
New Generation Computing (2023) 41:697–722
https://doi.org/10.1007/s00354-023-00226-1

Structured Matrices and Their Application in Neural
Networks: A Survey

Matthias Kissel1 · Klaus Diepold1

Received: 19 December 2022 / Accepted: 21 June 2023 / Published online: 26 July 2023
© The Author(s) 2023

Abstract
Modern neural network architectures are becoming larger and deeper, with increas-
ing computational resources needed for training and inference. One approach toward
handling this increased resource consumption is to use structured weight matrices.
By exploiting structures in weight matrices, the computational complexity for propa-
gating information through the network can be reduced. However, choosing the right
structure is not trivial, especially since there are many different matrix structures and
structure classes. In this paper, we give an overview over the fourmainmatrix structure
classes, namely semiseparable matrices, matrices of low displacement rank, hierar-
chical matrices and products of sparse matrices. We recapitulate the definitions of
each structure class, present special structure subclasses, and provide references to
research papers in which the structures are used in the domain of neural networks.
We present two benchmarks comparing the classes. First, we benchmark the error
for approximating different test matrices. Second, we compare the prediction perfor-
mance of neural networks in which the weight matrix of the last layer is replaced by
structured matrices. After presenting the benchmark results, we discuss open research
questions related to the use of structured matrices in neural networks and highlight
future research directions.

Keywords Matrix structures · Neural network · Efficient propagation · Fast inference

B Matthias Kissel
matthias.kissel@tum.de

1 TUM School of Computation, Information and Technology, Technical University of Munich,
Arcisstr. 21, 80333 Munich, Bavaria, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-023-00226-1&domain=pdf
http://orcid.org/0000-0003-4089-3934


698 New Generation Computing (2023) 41:697–722

1 Introduction

1.1 StructuredMatrices

When talking about structuredmatrices, we build on the notion of data-sparsematrices.
Data sparsity means that the representation of an n×n matrix requires less thanO(n2)
parameters. In contrast to sparse matrices, data sparsematrices must not contain zero
entries. Instead, there is a relationship between the entries of the matrix. The simplest
examples are rank 1 matrices of the form u · vT , for vectors u, v ∈ R

n . Other easily
identifiable examples of data sparse matrices are Toeplitz or Hankel matrices, which
may hold 2n − 1 parameters.

In other, less obvious cases, data sparsity implies that the entries of the respective
structured matrices have an intrinsic relationship to each other. As an example for

such a relationship, we can point at orthogonal matrices, which comprise n(n−1)
2 free

parameters. However, orthogonal matrices have obviously O(n2) parameters, which
means that they do not belong to the class of data-sparse matrices.

We are particularly interested in data-sparsematrices, forwhichwe canfind efficient
algorithms, for example, computing thematrix–vector product with an arbitrary vector
with less thanO(n2) operations. There exist various matrix structures, which serve as
candidates for accomplishing this goal. However, the knowledge on the subject area is
quite fragmented containing many approaches originating from diverse fields. In this
paper, we give an overview over the fourmost important structure classes.We put these
classes in relation to each other, helping to reveal their boundaries and limitations. By
that, we categorize the state-of-the-art in the field of structured matrices.

1.2 Computational Challenges for Neural Networks

Neural networks solve increasingly complex tasks of machine intelligence, like beat-
ing humans in the game of Go [78]. However, with increasing complexity of the
problems, the complexity of the networks also increases significantly. This creates a
trend toward deep networks [45, 90], which consist of a large number of layers and
millions of parameters. This increase in complexity creates challenges for practical
implementations, where the number of arithmetic operations grows disproportionally
fast.

This trend results in the following list of technical challenges:

Training time
The training of deep neural networks can last severalweeks even onmodern computing
architectures. For example, the training of the AlphaGo Zero network, which is able
to beat the best human Go players, took 40 days (on specialized hardware) [78]. Long
training times result in high costs, for example, due to high server costs. Moreover,
long training periods effectively hinder to adapt quickly to new data.

Inference time
The more operations need to be performed in order to compute the output of a neural
network, themore time is needed for the computation. Thus, the inference time directly

123



New Generation Computing (2023) 41:697–722 699

scales with the number of operations in the neural network (neglecting parallelization
capabilities). If the inference takes too long, the applicability of a neural network is
restricted to certain applications, where fast inference is not essential. For example,
the AlphaGo Zero network needed specialized hardware to be able to answer with
reasonably low response time, which is required for playing a game of Go. In the case
of AlphaGo Zero, 4 tensor processing units were used in order to perform inference in
at most 5 s, and previous versions were distributed on up to 176 GPUs for calculating
the next move in real time [78].

Memory requirements
Large neural networks consist of many parameters, which need to be stored. For
example, the popular pre-trained ResNet50 [45] network needs 98MB memory space
(provided by the keras project1). This is by far not the upper limit—there are much
bigger architectures available and in use. The required memory capacity can be
problematic for resource constraint devices, such as mobile devices, smartphones
or microcontrollers. For standard computers (PCs), the amount of memory required
to load the whole model into RAM may also be prohibitive.

Memory bandwidth requirements
Besides the large memory needed to store the parameters of a given deep neural net-
work, it is also an issue to provide the memory bandwidth necessary to facilitate fast
learningor fast inference. Indeed, it has been shown that for deepneural networksmem-
ory access is themain bottleneck for processing [82]. Therefore, significant processing
speedups can be achieved by optimizing the memory access to reduce bandwidth [46].

Power consumption
As the amount of operations for performing training or during inference increases,
the power consumption also increases. Again, the increasing power consumption is
challenging for mobile devices or, more generally, for all battery-driven systems.
Besides the costs arising with increased power consumption, neural networks might
thus contribute to today’s climate change. For example, training big natural language
processing models including hyper parameter search can produce up to twice the
amount of CO2 produced by an average American within one year [81]. Therefore,
we are usually interested in reducing the power requirements.

1.3 Goals and Organization

Numerous researchers have contributed to mitigate the aforementioned problems. For
example, a survey on increasing the efficiency of neural networks is given by Sze et
al. [82]. In this paper, we focus on approaches using structured matrices in the domain
of neural networks, which has the potential to overcome all mentioned problems.

We see two main advantages of using structured matrices in neural networks to
save resources compared to other approaches. First, for many structures, it is possible
to train the neural network end-to-end. This means that conventional, well-tested
training algorithms such as backpropagation can be used for training. In comparison,

1 https://keras.io/.

123

https://keras.io/


700 New Generation Computing (2023) 41:697–722

most methods to save resources in neural networks start only after the training, which
may lead to worse results. Second, in contrast to the common mindset that resource
savings in neural networks always lead to performance losses, we assume that the
choice of the right structure can even improve the performance. This is the case if
the chosen structure fits the problem, and thus the search space for the weights of the
neural network is restricted in a meaningful way.

Contribution
Our main contribution is to give an overview over the most important matrix structure
classes, and to present two benchmarks comparing the classes. We briefly introduce
each structure class, and mention efficient algorithms. For each class, we analyze the
computational requirements for computing the matrix–vector product, which plays a
major role in neural networks. Moreover, we review approaches where each structure
has been used in the domain of neural networks. Through this, our survey offers a
starting point to choosing the right structure for a given problem.

Organization
The paper is organized as follows—we first introduce the four main structure classes
which we identified from literature, namely semiseparable matrices, matrices of
low displacement rank, hierarchical matrices, and products of sparse matrices. Sub-
sequently, we set the structure classes into relation to each other, showing their
boundaries. We present two benchmarks comparing the structure classes. The first
benchmark investigates the error for approximating different test matrices. The sec-
ond benchmark compares the prediction performance of neural networks, in which
the weight matrix of the last layer is replaced by a structured matrix. In the follow-
ing section, we point out open research questions and future research directions for
using structured matrices in the domain of neural networks. Finally, we summarize
our findings and draw a conclusion.

2 Classes of StructuredMatrices

2.1 Semiseparable Matrices

The first notion of semiseparable matrices [87] appears in work published in 1937 by
Gantmakher and Krein [33, 86]. Since then, there has been a number of publications
and generalizations of results to the class of semiseparable matrices [86]. The moti-
vation for research about semiseparable matrices originates from various application
domains for computational science and engineering, such as for example time-varying
system theory [22], where the matrices appear in the context of simulating physical
phenomena and systems. The most prominent representatives in this class are tridiag-
onal matrices and other banded matrices along with their inverses.

Definition
We focus on the definition of sequentially semiseparable matrices [22]. A sequentially
semiseparable matrix T has a block structure based on the matrices Ak , Bk , Ck , Dk ,
Ek , Fk and Gk

123



New Generation Computing (2023) 41:697–722 701

Fig. 1 Schematic Illustration of
the partitioning of a sequentially
semiseparable matrix. The
rectangular shapes of the
submatrices illustrate that the
input, output, and state
dimensions associated with the
sequentially semiseparable
matrix can change between
timesteps

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗ ∗
∗ ∗

∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

∗
∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗

∗
∗
∗
∗

∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

∗ ∗
∗ ∗

Ti, j =

⎧
⎪⎨

⎪⎩

Di for i = j,

Ci Ai−1 . . . A j+1Bj for i < j,

Gi Ei+1 . . . E j−1Fj for i > j .

(1)

This structure arises in the transfermatrix of a time-varying systemwith state equations

xk+1 = Akxk + Bkuk, (2)

x̂k = Ek x̂k+1 + Fkuk, (3)

a(1)
k = Ckxk + Dkuk, (4)

a(2)
k = Gk x̂k+1, (5)

and
ak = a(1)

k + a(2)
k , (6)

which reveals why this structure is closely related to the theory of time-varying sys-
tems. In the domain of time-varying systems, xk refers to the state of the causal part
of the system at timestep k (x̂k to the anti causal part respectively), uk are the inputs to
the system at timestep k and ak are the outputs respectively. Note that the dimensions
of the Ak , Bk , Ck , Dk , Ek , Fk and Gk might change for different timesteps, which
reflects the fact that the state, the input as well as the output dimension might change
over time. This structure leads to a sequentially partitioning of the matrix as exem-
plary illustrated in Fig. 1. There are also other definitions for semiseparable matrices
[87], for example, for quasiseparable matrices. A matrix S is called a quasiseparable
matrix if all the subblocks taken out of the strictly lower triangular part of the matrix
(respectively the strictly upper triangular part) are of rank 1.

Special Structures
The class of semiseparable matrices can be seen as collection of slightly dif-
ferent definitions for semiseparability [87], such as sequentially semiseparable,
generator-representable semiseparable, semiseparable plus diagonal and quasisepara-
ble matrices. For example, the class of semiseparable plus diagonal matrices extends
the class of semiseparable matrices by adding a diagonal to the semiseparable matrix.
The set of generator-representable semiseperablematrices includes allmatrices, where

123



702 New Generation Computing (2023) 41:697–722

the upper and lower triangular parts are coming from a rank 1 matrix (in contrast to
general semiseparable matrices, where the sub-blocks of the lower or upper triangular
matrix may come from different rank 1 matrices). Another class of semiseparable
matrices are hierarchically semiseparable matrices [87], which are closely connected
with the class of hierarchical matrices introduced in Sect. 2.3. Examples for special
matrices belonging to the class of semiseparable matrices are band matrices [24] or
their inverses [75].

Efficient Algorithms
By exploiting the semiseparable structure, the number of operations for computing
the matrix vector product can usually be reduced toO(nd2), where d is the maximum
state dimension

d = max
k

(max(dim(xk), dim(x̂k))). (7)

This reduction comes froman efficient computational scheme exploiting the sequential
structure, which is based on systematically using intermediate results of matrix–vector
products of the submatrices. Depending on the structure at hand, there are numer-
ous other fast algorithms available, which may not apply for the general class of
semiseparable matrices. A rigorous historic overview of the results found for the class
of semiseparable matrices is given by Vandebril et al. [86]. For example, there is a
fast algorithm for calculating the inverse of a generator representable plus diagonal
semiseparable matrix [23].

Application to Neural Networks
Kissel et al. [51, 52, 52] analyzed the effect of using sequentially semiseparable weight
matrices in neural networks. They introduced the Backpropagation through states
algorithm [51], which can be used to train neural networks with sequentially semisep-
arable weight matrices. Moreover, they showed how trained weight matrices can be
approximated with sequentially semiseparable matrices [50, 52]. Their experiments
showed that depending on the task at hand, neural networks with sequentially semis-
perable weight matrices are able to outperform their standard counterparts in terms of
generalization performance [51].

2.2 Matrices of Low Displacement Rank

The class of matrices with Low Displacement Rank (LDR) [67] unifies the proba-
bly most prominent matrix structures, including Toeplitz, Hankel, Vandermonde and
Cauchy matrices. The idea of a displacement representation originates from model-
ing stochastic signals, which may exhibit mild forms of non-stationarity, leading to
notions such as Toeplitz-like or Hankel-like displacements [67].

Definition
For analyzing the displacement rank [67] of a matrix M , either the displacement
operators of the Sylvester type

L(M) = ∇A,B(M) = AM − MB, (8)

123



New Generation Computing (2023) 41:697–722 703

u0 v0 v1 v2 v3 v4
u1 u0 v0 v1 v2 v3
u2 u1 u0 v0 v1 v2
u3 u2 u1 u0 v0 v1
u4 u3 u2 u1 u0 v0
u5 u4 u3 u2 u1 u0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(a) Toeplitz Matrix MT (u, v)

v4 v3 v2 v1 v0 u0

v3 v2 v1 v0 u0 u1

v2 v1 v0 u0 u1 u2

v1 v0 u0 u1 u2 u3

v0 u0 u1 u2 u3 u4

u0 u1 u2 u3 u4 u5

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(b) Hankel Matrix MH(u, v)

1 u0 u2
0 u3

0 . . . un−1
0

1 u1 u2
1 u3

1 . . . un−1
1

1 u2 u2
2 u3

2 . . . un−1
2

1 u3 u2
3 u3

3 . . . un−1
3

1 u4 u2
4 u3

4 . . . un−1
4

1 u5 u2
5 u3

5 . . . un−1
5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(c) Vandermonde Matrix MV (u)

1
u0−v0

1
u0−v1

1
u0−v2

1
u0−v3

1
u0−v4

1
u1−v0

1
u1−v1

1
u1−v2

1
u1−v3

1
u1−v4

1
u2−v0

1
u2−v1

1
u2−v2

1
u2−v3

1
u2−v4

1
u3−v0

1
u3−v1

1
u3−v2

1
u3−v3

1
u3−v4

1
u4−v0

1
u4−v1

1
u4−v2

1
u4−v3

1
u4−v4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(d) Cauchy Matrix MC(u, v)

Fig. 2 Schematic drawings of the most popular low displacement rank special cases. The displacement
structure can be seen in all four matrices: The same values (or modified values) appear in different positions
of the matrices

or of the Stein type
L(M) = �A,B(M) = M − AMB, (9)

can be used. A and B are operator matrices defining the displacement. A matrix has
low displacement rank if the displacement matrix L(M) is of low rank. There exists an
abundance of possible definitions for the displacement operators and hence this class
is quite big.

Efficient Algorithms
There exist efficient algorithms for certain tasks given that the rank of the dis-
placement matrix L(M) is small. This is based on the assumption that the matrix
can be compressed using the displacements, and that operations can be performed
faster using the compressed version. The original matrix can be recovered (decom-
pressed) from the displacements. The overall operation scheme can be described as
Compress → Operate → Decompress. By exploiting this scheme, inter alia the
matrix–vector multiplication can be made more efficient. This leads, for example, to
O(n log(n)) operations for Toeplitz andHankel matrices, andO(n log2(n)) operations
for Vandermonde and Cauchy matrices in order to compute the matrix–vector product
of a matrix M ∈ R

n×n with an arbitrary n-dimensional vector [80].

123



704 New Generation Computing (2023) 41:697–722

Table 1 Operator matrices and rank of the corresponding displacements for Toeplitz, Hankel, Cauchy and
Vandermonde matrices

Matrix type Symbol A B Rank(∇A,B (M))

Toeplitz matrix MT (u, v) Z1 Z0 ≤ 2

Hankel matrix MH (u, v) Z1 ZT
0 ≤ 2

Vandermonde matrix MV (u) D(u) Z0 ≤ 1

Cauchy matrix MC (u, v) D(u) D(v) ≤ 1

Operator matrices are given with respect to the Sylvester displacement (Eq.8)

Special Structures
Themost popular special members of this structure class are Toeplitz, Hankel, Vander-
monde and Cauchy matrices (depicted in Fig. 2). For these special cases, the operator
matrices are based on f -circulant matrices

Z f =

⎛

⎜
⎜
⎜
⎜
⎝

0 f

1
. . .

0
. . .

. . .

0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

, (10)

or diagonal matrices D(u) defined by the vector u. For example, the operator matrices
for a Toeplitz matrix MT (u, v) as depicted in Fig. 2 with respect to the Sylvester
displacement operator are A = Z1 and B = Z0. Hence, the displacement matrix for
a Toeplitz matrix L(MT (u, v)) is given by

L(MT (u, v)) = ∇Z1,Z0(MT (u, v)) = Z1MT (u, v) − MT (u, v)Z0. (11)

For all Toeplitz matrices MT (u, v), the rank of the displacement matrix L(MT (u, v))

fulfills
rank(L(MT (u, v))) ≤ 2. (12)

The displacement operators for the other special cases are given in Table 1.

Application to Neural Networks
There are several approaches in literature using matrices of low displacement rank in
neural networks. The most prominent example is the Convolutional Neural Network
(CNN) architecture [66], which is based on sparse Toeplitz Matrices. Convolutional
Neural Networks are due to their efficiency and prediction performance the number
one choice in machine learning tasks related to images nowadays [45, 53, 79]. In
CNNs, the structure is usually encoded implicitly by the connections between the
neurons. There are also interesting approaches for improving traditional CNNs. For
example, Quaternion CNNs [34, 68, 95] perform operations on images represented
in the quaternion domain, which enables them to outperform standard real-valued
CNNs on several benchmark tasks. Other approaches focused on matrix structures
apart from neural network architectures. Liao and Yuan proposed to use matrices with

123



New Generation Computing (2023) 41:697–722 705

Fig. 3 Schematic Illustration of
a (very simple) hierarchical
matrix. The cyan parts are
low-rank submatrices
(admissible blocks), and the
purple parts are full-rank
submatrices (inadmissible
blocks)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

a circulant structure in Convolutional Neural Networks [60] and Cheng et al. replaced
the linear projections in fully connected neural networks with circulant projections
[13]. Appuswamy et al. [4] combined the efficient weight representation used in neu-
romorphic hardware with block Toeplitz matrices arising in discrete convolutions,
which resulted in a family of convolution kernels that are naturally hardware effi-
cient. It has also been proposed to replace weight matrices with general matrices of
low displacement rank in neural networks. For example, Sindhwani et al. [80] used
Toeplitz-like weight matrices, which include inter alia circulant matrices as well as
Toeplitz matrices and their inverses. Moreover, Thomas et al. [84] introduced a class
of low displacement rank matrices for which they trained the operators as well as their
low-rank components in the neural network. Other works investigate the theoretical
properties of neural networks with weight matrices of low displacement rank. For
example, Zhao et al. [94] inter alia showed that the universal approximation theorem
holds for these networks. Another proof showing that the universal approximation
theorem holds for neural networks comprising Toeplitz or Hankel weight matrices is
given by Liu et al. [61]. Their approach can be viewed as a Toeplitz-, Hankel-, or
LU-based decomposition of neural networks. In particular, they present two proofs
for the universal approximation theorem: One for neural networks with fixed depth
and arbitrary width, and a second for neural networks with fixed width and arbitrary
depth.

2.3 Hierarchical Matrices

Hierarchical matrices (H-matrices) are based on the principle, that even if the overall
matrix does not have a low rank, there might still be low-rank sub-blocks in the matrix.
Therefore, the idea is to partition a matrix into sub-matrices using suitable (potentially
complex) index sets and exploit the low-rank structure of the sub-matrices in this
decomposition.

Definition
H-matrices are defined by block cluster trees [9, 41, 43]. The block cluster tree decom-
poses the matrix into admissible and non-admissible blocks. Being admissible means
that the regarded block has a low-rank structure, and therefore can be decomposed

123



706 New Generation Computing (2023) 41:697–722

into two matrices with at most rank r (with r being smaller than the dimensions of the
block). The overall aim is to find a block cluster tree for a given matrix, such that large
parts of the matrix can be approximated by low-rank matrices (and still be close to the
original matrix). In Fig. 3, an example partitioning of a hierarchical matrix is depicted.
In order to determine the block cluster tree, first the row and column indices of the
regarded matrix are organized in cluster trees, i.e., set decomposition trees for the row
and column index sets of the matrix. This can, for example, be done by geometric
bisection or regular subdivision. Based on these cluster trees, the block cluster tree
can be defined by forming pairs of clusters on the cluster trees recursively. The number
of leaves in the block cluster tree determines the complexity for arithmetic operations.
Therefore, while constructing the block cluster tree, it is desirable to ensure that blocks
become admissible as soon as possible. Using these building blocks, H-matrices are
defined as follows [43]. Let L ∈ R

I×I be a matrix and TI×I a block cluster tree for L
consisting of admissible and non-admissible leaves. L is calledH-matrix of blockwise
rank r, if for all admissible leaves B ∈ R

τ×σ defined by TI×I

rank(B) ≤ k, (13)

with k ∈ N.

Efficient Algorithms
There are fast algorithms for the different sub-classes and special forms of this structure
class. Moreover, for general H-matrices, there is a fast algorithm for matrix–vector
multiplication (O(kn log(n)) under moderate assumptions) [41, 43]. Efficient algo-
rithms for arithmetic operations with H-matrices exploit the fact, that the matrix is
sub-divided into admissible and non-admissible smaller block-matrices. Based on
this decomposition, arithmetic operations can be conducted faster by exploiting the
low-rank structure of admissible blocks. The overall result can then be obtained by
combining the results from the sub-blocks.

Special Structures
The class ofH-matrices unifies several other structures based on hierarchical decom-
positions. These classes include [2] hierarchically off-diagonal low-rank matrices
(HOLDR) [3], hierarchically semi-separable matrices (HSS) [11, 87], H2-matrices
[41, 42], and matrices based on the fast multipole method (FMM) [5, 6, 18, 30, 39,
40]. The relationships of the subclasses to each other as well as their separation from
each other are described in [3].

Application to Neural Networks
Fan et al. [27] proposed to use hierarchical matrices in neural networks, which results
in a multiscale structure inside the neural network. Later, they extended their approach
to H2-matrices, which led to comparable results as with their original approach, but
reduced number of parameters. Chen et al. [12] proposed to approximate the Gen-
eralized Gauss–Newton Hessian by a hierarchical matrix, which can be used during
training, for analyzing neural networks, estimating learning rates or other applications.
Hierarchical matrix approaches have also been used to analyze and compress trained
neural networks. For example, Ithapu used a multi-resolution matrix factorization to

123



New Generation Computing (2023) 41:697–722 707

analyze the inter-class relationships of deep learning features [48]. Wu et al. [89]
applied the Hierarchical Tucker decomposition [38] to neural networks in order to
compress fully connected layers as well as convolutional kernels. They argued that
the hierarchical matrix format obtained by the Hierarchical Tucker decomposition has
advantages for compressing weight matrices in fully connected layers compared to
the Tensor Train decomposition, which has been used before. Another approach is to
use wavelets in neural networks [20, 25, 26, 32, 49, 71, 74, 93]. The resulting net-
works are called wavelet networks and make the time-frequency zooming property of
wavelets usable in neural networks [49]. Wavelet networks are often constructed from
multiresolution analysis or multiresolution approximation [25, 26, 49].

2.4 Products of Sparse Matrices

The structure classes presented in the previous sections represent data-sparsematrices.
In contrast, the focus of this section are products of sparsematrices.While data-sparse
matrices may be full matrices, i.e., all n2 matrix entries are different from zero, we
talk of sparse matrices if the matrices only contain few non-zero entries (for example,
O(n) non-zero entries) [76]. This is an extremely important class of matrices with
numerous applications and a long tradition. Exploiting the zero entries directly leads
to faster algorithms for several arithmetic operations, since operations can potentially
be omitted. This class is somewhat different then the ones mentioned before, as this
type of sparse structure does not lend itself well for an algebraic characterization.

The product of sparse matrices is not sparse in general. Therefore, even many
dense matrices can be represented as product of sparse matrices. For well known
fast linear transforms, such as the Fast Fourier Transform [15], the Discrete Wavelet
Transform [62] or the Hadamard transform [77], there is a structured representation as
product of sparse matrices [1, 55]. In fact, the notion of sparsity and structure in linear
maps seems to be fundamentally linked [16, 19]. It follows, that all efficient matrix–
vector multiplication algorithms can be factorized into products of sparse matrices.
The conclusion from these results is [17] that all forms of structure are captured by
the representation of linear maps as product of sparse matrices (supported by results
from arithmetic circuit theory [10]).

Definition
Sparse Matrices comprise only few nonzero elements [76]. This definition is some-
what vague, but in general the resulting fast algorithms are faster the fewer nonzero
entries the matrix has. An example of a sparse matrix is depicted in Fig. 4. The sparsity
pattern of a sparse matrix can either be structured (i.e., the nonzero elements are dis-
tributed following a regular pattern) or unstructured (with irregularly located nonzero
entries). There are different storage schemes which can be used to store sparse matri-
ces. Selecting the right storage scheme is crucial for implementing fast algorithms and
depends on the application at hand (more specifically the arithmetic operations which
should be performed with the sparse matrix as well as the sparsity pattern at hand).
Popular storage scheme examples are the coordinate, compressed sparse row as well
as the compressed sparse column matrix format. For example, the coordinate format
consists of three arrays. The first array contains the values of the nonzero entries in

123



708 New Generation Computing (2023) 41:697–722

Fig. 4 Schematic example of a
sparse matrix. Most of the
entries are zero. The few
non-zero elements are
distributed without (obvious)
regularity within the matrix

∗ 0 0 0 ∗ 0
0 0 0 0 0 0
∗ 0 ∗ 0 0 0
0 0 ∗ 0 0 ∗
0 0 0 0 0 0
0 0 ∗ 0 0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

the matrix, whereas the second and third array contain the row and column indices of
the positions of these values in the matrix respectively.

Efficient Algorithms
Bounds on the complexity of efficient algorithms for sparse matrices depend on the
number of non-zero elements in the matrix as well as the pattern of their distribution.
Depending on the number of non-zero entries, there are fast algorithms for computing
the matrix vector product. This does also apply for the product of sparse matrices,
such that the number of operations for multiplying the product of sparse matrices with
an arbitrary vector are proportional to the number of nonzero elements in the sparse
matrices [16]. Fast algorithms for sparse matrix vector multiplication might suffer
from several memory accessing problems [37]. This includes for example the irregular
memory access for the vector with which the sparse matrix is multiplied [83] or the
indirect memory references in the sparse matrix (due to the fact that only the non-zero
elements of the matrix are stored) [73]. Since these problems can have a significant
influence on the performance of considered arithmetic operationswith sparsematrices,
there have been several approaches proposed to overcome these problems [28, 35, 47,
72, 85] or tune sparse matrices for specific hardware [7, 29, 64].

Special Structures
A special form of sparse matrices are Butterfly matrices [59, 69], which encode the
recursive divide-and-conquer structure of the Fast Fourier Transform [17]. Butterfly
matrices are composed as a product of butterfly factormatrices. Kaleidoscopematrices
[17], in turn, are the product of butterfly matrices. Dao et al. proposed Kaleidoscope
matrices, because in general, it is difficult to find the best sparsity pattern for the sparse
matrix factorization (since this is a discrete, non-differentiable search problem). They
showed that Kaleidoscope matrices have a similar expressivity as general products of
sparse matrices and that various common structured linear transforms lie within this
structure class.

Application to Neural Networks
Sparsity has probably been the first structure applied to neural networks. Obtaining
sparse weight matrices has for example been addressed by Hassibi and Stork [44] and
Le Cun et al. [57]. Their approaches used information from second-order derivatives

123



New Generation Computing (2023) 41:697–722 709

in order to remove unimportant weights from the network. More recent work uses
group lasso regularization for structured sparsity learning [88], pruning techniques [8],
hand-tuned heuristics [21] or obtain sparse neural networks by chance [31]. Products
of sparse matrices have also been used in neural networks. In Butterfly networks [1,
58], the inputs to a neural network are connected to the outputs of the network using the
butterfly structure. It has been shown, that the regular Convolutional Neural Network
architecture is a special Inflated-Butterfly-Net (where inflated means that there are
dense cross-channel connections in the network) [91]. Moreover, Li et al. [58] showed
that the approximation error of Butterfly networks representing the Fourier kernels
exponentially decays with increasing network depth. Dao et al. [16] also incorporated
Butterfly matrices into end-to-end Machine Learning pipelines and showed that they
were able to recover several fast algorithmsuch as theDiscreteFourierTransformor the
Hadamard Transform. To overcome the non-differentiable search problem of finding
the right sparsity pattern, Dao et al. [17] proposed to use Kaleidoscope matrices in
neural networks.By that, the optimization problem remains differentiablewhile having
similar expressiveness as general sparse matrix products. Giffon et al. [36] showed
that replacing weight matrices in deep convolutional neural networks by products of
sparse matrices can yield a better compression-accuracy trade-off than other popular
low-rank-based compression techniques. Their approach is based on the algorithm
proposed by Magoarou et al. [55], which finds a sparse matrix product approximation
of a given matrix using projected gradient steps.

3 Relations and Comparison

3.1 Structure Classes Overview and Boundaries

After introducing the four main structure classes, we give an overview over the sub-
classes, which are contained in the main structure classes. Moreover, we show that
the boundaries between the structure classes are not strict, which means that some
matrices can be represented in the methodology of different structure classes.

We consider the four structure classes presented in the previous chapters as the
main classes of structured matrices. These classes can be used to categorize particular
matrix structures which can be found in literature. Since research about structured
matrices is fragmented and approaches originate from different fields, there are sub-
classes which are special cases of the four main structure classes. The relations of
these sub-classes are depicted in Fig. 5.

Even though the four main structure classes are based on different mathematical
concepts, there are still matrix classes that can be efficiently represented in multiple
structure frameworks. Low-rank matrices are an example of this. These can be repre-
sented as semiseparable matrices (since the blocks taken out of a low-rank matrices
are again of low rank), hierarchical matrices (by decomposing the whole matrix into a
single admissible block), as well as matrices with low displacement rank [84]. More-
over, a rank r matrix A ∈ R

n×n with A = EPT can straightforwardly be represented
by a product of two sparse matrices A = V M with V , M ∈ R

n×n by setting the first
r columns of V to E (and the first r rows of M to PT respectively).

123



710 New Generation Computing (2023) 41:697–722

Hierarchical Matrices

H2HODLR

FMM
Matrices

HSS

Matrices of Low
Displacement Rank

Hankel-like Matrices

Toeplitz-like Matrices

Vandermonde-like Matrices

Cauchy-like Matrices

Semiseparable
Matrices

Quasiseparable Matrices

Sequentially
Semiseparable

Matrices

Band-Matrices

Tridiagonal Matrices

Products of
Sparse Matrices

Kaleidoscope Matrices

Butterfly Matrices

Sparse Matrices

Fig. 5 Overview over the four main structure classes and structure sub-classes which they contain. The
four main classes generalize concepts and approaches of special structure classes, which originated from
different fields. The part about hierarchical matrices is redrawn after [2]

3.2 Benchmark: Test Matrix Approximation

One use case is that an arbitrary matrix is given, which is to be approximated with
a structured matrix. If the approximated matrix is sufficiently close to the original
matrix (in a metric suitable for the problem), then the original matrix can be replaced
by the structured matrix. Thus, memory and potentially computational resources can
be saved. In the domain of neural networks, this means that a weight matrix from a
trained network is investigated to check if it possesses a certain structure. If a structure
is (approximately) present, then the original weight matrix can be replaced with the
new weight matrix represented in the structured matrix framework. The predictions
of the neural network are then ideally similar to those before the modification, but
memory and computational resources are saved.

123



New Generation Computing (2023) 41:697–722 711

Which structure is suited best for approximation depends on the task at hand as well
as the selected metric. In this section, we give an overview over the approximation
capabilities of the structure classes for different test matrices. We use the Frobenius
norm as a metric for how close the approximated matrix is to the original, since this
has been found to be a good surrogate for comparing weight matrices [52]. With our
benchmark, we aim to give a notion in which structure classes are particularly suitable
for approximating certain matrix types. However, this cannot be seen as a conclusive
assessment that one structure class is always preferable to another. The choice of the
right structure class still depends on the task and context at hand.

We use the following test matrices in our benchmark:

• RandomMatrices (with randomly uniform distributed entries in the range [−1, 1[)
• Orthogonal Matrices
• Low Rank Matrices
• Matrices with linearly distributed singular values (in the interval [0.1, 1.0]).
• Sequentially Semiseparable Matrices (with statespace dimension set to 5)
• Products of SparseMatrices (comprising 3matrices eachwith 90%sparsity respec-
tively)

• Hierarchical Matrices (with geometrically inspired block cluster trees as intro-
duced in [42] with η = 0.5)

• Matrices with low displacement rank (Toeplitz, Hankel and Cauchy matrices)
• Weight matrices from Imagenet-pretrained vision models provided by PyTorch
[70] (GoogleNet, InceptionV3, MobilenetV2, and Resnet18)

For each of the test matrix classes, we instantiate 3 matrices of shape 300 × 300
(except for the weight matrices taken out of the vision models), and approximate them
using structured matrices of the presented classes. The code used for running our
experiments and our test matrices (together with the scripts for generating them) are
available on GitHub.2

For approximating the test matrices with sequentially semiseparable matrices, we
use the approach described in [52] (performing a hyperparameter search for different
number of stages), using the TVSCLib3 implementation. Also, the approximation
for products of sparse matrices is based on the approach presented in [52], which is
in turn based on an algorithm proposed by Magoarou and Gribonval [55]. We treat
the number of sparse factors as well es the sparsity distribution across the factors as
hyperparameters, forwhichwe performa search.Our implementation for theH-matrix
approximation uses a greedy approach for assigning low-rank components to the leaf
nodes of a block cluster tree. The block cluster tree is treated as hyperparameter, where
we compared the admissibility criterion from Hackbusch and Börm [42] (for different
values of η) with the approach of building block cluster trees with equally distributed
low-rank patches of same size. For approximation with matrices of low displacement
rank, we try multiple approaches. First, we investigate the approach presented in [52],
which finds an approximation based on gradient-descent updates for the displacements
as well as the operator matrices. Second, we employ a direct approximation scheme

2 https://github.com/MatthiasKi/structurednets.
3 https://github.com/MatthiasKi/tvsclib.

123

https://github.com/MatthiasKi/structurednets
https://github.com/MatthiasKi/tvsclib


712 New Generation Computing (2023) 41:697–722

using fixed operator matrices for Toeplitz-like matrices inspired by Sindhwani et al.
[80]. After applying the operator matrices, we find the truncated displacements by
performing a Singular Value Decomposition (SVD) on the original displacements.
We also show the approximation result for low-rank matrices as a baseline. This
approximation is also based on the SVD.

As expected, the approximation error becomes smaller if more parameters are used
for approximating the given matrix. Moreover, the approximation algorithms perform
particularly good if the investigated matrix has the structure which is used by the
approximation approach. For the methods we compared, the approximation approach
of using products of sparse matrices resulted in consistently good results for all test
matrices. This supports results from Dao et al. [17], stating that the structure class of
products of sparse matrices is very powerful for approximating structured transforms.
The results of our benchmark are depicted in Fig. 6.

For the approximated weight matrices of PyTorch vision models, we draw a similar
conclusion. The products of sparse matrices achieved the best approximation results.
This is in line with the findings in [52], where this observation has already been made
for smaller weight matrices. For the considered weight matrices, usingH-matrices for
approximation does not seem to provide much advantage over our baseline, low-rank
matrices. In all cases considered, both produce similar approximation results. The
approximation with sequentially semiseparable matrices led to the worst results. This
was also observed in earlier experiments with smaller weight matrices [52].

We did not include the results for using matrices of low displacement rank in the
plots for two reasons. First, the methods given in literature refer to square matrices,
which renders them inapplicable for the considered weight matrices. This is not a
general limitation, since the framework of matrices with low displacement rank is
also applicable to non-square matrices [84]. However, the given algorithms for using
matrices of low displacement rank, for example, for recovering a matrix from its dis-
placements, cannot trivially be extended to non-square matrices. Second, the approach
introduced by Kissel et al. [52] for approximating square weight matrices using matri-
ces of low displacement rank is only practically usable for small matrices. This is,
because the algorithm consumes too much memory and computing resources when
the matrices are large (which is the case in our benchmark). Using less sophisticated
approaches with fixed operator matrices (for example for Toeplitz-like or Hankel-like
matrices) resulted in bad approximation results for all test matrices, except for the
ones with the corresponding structure. Therefore, we conclude that the design of prac-
tically usable algorithms for the approximation of low displacement rank matrices is
still an open task. However, note that apart from approximating given matrices, there
are efficient algorithms for training (square) weight matrices with low displacement
rank from scratch [80, 84].

Note that the approximation algorithms used in our benchmark are subject to ongo-
ing research, and for each class there is still a lot room for improvement. Our goal was
to show a fair comparison in which the hyperparameters of the individual approaches
were tuned with comparable effort. Therefore, it is totally possible that improving the
approximation algorithm for one of the structure classes (or developing better heuris-
tics for finding hyperparameters) might render it superior to all other classes in the
future.

123



New Generation Computing (2023) 41:697–722 713

Fig. 6 Results of the approximation benchmark: We approximated several test matrices with structured
matrices of different classes, namely hierarchical matrices (HMat), low-rank matrices (LR), products of
sparse matrices (PSM), and sequentially semiseparable matrices (SSS). The approximation error becomes
smaller if more parameters are available for approximation. If the test matrix has certain structure, we
observe that the approach using the very structure performs best. In all other cases, the products of sparse
matrices showed the best approximation capabilities

123



714 New Generation Computing (2023) 41:697–722

Table 2 Hyperparameters used during training in our fine-tuning benchmark

Hyperparameter Value

Patience 2

Min. val. loss improvement 0.01

Loss Cross entropy

Optimizer Stochastic gradient descent

Number training runs η 10

Learning rate at run i = 0, . . . , η − 1 0.5i

Batch size 150.000

Number of parameters ∼ 20% of original matrix

3.3 Benchmark: Fine-Tuning

The weight matrices of neural networks are typically trained using gradient-descent
(backpropagation).Considering that the backpropagation-based training led to remark-
able results for neural networks in the past, we investigate the effects of training a
structured weight matrix using gradient-descent. For that, we replace the last layer
of pretrained PyTorch vision models by structured matrices of different classes (as
explained in the previous section). Then, we fine-tune the weight matrix on the same
dataset on which the original model was trained. By that, we can compare the predic-
tion accuracy of the model before and after the fine-tuning.

We report the prediction accuracy results on the validation set, with which the
models were trained originally. This validation set is not used during our fine-tuning.
For the fine-tuning, we use a portion of the training data (randomly split before the
training begins) as validation set. This validation set is used to determine when the
training stops. We stop the training when the validation loss does not improve by at
least 0.01 over 2 steps. For each model, there are 10 training runs based on Stochastic
Gradient Descent with different learning rates. We start with learning rate α = 1,
and multiply the learning rate with 0.5 after each training run. Between training runs,
we restore the model with lowest validation loss from the previous training run. All
important hyperparameters can be found in Table 2.

The gradients used for training are not determined by deriving the prediction loss
with respect to the weight matrix entries. Instead, we take the derivative of the pre-
diction loss with respect to the parameters determining the structured weight matrix.
Details about how this can be done for sequentially semiseparable weight matrices are
given by Kissel et al. [51]. The gradients for the other structures can be determined
analogously (in our experiments, we use the PyTorch auto differentiation tools for
determining the gradients). The code used for running our experiments is available on
Github.4

For all models, the fine-tuning was able to improve the prediction accuracy com-
pared to the non-fine-tuned version. The accuracy improvements were smaller for
models, which achieved high prediction accuracy directly after approximation. For

4 https://github.com/MatthiasKi/structurednets.

123

https://github.com/MatthiasKi/structurednets


New Generation Computing (2023) 41:697–722 715

Fig. 7 Accuracy before and after fine-tuning of different PyTorch vision models. The weight matrix of
the last layer is replaced with a hierarchical matrix (HMat), a low-rank matrix (LR), products of sparse
matrices (PSM), or a sequentially semiseparable matrix (SSS). As expected, the fine-tuning improved the
prediction accuracy in all cases. However, for the products of sparse matrices, the improvements are too
small to be seen for some models in the figure (supposedly because they already showed good prediction
accuracy before fine-tuning). Themodels with sequentially semiseparable weightmatrix showed the biggest
improvements. Nevertheless, their final prediction performance remains behind other structures

123



716 New Generation Computing (2023) 41:697–722

the products of sparse matrices, the improvements were so small, and that for some
models, they are not even visible in Fig. 7.

Analogous to the results in Sect. 3.2, the models with products of sparse matri-
ces achieved the best prediction accuracy after fine-tuning. This resulted in achieving
almost the same performance as the baseline models for some of the vision mod-
els. Other structured matrices also achieved remarkable results after fine-tuning. This
leads to the conclusion that for different types of structured matrices, many of the
parameters can be spared while achieving almost the same results as the baseline. In
this benchmark, the networks with products of sparse matrices consistently achieved
the best results.

The neural networks with sequentially semiseparable weight matrix could not keep
up with the performance of the other networks. They showed significant lower pre-
diction accuracy after fine-tuning than the baseline. However, the fine-tuning led to
remarkable improvements in the prediction accuracy. In all experiments, the accuracy
was more than doubled after fine-tuning, which are much greater improvements than
observed with other networks. This is in line with previous results, which showed
that approximation of weight matrices with sequentially semiseparable matrices led
to poor results [52], but by training such networks from scratch, it was possible to
even increasing generalization performance [51].

4 Limitations and Discussion

The presented structures have been applied to neural networks, where they have been
used for faster inference, faster training, or for network analysis. However, some
questions remain unanswered to this day. In the following, we highlight two research
areas in the context of neural networks with structured weight matrices for which we
identified relevant unanswered questions.

Theoretical results for the use of structuredmatrices in neural networks are still very
limited. For neural networks with weight matrices of low displacement rank, Zhao et
al. [94] proved that the universal approximation theorem still holds and they gave
upper bounds for the approximation error. However, proving similar results for other
classes of structured matrices is still the subject of ongoing research. In particular,
theoretical insights regarding approximation errors for problems with different data
distributions can be helpful for selecting a suitable network. For example, they can
help to decide whether a large network with structured weight matrices is preferable
to a small network with standard weight matrices, depending on the problem at hand.
Thus, the first research area we identified is about the question how the performance
of neural networks with structured weight matrices depends on the target application.
The first intuition is that the choice of a suitable structure used in the network depends
very much on the application domain (as indicated by the success of CNNs in image-
based domains). To our knowledge, however, this effect has not been explicitly studied
yet. We consider our benchmarks as initial insights for selecting an appropriate weight
matrix structure. In summary, if there is no indicator that a particular structure is suit-
able for the given problem, products of sparse matrices are a very good choice. These
performed robustly very well in both of our benchmarks. However, we recommend to

123



New Generation Computing (2023) 41:697–722 717

perform a hyperparameter search considering different structure classes, if the com-
putational resources needed for the training play a minor role. This hyperparameter
search might reveal another structure class that fits the problem at hand particularly
well.

The second area we identified is structure-aware training. By this we mean the
methodology of how structures can be introduced into the weight matrices of neural
networks. In the aforementioned preliminary work, various strategies were pursued
in this regard: Regularization techniques, training using backpropagation or approx-
imation of weight matrices with structured matrices after training. But there is still
limited knowledge aboutwhichmethod to select for a given problem.Moreover, hybrid
approaches for selecting and combining the right methods could be developed. We
consider the development of algorithms that find the right structure without hand-
tuning and excessive expert knowledge critical to make the overall approach useful
for a wide range of problems.

The aim of this paper is to give an overview over the most important structure
classes and relevant structure sub-classes. However, it is of course not possible to
cover all structures that have ever been studied. Therefore, we would like to mention
a few structures that we did not consider.

First, we would like to mention kernel-based approaches. These are not explicit
structures, which can be represented by dependencies between the matrix elements.
Rather, we consider kernel-based approaches as implicit structures, since operations
are spared through the kernel trick. In this context, we consider approaches that learn
kernel functions from data [54], kernel-based weight matrices or layers in neural
networks [14, 65].

Second, we did not address complex tensor decompositions or factorizations. For
example, Yang et al. [92] showed how the adaptive fastfood transform can be used
to reparameterize the matrix–vector multiplication in neural networks. Lebedev et al.
[56] used a polyadic decomposition (CP decomposition) to decompose convolution
kernel tensors into a sum of rank-one tensors. Moczulski et al. [63] replaced linear
transformations with a product of diagonal matrices combined with the discrete cosine
transform. Their ACDC layers can be used to replace any linear transformation in the
network and is able to reduce the number of parameters from O(n2) to O(n) as well
as the number of operations from O(n2) to O(n log(n)).

5 Conclusion

In this paper, we gave an overview over the four main matrix structures and special
sub-classeswhich they contain.We introduced each of the structure classes by showing
their definition, and giving reference to research papers in which the structure is used
in the domain of neural networks. Each of the presented structure classes facilitates an
efficient matrix–vector multiplication algorithm. Since matrix–vector multiplications
are usually the dominant factor for the computational cost of neural networks, using
such structures in neural networks has the potential to reduce the required computa-
tional cost immensely, finally leading to reduced CO2 emissions as well as reduced
electricity costs.

123



718 New Generation Computing (2023) 41:697–722

In the two benchmarks presented in this paper, we compared the approximation
capabilities of structured matrices of different classes, as well as the prediction per-
formance of deep vision models containing structured matrices. Products of sparse
matrices showed to be the most promising structure class since this structure consis-
tently achieved good results in both benchmarks. However, choosing the right structure
still depends on the problem at hand.

Our survey illustrates that the use of structured matrices in neural networks is
still a fairly young research area. There are still many open questions, and we pre-
sented two research areas we consider most important in the discussion section. These
are structure-aware training algorithms as well as analyzing the relationship between
structured weight matrices in neural networks and the target application.

Funding Open Access funding enabled and organized by Projekt DEAL. This research received no specific
grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability The code and data used for running the experiments in this paper can be found on GitHub:
https://github.com/MatthiasKi/structurednets. This repository uses code from the TVSCLib repository:
https://github.com/MatthiasKi/tvsclib. Moreover, the experiments are based on PyTorch vision models,
which are available at https://pytorch.org/.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

Research involving human participants and/or animals Not applicable.

Informed consent Not applicable.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ailon, N., Leibovitch, O., Nair, V.: Sparse linear networks with a fixed butterfly structure: theory and
practice. In: Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence,
vol. 161, pp. 1174–1184. PMLR (2021)

2. Ambikasaran, S.: Fast algorithms for dense numerical linear algebra and applications. PhD thesis
(2013)

3. Ambikasaran, S., Darve, E.: An o (n log n) fast direct solver for partial hierarchically semi-separable
matrices. J. Sci. Comput. 57(3), 477–501 (2013)

4. Appuswamy, R., Nayak, T., Arthur, J., Esser, S., Merolla, P., Mckinstry, J., Melano, T., Flickner,
M., Modha, D.: Structured convolution matrices for energy-efficient deep learning. arXiv preprint
arXiv:1606.02407 (2016)

5. Beatson, R.K., Newsam,G.N.: Fast evaluation of radial basis functions: I. Comput.Math. Appl. 24(12),
7–19 (1992)

123

https://github.com/MatthiasKi/structurednets
https://github.com/MatthiasKi/tvsclib
https://pytorch.org/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1606.02407


New Generation Computing (2023) 41:697–722 719

6. Beatson, R., Greengard, L.: A short course on fast multipole methods. Wavelets Multilevel Methods
Elliptic PDEs 1, 1–37 (1997)

7. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. Nvidia Technical Report
NVR-2008-004 2(5) (2008)

8. Blalock, D., Ortiz, J.J.G., Frankle, J., Guttag, J.: What is the state of neural network pruning? arXiv
preprint arXiv:2003.03033 (2020)

9. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Lect. Notes 21, 2003 (2003)
10. Bürgisser, P.,Clausen,M., Shokrollahi,M.A.:AlgebraicComplexityTheory, vol. 315. Springer Science

& Business Media, New York (2013)
11. Chandrasekaran, S., Ming, G., Pals, T.: A fast ULV decomposition solver for hierarchically semisep-

arable representations. SIAM J. Matrix Anal. Appl. 28(3), 603–622 (2006)
12. Chen, C., Reiz, S., Yu, C.D., Bungartz, H.-J., Biros, G.: Fast approximation of the Gauss–Newton

hessian matrix for the multilayer perceptron. SIAM J. Matrix Anal. Appl. 42(1), 165–184 (2021)
13. Cheng, Y., Felix, X.Y., Feris, R.S., Kumar, S., Choudhary, A., Chang, S.-F.: Fast neural networks with

circulant projections. arXiv preprint arXiv:1502.03436 (2015)
14. Cho, Y.: Kernel methods for deep learning. PhD thesis, UC San Diego (2012)
15. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math.

Comput. 19(90), 297–301 (1965)
16. Dao, T., Gu, A., Eichhorn, M., Rudra, A., Ré, C.: Learning fast algorithms for linear transforms using

butterfly factorizations. In: International Conference on Machine Learning, pp. 1517–1527. PMLR
(2019)

17. Dao, T., Sohoni, N., Gu, A., Eichhorn, M., Blonder, A., Leszczynski, M., Rudra, A., Ré, C.: Kaleido-
scope: An efficient, learnable representation for all structured linear maps. In: International Conference
on Learning Representations (2020)

18. Darve, E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160(1), 195–240
(2000)

19. De Sa, C., Cu, A., Puttagunta, R., Ré, C., Rudra, A.: A two-pronged progress in structured dense
matrix vector multiplication. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1060–1079. SIAM (2018)

20. de Sousa, C., Hemerly, E.M., Galvão, R.K.H.: Adaptive control for mobile robot using wavelet net-
works. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 32(4), 493–504 (2002)

21. Dettmers, T., Zettlemoyer, L.: Sparse networks fromscratch: faster trainingwithout losingperformance.
arXiv preprint arXiv:1907.04840 (2019)

22. Dewilde, P., Van der Veen, A.-J.: Time-Varying Systems and Computations. Springer Science & Busi-
ness Media, New York (1998)

23. Eidelman, Y., Gohberg, I.: Inversion formulas and linear complexity algorithm for diagonal plus
semiseparable matrices. Comput. Math. Appl. 33(4), 69–79 (1997)

24. Eidelman, Y., Gohberg, I.: On a new class of structured matrices. Integr. Equ. Oper. Theory 34(3),
293–324 (1999)

25. Ejbali, R., Zaied, M.: A dyadic multi-resolution deep convolutional neural wavelet network for image
classification. Multimed. Tools Appl. 77(5), 6149–6163 (2018)

26. ElAdel, A., Ejbali, R., Zaied, M., Amar, C.B.: Dyadic multi-resolution analysis-based deep learning
for Arabic handwritten character classification. In: 2015 IEEE 27th International Conference on Tools
with Artificial Intelligence (ICTAI), pp. 807–812. IEEE (2015)

27. Fan, Y., Lin, L., Ying, L., Zepeda-Núnez, L.: A multiscale neural network based on hierarchical
matrices. Multiscale Model. Simul. 17(4), 1189–1213 (2019)

28. Flegar, G., Anzt, H.: Overcoming load imbalance for irregular sparse matrices. In: Proceedings of the
Seventh Workshop on Irregular Applications: Architectures and Algorithms, pp. 1–8 (2017)

29. Flegar, G., Quintana-Ortí, E.S.: Balanced CSR sparse matrix-vector product on graphics processors.
In: European Conference on Parallel Processing, pp. 697–709. Springer (2017)

30. Fong, W., Darve, E.: The black-box fast multipole method. J. Comput. Phys. 228(23), 8712–8725
(2009)

31. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. In:
International Conference on Learning Representations (2018)

32. Galvão, R.K.H., Yoneyama, T.: A competitive wavelet network for signal clustering. IEEE Trans. Syst.
Man Cybern. Part B (Cybern.) 34(2), 1282–1288 (2004)

123

http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/1502.03436
http://arxiv.org/abs/1907.04840


720 New Generation Computing (2023) 41:697–722

33. Gantmakher, F., Krein, M.: Sur les matrices completement non négatives et oscillatoires. Compos.
Math. 4, 445–476 (1937)

34. Gaudet, C.J., Maida, A.S.: Deep quaternion networks. In: 2018 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

35. Geus, R., Röllin, S.: Towards a fast parallel sparse symmetric matrix-vector multiplication. Parallel
Comput. 27(7), 883–896 (2001)

36. Giffon, L., Ayache, S., Kadri, H., Artières, T., Sicre, R.: Psm-nets: compressing neural networks with
product of sparse matrices. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE (2021)

37. Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., Koziris, N.: Understanding the performance
of sparse matrix-vector multiplication. In: 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP 2008), pp. 283–292. IEEE (2008)

38. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl.
31(4), 2029–2054 (2010)

39. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348
(1987)

40. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in
three dimensions. Acta Numer. 6, 229–269 (1997)

41. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, vol. 49. Springer, New York (2015)
42. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive 2-matrices. Computing 69(1), 1–35

(2002)
43. Hackbusch, W., Grasedyck, L., Börm, S.: An introduction to hierarchical matrices. Math. Bohem. 2,

101–111 (2002)
44. Hassibi, B., Stork, D.G.: Second Order Derivatives for Network Pruning: Optimal Brain Surgeon.

Morgan Kaufmann, Burlington (1993)
45. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
46. Hill, P., Jain, A., Hill, M., Zamirai, B., Hsu, C.-H., Laurenzano, M.A., Mahlke, S., Tang, L., Mars,

J.: DeftNN: addressing bottlenecks for DNN execution on GPUS via synapse vector elimination and
near-compute data fission. In: Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 786–799 (2017)

47. Im, E.-J.: Optimizing the performance of sparse matrix-vector multiplication. PhD thesis (2000)
48. Ithapu, V.K.: Decoding the deep: Exploring class hierarchies of deep representations using multireso-

lution matrix factorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 45–54 (2017)

49. Jemai, O., Zaied, M., Amar, C.B., Alimi, M.A.: Fast learning algorithm of wavelet network based on
fast wavelet transform. Int. J. Pattern Recognit. Artif. Intell. 25(08), 1297–1319 (2011)

50. Kissel, M., Diepold, K.: Deep convolutional neural networks with sequentially semiseparable weight
matrices. ESANN 2022 Proceedings (2022)

51. Kissel, M., Gottwald, M., Gjeroska, B., Paukner, P., Diepold, K.: Backpropagation through states:
training neural networks with sequentially semiseparable weight matrices. In: Proceedings of the 21st
EPIA Conference on Artificial Intelligence (2022)

52. Kissel,M., Gronauer, S., Korte,M., Sacchetto, L., Diepold, K.: Exploiting structures inweightmatrices
for efficient real-time drone control with neural networks. In: Proceedings of the 21st EPIAConference
on Artificial Intelligence (2022)

53. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural
networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

54. Le, L., Hao, J., Xie, Y., Priestley, J.: Deep kernel: learning kernel function from data using deep neural
network. In: Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing,
Applications and Technologies, pp. 1–7 (2016)

55. Le Magoarou, L., Gribonval, R.: Flexible multilayer sparse approximations of matrices and applica-
tions. IEEE J. Select. Top. Signal Process. 10(4), 688–700 (2016)

56. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up convolutional neural
networks using fine-tuned CP-decomposition. In: 3rd International Conference on Learning Represen-
tations, ICLR 2015-Conference Track Proceedings (2015)

57. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information
Processing Systems, pp. 598–605 (1990)

123



New Generation Computing (2023) 41:697–722 721

58. Li, Y., Cheng, X., Jianfeng, L.: Butterfly-net: optimal function representation based on convolutional
neural networks. Commun. Comput. Phys. 28(5), 1838–1885 (2020)

59. Li, Y., Yang, H., Martin, E.R., Ho, K.L., Ying, L.: Butterfly factorization. Multiscale Model. Simul.
13(2), 714–732 (2015)

60. Liao, S., Yuan, B.: Circconv: a structured convolution with low complexity. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 4287–4294 (2019)

61. Liu, Y., Jiao, S., Lim, L.-H.: Lu decomposition and Toeplitz decomposition of a neural network. arXiv
preprint arXiv:2211.13935 (2022)

62. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE
Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

63. Moczulski, M., Denil, M., Appleyard, J., de Freitas, N., Wang, Z., Zoghi, M., Hutter, F., Matheson, D.,
de Freitas, N., Reed, S., et al.: Acdc: a structured efficient linear layer. In: International Conference
on Learning Representations (ICLR), vol. 55, pp. 1005–1014. Universities of Harvard, Oxford, and
Google DeepMind

64. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-vector multiplication
for GPU architectures. In: International Conference on High-Performance Embedded Architectures
and Compilers, pp. 111–125. Springer (2010)

65. Muller, L., Martel, J., Indiveri, G.: Kernelized synaptic weight matrices. In: International Conference
on Machine Learning, pp. 3654–3663. PMLR (2018)

66. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458 (2015)

67. Pan, V.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Springer Science &
Business Media, New York (2001)

68. Parcollet, T., Morchid, M., Linarès, G.: Quaternion convolutional neural networks for heterogeneous
image processing. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 8514–8518. IEEE (2019)

69. Parker, D.S.: Random butterfly transformations with applications in computational linear algebra
(1995)

70. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep
learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035.
Curran Associates, Inc. (2019)

71. Pati, Y.C., Krishnaprasad, P.S.: Analysis and synthesis of feedforward neural networks using discrete
affine wavelet transformations. IEEE Trans. Neural Netw. 4(1), 73–85 (1993)

72. Pichel, J.C.,Heras,D.B., Cabaleiro, J.C., Rivera, F.F.: Improving the locality of the sparsematrix-vector
product on shared memory multiprocessors. In: 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, 2004. Proceedings, pp. 66–71. IEEE (2004)

73. Pinar, A., Heath, M.T.: Improving performance of sparse matrix-vector multiplication. In: SC’99:
Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, p. 30. IEEE (1999)

74. Postalcioglu, S., Becerikli, Y.:Wavelet networks for nonlinear systemmodeling. Neural Comput. Appl.
16(4), 433–441 (2007)

75. Rózsa, P., Bevilacqua, R., Romani, F., Favati, P.: On band matrices and their inverses. Linear Algebra
Appl. 150, 287–295 (1991)

76. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
77. Shanks, J.L.: Computation of the fastWalsh–Fourier transform. IEEE Trans. Comput. 100(5), 457–459

(1969)
78. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.,

Lai, M., Bolton, A., et al.: Mastering the game of go without human knowledge. Nature 550(7676),
354–359 (2017)

79. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014)

80. Sindhwani, V., Sainath, T.N., Kumar, S.: Structured transforms for small-footprint deep learning. In:
Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 2,
pp. 3088–3096 (2015)

123

http://arxiv.org/abs/2211.13935
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1409.1556


722 New Generation Computing (2023) 41:697–722

81. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in nlp.
In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
3645–3650 (2019)

82. Sze, V., Chen, Y.-H., Yang, T.-J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial
and survey. Proc. IEEE 105(12), 2295–2329 (2017)

83. Temam, O., Jalby, W.: Characterizing the behavior of sparse algorithms on caches. PhD thesis, INRIA
(1992)

84. Thomas, A.T., Albert, G., Dao, T., Rudra, A., Ré, C.: Learning compressed transforms with low
displacement rank. Adv. Neural Inf. Process. Syst. 2018, 9052 (2018)

85. Toledo, S.: Improving the memory-system performance of sparse-matrix vector multiplication. IBM
J. Res. Dev. 41(6), 711–725 (1997)

86. Vandebril, R., Van Barel, M., Golub, G., Mastronardi, N.: A bibliography on semiseparable matrices.
Calcolo 42(3), 249–270 (2005)

87. Vandebril, R., Van Barel, M., Mastronardi, N.: Matrix Computations and Semiseparable Matrices:
Linear Systems, vol. 1. JHU Press, Baltimore (2007)

88. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks.
In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp.
2082–2090 (2016)

89. Wu, B., Wang, D., Zhao, G., Deng, L., Li, G.: Hybrid tensor decomposition in neural network com-
pression. Neural Netw. 132, 309–320 (2020)

90. Xie, D., Xiong, J., Pu, S.: All you need is beyond a good init: Exploring better solution for training
extremely deep convolutional neural networks with orthonormality and modulation. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6176–6185 (2017)

91. Xu, Z., Li, Y., Cheng, X.: Butterfly-net2: simplified butterfly-net and Fourier transform initialization.
In: Mathematical and Scientific Machine Learning, pp. 431–450. PMLR (2020)

92. Yang, Z.,Moczulski,M., Denil,M., De Freitas, N., Smola, A., Song, L.,Wang, Z.: Deep fried convnets.
In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1476–1483 (2015)

93. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Trans. Neural Netw. 3(6), 889–898 (1992)
94. Zhao, L., Liao, S., Wang, Y., Li, Z., Tang, J., Yuan, B.: Theoretical properties for neural networks

with weight matrices of low displacement rank. In: International Conference on Machine Learning,
pp. 4082–4090. PMLR (2017)

95. Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 631–647 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Structured Matrices and Their Application in Neural Networks: A Survey
	Abstract
	1 Introduction
	1.1 Structured Matrices
	1.2 Computational Challenges for Neural Networks
	1.3 Goals and Organization

	2 Classes of Structured Matrices
	2.1 Semiseparable Matrices
	2.2 Matrices of Low Displacement Rank
	2.3 Hierarchical Matrices
	2.4 Products of Sparse Matrices

	3 Relations and Comparison
	3.1 Structure Classes Overview and Boundaries
	3.2 Benchmark: Test Matrix Approximation
	3.3 Benchmark: Fine-Tuning

	4 Limitations and Discussion
	5 Conclusion
	References




