∕�y distribution is shown 
as contour lines. Every line represents a 10% decrease with 
respect to the maximum derivative. An alignment between 
the perturbed velocity and the wall-normal derivative of the 
downstream velocity can be seen.

Fig. 16   Streamwise maxima of streamwise vorticity and of spatial 
derivatives of the streamwise velocity Fig. 17   Alignment of the distribution of �u∕�y in the steady flow and 

Fourier-transformed streamwise velocity for the disturbed flow

Fig. 18   Streamline through y-z-slices of spanwise and streamwise 
derivative of u 
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The streamwise development of the driving modes is 
shown in Fig. 18. It displays shear flow regions at y-z-slices 
at x= 0.05 m, 0.15 m and 0.35 m where perturbation growth 
is observed. The first two slices in the streamwise direc-
tion display large gradients of u in the spanwise direction. 
The last slice displays the �u∕�y . For better visibility of the 
shear flow regions, values above −0.3 for �u∕�z and values 
below 0.25 for �u∕�y are not plotted. The streamline passing 
through the minimum of �u∕�z in the first slice is trans-
ported through the turning motion of the vortex to the kidney 
shaped local maximum of �u∕�y . This explains that initially 
the perturbation wave is amplified as a z-mode and then 
grows as a y-mode. In summary, the strongest perturbation 
growth starts in the shear flow region driven by the z-mode. 
The roll-up motion of the vortex brings fluid upward. This 
motion is defined by the streamwise vorticity and causes the 
perturbations to grow in the wall-normal shear flow region.

Finally, we show in Fig. 19 how the flow parameters, such 
as the maximum streamwise vorticity, wall-normal and span-
wise derivatives of u at the inflow of the restricted domain 
are influencing the transition onset location for the three 
different roughness patches. We defined the transition onset 
location as the intersection of two lines in this study: the 
rise in the Fourier amplitudes of the perturbation frequency 
is intersecting with the line approximating the initial damp-
ing of these Fourier amplitudes. We observe that for flows 
where the flow field is less distorted, the transition onset 
location is further upstream. Several flow parameters are 
contributing to this distortion and therefore a combination of 
these parameters is suggested. All flow parameters are first 
normalized against the largest value of each parameter since 
the gradients vary considerably depending on the direction. 
With a certain arrangement of the logarithmic values of the 
normalized flow parameter, we are for example able to reach 
a linear dependence

We see a potential for a proportional relationship with the 
transition onset location in our case which needs to be evalu-
ated for other flow and roughness parameters.

Higher vorticity itself does not necessarily lead to tran-
sition further upstream or faster perturbation growth. A 
vortex located further away from the wall is transporting 
low-momentum fluid in faster regions of the boundary layer 
and high-momentum fluid in regions close to the wall more 
effectively. This generates gradients in regions where con-
secutively the unsteady perturbations grow, as previously 
observed in [8]. Therefore, the wall-normal distance of the 
vortex core is already incorporated in the suggested relation.

7 � Conclusion and summary

This study investigates cross-flow-like vortices in the wake 
of random distributed roughness patches. In the steady base 
flow, a cross-flow vortex is formed in the wake downstream 
of the highest peak within the roughness patch.

Since the vorticity magnitude has a direct influence on 
transition, a database of 9180 DNS simulation was computed 
and was utilized for machine learning-driven vorticity pre-
diction. Two different network types were used in this inves-
tigation: A DNN type network used input parameters derived 
from the surface geometry. An average error in the predic-
tions of 17% was achieved for the DNN. A better prediction 
was shown by the CNN. The method is using an image of 
the roughness surface as input to predict the vorticity with 
an average error of only 13%. Hence, ML methods can pro-
vide a fast possibility to estimate the streamwise vorticity 
in the wake and provide information on stability. With the 
usage of a pre-trained autoencoder, the prediction results 
can be improved for small datasets. This can improve results 
for training databases where the number of simulations is 
limited due to the computational cost. Further, the CNN 
network was also able to compute different flow parameters 
such as the wall-normal distance of the vortex core, the 
maxima of the spanwise and wall-normal derivatives of u.

In order to investigate the connexion between vorticity 
magnitude and transition location, the steady vortex in 
the wake is disturbed in unsteady simulations by a pres-
sure, velocity, density and temperature wave of a fixed 
frequency known to provoke laminar-turbulent transition 
in these roughness cases. These disturbances are ampli-
fied in the shear flow of the vortex. Finger-like structures 
are rising at the edge of the steady vortex. We studied five 

(21)

xtransition ∝ 0.075

⋅
(

3.5 ⋅ log
(

�x
)

+ 7.4 ⋅ log
(

�u
�y

)

− 32 ⋅ log
(

�u
�z

))

.

Fig. 19   Proportionality of Eqn. 21 with the transition onset location
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different patches with a low, medium and high streamwise 
vorticity in the wake. For all patches, an exponential rise 
occurs in the Fourier modes of the streamwise velocity. 
For stronger vorticity magnitudes of the cross-flow vor-
tex, we do not observe onset transition further downstream 
in every case, although the flow field is more disturbed 
by the stronger vortex. The unsteady perturbation grows 
in the shear flow of the wall-normal and spanwise gradi-
ent of the streamwise velocity. Initially, the disturbances 
grow in the region of the wall-normal derivative and are 
moved upwards with the turning motion of the vortex 
in the region of the spanwise derivative. A relation for 
the streamwise vorticity and the transition location can 
be formulated by considering the streamwise vorticity of 
the cross-flow-type vortex as well as the wall-normal and 
spanwise gradient maxima of the streamwise velocity.

This study laid out a framework for a potential transi-
tion-prediction criterion for roughness-induced transition 
in the future. However, further studies need to investigate 
the influence of a noisy disturbance signal including sev-
eral frequencies on different cross-flow-like vortices. Also 
the influence of geometric roughness parameters on the 
formation of the streamwise vorticity needs to be investi-
gated in more detail in the future.
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