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Abstract
The electrification of vehicle powertrains and the expected engineering labor shortage are ongoing key challenges in the
gear transmission development. Because traditional methods reach limits, the solution is further automating the design
process while enabling flexible and optimal design solutions even with rapidly changing constraints and requirements. We
therefore review the current design process, review state-of-the-art methods for automated gear transmission design, and
evaluate their potential and the challenges in combination with using machine learning methods. In focus are grammars
and graph grammars in particular, which offer an approach to represent and generate the relational structure of trans-
mission topologies or shaft arrangements. Other potential approaches are knowledge-based engineering, which allows to
choose various predefined expert design solution and combine them to new designs, and constraint programming for gear
transmission generation. Combining these methods with latest advances in reinforcement learning, machine learning for
inverse problem-solving, and graph neural networks offers promising capabilities for automatic topology generation and
dimensioning of gear transmissions.

Potenziale und Herausforderungen bei der Verbesserung der Getriebeentwicklungmit
Machine-Learning-Methoden – Ein Review

Zusammenfassung
Die Elektrifizierung von Fahrzeugantrieben und der zu erwartende Arbeitskräftemangel bei Ingenieuren sind zentrale lau-
fende Herausforderungen bei der Entwicklung von Zahnradgetrieben. Da herkömmliche Methoden an ihre Grenzen stoßen,
liegt die Lösung in der weiteren Automatisierung des Entwicklungsprozesses und der schnellen Bereitstellung flexibler
und optimaler Entwurfslösungen, auch bei sich schnell ändernden Randbedingungen und Anforderungen. Es werden daher
der aktuelle Entwicklungsprozess und die aktuellen Methoden für den automatisierten Getriebeentwurf untersucht und
deren Potenzial und die Herausforderungen in Kombination mit dem Einsatz von Machine-Learning-Methoden evaluiert.
Im Fokus stehen dabei Grammatiken und insbesondere Graphgrammatiken, die einen Ansatz zur Repräsentation und Ge-
nerierung der relationalen Struktur von Getriebetopologien oder Wellenanordnungen bieten. Weitere mögliche Ansätze
sind das Knowledge-based Engineering, das es erlaubt verschiedene vordefinierte Expertenlösungen auszuwählen und zu
neuen Entwürfen zu kombinieren, und das Constraint Programming zur Generierung von Getrieben. Die Kombination
dieser Methoden mit den neuesten Fortschritten im Bereich des Reinforcement Learning, des Machine Learning für in-
verse Probleme und der Graph-basierten neuronalen Netze bietet vielversprechende Möglichkeiten für die automatische
Topologieerzeugung und Dimensionierung von Zahnradgetrieben.
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1 Introduction

The latest challenges in drivetrain und transmission devel-
opment come along with emerging advances in machine
learning. According to the “2022 State of the Gear Industry”
survey of the American Gear Manufactures Association [1],
many see the electrification of vehicle powertrains as a tech-
nology disruption and one of the most important ongoing
challenges. Additionally, many expect or are already fac-
ing a shortage of labor in general, but especially in smaller
companies and also on an engineering or expert level. Due
to the increased dynamic of the gear transmission devel-
opment, companies demand for faster obtained, but high-
quality solutions. Because traditional methods reach limits,
automation and machine learning are key for future success.
The latest advances in artificial intelligence (AI) and ma-
chine learning in particular offer widespread opportunities
to learn from data. Applications in various fields show that
machine learning can improve the performance of complex
processes or can automate until recently impossible tasks.

With the present work, we consider methods for auto-
mated gear transmission design and evaluate their potential
and the challenges in combination with the use of machine
learning methods. The focus of the work is on methods,
which are fundamental for machine learning algorithms in
order to obtain flexible designs under various constraints
and requirements. Examples are grammars and graph gram-
mars in particular, which offer an approach to represent
transmission topologies or shaft arrangements. With know-
ledge-based engineering (KBE), various predefined expert
design solution can be chosen and combined to new designs.
Another potential approach for gear transmission genera-
tion is constraint programming (CP).

The present paper first contains a review of the literature
of gear design programs, of methods for automated design
and transmission synthesis, and of optimization and ma-
chine learning methods for gear transmission design. Sec-
ondly, we provide the current state of gear transmission de-
velopment before evaluating the potentials and challenges
of a gear transmission development approach enhanced by
machine learning methods. Lastly, we discuss the potentials
and indicate key areas of further research.

2 Methods

Although nowadays the design process of gear transmis-
sions is based on partially automated computer aided meth-
ods, expert knowledge and experience are still necessary
to a large extent [2]. Computer-based applications as part
of the design process can be distinguished into multiple
groups. The first ones are the already widely used gear de-
sign and mainly analysis programs. The second ones are

methods for automated design synthesis like grammars and
KBE. Additionally, there are more general methods for op-
timization and machine learning as part of AI.

2.1 Gear design programs

Available programs can be divided with regard to their func-
tionality into software for gear component design and soft-
ware for overall system design.

Prominent programs as an example for gear component
design are STplus (Research Association for Drive Tech-
nology (FVA) [3]), GearEngineer (GJW Technology [4]),
LDP (Ohio State University [5]), Transmission3D (Ansol
[6]) and STIRAK (FVA), which allow load capacity as well
as geometric design calculations. STplus and GearEngi-
neer both contain parameter-based tooth geometries rep-
resentations and the calculation follows the standards DIN,
AGMA, and ISO. In contrast, STIRAK is based on numer-
ical finite element method (FEM) simulation and therefore
it is possible to carry out more detailed tooth contact anal-
ysis under load [7]. Further programs are DZP (FVA) for
the analysis and optimization of the dynamic excitation be-
havior as well as MDESIGN LVR for the load distribution
calculation and optimization of the tooth flank [8, 9].

To achieve a more holistic design process, overall trans-
mission development programs such as RIKOR (FVA),
GAP (FVA), MASTA (Smart Manufacturing Technology
Ltd [10]), Romax (Romax Technology Ltd [11]), WTPlus
(FVA) and KISSSoft (KISSSoft AG [12]) are in applica-
tion. The focus of RIKOR is on comprehensive deformation
analysis and the resulting impact on the gears, shafts and
bearings. By specifying common requirements such as the
desired power and transmission ratio, GAP creates quick
first drafts of transmission designs based on various pre-
defined transmission topologies [7, 13–17]. WTPlus is an
analysis tool for efficiency and heat analysis at system
level [18]. Masta and Romax are programs for standard-
based design, NVH analysis and optimization of shafts,
bearings and gears in the overall transmission context [19,
20]. A broad software program is KISSSoft, which con-
tains modules for the design of single machine components
and extensions for overall gear transmission design. It also
includes the partially automated creation of graded trans-
mission variants based on user specified parameter ranges
[21, 22].

Next to commercial software programs, there are many
individual software solutions in companies that range from
analysis tools to automated synthesis solutions for specific,
well-known gear types and topologies. However, these in-
house software solutions are difficult to cover, because they
are mostly confidential.

In summary, software-supported transmission design al-
ready provides a wide range of options for automating in-

K



Forschung im Ingenieurwesen (2023) 87:1333–1346 1335

dividual areas of transmission development. However, the
available programs are still predominantly limited to the
detailed analysis of already defined geometries and cannot
perform a detailed synthesis from scratch.

2.2 Methods for automated transmission design

Automatically designing gear transmissions is a complex
task due to the infinite possible design solutions. Follow-
ing the approach of computational design synthesis by Ca-
gan et al. [23], the process includes the generation, repre-
sentation, evaluation and guidance of designs. Especially
guiding and generating new design drafts requires adequate
methods to cope with extensive requirements and strong
dependencies of properties. To address the shortcomings
of today’s software-supported transmission design, meth-
ods like grammars, KBE and others could be promising for
automation, especially in combination with using machine
learning.

Grammar is defined by Merriam-Webster as “the set of
rules that explain how words are used in a language” [24].
Equivalent to languages, the synthesis in technical develop-
ment also follows fundamental rules. The first one to use
grammar proceeding from linguistic science in a formal,
technical sense was Chomsky who developed the string
grammar [25]. Since then, a variety of other grammars
have been developed, such as graph, array, tree, or shape
grammars [26]. In general, every grammar consists of four
parts, which are nonterminal vocabulary, terminal vocabu-
lary, production rules and initial objects. Starting from the
initial object, applying production rules modifies the ob-
ject until it is only made of terminal vocabulary, or a user
defined stop condition is met. The production rules usu-
ally follow a decision tree style and therefore have a causal
structure with a left side (“If ...”) and a right side (“Then ...”).
If the left-side condition is met by the object, the right-side
modification is applied to it, thereby deriving a new object
[27]. Despite the large variety of different grammars, graph
and shape grammars are the ones mainly used for technical
product development [28].

The vocabulary of graph grammars consists of edges and
nodes. Edges usually represent energy, material, or signal
transmissions, while nodes, depending on the specific ap-
plication, often represent individual product components.
For gear transmissions, the nodes are usually used to repre-
sent shafts or gears and edges to represent the power trans-
mission and the geometrical connection or contact. Since
individual properties of the components are usually of great
importance for technical development tasks, additional pa-
rameters are often assigned to nodes that can also be mod-
ified by the production rules [29]. In order to apply rules,
it is necessary to find matches in the graph regarding the
left-side conditions of the rules. Common algorithms for

this search are Depth-first or Breadth-first algorithms [27].
However, machine learning on graph is getting traction re-
cently and more sophisticated searches and evaluations of
graphs become possible (see Sect. 2.3) [30]. For example,
You et al. [31] proofed that latest advances in machine
learning on graphs allow to generate new molecule topolo-
gies represented as graph structures.

A basic example of a graph grammar with rule applica-
tion is illustrated in Fig. 1. The advantages of graph gram-
mars are, for example, that they are well visualizable and
that there are software programs to create graphs and apply
rules.

Examples are GrGen, Design Compiler 43 with many in-
terfaces, i.e. to CAD-programs, and GraphSynth with inte-
grated search algorithms. A main disadvantage is that there
is no commonly agreed language yet for creating graphs
and therefore only limited transferability between systems
is possilbe [28]. Graph grammars were already used to de-
sign satellites [34], an electric toothbrush [35] or epicyclic
gear trains [36].

Shape grammars, in contrast, have a vocabulary consist-
ing of shapes, which can be points, lines, surfaces, geomet-
ric bodies, or higher-dimensional hyperplanes [27]. Shape
grammars were originally developed by Stiny and Gips to
create paintings and sculptures [37]. They have already been
used successfully in architecture to develop different vari-
ants of buildings [38]. Later they were also used success-
fully in areas of mechanical engineering such as the design
of a robot arm [39], coffee machines [40], digital cam-
eras [41], vehicles [42], or as an example for a commercial
application for the design of airplane tubing [43]. Shape
grammars are not based on a symbolic representation and
therefore the production rules are applied directly to the
shapes of the technical components [44]. A Disadvantage
is that, in contrast to graph grammars, there are no compara-
ble translation programs from grammar to CAD programs.
Furthermore, the search process for the production rule ap-
plication is significantly more complex; current approaches
include computer vision algorithms and decomposition into
sub-shapes [28].

Since the gearbox design is a complex inverse problem,
ending the rule application depending on the terminal vo-
cabulary does not make sense. Instead, optimization meth-
ods such as Simulated-Annealing [44], Genetic Algorithms
[45], or Burst-Algorithms [29] are usually used.

Grammars have also already been used for the automated
synthesis of gears transmissions. Lin et al. [44] automati-
cally synthetized a 5-speed transmission by using a com-
bined shape and graph grammar with 9 parametric and topo-
logical production rules. Königseder et al. [29, 46] present
a similar approach for gear transmission generation with
ten production rules and the goal of investigating differ-

K



1336 Forschung im Ingenieurwesen (2023) 87:1333–1346

Fig. 1 A basic example of
a graph grammar with rule
application in the style of [32,
33]

ent strategies for rule application. For planetary gears, Wolf
symbols are an approach to symbolize gear topologies [47].

Another method for automated transmission design be-
sides grammars is KBE, which is a combination of several
areas such as AI, CAD and object-oriented programming
[48]. The focus is on capturing, saving and reusing the
respective product knowledge with the aim of automating
repetitive, non-creative tasks of the design process [49].
KBE is rule-based deterministic so that the system always
generates the same results according to the expert defini-
tion. Furthermore, KBE programs are often strongly linked
to CAD engines and can therefore directly create technical
drawings or carry out analyzes [50]. Common commercial
KBE systems are ICAD (Dassault Systèmes), AML (Tech-
noSoft), GDL (Genworks International), KnowledgeFusion
(Siemens NX) and KnowledgeWare (Dassault Systèmes)
[51]. KBE were used successfully for automotive body-in-
whites analyzes [48], gear shaft of an aircraft engine [52]
or ship structural design [53].

Berx et al. [54] proposed another approach to automated
transmission synthesis with a CP algorithm. For this pur-
pose, they defined many restrictions, which were derived
from user requirements, design rules or physical laws. All
possible combinations were then created in a two-stage pro-
cess. With an increasing number of gear stages, the com-
putational effort became too high despite many restrictions.
This is why an additional clustering algorithm was imple-
mented to independently add new restrictions.

Fauroux et al. [55] developed a method for the automated
arrangement of transmission components. For this, an algo-
rithm that has stored all common types of gear stages (e.g.
planetary stages, conical stages etc.) replaces the stages
with prismatic and rotary connection points. The former
is introduced wherever a variable change in length, the lat-
ter where a rotational change is possible. An optimization
problem is then solved that on the one hand minimizes the
distance between the last gear shaft and the desired out-
put position and on the other hand minimizes the length of
the prismatic connection points ensuring that the shortest
arrangement is found.

Stangl [56] uses graphs for topology representations of
complex planetary gears. For finding concepts, he combines

graph and shape grammars on the basis of Lindenmayer
systems.

Kurth [57] describes a methods for complex planetary
gear synthesis with Helfer diagrams and equivalent lever
models for multiple operating conditions. He reduces the
search space by an efficiency approximation method.

2.3 Optimization and machine learning in gear
design

Unlike a forward or direct problem, where causes lead to
effects, gear design can be seen as an inverse problem. For
example, the geometry and material choice of a gearset
cause its properties such as weight and load-carrying ca-
pacity. The inverse problem would be finding one or all
suitable geometry material combinations for given proper-
ties. In contrast to the forward problem, inverse problems
generally have various solutions or cannot be solved at all.

2.3.1 Optimization in gear design

Common approaches for solving the inverse problem are
optimization algorithms. Parlow [14] integrates an opti-
mization with a global simulated annealing algorithm in
the gear design process of the GAP (FVA) software. The
optimization problem includes the weighted cost function
of mass, efficiency and noise of a gearset or the whole
gearbox consisting of gears and shafts. The constraint is
fulfilling the minimum load-carrying capacity. The mass is
considered as the ratio of the mass of all parts with respect
to the input torque. The load-depended gear losses serve
as a criterion for efficiency, while the characteristic value
for noise is a combination of excitation level and response
function. Fürst et al. [58] extend this concept in GAP (FVA)
by a mixed integer nonlinear mass optimization including
detailed shafts with shoulders, splines, catalogue bearings,
and fixing elements. Each shaft section must have a diam-
eter in accordance with the conjugating and chosen ma-
chine element. But they must also fulfill the requirements
for load-carrying capacity and notch effects by considering
the diameter transition from shaft section to section. The
algorithm performs iterative searches along the shaft sec-
tions. The approach is based on two fixed shaft topologies
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of input/output shafts and intermediate shafts. Holder et al.
[59] illustrate gear design automation with a graph-based
design language and a package optimization. They also use
GAP (FVA) to generate a gear design including synthesis
and analysis and represent the transmission topology and
parameters with a graph structure. In order to meet the
requirements for input and output locations, the approach
contains a nonlinear gradient-free optimization, which is
constraint by a CAD kernel collision detection. The opti-
mization parameters are manually chosen and bearings are
with parametric rules next to the gearset. With the graph
representation of the final gearset the approach contains
a fully parametric housing description and forward gen-
eration. Brahim [60] approaches the mass optimization of
a one-stage gear transmission geometry. The constraints of
the inverse problem are the tooth root strength, the surface
durability, the torsional stiffness of the shaft, and the shaft
distance. First, an analytical model according to AGMA
standards [61] is used as the basis for a global optimiza-
tion to obtain a first level solution. The next step is CAD
modelling the solution and deriving a surrogate model due
to computational efficiency reasons. The result of the sub-
sequent heuristic optimization with a genetic algorithm is
the final gear design. Rai et al. [62] intend to minimize the
gear volume of a helical gearset with a real-coded genetic
algorithm. They use the profile shift coefficients, the mod-
ule, the face width, the helix angle, and the number of teeth
as design variables and constraint the problem by the spe-
cific sliding, the transverse contact ratio, the face width and
strength requirements based on ISO 6336 [63] standards.
Other works, for example, Simon [64] and Kohn et al. [65]
include an optimization of the tooth flank properties and
modifications and its manufacturing with load capacity and
noise level constraints.

Often optimizing one objective such as the mass is not
sufficient in gear design. Multi-objective optimization is
a method to get design options and the Pareto front. Younes
et al. [66] optimize a single-stage helical gear with respect
to power loss and vibrational excitation. They calculate the
power loss based on tooth friction and alternatively based
on a thermal network with heat sources. The root mean
square error of the transmission error oscillation represents
the dynamic excitation. It originates from rigid body model
calculations. To find the Pareto front, they use the Non-
Dominated Sorting Genetic Algorithm NSGA-II with the
bending stress in the tooth root and a minimum contact ratio
as constraints. The optimization parameters are the macro
geometry values of the pressure and helix angle in com-
bination with the micro geometry values of the length and
amount of tooth profile modification with crowning. The
optimization approach is either using the macro and micro
parameters simultaneously or subsequently. Maputi et al.
[67, 68] use the volume and the center distance of a three-

stage spur gear as objectives in order to obtain a maxi-
mum compact design. The problem constraint is the mini-
mum required load-carrying capacity based on the bending
and contact stress according to AGMA standard [61] cal-
culation. With a bounded objective method in combination
with teaching-learning based optimization the problem con-
tains only the volume as a main objective, while the second
objective, the center distance, is formulated as a constraint.
Sabarinath et al. [69] use a similar approach to optimize the
volume and overlap ratio of a helical gearset by applying
a parameter adaptive harmony search algorithm. The opti-
mization variables are the module, the helix angle, the gear
width and the number of teeth. The constraints are mini-
mum load-carrying capacity values according to ISO 6336
standard [63] in combination with geometrical restrictions.
Artoni [70] describes another approach to find the global
pareto optimal solution with a direct search algorithm for
transmissions.

2.3.2 Machine learning in gear design

Advances in AI and machine learning in particular offer
various possibilities to enhance the design process and to
support solving the inverse problem. However, only few
approaches have been published yet in the field of gear
transmissions.

Lin et al. [44] and Königseder et al. [46] describe graph
grammars used for computational design synthesis of trans-
mission topologies, as illustrated in Sect. 2.2. Doumouchel
et al. [71] and Masfaraud et al. [72] use a similar approach
combined with clustering to generate detailed geared trans-
mission designs including shifts. They describe component
properties and interactions with an object-oriented design
formulation. A rule database with a decision tree is used to
perform an exhaustive graph generation of topology solu-
tions. It contains components like shafts, gearsets, clutches,
shifting elements, and power inputs/outputs. Subsequently,
graph algorithms (depth-first search) are used to remove
isomorphism and invalid topologies that do not meet the
kinematic requirements. A wireframe modelling of the re-
maining subset of solutions adds spatial information and
allows to detect further invalid solutions. The yet remain-
ing subset is the basis for machine learning clustering. Each
topology solution gets properties added by estimating, for
example, the cost per element or the efficiency based on
the number of tooth contacts. They use the cost, efficiency
and the number of gear meshes for multidimensional scal-
ing in a seven dimensional vector space. It is the basis for
clustering and identifying groups of similar transmissions.
Distinct solutions of each cluster, such as the one with fa-
vorable properties, are chosen for further 3D CAD refine-
ment and optimization. Therefore, they continuously opti-
mize the position and size of all components with a genetic
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algorithm and package constraints. Discontinuous values,
i.e. the number of teeth, are obtained by discrete optimiza-
tion. Urbas et al. [73] present an approach for predicting
tooth root bending stresses of spur gears. There are stan-
dards, such as ISO 6336 [63] or AGMA 2101 [61], with
analytical formulas for involute gears. However, the au-
thors evaluate various machine learning methods in order
to predict the values of polymer gears with a curved line of
contact, for which these standards not apply. A dataset with
the resulting maximum stress in the tooth root is obtained
by geometrical variation and subsequent FEM simulation
for various forces and Young’s moduli. It is the basis for
machine learning model training for stress prediction. Mod-
els evaluated are linear regression, support vector machine,
k-nearest neighbor, neural networks, AdaBoost, and random
forest regression. The latter two showed the best results in
the provided work.

2.3.3 Advances in machine learning

Next to machine learning methods applied in gear design
already (see Sect. 2.3.2), there are various advances in ma-
chine learning in general that are promising for product de-
sign. Many of these methods might be helpful to the appli-
cation in gear design. Because the field of general machine
learning is broad, we will not cover all aspects. But we will
give an indication of promising and relevant advances in
graph neural networks (GNNs), reinforcement learning and
machine learning for inverse problem solving.

Research on GNNs has seen a lot of traction lately as
summarized in [30, 74, 75]. From representing physical
structures to knowledge, graphs are a versatile basis for
analysis, generation, and problem solving. Latest GNNs
are powerful machine learning methods and have proven
their outperforming capability. Zhou et al. [75] gives an
overview of current applications and challenges of GNNs.
Many problems and applications have an inherent relational
data structure, which makes the use of graph representa-
tions obvious, i.e. chemical molecules. Advances in GNN
research allow to perform graph matching and clustering,
biomedical and molecular engineering for interface and
reaction prediction, and representation learning on know-
ledge graphs. Additionally, GNNs are used in generative
models, for example, to create new chemical structures or
knowledge graphs. In complex combinatorial problems, i.e.
the traveling salesman problem, GNNs can improve the
optimization. Furthermore, next to graph level and node
level classification, GNNs are also suitable for link predic-
tion and are therefore applied in recommendation systems.
For some scenarios, a structural graph representation is not
present directly. Applications with incorporated or assumed
relational structure are, e.g., fast image classification, vi-
sual reasoning, text classification, or sequence labeling. Al-

though GNNs are powerful, some challenges for research
remain, which are the robustness, the interpretability, the
possibility and extend of graph pretraining, and complex
and dynamic graph structures [75].

Next to supervised learning, deep reinforcement learn-
ing is one of the important fields of machine learning and
it has seen intensive progress in the past few years [76]. It
is meant for sequential decision making with the goal to
learn the best actions in various situations to fulfill a long-
term goal. It is not based on training datasets, but on learn-
ing by exploration and exploitation. Choi et al. [77] suggest
a deep reinforcement learning approach to assist in task-ori-
ented product design. The goal is to change the diameters
of a cylindrical pot at various heights in order to be able
to catch as much water as possible when pouring it in, but
simultaneously losing the least water when shaking the pot.
Using a simulation environment for evaluating and reward-
ing the pouring and shaking scenario in combination with
an actor-critic proximal policy optimization (PPO) algo-
rithm, the reinforcement learning methods is able to create
task-oriented pot designs. Hayashi et al. [78] show another
application for optimum design of a plane frame. They com-
bine deep reinforcement learning with metaheuristics of
simulated annealing and particle swarm optimization. Us-
ing deep Q-learning, they approach to optimize the cross-
section design of planar frame structures with respect to
minimal volume and stress constraints. It is a combinato-
rial problem, because only discrete catalogue diameters are
available. Jang et al. [79] use deep reinforcement learning
for generative design. They show a case study of automo-
tive wheel design. The goal is to generate 25 new wheels
with maximum diversity. Therefore, they use a neural net-
work to approximate and speed up the automotive wheel
topology optimization. They combine that with a reinforce-
ment learning PPO algorithm with autoencoder regulariza-
tion in order to achieve the diversity by pixel difference
or structural dissimilarity. Ruiz-Montiel et al. [80] use re-
inforcement learning in combination with shape grammars
for design generation. They show a general approach based
on Q-learning and demonstrate it on an architectural design
example of automatic floor plan generation for two-person
houses with various constraints. Mirhoseini et al. [81] show
that reinforcement learning can improve the quality and
time of chip placement. They place nodes of chip netlist,
which is represented as a graph, into the two-dimensional
space of a chip canvas. The goal is to optimize the power,
performance and area while preventing infeasible solutions.
In the course of which, they use supervised representation
learning for predicting the placement quality.

Solving the inverse problem is an important task in en-
gineering and various machine learning approaches try to
increase quality and speed. For example, Ardizzone et al.
[82] suggest invertible neural networks for inverse prob-
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lems. The underlying idea is to use learning of the forward
problem and thereby learning the inverse problem implic-
itly. They show the validity, i.e., by applying the approach
on functional state analysis of biological tissue. Holl et al.
[83] propose a different approach utilizing higher-order gra-
dients for applications such as fluid flow prediction. While
most state-of-the-art machine learning algorithms rely on
first order gradients, second order gradients are often deci-
sive to physical or engineering problems. Therefore, they
use a hybrid optimization approach with so-called physical
gradients, the embedded inverse-problem solver, replacing
the gradient of the physical process.

2.4 Methods conclusion

When it comes to automating the gear design, there is var-
ious methodical support such as grammars, KBE, or CP.
However, most approaches today rely on classic parameter
optimization to solve the inverse gear design problem with
given or restricted topologies. They range from single-ob-
jective to multi-objective approaches in order to find the
pareto optimal solutions and target preferably macro geo-
metric design parameters such as gear size and shape to mi-
cro geometric gear profile modifications. Only rarely, flex-
ible design solutions by detailed topology variation are op-
timized to its fullest potential. There are approaches based
on graph and shape grammars. However, these are mostly
combined with exhaustive searches and are therefore time
consuming at execution with high computational costs. Ma-
chine learning is not widespread in gear transmission dis-
covery and, for example, used predominantly for particular
property predictions including common feature engineer-
ing (e.g. material features [73]), model training and evalu-
ation steps. However, advances especially in deep learning
offer promising opportunities to utilize graphs due to the
GNNs and their potential for graph analysis and handling,
reinforcement learning for combinatorial optimization and
sequential decision making based on rules, as well as ap-
proximation learning and neural network architectures for
tackling inverse problems.

The question arises, what the potentials are of using
grammars, KBE, and CP as a basis for machine learning
methods in order to improve gear design and explore solu-
tions spaces for diverse topologies.

3 Current state of gear transmission
development

In the current transmission development, the knowledge of
experts is still important and only few parts of it are auto-
mated [14]. The gear development process follows the iter-
ative and stage-wise synthesis and analysis of the product

development V-model according to VDI/VDE 2006:2021
[84]. It can be divided into the stages of target and re-
quirement definition, topology design, component design,
structural design, and system evaluation.

In the first step, the definition of targets, the require-
ments, boundary conditions and target values that the gear-
box should achieve must be specified. Usually, these goals
are set manually by the client and/or the contractor [85].
A variety of methods such as financial analyzes, interviews,
and patent research are used for this task. In addition, the
targets are often inspired by existing transmissions and their
properties [86].

The following step is the generation and analysis of the
topology with the basic gear type definition. In addition, the
number and type of components is determined as well as
the interactions between them [87]. The choice of topology
still largely depends on the knowledge of responsible engi-
neers, which makes it very person-dependent and often hard
to find optimal solutions. For this reason and to simplify the
process, simulation-based, model-based and mathematical
optimization methods are used in addition (see Sect. 2.3.1
and 2.3.2). In summary, it can be stated that the selection of
the topology has already been simplified to a small extend
by software-based applications (see Sect. 2.1). But it is still
mostly a manual task with geometrical and functional con-
straints such as the axis position or the number and type of
gearsets.

The goal of component design is to iteratively define
parameters for the individual gear components (especially
gearing, shafts and bearings) so that they meet the require-
ments. Usual requirements for the components are ensur-
ing the load-carrying capacity, a high efficiency, a minimal
dynamic excitation, etc. [14, 88]. In general, the gear di-
mensioning is started first, then a shaft dimensioning and
finally a dimensioning of the bearings is carried out. It is
common to use various software for component design, but
mostly restricted to component analysis. Depending on the
program, the analysis of the gears, shafts and bearings is
completely automated or at least highly software assisted.
Next to integrated tools, it is often carried out with addi-
tional, external analysis programs such as FEM or multi-
body simulation tools [89].

In the structural design, the components are spatially
arranged in relation to one another and the remaining trans-
mission components such as the housing, seals, circlips and
other machine elements are added. Like the topology de-
sign, the procedure is still largely based on the knowledge of
experts. Following the generation of the structure, analyzes
such as FEM are usually carried out for validation [90]. For
this purpose, simulation and analysis software programs are
used.

In the final step, an overall system evaluation is carried
out in which the developed gearboxes are verified against
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the requirements specified in the target definition. For this
purpose, the properties of the transmissions need to be ana-
lyzed [91]. This is often also done with software assistance.
A final evaluation based on the analysis results is then usu-
ally carried out by the development team or responsible
stakeholder.

All in all, the current development process of gear design
seldomly contains KBE. Graphs are used to find suitable
topologies for planetary transmissions with given transmis-
sion ratio constraints (for example, see Kurth [57]), but are
not widespread used as grammars for design generation.
This also is the case for commonly used shape representa-
tions.

4 Potentials and challenges in gear
transmission development

Various possible topologies ranging from combinations of
spur, bevel and planetary gears to machine element choice
and their order on the shafts lead to challenges in gear de-
sign. Parametric scaling is only a small part of the solution,
but much of it is combinatorial design and optimization.
Therefore, the presented methods of grammars, the KBE,
and the CP could make a crucial contribution to the au-
tomation of the transmission design in the future. For this
reason, we analyze the potentials and disadvantages of the
respective procedures including challenges in the machine
learning application and data collection.

4.1 Grammars

Grammars have a great potential to enable automation in the
gear topology selection and in shaft design. The reasons are,
on the one hand, that they have already been successfully
used for this or a similar application and, on the other hand,
that they have a lower computational effort compared to
other methods like CP. Regarding the type of grammar,
graph grammars have the advantage over shape grammars
of a lower computational effort, already proven compilers
for conversions into CAD models and programs to create
them (e.g. GraphSynth, GrGen or Design Compiler 43) [28,
92]. Since shape grammars enable a spatial arrangement,
a hybrid form of both types could be of advantage.

Despite the potential of grammars, they also have con-
siderable disadvantages. One of them is the current lack of
uniform standards for creation and use of grammars, which
means that transferability or interoperability between dif-
ferent systems is difficult [28]. However, this can be con-
sidered a minor problem, as newly emerging methods are
often affected by a lack of standards at first. Attempts are
also being made to remedy this disadvantage by using es-

tablished modeling languages such as SysML for support
[93].

Another disadvantage is the complexity of grammars.
In existing gear design applications, in which grammars
are used, only simple stage transmissions were designed
without a large variety of production rules. In these de-
sign processes, only the components gear, shifting elements
and shaft were considered with few rules in total [29, 46,
71]. Additional rules lead to an exponential increase in the
model complexity of grammars. To limit this complexity,
unfavorable topologies must be sorted out early by using
suitable optimization methods (see Sect. 2.2). Due to the
mostly random application of rules, many invalid or unfa-
vorable variants are created. It would be an advantage if
topologies are not only sorted out after creation, but rather
avoided before production rule application. A possible so-
lution is the combination of grammars with reinforcement
learning. An example of this is a method published by
Stump et al. [94], in which a shape grammar was com-
bined with a char-RNN to modify the rule application. After
the learning process, the char-RNN was applied by assign-
ing the production rules that were most promising in the
training to a higher probability than the others. With this
method, the number of unsuitable concepts could be signif-
icantly reduced. It should be noted that the use of reinforce-
ment learning to the production rule selection can introduce
a bias. Furthermore, GNNs as described in Sect. 2.3.3 offer
new possibilities in high quality and fast graph analysis.
They should be considered for further research in combina-
tion with graph generation as shown by You et al. [31] or
graph analysis and comparison in general.

Another problem of grammars is that they are very time
consuming to create and implement. The manual defini-
tion of suitable production rules represents a considerable
development effort [95]. Consequently, grammars are very
subjective with regards to the knowledge of their developer.
A fundamental improvement by which significantly shorter
development times and potentially better grammars could
be achieved would therefore be the (partly) automatic cre-
ation and the self-learning of production rules. The method
of Computational Evolutionary Embryogenesis (CEE) pub-
lished by Yogev et al. [96] could be a possibility to imple-
ment this to grammars. CEE is strongly based on genetic
algorithms from machine learning. The main difference is
that they are not applied to the application sequence of the
rules, but to the rules themselves. So, at the beginning, sev-
eral rule sets are initialized with random rules and then
structures are formed from them, which are then evaluated.
The rule sets of the more suitable structures have a higher
probability of passing their rules on to the next generation.
The selected rule sets are also changed by mutation and
recombination like by genetic algorithms. Another method
for automated rule generation is the Statistically Derived
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Table 1 Weaknesses and potentials for improvements of grammars

Weaknesses Potential for improvements

Transferability and
interoperability with
other systems

Interpreter already available, so far only
with very limited functionality
Established modelling languages like
SysML for support

Exponential com-
plexity

Learning and adapted rule selection by
combining with reinforcement learning
Graph analysis with GNNs

Lack of standards Definition of standards

Creation and imple-
mentation of produc-
tion rules laborious

Machine learning, autonomous creation of
rules
Computational evolutionary embryogenesis
Statistically derived shape grammar

Lack of rule analysis
methods

Network-based rule analysis method

Shape Grammar created by Orborn et al. [95, 97] in which
the vocabulary is determined by analyzing existing prod-
ucts (in this case vehicles). For this purpose, a principal
component analysis was carried out in a database to iden-
tify similarities or differences, weigh them based on their
variance in the vehicle designs and then automatically de-
rive product rules from it. Since the method was developed
primarily for the industrial design, it is not intuitively trans-
ferable to the creation of gear topologies. In summary, there
is still research need in the field of automated rule creation,
because the result will have a significant influence on the
future of grammars in technical concept development [28].

Another drawback of grammars are the currently missing
analysis and evaluation methods of rules. Even if the defi-
nition of the rules may be automated in the future, an addi-
tional, independent analysis should be available for check-
ing and to ensure a deeper understanding of the grammar by
the responsible engineers. An example of such an approach
is the Network-based Rule Analysis Method (NRAM) pub-
lished by Königseder and Shea [46], which can be used
to analyze graph grammars. The functionality of NRAM
is based on transition graphs, which represent an overview
of all possible rule combinations. Analyzes of the graph
grammar were carried out using the breadth-first algorithm,
integrated rule analyzes from the GrGen.NET program and
manual examinations based on clear visualizations. Even if
NRAM is a very simple and only partially automated anal-
ysis method, it can be used to evaluate the most important
properties of a graph grammar. Apart from that, there is still
a need for research to develop further analysis methods, for
example also for the evaluation of shape grammars. A sum-
mary of the weaknesses and potentials for improvements of
grammars is given in Table 1.

4.2 KBE

When KBE came up, it was treated as a very promising
method. This initial enthusiasm has lately decreased signif-
icantly, as KBE, except for a few automotive and aviation
applications, could not be established in industry [49].

KBE is particularly suitable for automating repetitive,
rule-based and parametric tasks as a forward problem that
require little creativity. While certainly transmission devel-
opment largely consists of such repetitive tasks, many areas,
such as the topology generation, still require expert know-
ledge. Properties strongly depend on each other and many
can only be evaluated sufficiently at a late stage of the de-
sign process. This is where KBE has its biggest drawbacks.
In contrast to grammars, KBE always creates the same so-
lution according to the expert definition without the possi-
bility of exploring the design space broadly for unknown
options. Therefore, KBE does not change the current itera-
tive, experience-based design process, but represents a com-
puter-based automation of it. Another problem of KBE is
generalization. It is often adapted to a specific application
and cannot be easily applied for similar products. New prod-
ucts often require time-consuming reprogramming of the
KBs and, as a result, the loss of knowledge, misapplica-
tions, increased program maintenance costs and the danger
of insufficient knowledge utilization [98]. Methodological
approaches are a solution. The best-known example of this
is MOKA (Methodology and Tools Oriented to Knowledge
Based Engineering Applications), which supports the de-
veloper in creating a KBE system [50]. Apart from that,
a (partially) automated, generalized rule generation could
be a considerable improvement of KBE.

The potential of KBE for application in gear design is
primarily the efficient scaling or modification of gear con-
cepts for rapid adaptation of specific application cases. It
is also an advantage that the KBE is the only one of the
presented methods yet that can directly access the CAD en-
gine and thus directly derive solids or technical drawings.
Machine learning algorithms can help to make KBE more
flexible in choosing the right design options.

4.3 Constraint programming

The model-based CP approach is an approach that tries to
consider all possible topologies with the goal of determin-
ing the optimal solution. A central weakness, however, is
that many constraints must be defined for this. As with the
production rules of the grammars, these must be created by
engineers, who thus have a strong influence on the resulting
outcome. Furthermore, case-based overfitting may occur in
the process.

Possible improvements for this include automated con-
straint generation with machine learning, where they are
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learned or adapted from training data. This method is called
constraint learning or constraint acquisition [99]. With con-
straint learning, only the parameters of already existing con-
straints are changed, but not the basic formal structure. As
an example, the initial constraint “gear diameter<400mm”
could be given, and the machine learning algorithm would
then only adjust the value 400mm. For soft constraints that
may be violated, if necessary, but which generate a nega-
tive reward for the algorithm, the weights can also be ad-
justed with machine learning. This is often implemented
through clustering methods [54]. In addition to constraints,
CP needs an efficient strategy on how to explore the search
space. An approach to this as an example was presented
by Cappart et al. [100], in which the CP was extended by
a reinforcement learning algorithm. This enabled a much
more efficient solving of the CP by ensuring that once a so-
lution was found, new constraints were imposed to ensure
that subsequent solutions must always be better. The appli-
cation potential of CP in the transmission design process is
mainly in topology selection. It therefore is a competing ap-
proach to grammars. However, due to the constraints, which
all must be fulfilled, the CP has less flexibility compared to
the grammars and is more complex to create.

4.4 Machine learning application

The application of machine learning in gear transmission
development faces some general challenges. According to
Liu et al. [101, 102], three major contradictions, the data
structure and availability (high-dimensional data and small
samples size), the machine learning model complexity and
accuracy, and the knowledge source (learning results and
domain knowledge) apply in machine learning research of
materials design and discovery. They are reviewed in the
context of gear transmission development.

� Data structure and availability

Only few data of whole gear transmissions are normally
available due to the elaborate design process, diverse ap-
plications, and confidentiality restrictions. Additionally, the
description of gear transmissions requires heterogeneous
data such as functional relations between parts and ma-
chine elements and their respective properties. It results in
continuous, integer, or binary data of varying size and struc-
ture. Data sources are a combination of existing products,
experiments, and simulations with a varying level of de-
tail. Machine learning and especially supervised learning
therefore face the challenge of high-dimensional data with
limited sample availability. Feature engineering for dimen-
sionality reduction mostly means manual selection incorpo-
rating domain knowledge [58, 73]. Sample augmentation is
limited to simulation results, for example, properties with
FEM calculations [73] with exhaustive searches or topolo-

gies with generative search trees [71]. Additionally, Urbas
et al. [73] show the application of ensemble learning, i.e.
by applying random forest regression for property predic-
tion. Because data are sparse, supervised learning seems
challenging especially for topology discovery and therefore
rule-based generation is an option [29, 46, 71, 72].

� Model complexity and accuracy

Common approaches in gear design mostly rely on stan-
dard calculations, i.e. according to ISO 6336 [63], which
include property predictions based on (non)linear regres-
sion and decision trees. It is therefore an established inter-
pretable and easy-to-use approach. More complex models
such as artificial neural networks [73] are part of research
and show promising accuracy for the high-dimensional data
in gear design. It also applies to gear transmission discov-
ery methods such as GAP (FVA), which are potentially
interpretable, because they rely on decision trees with in-
corporated domain knowledge. However, flexible designs
for diverse applications require more complex models such
as artificial neural networks or generative machine learning
models in general. But again, interpretability and ease-of-
use are challenges for acceptance amongst engineers.

� Knowledge source

The lack of large sample sizes, various property depen-
dencies and diverse structures of gear transmissions makes
the use of domain knowledge in current design almost in-
dispensable. Domain knowledge is incorporated manually
in the problem and rule definition [44, 58, 71, 72]. Combin-
ing data-driven machine learning with domain knowledge
directly, as for example reviewed in [103] for deep neu-
ral networks and shown by Liu et al. in feature selection
for materials property prediction [104], is promising for
flexible and high-quality designs, but is rarely addressed in
current research of gear transmission design.

4.5 Data collection

Data collection is a crucial step in applying machine learn-
ing models successfully. We will briefly outline the com-
mon practices in gear transmission development today and
refer to other works for general insights, i.e. [105]. Property
predictions of gear transmission mostly rely on supervised
learning such as (non)linear regressions [63], but there is
also research with support vector machine or neural net-
works [73]. Data originate from experiments and simula-
tions. Experiments include mainly component testing of di-
verse gears as well as system evaluations. Simulations such
as FEM or MBS are a commonly used for data generation
or experimental data augmentation. However, data collec-
tion is a tedious task in gear design, especially for systems
or lager machines. Therefore, new gear transmission dis-
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covery often relies on rule-based generation [44, 58, 71,
72] with incorporated expert knowledge and physics. Digi-
talizing gear expert knowledge (design rules and principles)
is key for such applications and requires common standards
and guidelines.

5 Discussion and research focus

Grammars, KBE, and CP all still have disadvantages for
the use with machine learning methods in automated gear
transmission design. Grammars with machine learning have
proven that they are able to reduce the subjective influence
by experts’ knowledge and reuse the knowledge. Examples
in transmission development are currently limited to sim-
pler designs, for example, few stage gearboxes with only
gears and shafts, but applied successfully. The mutual de-
pendency of gear transmission properties on various design
parameters requires holistic approaches for more complex
transmission designs. In contrast to today’s often strictly
iterative and sequential design process, an overall exchange
of all analysis and synthesis methods is necessary for opti-
mal design solutions. Grammars and in particular a combi-
nation of graph and shape grammar are promising methods
to handle flexible topologies. The effort of implementation
is not too excessive and especially the combination with
deep learning methods such as reinforcement learning and
GNNs offers a variety of new options for further explor-
ing the solution space automatically in less time. Because
such machine learning algorithms require very many sam-
ples and therefore analysis cycles, common analysis tools
might take too much time and thus be the bottleneck for
model training. Model simplification or value approxima-
tion with machine learning methods seems to be a viable
approach if necessary. Next to topology search and com-
binatorial optimization, a transmission also requires spatial
dimensioning. Inverse problem-solving algorithms as clas-
sic optimization algorithms are common, but are mainly
very time consuming. Machine learning algorithms for in-
verse problem-solving offer new possibilities.

All in all, the gear transmission development still offers
high potential for automation. The identified key areas of
research are as follows:

� Reinforcement learning methods in combination with
GNNs for topology generation of transmissions systems
and shaft arrangements with grammars

� Machine learning methods for automatic grammar rule
generation

� Transmission graph topology analysis with GNNs
� Common standards and guidelines for expert knowledge

digitalization

� Speed-up of transmission analysis tools utilizing ma-
chine learning value predictions

� Spatial component dimensioning with methods of ma-
chine learning for inverse problems

6 Conclusion

Automated gear transmission design enhanced by machine
learning methods is a challenge today. Therefore, we re-
viewed the current state-of-the-art and evaluated the po-
tentials for the application of graph and shape grammars,
KBE, and CP as a basis for machine learning methods. The
work contains an overview of available software, to which
extend it supports the transmission design process, and how
grammars, KBE, and CP are used in transmission and prod-
uct development in general. A review of optimization and
machine learning approaches applied in gear design and
relevant advances in the field of machine learning provides
insight in current procedures and promising applications.
The current state of gear transmission development serves
as a basis for potential and challenge evaluation.

7 Nomenclature

The nomenclature is shown in Table 2.
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Table 2 Nomenclature

AI Artificial intelligence

CAD Computer-aided design

CEE Computational evolutionary embryogenesis

CP Constraint programming

FEM Finite element method

FVA Research Association for Drive Technology

GNN Graph neural network

KBE Knowledge-based engineering

MBS Multi-body simulation

NRAM Network-based rule analysis method

NVH Noise, vibration, harshness

PPO Proximal policy optimization

RNN Recurrent neural network
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included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. American Gear Manufacturers Association (2022) gear technology
Jan/Feb 2022

2. Ortner M, Schörghuber C, Scheidel S, Hasenbichler G (2018) Se-
lektion der optimalen Antriebsstrangkonfiguration für künftige An-
forderungen an Nutzfahrzeuge. MTZ Motortech Z 79(10):30–37.
https://doi.org/10.1007/s35146-018-0083-x

3. FVA Antriebstechnik Software. https://www.fva-service.de/de/
software/. Accessed 7 Sept 2022

4. GWJ Technology GmbH (2020) User manual gearengineer soft-
ware

5. Kahraman A Load distribution program. https://mae.osu.edu/
gearlab/research. Accessed 3 Jan 2022

6. Ansol Transmission3D. http://ansol.us/Products/TX3/. Accessed 3
Jan 2022

7. FVA GmbH (2022) FVA Workbench v7.1: Modulbeschreibung
8. MDESIGN Vertriebs GmbH MDESIGN LVR und LVRplanet

– Lastverteilung an Verzahnungen. https://www.mdesign.de/de/
produkte/mdesign-lvr-lvrplanet/. Accessed 17 Apr 2021

9. Höhn B-R, Wirth C, Haefke N (2011) Design and optimization of
automotive transmissions with the FVA-Workbench

10. SMT MASTA overview. https://www.smartmt.com/cae-software/
masta/overview/. Accessed 7 Sept 2022

11. Romax software. https://romaxtech.com/software/. Accessed 7
Sept 2022

12. KISSsoft. https://www.kisssoft.com/en. Accessed 7 Sept 2022
13. Parlow JC, Otto M, Stahl K (2014) Vom Getriebeentwurf zur

Getriebeauslegung. Konstruktion 6:73–79
14. Parlow J (2016) Entwicklung einer Methode zum anforderungs-

gerechten Entwurf von Stirnradgetrieben (Dissertation, Technische
Universität München, Münche)

15. Bansemir G (2013) Konstruktionsleitsystem für den durchgängig
rechnerbasierten Zahnradgetriebeentwurf (Dissertation, TU Mün-
chen, München)

16. Dyla A (2002) Modell einer durchgängig rechnerbasierten Produk-
tentwicklung (Dissertation, Technische Universität München)

17. Jaros M (2006) Integration des STEP-Produktmodells in den
Getriebeentwicklungsprozess (Dissertation, Technische Univer-
sität München)

18. Beulshausen J, Geiger J, Pischinger S, Höhn B-R (2013) Energieef-
fizienter Antriebsstrang durch Reibungsminimierung. ATZ Auto-
mobiltch Z 115(10):828–835. https://doi.org/10.1007/s35148-013-
0286-x

19. SMT (2018) MASTA—Empowering transmission engineers to
reach new levels of quality when developing

20. Roberts S (2005) Robust transmission design through automated
optimization of virtual prototypes. Gear Technol. https://doi.org/10.
1002/sia.740010312

21. Kissling U (2011) Optimierungsprozedur zum Auslegen von Stirn-
radgetrieben nach Gewicht, Kosten und Wirkungsgrad. Konstruk-
tion 3

22. KISSSoft AG (2019) KISSsoft—Release 2019: Benutzerhandbuch
23. Cagan J, Campbell MI, Finger S, Tomiyama T (2005) A framework

for computational design synthesis: model and applications. J Com-
put Inf Sci Eng 5(3):171–181. https://doi.org/10.1115/1.2013289

24. Merriam Webster Definition of grammar. https://www.merriam-
webster.com/dictionary/grammar. Accessed 15 Sept 2021

25. Chomsky N (1957) Syntactic structures. Language 33(3):375.
https://doi.org/10.2307/411160

26. Gips J, Stiny G (1980) Production systems and grammars: a uni-
form characterization. Environ Plann B Plann Des 7(4):399–408.
https://doi.org/10.1068/b070399

27. Kirshnamurti R, Stouffs R (1993) Spatial grammars: motivation,
comparison, and new results. In: Flemming U (ed) CAAD futures
’93: Proceedings of the fifth International Conference on Com-
puter-aided Architectural Design Futures, Pittsburgh, PA, USA,
7–10 July, 1993, pp 57–75

28. Chakrabarti A et al (2011) Computer-based design synthesis re-
search: an overview. J Comput Inf Sci Eng. https://doi.org/10.1115/
1.3593409

29. Königseder C, Shea K (2016) Comparing strategies for topologic
and parametric rule application in automated computational design
synthesis. J Mech Des N Y. https://doi.org/10.1115/1.4031714

30. HamiltonWL (2020) Graph representation learning. Synth Lect Ar-
tif Intell Mach Learn 14(3):1–159

31. You J, Liu B, Ying R, Pande V, Leskovec J (2018) Graph convolu-
tional policy network for goal-directed molecular graph generation
(https://arxiv.org/pdf/1806.02473)

32. Kirchner E (2007) Leistungsübertragung in Fahrzeuggetrieben:
Grundlagen der Auslegung, Entwicklung und Validierung von
Fahrzeuggetrieben und deren Komponenten. Springer, Berlin, Hei-
delberg

33. Fu Z, de Pennington A, Saia A (1993) A graph grammar approach
to feature representation and transformation. Int J Comput Integr
Manuf 6(1–2):137–151. https://doi.org/10.1080/0951192930894
4564

34. Schaefer J, Rudolph S (2005) Satellite design by design grammars.
Aerosp Sci Technol 9(1):81–91. https://doi.org/10.1016/j.ast.2004.
08.003

35. Kurtoglu T, Campbell MI (2009) Automated synthesis of elec-
tromechanical design configurations from empirical analysis of
function to form mapping. J Eng Des 20(1):83–104. https://doi.org/
10.1080/09544820701546165

36. Schmidt LC, Shetty H, Chase SC (2000) A graph grammar ap-
proach for structure synthesis of mechanisms. J Mech Des. https://
doi.org/10.1115/DETC98/DTM-5668

37. Stiny G, Gips J (1971) Shape grammars and the generative specifi-
cation of painting and sculpture. IFIP Congress 2:1443–1447

38. Cagan J (2001) Engineering shape grammars: where we have been
and where we are going. In: Antonsson EK (ed) Formal engi-
neering design synthesis. Cambridge University Press, Cambridge,
pp 65–92

39. Wells AB (1994) Grammars for engineering design. California In-
stitute of Technology

40. Agarwal M, Cagan J (1998) A blend of different tastes: the lan-
guage of coffeemakers. Environ Plann B Plann Des 25(2):205–226.
https://doi.org/10.1068/b250205

41. Lee HC, Tang MX (2004) Evolutionary shape grammars for prod-
uct design. The seventh international conference generation art
(http://www.generativeart.com/on/cic/papersga2004/32.htm)

42. Orsborn S, Cagan J, Pawlicki R, Smith RC (2006) Creating
cross-over vehicles: defining and combining vehicle classes us-
ing shape grammars. AIEDAM 20(3):217–246. https://doi.org/10.
1017/S0890060406060185

43. Heisserman J, Mattikalli R, Callahan S (2004) A grammatical ap-
proach to design generation and its application to aircraft systems.
Proceedings of Generative CAD Systems Symposium ’04

44. Y.-s. Lin Shea K, Johnson A, Coultate J, Pears J (2010) A method
and software tool for automated gearbox synthesis. In: Proceed-
ings of the ASME International Design Engineering Technical Con-

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s35146-018-0083-x
https://www.fva-service.de/de/software/
https://www.fva-service.de/de/software/
https://mae.osu.edu/gearlab/research
https://mae.osu.edu/gearlab/research
http://ansol.us/Products/TX3/
https://www.mdesign.de/de/produkte/mdesign-lvr-lvrplanet/
https://www.mdesign.de/de/produkte/mdesign-lvr-lvrplanet/
https://www.smartmt.com/cae-software/masta/overview/
https://www.smartmt.com/cae-software/masta/overview/
https://romaxtech.com/software/
https://www.kisssoft.com/en
https://doi.org/10.1007/s35148-013-0286-x
https://doi.org/10.1007/s35148-013-0286-x
https://doi.org/10.1002/sia.740010312
https://doi.org/10.1002/sia.740010312
https://doi.org/10.1115/1.2013289
https://www.merriam-webster.com/dictionary/grammar
https://www.merriam-webster.com/dictionary/grammar
https://doi.org/10.2307/411160
https://doi.org/10.1068/b070399
https://doi.org/10.1115/1.3593409
https://doi.org/10.1115/1.3593409
https://doi.org/10.1115/1.4031714
https://arxiv.org/pdf/1806.02473
https://doi.org/10.1080/09511929308944564
https://doi.org/10.1080/09511929308944564
https://doi.org/10.1016/j.ast.2004.08.003
https://doi.org/10.1016/j.ast.2004.08.003
https://doi.org/10.1080/09544820701546165
https://doi.org/10.1080/09544820701546165
https://doi.org/10.1115/DETC98/DTM-5668
https://doi.org/10.1115/DETC98/DTM-5668
https://doi.org/10.1068/b250205
http://www.generativeart.com/on/cic/papersga2004/32.htm
https://doi.org/10.1017/S0890060406060185
https://doi.org/10.1017/S0890060406060185


Forschung im Ingenieurwesen (2023) 87:1333–1346 1345

ferences and Computers and Information in Engineering Confer-
ence—2009, pp 111–121

45. Garcia S (2016) Classifications of shape grammars. In: Gero JS (ed)
Design computing and cognition ’16. Springer, Cham, pp 229–248
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