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Abstract
Key message  Training sets produced by maximizing the number of parent lines, each involved in one cross, had the 
highest prediction accuracy for H0 hybrids, but lowest for H1 and H2 hybrids.
Abstract  Genomic prediction holds great promise for hybrid breeding but optimum composition of the training set (TS) 
as determined by the number of parents (nTS) and crosses per parent (c) has received little attention. Our objective was to 
examine prediction accuracy ( r

a
 ) of GCA for lines used as parents of the TS (I1 lines) or not (I0 lines), and H0, H1 and 

H2 hybrids, comprising crosses of type I0 × I0, I1 × I0 and I1 × I1, respectively, as function of nTS and c. In the theory, we 
developed estimates for r

a
 of GBLUPs for hybrids: (i)r̂

a
 based on the expected prediction accuracy, and (ii) r̃

a
 based on r

a
 

of GBLUPs of GCA and SCA effects. In the simulation part, hybrid populations were generated using molecular data from 
two experimental maize data sets. Additive and dominance effects of QTL borrowed from literature were used to simulate 
six scenarios of traits differing in the proportion (τSCA = 1%, 6%, 22%) of SCA variance in σG

2 and heritability (h2 = 0.4, 
0.8). Values of r̃

a
 and r̂

a
 closely agreed with r

a
 for hybrids. For given size NTS = nTS × c of TS, r

a
 of H0 hybrids and GCA of 

I0 lines was highest for c = 1. Conversely, for GCA of I1 lines and H1 and H2 hybrids, c = 1 yielded lowest r
a
 with concord-

ant results across all scenarios for both data sets. In view of these opposite trends, the optimum choice of c for maximizing 
selection response across all types of hybrids depends on the size and resources of the breeding program.

Introduction

Genomic prediction has a huge potential for improving the 
efficiency of hybrid breeding as demonstrated by numer-
ous studies with various allogamous crops such as maize, 
sunflower, rye, sugar beet, autogamous crops such as wheat, 
barley, triticale and partially allogamous crops such as oil-
seed rape (see Seye et al. (2020) for a recent review). The 
main reason is that the number of potential hybrids, which 

can be predicted using genomic data from their parents, is 
determined by multiplying the number of parents in each 
heterotic group. Consequently, the size of the prediction set 
(PS) increases in quadratic terms with the number of par-
ents and allows to apply extremely high selection intensities 
(Westhues et al. 2017). Besides the optimum allocation of 
resources to be spent on phenotyping hybrids in the training 
set (TS) versus genotyping parent lines, the composition of 
the TS as determined by the number of parents and number 
of crosses per parent has a strong influence on the prediction 
accuracy ( ra ) of the various types of hybrids in the PS (Tech-
now et al. 2014; Seye et al. 2020). A parent of a hybrid in the 
PS is classified as an I1 line, if it has one or more hybrids in 
the TS; all other parents having no hybrid in the TS are clas-
sified as I0 lines. Thus, the PS is composed of H0, H1 and 
H2 hybrids, corresponding to crosses of type I0 × I0, I0 × I1 
or I1 × I0, and I1 × I1 lines. Optimal integration of genomic 
selection in hybrid breeding requires detailed knowledge, 
how prediction accuracy of these different types of hybrids 
depends on the population structure of TS (Kadam et al. 
2021). This applies not only to genomic but also to pedigree 
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data (Bernardo 1996) and other types of “omics” data sug-
gested in the literature for hybrid prediction including tran-
scriptomic (Westhues et al. 2017; Zenke‐Philippi et al. 2017; 
Seifert et al. 2018), and metabolomic data (Riedelsheimer 
et al. 2012; Westhues et al. 2017) or combinations of them 
(Schrag et al. 2018).

In principle, two approaches exist for organizing the TS 
for genomic prediction in hybrid breeding. In the “testcross” 
approach, a separate TS is generated for each parent popu-
lation by crossing candidate lines with the same tester(s) 
from the opposite population and testcross performance is 
used as a proxy for the GCA of the lines. In the “facto-
rial” approach, the TS consists of inter-population hybrids 
between candidates from each parent population produced 
according to an incomplete factorial mating design. Both 
approaches were compared with simulations (Seye et al. 
2020) and experiments (Fristche-Neto et al. 2018; Lorenzi 
et al. 2022). Since these studies demonstrated the superiority 
of sparse factorial designs for hybrid prediction and recipro-
cal recurrent genomic selection, we focused our investiga-
tions on this approach, with a main focus on the prediction 
accuracy of H0, H1, and H2 hybrids, as well as the GCA of 
I0 and I1 lines.

Hybrid performance is the main criterion for cultivar 
development, while general combining ability (GCA) of 
the parent lines is the main criterion for selecting the most 
promising parents for generating the base material for the 
next breeding cycle (Hallauer et al. 2010). In general, test-
cross performance with a genetically narrow tester (i.e., 
inbred line or single cross) from the opposite population is 
used as a proxy for the GCA of the candidate lines (Albre-
cht et al. 2011; Lian et al. 2014; Auinger et al. 2021), but 
these predictions are confounded with specific combining 
ability (SCA) effects of the candidates with the tester. In 
particular, a link between the prediction accuracy of hybrids 
and the prediction accuracy of their SCA and GCA of their 
parents is missing. A deeper understanding of the relation-
ship between these components could help integrating prod-
uct development with recurrent improvement of the parent 
populations in a genomic-based comprehensive approach to 
hybrid breeding.

Investigations on the optimum composition of the TS 
for hybrid breeding have been based on the prediction error 
variance (Fristche-Neto et al. 2018) or the CDmean crite-
rion (Kadam et al. 2021). The genomic relationship matrix 
required for these approaches was calculated treating the 
hybrid population itself as reference base. However, this 
ignores the fact that unlike in other breeding categories 
in plant breeding (e.g., line, clonal and population breed-
ing), the two parents of a hybrid usually originate from two 
genetically diverse populations for optimum exploitation of 
heterosis (Melchinger and Gumber 1998). Using a model 
with GCA and SCA effects, Seye et al. (2020) investigated 

the optimum composition of the TS with simulations. They 
analyzed a hybrid population consisting of several fami-
lies. Each family was composed of inter-population hybrids 
that were produced from parent lines derived from diallel 
crosses of four founder lines in each parent population. The 
authors based their comparisons on prediction accuracies 
calculated across all families of hybrids but it is unknown 
to what extent the variance among subgroup means affected 
the prediction accuracy of H0, H1 and H2 hybrids within 
families, which is of main interest to the breeder.

The magnitude of the prediction accuracy is of fundamen-
tal importance for the optimum design of the TS. Estimating 
the prediction accuracy for sets of H0, H1 and H2 hybrids 
by cross-validation is hardly feasible in hybrid breeding, 
because this would require a huge TS, exceeding by far the 
capacity of most breeding programs. Alternative to cross-
validation, ra can be estimated by an approximation of the 
expected prediction accuracy ( ̂ra ) calculated from population 
parameters as described by Ould Estaghvirou et al. (2013). 
However, application of r̂a to determine the prediction of H0, 
H1 and H2 hybrids under a GCA–SCA model has not been 
described in the literature hitherto.

Selection index formulas have been used in various stud-
ies of hybrid prediction with the GCA–SCA model assuming 
that the fixed effects in the mixed linear model are known 
(e.g. Seye et al. 2020). For an extension to the general case 
when fixed effects are unknown, we present formulas for cal-
culating GBLUPs and ra for hybrids, GCA and SCA effects 
using well-known results from mixed models (Henderson 
1975). In the theory part, our goal was to derive formulas 
connecting ra of hybrids to ra of their GCA and SCA effects 
and provide estimates for ra of hybrids, GCA and SCA 
effects. In the simulation part, our objective was to inves-
tigate ra and two types of estimates ( ̂ra and r̃a ) for different 
types of hybrids (H0, H1, H2) and GCA of I0 and I1 lines 
under various scenarios differing in the relative importance 
of SCA effects and heritabilities. In particular, we examined 
how these statistics are influenced by the number of hybrids 
in the TS 

(
NTS

)
 and its composition regarding the number 

of parent lines 
(
nTS

)
 sampled from each parent population 

versus the number of crosses per parent line (c) in the TS. 
Finally, we discuss the implications of our results for the 
optimized design of the TS in hybrid breeding programs.

Theory

We begin by formulating the statistical model and provid-
ing formulas for calculating GBLUPs (= best linear unbi-
ased predictors based on genomic data) and their variances 
for hybrid performance and GCA and SCA effects under a 
general mixed model. Let F be the set of nF female lines and 
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M the set of nM male lines for which genomic data are avail-
able, and H = F ×M the set of all nF × nM possible hybrid 
combinations in the factorial between the lines of F and M . 
The NTS hybrids in the TS are a subset of H . The lines in sets 
F1 ⊂ F and M1 ⊂ M , denoted as I1 lines, serve as female or 
male parents of at least one hybrid in the TS. (In our notation, 
we use capital and lower case letters for numbers referring to 
hybrids and parent lines, respectively). By contrast, the lines in 
F0 = F�F1 and M0 = M�M1 are referred to as I0 lines, because 
they are not used as parent of any hybrid in the TS.

We assume a fixed number NTS of TS hybrids, which 
depends primarily on the budget of the breeder assigned 
for phenotyping of hybrids. The goal is to choose a subset 
HT ⊂ H as TS such that the prediction accuracy for untested 
hybrids H∖HT  is maximized. However, in hybrid breeding 
we have to consider that the PS consists of different subsets 
of hybrids Φs,t (s, t = 0, 1) , with Φ0,0 =

[
F0 ×M0

]
 comprising 

the H0 hybrids, Φ1,0 =
[
F1 ×M0

]
 and Φ0,1 =

[
F0 ×M1

]
 com-

prising the H1 hybrids, and Φ1,1 =
[
F1 ×M1

]
�HT  compris-

ing the H2 hybrids. Owing to different relatedness to other 
members of the TS, the H0, H1, and H2 types of hybrids 
have different prediction accuracies (Technow et al. 2014).

The common model to subdivide the genotypic value Gi×j 
of a hybrid i × j from the cross of female line i ∈ F with male 
line j ∈ M is (Hallauer et al. 2010) 

where � is the mean of the hybrids in H , gF,i and gM,j are 
the GCA effects of i and j , respectively, and si×j is the SCA 
effect of their hybrid combination. The mixed model linking 
the phenotypic data of the hybrids in the TS to the GCA of 
the female and male lines and the SCA of all possible hybrid 
combinations in H can be written as

with E
(
yTS

)
= X� , E(u) = 0 , E(e) = 0 , var

[
u

e

]
=

[
G 0

0 R

]
 , 

var
[
yTS

]
= V = R + ZGZT , where

Here, yTS =
(
yk
)
k∈TS

  is a vector of dimension NTS of phe-
notypic observations of the hybrids in the TS, � is the vector 
of non-genetic fixed effects of the hybrids in the TS and X 
the design matrix linking these effects to the observations in 
yTS , u is a vector of random effects with dimension 
N = nF + nM + nF × nM , composed of the vectors gF and gM 
of GCA effects of all nF female and nM male lines in F and 
M , respectively, and the vector sH of SCA effects of all 

(1)Gi×j = � + gF,i + gM,j + si×j,

(2)yTS = X� + Zu + e,

(3)Z =
�
ZF ZM ZH

�
, u =

⎡⎢⎢⎣

gF
gM
sH

⎤⎥⎥⎦
and var

⎡⎢⎢⎣

gF
gM
sH

⎤⎥⎥⎦
= G =

⎡⎢⎢⎣

GF 0 0

0 GM 0

0 0 GH

⎤⎥⎥⎦

NH = nF × nM hybrid combinations in H , and e is the resid-
ual error. The vectors gF , gM and sH are assumed to be (i) 
pairwise uncorrelated because the parent lines are sampled 
independently from the female and male population, and (ii) 
arranged in the order of the numbering of the lines in set F 
and M , respectively, and the element sk in vector sH =

(
sk
)
 

with k = (i − 1) × nM + j refers to si×j ZF, ZM and ZH are 
incidence matrices relating the phenotypic data in yTS with 
the vectors gF , gM and sH , which have columns of zeros, if 
the respective line is ∈ F0 or ∈ M0 or the hybrid combination 
is ∈ H�HT , respectively. GF = �

2
gcaF

KF , GM = �
2
gcaM

KM and 
GH = �

2
sca
KH , where KF and KM are the kinship matrices 

among the nF female lines and among the nM male lines, 
respectively. The relationship matrix KH for SCA effects is 
obtained as Kronecker product KH = KF ⊗ KM , as originally 
shown for pedigree-based coancestries (Cockerham 1961). 
�
2
gcaF

 and �2
gcaM

 are the GCA variances among unrelated 
homozygous lines from the female and male parent popula-
tion, respectively, and �2

sca
 the SCA variance of unrelated 

single cross hybrids between lines of the two parent popula-
tions, from which the lines in F and M were sampled. R 
denotes the corresponding “error” matrix pertaining to the 
model in Eq. (2), where R = �

2
e
INTS

 is assumed in most cases. 
The elements of KF and KM can be calculated from genomic 
data using established methods (VanRaden 2008).

Using results of Henderson (1975), the best linear unbi-
ased predictor (BLUP) û for vector u is obtained as:

with ⌢

𝛽 =
(
XTV−1X

)−1
XTV−1y

TS
 , P = V

−1 − V
−1
X
(
X
T
V
−1
X
)−1

X
T
V
−1

,and B = GZTP =

⎡⎢⎢⎣

GFZ
T
F
P

GMZ
T
M
P

GHZ
T
H
P

⎤⎥⎥⎦
=

⎡⎢⎢⎣

BF

BM

BH

⎤⎥⎥⎦
 , yielding for the 

vectors GCA and SCA effects the BLUPs

(4)û = GZTV−1
(
yTS − X𝜷

)
= GZTPyTS = ByTS

(5)ĝF = BFyTS, ĝM = BMyTS, ŝH = BHyTS.

Thus, we get for the variance of the BLUPs

and

(6)var(û) = BVBT = L

(7)

var
(
ĝ
F

)
= B

F
VBT

F
= L

F
, var

(
ĝ
M

)

= B
M
VBT

M
= L

M
and var

(
ŝ
FH

)
= B

H
VBT

H
= L

H
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Since all hybrids have a common mean � , selection among 
them can be based on prediction of hi×j = gF,i + gM,j + si×j 
and does not require prediction of Gk×l . This corresponds to 
predicting h = gF ⊗ 1NM

+ 1NF
⊗ gM + sH , or

where In refers to a unity diagonal matrix, 1n to a unity vec-
tor of dimension n , and ⊗ denotes the Kronecker product. 
Because the BLUP of a linear function of random effects 
is equal to the linear function of the BLUPs of the random 
effects (Henderson 1984), the BLUP of h and its variance 
are obtained as

and

where Jn is a n × n matrix of ones.
For any subset Φ ⊂

{
1, ..., nF + nM + nF × nM

}
 of ele-

ments in u , we can express the prediction accuracy ra as 
correlation r

(
ûΦ, uΦ

)
 between the true genetic values (TGV) 

uΦ and their GBLUPs ûΦ:

where a bar denotes the mean of ûk or uk over k ∈ Φ , 
SΦ = IΦ −

1

|Φ|JΦ is a centering matrix such that IΦ is a 
matrix of dimension nF + nM + nF × nM having values of 1 
on the diagonal, if the corresponding index n ∈ Φ , and zeros 
elsewhere, JΦ is a matrix of the same dimension having 1’s, 
if both indices k, l ∈ Φ , and zeros elsewhere, and |Φ| is the 

number of elements in Φ . For hybrid values, we have for 
Φ ⊂

{
1, ...,NH = nF × nM

}

(8)h = Wu with W =
[
InF ⊗ 1nM 1nF ⊗ InM InF×nM

]
,

(9)
ĥ = Wû = WBy

TS
= ĝ

F
⊗ 1

n
M

+ 1
n
F

⊗ ĝ
M
+ ŝ

H

=

(
B
F
⊗ 1

n
M

+ 1
n
F

⊗ B
M
+ B

H

)
y
TS

(10)

var

(
ĥ

)
= WBVBTWT = WLWT = B

F
VBT

F
⊗ J

n
M

+ J
n
F

⊗ B
M
VBT

M
+ B

H
VBT

H
+ 2

×
[
1T
n
F

⊗ B
F
VBT

M
⊗ 1

n
M

+ B
F
VBT

H
⊗ 1

n
M

+1
n
F

⊗ B
M
VBT

H

]
,

(11)ra
�
ûΦ

�
= r

�
ûΦ, uΦ

�
=

∑
k∈Φ

�
ûk − ûk

��
uk − uk

�
��∑

k∈Φk

�
ûk − ûk

�2
��∑

k∈Φ

�
uk − uk

�2�
=

ûTSΦu��
ûTSΦû

��
uTSΦu

� ,

In simulations with known values of u , this formula can 
be used to calculate ra for hybrid prediction. If the TGV are 
unknown, as is the case in practice, one could use cross-
validation to determine the predictive ability Ra of GBLUPs 
replacing in Eqs. (11 and 12) the TGV by phenotypic data 
and get an estimate of ra by the ratio Ra∕

√
h2 , where h2 is the 

heritability of the phenotypic data (cf. Dekkers 2007). How-
ever, cross-validation can be circumvented by an alternative 
approach suggested by Ould Estaghvirou et al. (2013). Accord-
ingly, an approximation of E

[
r
(
ûΦ, uΦ

)]
 and consequently an 

estimate of ra
(
ûΦ

)
 can be obtained for any subset Φ as (see 

Appendix 1):

and

The matrices G and L can be calculated (cf. Equations (3 
and 6)) without phenotypic data of hybrids using genomic data 
of the parent lines, variance components �2

gcaF
 , �2

gcaM
 , �2

sca
 , �2

e
 

estimated from previous breeding cycles and the incidence 

matrices X (usually X = 1 ) and Z pertaining to the fixed and 
random effects in Eq.  (2), respectively, and matrix W as 
defined in Eq. (8).

As shown in Appendix 2, the expected individual predic-
tion accuracy ( �a ) for a randomly chosen hybrid i × j can be 
approximated by �a of its SCA and parental GCA effects as

where �gcaF =
�
2
gcaF

�
2
G

 ,  �gcaM =
�
2
gcaM

�
2
G

  and  �sca =
�
2
sca

�
2
G

  is the pro-

portion of the total genetic variance �2
G
  = �2

gcaF
 + �2

gcaM
 + �2

sca
  

(12)

ra

(
ĥΦ

)
= r

(
ĥΦ, hΦ

)
=

ûTWTSΦWu√(
ûTWTSΦWû

)(
uTWTSΦWu

)

(13)r̂a
�
ûΦ

�
=

���� tr
�
SΦL

�

tr
�
SΦG

� =

����
∑

i∈Φ

�
lii − li.

�
∑

i∈Φ

�
gii − gi.

�

(14)r̂a

(
ĥΦ

)
=

√√√√ tr
(
SΦWLWT

)

tr
(
SΦWGWT

)

(15)𝜌a

(
ĥi×j, hi×j

)
≈

√
𝜌2
a

(
ĝF,i, gF,i

)
𝜏gcaF + 𝜌2

a

(
ĝM,j, gM,j

)
𝜏gcaM + 𝜌2

a

(
ŝi×j, si×j

)
𝜏sca,
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among unrelated hybrids attributable to the GCA and SCA 
variances, respectively, with �gcaF + �gcaM + �sca = 1.  If set 
Φ  is equal to Φs,t  ( s, t = 0, 1 ), corresponding to the set of 
hybrids of type H0, H1 and H2, respectively, a similar 
approximation applies to the prediction accuracies ra of 
hybrids and GCA and SCA effects (see Appendix 2, 
Eq. (28)). This relationship can be used to obtain a further 
estimate r̃a

(
ĥΦs,t

)
 of ra

(
ĥΦs,t

)
 (see Appendix 2, Eq. (30))

where ra
(
ĝF,Fs

)
 , �gcaF etc. must be substituted by appropriate 

estimates. This relationship holds true for H0 and H1 hybrids 
irrespective of the structure of the TS. For H2 hybrids, the 
TS must have the structure of a balanced incomplete fac-
torial design, where ||F1

|| = ||M1
|| and each line i ∈ F1 was 

crossed to the same number c of parents from M1 and vice 
versa.

Genetic materials, markers and genomic 
relationships

We based our simulations on the SNP marker genotypes of 
maize inbreds from two experiments conducted by the maize 
breeding program of the University of Hohenheim. Since 
the lines were expected to be fully homozygous, heterozy-
gous marker genotypes were treated as “missing.” Markers 
with more than 5% missing values were removed; otherwise, 
“missing” values were imputed using BEAGLE version 5.0 
(Browning and Browning 2016). To avoid clustering of 
markers in small genomic segments, we restricted the num-
ber of markers to a maximum of 10 per Mbp and retained 
from markers with linkage disequilibrium r2 ≥ 0.999 only 
one. The marker genotypes of hybrids were inferred from 
the genotypes of their parent lines.

Data set DS1 comprised SNP data of nF = 145 dent 
lines (= females) and nM = 111 flint lines (= males) geno-
typed with the 50 k Illumina SNP chip MaizeSNP50 (Ganal 
et al. 2011). The lines had been evaluated for GCA of grain 
yield and other important agronomic traits in testcross trials 
and selected to be used as parents of hybrids evaluated in 
factorials analyzed in various studies on hybrid prediction 
with different types of “omics” data (Technow et al. 2014; 
Westhues et al. 2017; Schrag et al. 2018). From the original 
set of 26,795 polymorphic markers in the 256 lines, 13,813 
markers remained after quality check and pruning, denoted 
as set SNP1 . From these, 12,058 were polymorphic within 
the 145 dent lines and 12,053 within the 111 flint lines. None 
of the SNPs was polymorphic between the two groups but 
monomorphic within each group. The polymorphic markers 

(16)

r̃a

(
ĥΦs,t

)
=

√
r2
a

(
ĝF,Fs

)
𝜏gcaF + r2

a

(
ĝM,Mt

)
𝜏gcaM + r2

a

(
ŝΦs,t

)
𝜏sca

provided a largely uniform coverage of the entire maize 
genome. The genetic diversity of the lines and their linkage 
disequilibrium (LD) structure has been described in detail 
elsewhere (Technow et al. 2012, 2014). Our analyses were 
based on the NH = nF × nM = 16, 095 hybrids that could 
be simulated from the crosses between the factorial of the 
female and male parent lines.

Data set DS2 included SNP data from an unpublished 
experiment with nF = 182 dent inbreds and nM = 162 flint 
inbreds developed by in vivo haploid induction (Chaikam 
et al. 2019) from a single cross of two elite dent founder par-
ents and a single cross of two related (coancestry f = 1∕4 ) 
elite flint founder parents, respectively. The lines were 
unselected except for seed set in the first generation (D0) 
of doubled-haploid plants to secure efficient line multipli-
cation. All lines and their four homozygous parents were 
genotyped with the 600 k Affymetrix® Axiom® Maize Array 
(Unterseer et al. 2014). The number of polymorphic markers 
in set SNP2 amounted to 107,135 SNPs, with 2428 remain-
ing after pruning because many of them were completely 
linked, out of which 2157 SNPs segregated in the dent lines 
and 1311 in the flint lines, and 1040 in both populations. As 
expected for doubled-haploid lines from bi-parental crosses, 
there were numerous monomorphic regions in both crosses, 
especially for in the flint population as a consequence of the 
relatedness of the founder parents. All analyses were based 
on the NH = nF × nM = 29, 484 inter-population hybrids that 
could be produced in silico among the female and male par-
ent lines.

For each data set, genomic kinship matrices KF and KM of 
the female and male lines were calculated with Method 1 of 
VanRaden (2008) using the respective parent population to 
determine the frequency of the reference allele. The matrix 
KH was subsequently obtained as the Kronecker product 
KF ⊗ KM.

Traits

To simulate traits by our software module A (Figure S1), 
we followed the procedure described in previous papers 
(Technow et al. 2012; Esfandyari et al. 2015; Seye et al. 
2020) with modifications. Briefly, a random set QP of 3000 
SNPs from set SNP1 were chosen as possible QTL posi-
tions in DS1, with the restriction that the number of SNPs 
was approximately proportional to the genetic length of the 
chromosomes. In DS2 a random set QP of 500 SNPs from 
set SNP1 were chosen as possible QTL with the restriction 
that number of QTL was proportional the map length of the 
polymorphic regions (DS2). A random subset Q ⊂ QP of 
nQ QTL were assigned additive ( al ) and dominance effects 
( dl = al × kl ), where kl is the degree of dominance, defined 
according to Lynch and Walsh (1998). The additive effects 
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al were drawn from a Gamma distribution with parameter 
scale = 1.66 and shape = 0.4 and assigned to the reference 
allele coded as 1 in the SNP data. The degree of dominance 
kl was drawn from a normal distribution N

(
�k, �

2
k

)
 . A sub-

set Qd ⊂ Q of nQd
 QTL displaying only dominance effects 

dl was finally obtained by setting al = 0 . The parameters 
�k, �

2
k
 were chosen based on the average degree of domi-

nance summarized by Hallauer et al. (2010) from numerous 
experiments with maize for grain yield, maturity, resist-
ance and quality traits. QTL studies of heterotic traits in 
elite hybrids with the NC design III (Garcia et al. 2008; 
Schön et al. 2010), triple testcross design (Frascaroli et al. 
2007), or the F2 and immortalized F2 design (Stuber et al. 
1992; Tang et al. 2010; Guo et al. 2014) served as reference 
point for determining the ratio nQd

∶ nQ . Table S1 shows the 
values of nQ , nQd

 , �k , �k leading to three types of “target” 
traits with �sca = 1%, 6%, 22% , which in combination with 
h2 = 0.4, 0.8 define the six scenarios analyzed in our study. 
The plausibility of our model assumptions for simulating dif-
ferent types of traits was confirmed by the close agreement 
of the �sca values in the simulated hybrid populations with 

experimental estimates for yield, maturity, and quality traits 
from the maize literature (Table S2).

Based on the simulated QTL genotypes for set Q , the 
genotypic value of every hybrid was determined by summing 
the corresponding additive and dominance effects, respec-
tively, across all QTL. Subsequently, the genotypic values 
were scaled to unit variance and centered to zero mean. Phe-
notypic values of the hybrids were obtained by adding to the 
genotypic values a normally distributed noise variable with 
variance �2

e
= 1∕h2 − 1 to obtain the desired broad sense 

heritabilities. By averaging the genotypic values over all 
hybrid combinations of a given line, we obtained its “true” 
GCA. The “true” SCA of each hybrid combination was 
obtained by subtracting the GCA of both parents from the 
genotypic value of the hybrid. Variance components �2

gcaF
 , 

�
2
gcaM

 , �2
sca

 , �2
G

 and the ratio �sca = �
2
sca
∶ �

2
G

 were determined 
from the GCA and SCA values of the complete factorial 
(= set H ) and used for calculating GBLUPs as described 
below. For each of the six scenarios, simulation of each type 

Fig. 1   Schematic representa-
tion of the training set (TS) of 
hybrids (HT hybrids, NTS = 28 
green) as determined by the 
number of lines ( nTS = 7 ) 
sampled from each parent 
population (females = yellow, 
males = blue) and crosses per 
parent line (here c = 4 ) used for 
genomic prediction of hybrid 
performance and GCA of the 
parent lines. I0 and I1 lines are 
shown with weak and strong 
color intensity, respectively, 
and H0, H1 and H2 hybrids by 
increasing intensity levels of 
gray (color figure online)
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of target trait was replicated 50 times by sampling always 
anew QTL positions and effects and the noise variable.

Prediction of hybrids

For simulating the TS and PS for data set DS1 and DS2 in 
software module B (Figure S1), we first sampled randomly 
nTS lines from each of the sets F and M to obtain the sub-
sets F1 and M1 of I1 lines for producing the TS hybrids. 
The parental lines were crossed such that each male from 
M1 was mated to c females from F1 and each female from 
F1 was mated to c male lines from M1 to obtain a total of 
NTS = nTS × c hybrid combinations for the TS accord-
ing to the scheme depicted in Fig. 1 forc = 4 . We varied 
nTS = 12, 24, 36, ..., 96 and nTS = 12, 24, 36, ..., 144 for DS1 
and DS2, respectively, and c = 1, 2, 4 to investigate the effect 
of the composition of the TS on the prediction accuracy for 
GCA of both I0 and I1 lines as well as the SCA and hybrid 
performance for H0, H1, and H2 hybrids marked by different 
colors in Fig. 1. Sampling of the subset of I1 lines in each 
parent population and production of crosses for generating 
the TS was repeated 20 times. Hence, for each scenario we 
had a total of 1000 simulation runs, corresponding to 50 rep-
lications for each type of target trait × 20 parent samplings 
for the TS.

In software module C (Figure S1), we performed 
GBLUP for genomic prediction of all hybrids in set H and 
GCA effects of all lines in set F and M on the basis of the 
GCA–SCA model in Eq. (1). The variance components 
�
2
gcaF

 , �2
gcaM

 , �2
sca

 calculated from set H as described above 
were used in our calculations, which enabled us to finish 
1000 simulation runs for each scenario within acceptable 
time. This procedure is only feasible in simulations but in 
practice, estimated values of the variance components 
obtained from phenotypic values and genomic relation-
ships in the TS must be employed in GBLUP. For com-
parison, we therefore calculated GBLUPs with variance 
components estimated from the phenotypic data and 
genomic relationships of the hybrids in the TS for 
NTS = 96 in both data sets and NTS = 144 in DS2. The 
variance components were estimated as posterior mean 
obtained by a Gibbs sampler with 2500 burn-ins and a 
chain length of 10,000 (Sorensen and Gianola 2002), 
which warranted satisfactory convergence. The close 
agreement of ra values obtained with both methods shown 
in Figs. 2 and 3 justified this procedure.

For final analysis, we calculated in each simulation run 
the prediction accuracy for genomic prediction of hybrids, 
GCA and SCA as Pearson correlation of their GBLUPs 
and their known genetic values across all genotypes in the 
respective set using Eqs. (11, 12). Furthermore, we calcu-
lated the approximation r̃a of ra with Eq. (16). Likewise, 

r̂a of the GBLUPs was calculated by inserting the required 
population parameters ( KF , KM , KH,�2

gcaF
 , �2

gcaM
 , �2

sca
 , �2

e
 ) 

in Eqs. (13, 14). Finally, we calculated the mean of each 
statistic across the 1000 simulation runs for each scenario 
as well as the corresponding 95% confidence interval, 
which was for the ra , r̂a and r̃a values of all types of 
hybrids smaller than 1% of the mean. All computations 
were performed with the Julia programming language 
(Bezanson et al. 2017).

Data availability statement

The marker data for sets DS1 and DS2, the positions of the 
markers and the Julia program are available at https://​github.​
com/​TUMpl​antbr​eeding/​Optim​Train​ingSe​tDesi​gn and can 
be downloaded from there.

Results

Figure 2A shows the curves of ra for the three types (H0, 
H1, H2) of hybrids in the PS and all hybrids in set H of data 
set DS1 as a function of the number of parent lines nTS and 
number of crosses c = 1, 2, 4 per parent in the TS, which 
together determine the size of the TS ( NTS = nTS × c ). For 
given h2 and type of hybrid, the shape of the curves was 
almost congruent irrespective of c and �SCA , with a concave 
curvature that flattened out for larger nTS except for almost 
horizontal curves for H2 hybrids if h2 = 0.8 and c = 4 . The 
level of ra increased substantially by doubling c from 1 to 
2 but a further doubling to c = 4 yielded a much smaller 
increase for high h2 as indicated by the distance between the 
curves. Increasing h2 from 0.4 to 0.8 increased ra by ~ 30% 
for all types of hybrids. The ra curves differed little between 
�SCA = 1% and 6% but were at a substantially lower level 
for �SCA = 22% . The ra values for all hybrids in H followed 
closely the curves for H0 hybrids but with a steeper slope.

Using a fixed size NTS = 96 of the TS as a benchmark 
(circles in Fig. 2A), the value of c maximizing ra depended 
on the type of hybrid but for each type, the ranking of ra val-
ues for c = 1, 2, 4 was identical for the six scenarios. For H0 
hybrids, ra was maximum for c = 1 , exceeding ra values for 
c = 2 and c = 4 by ~ 1–3% and ~ 5–10%, respectively, with 
largest differences for high h2 . The ra values for H1 and H2 
hybrids were always smallest for c = 1 followed by c = 2 
and c = 4 , with differences being much larger for H2 than 
H1 hybrids. The curves of ra for GCA of I0 and I1 lines had 
a striking similarity with the corresponding curves for H0 
and H2 hybrids, albeit at a slightly higher level (Fig. 2B).

The curves of ra for data set DS2 showed essentially 
the same picture as those for DS1, with some trends being 
amplified (Fig. 3). Again, the curves for H0 and H2 hybrids 

https://github.com/TUMplantbreeding/OptimTrainingSetDesign
https://github.com/TUMplantbreeding/OptimTrainingSetDesign
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were almost identical with those for GCA of I0 and I1 lines, 
respectively. However, the curves had initially a steeper 
slope, especially for GCA of I0 lines, and approached a pla-
teau at NTS = 144 for high h2 . For NTS = 96 , the maximum 
ra value for H0 hybrids showed in all six scenarios a larger 
difference between c = 1 and c = 4 than for DS1. The maxi-
mum ra for c = 1 referring to �SCA = 22% and 1% ranged 
for low h2 between 0.50 and 0.65 and for high h2 between 
0.70 and 0.85, respectively. By comparison, ra values of H1 
hybrids hardly differed between c = 1, 2, 4 for NTS = 96 and 
NTS = 144 . For H2 hybrids and given values of NTS , differ-
ences between ra for different values of c were substantial 
for all scenarios, most notably for h2 = 0.4 . The prediction 
accuracy across all hybrids in set H had its maximum for 
c = 1 in all scenarios. For NTS = 96 , the difference to ra for 
c = 2 ranged between 1% ( h2 = 0.4 , �sca = 22% ) and 14% 
( h2 = 0.8 , �sca = 1% ), but for NTS = 144 , these differences 
became smaller.

For the subset of simulations with NTS = 96 for DS1 and 
NTS = 96 and 144 for DS2, the ra values for hybrid per-
formance obtained with GBLUPs calculated with estimated 
variance components (triangles) were almost identical with 
the corresponding ra values of GBLUPs calculated with 
the “true” variance components (circles and diamonds) 
(Figs. 2 and 3). The latter estimates showed for h2 = 0.8 a 
small upward bias of less than 3% for c = 1, 2 in all types 
of hybrids. As expected the SD of ra values was generally 
much larger for ra values calculated with estimated variance 
components due to the estimation error associated with them 
(results not shown).

The ra values for SCA were for all types of hybrids in 
both data sets (Figures S2 and S3) much smaller than those 
for GCA of I0 and I1 lines. For all scenarios and types of 
hybrids, ra values were much lower for DS1 than DS2. For 
h2 = 0.4 , the prediction accuracy of SCA was lower than 
0.28 for all cases. For h2 = 0.8 , the prediction accuracy was 
of moderate size for H2 hybrids in both data sets, but even 
in the most favorable case with �SCA = 22% and c = 4 , ra 
for the hybrids in H barely exceeded 0.4 for NTS = 144 in 
DS2. Estimates of ra for SCA effects obtained from GBLUPs 
calculated with estimated variance components (triangles) 

were almost identical to those obtained with “true” variance 
components (circles and diamonds).

Calculating r̃a by Eq. (16) as a function of the ra and 
� values of GCA and SCA effects provided an excellent 
approximation of ra values for all scenarios and values of 
nTS and c in both data sets (Figures S4 and S5). Similarly, the 
curves for r̂a of hybrids and GCA effects calculated accord-
ing to Eqs. (13, 14) had identical shape as the curves for ra 
in all scenarios (Figures S6 and S7). In both data sets, r̂a 
showed in comparison with ra a slight upward and minor 
downward bias for low and high h2 , respectively.

Discussion

Our research pertains to the prediction of inter-population 
hybrids produced by crossing lines of two genetically distant 
populations. This setting is typical for established hybrid 
breeding programs in maize and other allogamous crops, 
because organizing the germplasm in genetically divergent 
parent populations warrants optimum exploitation of hetero-
sis and reduces the proportion �SCA of the SCA variance in 
�
2
g
 of hybrids according to experimental results (Melchinger 

and Gumber 1998) and theoretical arguments (Reif et al. 
2007). Our simulations show that smaller values of �SCA 
increase the prediction accuracy for all types of hybrids in 
the PS, irrespective of the data set and the size and design of 
the TS (Figs. 2 and 3). Thus, our results support the conclu-
sion of Zhao et al. (2015) that genetically distant heterotic 
groups are advantageous for both conventional hybrid breed-
ing and implementation of genomic prediction.

Choice of trait architecture, parent populations 
and genetic model

By using simulations, we were able to investigate various 
scenarios in hybrid breeding with a large number of replica-
tions and to determine the prediction accuracy directly by 
correlating predicted and “true" genotypic values, thereby 
bypassing the estimation of ra by means of cross-validation. 
Following Fisher (1918), we assumed a large number of 
QTL underlying the genetic architecture of complex quan-
titative traits with small additive and dominance effects as 
practiced in previous studies with similar objectives (Tech-
now et al. 2012; Seye et al. 2020). We ignored epistasis given 
its minor importance in experimental studies with maize 
(Melchinger et al. 1988; Lamkey et al. 1995) and the low 
importance of statistical epistasis at the level of populations 
even in the presence of significant physiological epistasis at 

Fig. 2   Prediction accuracy ( ra ) for A H0, H1, and H2 type of 
hybrids and all hybrids in set H and B GCA of I0 and I1 lines as a 
function of the number nTS of parent lines and number of crosses 
per parent ( c = 1, 2, 4 ) used for producing the training set (TS). 
Results refer to means of 1000 simulation runs based on data set 
DS1 for different values of h2 and �SCA (proportion of the SCA vari-
ance in �2

g
 of hybrids). Circles and triangles refer to ra values for 

NTS = nTS × c = 96 obtained with GBLUPs calculated with “true” 
and estimated variance components, respectively

◂
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the level of individual genotypes (Hill et al. 2008; Sackton 
and Hartl 2016).

The genotypic data underlying our simulations were 
taken from an active maize breeding program to warrant 
high practical relevance. Data set DS1 represents the situ-
ation when numerous preselected lines are available and a 
limited number of most promising hybrid combinations are 
to be produced and evaluated for final product development. 
The lines in DS1 had been selected based on their line perse 
and testcross performance but we expect similar outcomes 
if they were identified with genomic selection. Data set DS2 
can be viewed as an application of the Hallauer (1967) pro-
posal of full-sib selection for hybrid breeding, where single 
crosses instead of testcrosses are evaluated at each stage of 
the breeding cycle, in which case genomic prediction is the 
only way to exploit the effects of Mendelian sampling in the 
parent populations.

We limited our investigation to the classical GCA–SCA 
model of Sprague and Tatum (1942) for modeling hybrid 
performance. Kadam et al. (2021) used a model with only 
additive effects for investigating the optimum TS compo-
sition, whereas Fristche-Neto et al. (2018) used addition-
ally a model with both additive and dominance effects. 
The GCA–SCA model has the advantage that it captures 
population-specific effects of SNPs, which is important if 
the linkage phase and strength of linkage disequilibrium 
(LD) between QTL and SNPs and/or the QTL effects differ 
between the parent populations. A systematic comparison of 
the prediction accuracy of the different models is missing in 
the literature and warrants further research with experimen-
tal data but we do not expect that choice of the model will 
strongly affect the optimum design of the TS.

We restricted our analyses to GBLUPs for four reasons. 
First, GBLUP allowed to calculate (i) an approximation r̂a 
of the expectation of the prediction accuracy ra for hybrid 
performance (Eq. (14)) and GCA and SCA effects (Eq. (13)) 
based on population parameters, and (ii) an approximation 
r̃a of ra as function of ra estimates for GCA and SCA effects 
(Eq. (16)). Second, BLUP is relatively simple to compute 

and under multivariate normality, it is the conditional mean, 
which has well-known optimality properties for selection 
based on predicted values (Fernando and Gianola 1986). 
Third, GBLUP proved to be competitive in comparison with 
other parametric and nonparametric methods for prediction 
targeting a single population (Heslot et al. 2012; Crossa 
et al. 2013) or a hybrid population (Kadam and Lorenz 
2019). Fourth, GBLUP can be easily adopted to cope with 
genotype × environment interactions (Ferrão et al. 2020) 
and epistasis by using appropriate Gaussian kernels based 
on ordinary genomic relationship matrices (Jiang and Reif 
2015).

Prediction accuracy of hybrids, GCA and SCA effects

By assuming absence of covariances between GBLUPs of 
GCA and SCA effects, we were able to derive r̃a in Eq. (16) 
as an approximation of ra for hybrid performance, which 
depends on the ra of GCA and SCA effects and their contri-
bution to �2

G
 . As confirmed by almost identical curves for r̃a 

and ra (Figures S4 and S5), Eq. (16) yielded for both data 
sets an excellent approximation of the prediction accuracy 
of hybrids, which provides a key for their interpretation in 
the light of ra for GCA and SCA effects.

For all scenarios, we observed striking differences in 
the composition of the TS maximizing ra (Figs. 2 and 3). 
As known from other applications of genomic predic-
tion in breeding (Clark et al. 2012; Riedelsheimer et al. 
2013; Auinger et  al. 2021), the degree of relationship 
between the genotypes in the TS and PS has a strong influ-
ence on the prediction accuracy. In the case of I1 lines, 
the cross(es) of each line in the TS can be regarded as 
member(s) of the virtual family of half-sibs underlying 
the definition of its GCA. Thus, increasing c results for 
each I1 line in more hybrid relatives in the TS, which is 
expected to improve ra of its own GCA and that of I0 lines 
related to it. However, there will be fewer of such I1 lines 
that can contribute to ra of I0 lines. Therefore, one must be 
cautious in generalizing that c = 1 is always the best choice 
as suggested by our findings.

Prediction of SCA was not promising for all scenarios 
in both data sets, because ra was generally too low for 
all sets of hybrids (Figure S2 and S5). Even in the most 
favorable case ( h2 = 0.8 , �SCA = 22% , H2 hybrids), a TS 
with nTS = 144 and c = 4 was needed in data set DS2 to 
achieve ra ∼ 0.5 . However, this result may depend on the 
large genetic distance among the parent populations in 
our study and might differ, if no clearly defined heterotic 
groups are available as applies to autogamous crops at the 
beginning of hybrid breeding, where �SCA can exceed 25%.

Fig. 3   Prediction accuracy ( ra ) for A H0, H1, and H2 type of hybrids 
and all hybrids in set H and B GCA of I0 and I1 lines as a function 
of the number nTS of parent lines and number of crosses per parent 
( c = 1, 2, 4 ) used for producing the training set (TS). Results refer 
to means of 1000 simulation runs based on data set DS2 for differ-
ent values of h2 and �SCA (proportion of the SCA variance in �2

g
 of 

hybrids). Circles and triangles refer to results for NTS = nTS × c = 96 
and diamonds and triangles refer to results for NTS = nTS × c = 144 
obtained with GBLUPs calculated with “true” and estimated variance 
components, respectively

◂
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Combining the statements of the previous sections pro-
vides an explanation why the curves for prediction accu-
racy of H0 and H2 hybrids were almost identical to those 
for GCA of I0 and I1 lines, respectively, and the curves of 
H1 hybrids are in between those for H0 and H2 hybrids. 
Firstly, r̃a is in close agreement with ra for all types of 
hybrids and all scenarios in both data sets (Figs. 2 and 3), 
indicating that Eq. (16) provides a solid basis for assessing 
the importance of GCA and SCA effects in hybrid predic-
tion. Secondly, the contribution of SCA effects to r̃a is 
close to zero, because �SCA and even more so r2

a
 for SCA 

effects are minor in comparison with the contribution of 
GCA effects. Thus, it follows that prediction accuracy of 
hybrids depends almost exclusively on ra of GCA effects.

The steeper increase in ra values for GCA of I0 lines 
and the higher level of the curves for data set DS2 than 
DS1 (Figs. 2 and 3) can be explained by differences in 
the structure of their parent populations. Data set DS1 
included some related lines and displayed a rapid decay 
of LD between adjacent loci (cf. Technow et al. 2014). 
Consequently, pedigree relationships captured by markers 
were presumably an important driver of prediction accu-
racy. By comparison, because the DH lines of data set 
DS2 had undergone only one generation of genetic recom-
bination, large haploblocks were present in each parent 
population as reflected by the large number of completely 
linked markers over long physical distances. Therefore, 
co-segregation of QTL and markers and high LD among 
them were most likely the main reasons for reaching very 
high levels of prediction accuracy even with moderate TS 
size (Habier et al. 2013; Schopp et al. 2017).

Importance of additional factors influencing 
prediction accuracy

For a given number of field plots available for phenotyping, 
the breeder has in addition to the choice of c the option to 
increase NTS at the expense of evaluating the TS in fewer 
environments. However, in all scenarios doubling NTS had 
generally a much smaller effect on increasing ra than dou-
bling h2 , which increased prediction accuracy for all sets of 
hybrids by ~ 30% (Figs. 2 and 3). High h2 , which of course 
would need more than doubling the number of test environ-
ments, was particularly important for reliable prediction of 
H0 hybrids. Furthermore, increasing NTS was more reward-
ing under high than low h2 , indicating that low h2 can only 
partly be compensated by larger NTS.

Increasing nTS beyond 60 resulted in a rapidly diminish-
ing increase in ra except for H0 hybrids and this held true 
for all values of c . For data set DS2, this can be explained 
by the large haplotypes in the parent populations similar to 

the results obtained with testcrosses of lines from bi-paren-
tal populations (Lehermeier et al. 2014; Lian et al. 2014). 
However, for data set DS1 this was unexpected and most 
likely attributable to its breeding history, because in genomic 
prediction with testcross data (Albrecht et al. 2014; Krchov 
and Bernardo 2015; Auinger et al. 2021), ra approached a 
plateau at much larger TS sizes. Consequently, regarding 
the optimum allocation of resources assigned to the TS and 
PS, one reaches soon the point, where a further increase in 
nTS and/or c hardly pays off in a higher prediction accuracy.

Larger contributions ( �SCA = 22%vs.1% ) of SCA to �2
G

 
of hybrids reduced ra for all scenarios and types of hybrids 
by less than 10% (Figs. 2 and 3). Hence, the decision on 
the optimum design of the TS is largely independent of the 
degree of heterosis in trait expression. This conclusion can 
be extended to the complexity of the trait as confirmed by 
simulations with smaller numbers of QTL (data not shown).

Optimum design of the TS for genomic prediction 
of hybrids and GCA​

Optimal implementation of GP in breeding programs 
requires a balanced compromise between the expenditures 
spent on the TS and PS (Riedelsheimer and Melchinger 
2013) whereby the former influences mainly the predic-
tion accuracy and the latter the selection intensity. Fortu-
nately, the optimal design of the TS for prediction of hybrids 
and for prediction of GCA effects coincides due to almost 
perfect congruency of their curves for ra shown in Figs. 2 
and 3. A further important finding was that the heritability 
and genetic trait architecture had essentially no influence, 
because for a given NTS and type of hybrids, the ranking of 
ra values was identical, independent of h2 and �SCA.

Nevertheless, the task of finding the optimal TS in hybrid 
breeding is complicated by the fact that one has to deal with 
three types (H0, H1, H2) of hybrids differing in their predic-
tion accuracy. For c = 1 , the prediction accuracy was highest 
for H0 hybrids but lowest for H1 and H2 hybrids. Moreover, 
depending on the design of the TS, the composition of the 
PS will also change. If for example in DS1 and NTS = 96 , 
c is increased from 1 to 4 and consequently nTS is reduced 
by ¼, the number of H2 hybrids will be reduced by ~ 1/16 
whereas the number of H0 hybrids will grow from 4.6 to 
65.4%. Hence, in most cases H2 and HT hybrids have by far 
the lowest proportion in H as the size of these sets depends 
on nTS , which is generally small due the limited size of the 
TS as a result of the high costs of phenotyping. By compari-
son, H0 hybrids will represent by far the largest subset in H 
as the cost of producing and genotyping a large number of 
lines in each parent population is rather inexpensive with the 
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use of modern technologies such as doubled-haploid produc-
tion and genotyping by sequencing, respectively. Thus, in 
most cases it will be most advantageous to have c = 1 for 
designing the TS as confirmed by the prediction accuracy 
calculated across the entire set H for NTS = 96 in data set 
DS1 (Fig. 2) and NTS = 96 and 144 in DS2 (Fig. 3). This 
conclusion is in line with the results of the experimental 
study of Lorenzi et al. (2022) demonstrating the potential 
of sparse factorial designs for genomic prediction in hybrid 
breeding.

An exact solution of the optimization problem would 
require calculating the selection gain under truncation selec-
tion in multiple populations with different prediction accura-
cies and costs for H0, H1 and H2 hybrids, which is beyond 
the scope of this study. Obtaining reliable estimates of ra 
for each set of hybrids by cross-validation would require 
a large TS, exceeding by far the capacity of most breeding 
programs. As a practicable alternative, one might consider to 
determine r̂a for each type of hybrid, which can be calculated 
from genomic data and estimates of the relevant variance 
components that could be borrowed from previous breeding 
cycles. Using r̂a for optimizing the allocation of resources 
would also offer flexibility with regard to the choice of nTS , 
c and h2 in order to balance the sample size NTS versus the 
number of test environments used in phenotyping the TS for 
a given total number of test plots.

Besides genetic and economic aspects for the optimum 
design of the TS when adopting the “factorial” approach, 
breeders might prefer to use c = 1 for practical reasons. First, 
fewer seeds are required from each parent, which may obvi-
ate the necessity of seed multiplication and thereby the loss 
of one generation, if seed multiplication is a problem, as 
applies often to the production of doubled haploids. Sec-
ond, nicking in flowering of the female and male parents 
is more likely to be successful for a single pair than if two 
or more crosses are to be produced per parent in a partially 
balanced incomplete factorial design. If chemical agents or 
partitions are used for producing seed for testing purposes, 
only a corresponding spatial arrangement of the female and 
male genotypes is required.

In our simulations, the parents of the TS were randomly 
sampled from the set F and M of all females and males, 
respectively. In practice, however, the breeder has the option 
of a target sampling. Fristche-Neto et al. (2018) used the 
prediction error variance of the hybrids in the PS as selection 
criterion. They found a slightly higher prediction accuracy 
for selected over randomly chosen genotypes, when apply-
ing an additive model to factorial crosses, but this trend was 
reversed, when dominance effects were included. Kadam 
et al. (2021) also used an additive model in combination 
with the CDmean criterion of Rincent et al. (2012) applied 
to the hybrid population. With regard to applications of 
the GCA–SCA model, we suggest to perform the selection 

separately in each parent population, using search algorithms 
and criteria recently described for a single population (Isidro 
y Sánchez et al. 2022; Rio et al. 2022), but to replace the 
genetic variance in the formulas by the GCA variance of 
the respective parent population. The TS for hybrid pre-
diction would then be produced by randomly crossing the 
lines selected from each parent population. In the presence 
of population structure, this method is expected to improve 
the prediction accuracy but further research is warranted to 
assess its merits.

Topics for further research

In established hybrid breeding programs, the majority of 
activities deals with recycling breeding, where numer-
ous (un-)related bi-parental families are produced anew in 
each parent population and cycle. As demonstrated with 
experimental data (Lehermeier et al. 2014) and simulations 
(Brauner et al. 2019), a genomic model trained with ~ 10 half-
sib families of ~ 100 DH lines can yield the same prediction 
accuracy for testcross prediction of DH lines within a bi-
parental family as if trained with ~ 100 full sibs from the same 
family. Hence, one might argue that including numerous 
related families of inter-population hybrids in the TS might 
also be possible for hybrid prediction. Seye et al. (2020) used 
this approach and obtained for all types of hybrids very high 
prediction accuracies that were calculated by pooling all 36 
hybrid families. However, it remains unknown to what extent 
these results apply to genomic prediction of hybrids within 
families, which is the only way to exploit the within family 
variance and therefore of main interest to the breeder. When 
including members of all families in the PS, the variation 
among family means explains one third of the total addi-
tive genetic variance among the hybrids so that predicting 
their performance by their family mean would yield already 
a prediction accuracy of 

√
1∕3 = 0.58 . A direct transfer of 

the results for genomic prediction across families for testcross 
performance to that for hybrid performance seems problem-
atic because in the former case the gametic array of the tester 
is identical for all candidates, whereas in the latter case the 
gametes of the hybrids in the TS would mostly be sampled 
from different families. Thus, further research with well-
designed experiments is warranted to examine the variation 
in the prediction accuracy of genomic prediction of hybrids 
between and across hybrid families similar to the study of 
Lehermeier et al. (2014) on testcross performance.

Our theoretical results were presented for homozygous 
lines but they also apply to heterozygous parents. Compared 
with homozygous lines, using heterozygous S0 plants as par-
ents reduces the GCA variances by ½ and the SCA variance 
by ¼ so that �sca is expected to be very small even for highly 
heterotic traits. We therefore conjecture that the optimum 
design of the TS for this scenario will not fundamentally 
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differ from that for homozygous parents. Confirmation 
of this hypothesis with simulations would be important 
for breeding of crops such as oil palm, where hybrids are 
produced from crosses between heterozygous parents and 
genomic selection holds great promise due to the drastic 
reduction of the generation interval (Cros et al. 2015; Kwong 
et al. 2017).

Further progress for genomic prediction is expected from 
machine learning methods (Yin et al. 2020) because they 
do not require assumptions about the distribution of marker 
effects or their statistical independence and are particularly 
suited to recognize and exploit patterns in the data regard-
ing the action and interaction of alleles and similarities of 
genotypes. However, they need to be adapted to the spe-
cial features of hybrid populations. Thus, these methods 
may further improve the already high prediction accuracy 
achieved by GBLUP, but again we do not expect that this 
will fundamentally change the optimum design of the TS in 
hybrid breeding unless the parent population have a strong 
population structure or other type of pattern.

Conclusions

Genomic prediction holds great promise to cope with the 
huge number of potential hybrids enabled by recent pro-
gress in the development of new lines and high-throughput 
genotyping. Our simulations clearly show that the prediction 
accuracy of hybrids depends largely on the GCA of their 
parent lines. Therefore, optimizing the design of the TS for 
fixed NTS goes hand in hand with the prediction of hybrids 
in product development and the prediction of GCA of the 
parent lines in recurrent selection.

We found that including one cross per parent line ( c = 1 ) 
in the TS yields highest prediction accuracy for H0 hybrids 
and GCA of I0 lines but lowest prediction accuracy for H2 
hybrids and GCA of I1 lines, with H1 hybrids taking an inter-
mediate position. The optimal design of the TS is therefore 
complicated by these opposite trends and depends heavily on 
the fraction of H0, H1 and H2 hybrids and I0 and I1 lines 
in the entire sets H, F and M . A solution for this problem 
is calculating the expected selection response across all sets 
of hybrids and lines, taking into consideration the costs of 
genotyping versus phenotyping and other relevant aspects. 
However, if the bulk of predicted genotypes are H0 hybrids 
due to the low costs of genotyping, c = 1 seems to be gen-
erally the best option for constructing the TS as confirmed 
by our results on the prediction accuracy across all types of 
hybrids in set H in both data sets. With regard to the entailed 
paradigm shift in hybrid breeding from the “testcross” to 
the “factorial” approach, we recommend to complement our 
simulations with investigations based on experimental data 
and examine also the potential influence of epistasis and 

genotype × environment interactions on the optimum design 
of the TS.

Appendix 1

Derivation of the parametric estimate r̂
a
 

of prediction accuracy for hybrids and their GCA 
and SCA effects

The expectation of the prediction accuracy ra
(
ûΦ

)
 in 

Eq. (11) is

Following Ould Estaghvirou et al. (2013), we approxi-
mate the expectation of the ratio and product of random 
variables by the ratio and product of their expectations

Using results about (i) the expectation of bilinear forms 
(Searle 1971, p.65), and (ii) cov(û, u) = var(û) (Henderson 
1975, p.425), we have

and

with L = BVBT (see Eq. (6)). Inserting these expressions in 
Eq. (18), we obtain r̂a

(
ûΦ

)
 as an estimate of ra

(
ûΦ

)

where  G =
(
gij
)
 ,  L =

(
lij
)
 ,  gi. =

1

�Φ�
∑

j∈Φ gij  and 

li. =
1

�Φ�
∑

j∈Φ lij.
An estimate of ra for a subset Φ ⊂

{
1, ...,NF × NM

}
 of 

hybrids is obtained as

(17)E
�
r
�
ûΦ, uΦ

��
= E

⎡
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ûTSΦu��
ûTSΦû
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E
[
ûTSΦu

]
= tr

(
SΦcov(û, u)

)
= tr

(
SΦvar(û)

)
= tr

(
SΦL

)
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E
[
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(
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(
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Note that matrices G , B and L can be calculated from the 
genomic data of the genotypes in set F and set M (i.e., matri-
ces KF and KM ), variance components �2

gcaF
 , �2

gcaM
 , �2

sca
 , �2

e
 , 

and the incidence matrices X (usually X = 1 ) and Z pertain-
ing to the fixed and random effects in Eq. (2), respectively.

Appendix 2

Linking the prediction accuracies of hybrids to those 
of their SCA and parental GCA effects and derivation 
of 

⌣

r
a
 for estimating the prediction accuracy 

of hybrids

Henderson (1975) proved for BLUP that cov(u, û) = var(û) . 
Thus, the expected (individual) prediction accuracy of a ran-
domly chosen hybrid i × j can be obtained by extracting the 
corresponding diagonal elements from the matrices var

(
ĥ
)
 

and var(h)

(26)𝜌a

(
ĥi×j, hi×j

)
≈

√√√√var
(
ĝF,i

)
+ var

(
ĝM,j

)
+ var

(
ŝi×j

)

var
(
hi×j

) =

√
𝜌2
a

(
ĝF,i, gF,i

)
𝜏gcaF + 𝜌2

a

(
ĝM,j, gM,j

)
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a

(
si×j, ŝi×j

)
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where �gcaF = �
2
gcaF

∕�2
G
 , �gcaM = �

2
gcaM

∕�2
G
 and �sca = �

2
sca
∕�2

G
.

Ignoring covariances among BLUPs of GCA and SCA 
effects, we get from Eq. (10)

and using var(h) = WTGW = GF ⊗ JnM + JnF ⊗ GM + GH , 
we get the approximation

(24)
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)
+ var

(
ŝH
)

Following Ould Estaghvirou et al. (2013), an estimate 
⌣

ra(Φ) of the prediction accuracy ra(Φ) of the GBLUPs for 
the genotypes in a population Φ can be obtained from the 
(individual) prediction accuracies �a(k) of k ∈ Φ as

In our setting, Φ ⊂ H =
{
(1, 1), ...,

(
1, n

M

)
, (2, 1), ...,

(
2, n

M

)
,(

n
F
, 1
)
, ...,

(
n
F
, n

M

)}
 describes a subset of hybrids. Regard-

ing the prediction accuracy of GBLUPs for H0 hybrids, we 
have Φ0,0 = F0 ×M0 ; for H1F and H1M hybrids, we have 
Φ1,0 = F1 ×M0 and Φ0,1 = F0 ×M1 , respectively; and for H2 

hybrids we have Φ1,1 =
(
F1 ×M1

)
�HT . Thus, we obtain for 

H0 and H1 hybrids.

.
Together with Eq. (26), we get
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Combining these results, we get as an approximation for 

ra
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ĝF,i, gF,i

)
𝜏gcaF +

1
||Ms

||
∑
i∈Ms

𝜌2
a

(
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ŝFs×Mt

)
𝜏sca



	 Theoretical and Applied Genetics (2023) 136:176

1 3

176  Page 16 of 18

Substituting ra
(
ĝF,Fs

)
 , �gcaF and the other terms on the 

right hand side by estimates such as r̂a
(
ĝF,Fs

)
 etc. yields the 

estimate r̃a
(
ĥFs×Mt

)
 for ra

(
ĥFs×Mt

)
:

which was used for preparing Figures S4 and S6.
If the TS is constructed according to a balanced incom-

plete factorial design with c crosses per parent line in F1 and 
M1 and ||F1

|| = ||M1
|| , using Eqs. (26 and 27) we have for H2 

hybrids

Using again Eq. (28), we get

as an approximation of ra
(
ĥΦ1,1

)
.

In summary, Eqs. (29 and 30) allow to estimate r̃a for the 
prediction accuracy ra of H0 hybrids 

(
Φ0,0 = F0 ×M0

)
 , H1 

hybrids ( Φ1,0 = F1 ×M0 or Φ0,1 = F0 ×M1 ) and H2 hybrids 
( Φ1,1 =

(
F1 ×M1

)
�HT  ) by substituting appropriate ra esti-

mates of their I0 and/or I1 parent lines and ra estimates of 
the SCA effects of their hybrids.
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ĝF,i, gF,i

)
𝜏gcaF +

1

||M1
||
∑
j∈M1

𝜌2
a

(
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